
On the Road to Benchmarking BPMN 2.0 Workflow Engines

Marigianna Skouradaki
∗

Dieter H. Roller
Frank Leymann

Institute of Architecture and Application Systems
University of Stuttgart

Germany
{skouradaki, dieter.h.roller, leymann}

@iaas.uni-stuttgart.de

Vincenzo Ferme∗

Cesare Pautasso
Faculty of Informatics
University of Lugano

Switzerland
firstname.lastname@usi.ch

ABSTRACT
Workflow Management Systems (WfMSs) provide platforms
for delivering complex service-oriented applications that need
to satisfy enterprise-grade quality of service requirements
such as dependability and scalability. In this paper we fo-
cus on the case of benchmarking the performance of the
core of WfMSs, Workflow Engines, that are compliant with
the Business Process Model and Notation 2.0 (BPMN 2.01)
standard. We first explore the main challenges that need
to be met when designing such a benchmark and describe
the approaches we designed for tackling them in the Bench-
Flow project2. We discuss our approach to distill the essence
of real-world processes to create from it processes for the
benchmark, and to ensure that the benchmark finds wide
applicability.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Workflow management ; K.6.2 [Management
of Computing and Information Systems]: Installation
Management—Benchmarks; D.2 [Software Engineering]:
Metrics—Performance measures

General Terms
Benchmarking, Workflow Engine Performance, BPMN 2.0

1. INTRODUCTION
Performance benchmarking is an established practice that

helps to drive the continuous improvement of technology by

∗Corresponding authors
1http://www.omg.org/spec/BPMN/2.0/
2http://www.iaas.uni-stuttgart.de/forschung/
projects/benchflow.php

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, January 31 - February 04, 2015, Austin, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2695527.

setting a clear standard in measuring and assessing perfor-
mance. Only recently there have been some proposals for
benchmarks of service oriented architecture middleware tools
(e.g., SOABench [2]). In this paper we focus on one specific
kind of middleware: Workflow Engines (WfEs), which can be
used for business process automation and service composition.
For WfEs there is not yet a currently accepted benchmark,
even if standard workflow modeling languages such as BPMN
2.0 are widely used in academia and industrial practice. A
possible explanation on this deficiency can be given by the
inherent architectural complexity of WfEs and the very large
number of parameters affecting their performance.

The main challenges we identify in benchmarking a real-
world WfE are: (a) Collecting real-world process models;
(b) Synthesing the benchmark workload out of real-world
processes; (c) Designing the benchmark environment; (d)
Assessing and selecting the BPMN 2.0 engines to be tested;
(e) Characterising workloads of different actors; (f) Defining
expressive Key Performance Indicators (KPIs).

In this paper, we introduce the BenchFlow approach for
benchmarking WfEs. Its main goal is to address the afore-
mentioned challenges, by defining the first benchmark for
WfEs. In particular, it targets engines supporting BPMN 2.0
because, as we are going to show in this paper, this standard
has gained a noticeable impact on the market.

2. BENCHMARK DESIGN
Given the challenges and complexity of benchmarking

WfEs, we follow an iterative project management approach
to design and release the benchmark. With each iteration,
we enhance both the completeness and real-world represen-
tativeness of the benchmark, while taking advantage of early
results to steer the BenchFlow project direction. We are
currently planning to perform three iterations during the
project’s lifespan.

1st Iteration: runs a performance stress test on two
selected WfEs, with both micro-benchmarks, to measure
specific features of WfEs, and a workload mix that reflects
all elements of the BPMN 2.0 Core3, to simulate real-world
behaviours. According to Muehlen and Recker [15] support-
ing BPMN 2.0 Core should already have a good coverage of
the process models’ regular usage of BPMN 2.0 constructs.

3http://www.omg.org/bpmn/Samples/Elements/Core_
BPMN_Elements.htm

Actors interacting with the System Under Test (SUT) are
omitted in this phase. In real-life executions the WfE uses
the actors’ think time to spread its load, while at this case
the WfE must execute all the incoming activities immedi-
ately. For this reason this stress test responds to the worst
case scenario for the WfE performance. In this iteration
throughput (i.e., processes executed/time unit) is used as
KPI.

2nd Iteration: targets to more open source and propri-
etary systems, with load, soak, and spike tests as performance
tests [14], as well as the performance stress test from the 1st
iteration. To get a step closer to real-life conditions, sim-
ple actor workload models are added in this iteration. The
workload mix is also more complex in terms of structures,
parallelism, and interaction with external services (e.g., JMS,
web services), and BPMN 2.0 non-core activities. More KPIs
measured in order to better address the new types of tests
(e.g., latency, utilization, etc.) [16].

3rd Iteration: the sample of WfEs is further extended.
The workload represents more complex interactions of the
actors with the SUT. The impact of monitoring to the WfE
performance will be assessed, as monitoring is a very common
feature for WfEs. The workload mix will be more complex
in structure, parallelism, and BPMN 2.0 elements (complete
BPMN 2.0 set). Fault-models are also part of this workload
mix. Finally the set of measured KPIs will be completed by
offering the possibility to the user to select custom KPIs.

3. ADDRESSING THE CHALLENGES

3.1 Collect Real-World Process Models
In order to come up with a benchmark that correctly re-

flects the usage of a WfE in the real world, we need to collect
as many process models representing real-world scenarios
as necessary. Because “process equals product” [11] most
companies and business organisations are not willing to share
their process models with academic researchers to protect
their intellectual property and their competitive advantage.
To encourage sharing of the models we have signed confiden-
tiality agreements with several companies and implemented
a tool for obfuscating and anonymizing process models [20].

Without requesting models with a focus on a specific mod-
elling language we have managed to collect 8363 models
within four months from: the IBM Industry Models collec-
tion4, the BPM Academic Initiative5, companies we con-
tacted and research projects we are involved in. More specif-
ically, our collection contains: 1% WS-BPEL, 4% EPC, 7%
YAWL, 24% Petri Net, and 64% BPMN Models, where 2/3
are BPMN 2.0. The large number of BPMN 2.0 models
found in the collection supports our choice of developing a
benchmark for the most recent standard process modelling
language (BPMN 2.0).

3.2 Process Synthesis
The process models we have collected reflect a wide di-

versity of models (complex, long running, highly parallel
etc.). In order to keep the benchmark close to real world
we intend to accompany the default workload set, with a
workload generator. Figure 1 depicts the methodology for

4http://www-01.ibm.com/software/data/
industry-models/
5http://bpmai.org/BPMAcademicInitiative/

the generation of the workload, which uses the following four
phases:

Process Fragment Discovery: Addresses the automatic
discovery of the most frequently reoccurring structures in
a collection of process models. As BPMN 2.0 models can
be seen as an attributed directed graph this problem can be
reduced to frequent pattern discovery or subgraph discovery
that are specification problems of graph/subgraph isomor-
phism. This problem is NP-Hard [5] and thus it is imperative
to define an efficient methodology for discovering the similar
structures. The sub-graphs are calculated with a naive al-
gorithm approach, and clustered according to frequency of
appearance. The ones with a frequency above a threshold
are included in a new repository.

Process Fragment Refinement: The extracted parts
are stored in the form of sliced BPMN 2.0 code. Their
refinement as “Process Fragments” (namely, process parts
of relaxed completeness) [19] will make this code reusable.
We are initially focusing on Schumm’s definition but we will
tailor it to our needs. For example in BPMN 2.0, an event
gateway followed by events could be considered as a fragment
even if it does not include an activity. “Process Fragments”
can be used to synthesize processes that will represent the
existing collection.

Figure 1: Workload Generation Methodology

Process Fragments Selection: All process fragments
will not necessarily be of benchmark interest. This phase
automatically selects fragments that satisfy benchmark re-
lated criteria that are calculated according to a set of process
model metrics [13, 3]. The selected fragments are stored in
a separate repository that is a subset of the initial process
fragment repository.

Process Fragments Synthesis: Synthesizes the process
fragments into processes according to composition criteria
that are given by the user and stores them in a repository.
For example, when the selection criteria ask for a process
with depth ≤ N and M external interactions, the appropriate
fragments are chosen to synthesise it. Phases 1-3 may only

be executed one time, as it is not needed to extract the
fragments every time.

3.3 Design the Benchmarking Environment
A carefully designed benchmarking environment and an

efficient and flexible deployment mechanism are fundamental
in order to guarantee the quality of the benchmark. Porta-
bility, scalability, simplicity, vendor neutrality, repeatability,
and efficiency are characteristics that any reliable benchmark

should demonstrate [6, 9]. We setup the benchmarking en-
vironment on different physical machines on the same local
network, and deploy different actors and components of the
WfE on them. To obtain a “clean” measurement of the WfE
performance we must separate it to the maximum possible
degree from the external interferences (e.g. DBMS server and
Web Services). Figure 2 gives an overview of the BenchFlow
benchmark environment and how different components and
main actors of the WfE are deployed on different machines.

Figure 2: Benchmarking Environment Deployment

BenchFlow offers different types of performance tests (see
Section 2), allowing the configuration of the workload mix
(through the Workload Mix Generator component), the
WfE under test, the characteristics of the interacting actors
and the computed KPIs. Moreover it generates workload-
configurable actors [Req. (1)] as the dual of benchmark pro-
cesses and test configurations using a model-driven approach.
This means we need to ensure a flexible deployment mech-
anism [Req. (2)], e.g., what is offered by tools such as Va-
grant6, a tool for managing virtual machines via a simple to
use command line interface, or Docker7, a tool for creating
and working with containers to deploy complex applications.
Docker fits our needs because it guarantees a sufficient level
of isolation and a quick start up. It is more lightweight and
requires less resources in contrast to the virtual machines
approach implemented by Vagrant. Docker also allows to
configure the hardware resources of different machines in a
flexible way [Req. (3)], so we can use it to switch between
test configurations. After the deployment, BenchFlow runs
the tests using the interfaces exposed by the WfE, inject-
ing the load as configured by the test configuration. Given
that the interfaces exposed by the WfEs are heterogeneous
(non-standard APIs), we map them to a common, uniform
access mechanism [Req. (4)] to guarantee the best level
of scalability of the benchmarking environment so that the
effort to benchmark a new WfE is minimised. BenchFlow
also ensures that the initial state of the different components
is the same for every execution (frozen initial conditions)
[Req. (5)], and verifies the environment [Req. (6)] to ensure
the fulfilment of the conditions needed to execute a reliable

6http://www.vagrantup.com
7https://www.docker.com

benchmark. During or at the end of the test executions,
BenchFlow collects the data to compute KPIs in a reliable
way. Depending on the options of the SUT, data to compute
KPIs are collected during the test executions, using tools like
Faban8 and JMeter9, or exploiting the log generated by the
WfE, which are retrieved and analysed at the end of the test
execution. Moreover BenchFlow collects system performance
metrics from every environment shown in Figure 2, such as
CPU, memory and bandwidth usage, while minimising the
invasiveness of the measurements [Req. (7)]. These metrics
allow us to check for external interferences during the bench-
mark measurement, and guarantee the same environment
conditions for each benchmarked engine.

3.4 BPMN 2.0 Engines Assessment
The WfEs that participate in the benchmark need to fulfill

the following requirements: a) support at least the BPMN
2.0 Core, b) be testable in order to automate the benchmark
executions. Testability means that the WfE exposes APIs to
interact with it at least to: b.1) deploy a process; b.2) request
to start the process execution; b.3) access pending user,
manual and receive tasks, intermediate catching message and
signal events; b.4) access the process execution log; and c)
be still in active development.

We have conducted a survey among the existing WfEs that
support BPMN 2.0, gathering the following information from
the discovered products’ Web sites and release notes. Our
search found both proprietary and open source products. We
have found 19 systems in active development that support
BPMN 2.0. The complete list is omitted for space reasons
but available online10.

The release date of the first version supporting BPMN
2.0 has been used to visualize the trend of the number of
systems in active development that support BPMN 2.0 over
time (cf. Figure 3). In addition to show the rapid adoption
of the standard (released in January 2011), this trend shows
that the time is ripe for developing a benchmark for it.

Figure 3: Trend of the Number of WfEs Supporting
BPMN 2.0

The systems are written in different programming lan-
guages (PHP, Javascript, Java, etc.). This heterogeneity of
programming languages makes it particularly challenging to

8http://faban.org
9http://jmeter.apache.org

10https://en.wikipedia.org/wiki/List_of_BPMN_2.0_
Engines

compare their performance. We have found it surprisingly
difficult to determine the level of testability of a given WfE
(req. (b)) without actually installing it and looking for the
necessary APIs, since these are rarely documented on the
corresponding websites. For the same reason, we need to run
a compliance test for the BPMN 2.0 standard as done for
BPEL WfEs in [8], in order to assess the req. (a).

4. RELATED WORK
To the best of our knowledge BenchFlow is the first bench-

mark that specifically targets BPMN 2.0 WfEs. There is
a widely recognised need for introducing such a benchmark
[22, 18], which would enable the evaluation of performance
of different research prototypes and commercial products in
meaningful conditions.

SOABench [2] can be seen as an initial step to provide
a performance assessment and comparison framework of
SOA middleware systems. It features automatic generation
and execution of testbeds for benchmarking BPEL WfEs.
However SOABench assumes that the performance of a BPEL
WfE can be reduced to its response time. OpenESB [21]
and Din et al. [4] use a simple synthetic process to run the
benchmark. ActiveVOS [1] and Intel Cape Clear [10] perform
a load testing of a proprietary system with two real process
models.

Roller [17] and FACTS [12] perform load testing using one
real-world process to stress an open source and a proprietary
WfE. Both of these works invoke external services through
their processes. Hackman et al. [7] benchmarks BPEL
WfEs using 12 kernels processes. The benchmark performs
a baseline test that measures the latency and the memory
utilisation of two open source WfEs.

BenchFlow is different considering: a) the number and het-
erogeneity of the WfEs under test, b) the growing complexity
of the workload mix, and c) the type of performance tests
that will observe a broader spectrum of raw performance
metrics and aggregate them into meaningful KPIs.

5. CONCLUSION AND FUTURE WORK
In this paper we discussed critical aspects of the design

of a benchmark for BPMN 2.0 WfEs that will help towards
the comparison of the performance characteristics of differ-
ent WfEs and therefore stimulate further research in this
important middleware technology. We presented our initial
approach to tackle some of the challenges that one meets
when designing a benchmark for WfEs. Our goal is to start a
discussion on our benchmarking approach within the commu-
nity, interested in studying the performance of middleware
for workflow and business process management and come
up with a well-designed, widely accepted and usable bench-
mark for assessing, comparing and further improving the
performance of BPMN 2.0 WfEs.

Acknowledgements
This work is funded by the Swiss National Science Foundation
and the German Research Foundation with the BenchFlow
(DACH Grant Nr. 200021E-145062/1) project.

6. REFERENCES
[1] Active Endpoints Inc. Assessing ActiveVOS performance,

2011. http://www.activevos.com/content/developers/
technical_notes/assessing_activevos_performance.pdf.

[2] D. Bianculli, W. Binder, and M. L. Drago. SOABench:
Performance evaluation of service-oriented middleware made
easy. In Proc. of ICSE’10 - Volume 2, pages 301–302, 2010.

[3] J. Cardoso. Business process control-flow complexity: Metric,
evaluation, and validation. International Journal of Web
Services Research, 5(2):49–76, 2008.

[4] G. Din, K.-P. Eckert, and I. Schieferdecker. A workload
model for benchmarking BPEL engines. In Proc. of
ICSTW’08, pages 356–360, 2008.

[5] M. Dumas, L. Garćıa-Bañuelos, and R. M. Dijkman.
Similarity search of business process models. IEEE Data
Eng. Bull., 32(3):23–28, 2009.

[6] J. Gray. The Benchmark Handbook for Database and
Transaction Systems. Morgan Kaufmann, 2nd edition, 1992.

[7] G. Hackmann, M. Haitjema, C. Gill, and G.-C. Roman.
Sliver: A BPEL workflow process execution engine for
mobile devices. In Proc. of ICSOC’06, pages 503–508.
Springer, 2006.

[8] S. Harrer, J. Lenhard, and G. Wirtz. BPEL conformance in
open source engines. In Proc. of SOCA’12, pages 1–8, 2012.

[9] K. Huppler. The art of building a good benchmark. In
Performance Evaluation and Benchmarking, pages 18–30.
Springer, 2009.

[10] Intel and Cape Clear. BPEL scalability and performance
testing. White paper, 2007.

[11] F. Leymann. Managing business processes via workflow
technology. In Proc. of VLDB 2001, pages 729–, 2001.

[12] A. Liu, Q. Li, L. Huang, and M. Xiao. Facts: A framework
for fault-tolerant composition of transactional web services.
IEEE Trans. on Services Computing, 3(1):46–59, 2010.

[13] J. Mendling. Metrics for Process Models: Empirical
Foundations of Verification, Error Prediction, and
Guidelines for Correctness. Springer, 2008.

[14] I. Molyneaux. The Art of Application Performance Testing:
Help for Programmers and Quality Assurance. O’Reilly,
2009.

[15] M. Z. Muehlen and J. Recker. How much language is
enough? theoretical and practical use of the business process
modeling notation. In Proc. of CAiSE’08, pages 465–479,
2008.

[16] C. Röck and S. Harrer. Literature survey of performance
benchmarking approaches of BPEL engines. Technical
report, Otto-Friedrich University of Bamberg, 2014.

[17] D. H. Roller. Throughput Improvements for BPEL Engines:
Implementation Techniques and Measurements applied in
SWoM. PhD thesis, University of Stuttgart, 2013.

[18] N. Russell, W. M. van der Aalst, and A. Hofstede. All that
glitters is not gold: Selecting the right tool for your BPM
needs. Cutter IT Journal, 20(11):31–38, 2007.

[19] D. Schumm, D. Karastoyanova, O. Kopp, F. Leymann,
M. Sonntag, and S. Strauch. Process fragment libraries for
easier and faster development of process-based applications.
CSSI, 2(1):39–55, 2011.

[20] M. Skouradaki, D. Roller, C. Pautasso, and F. Leymann.
BPELanon: Anonymizing BPEL processes. In Proc. of
ZEUS’14, pages 9–15, 2014.

[21] Sun Microsystems. Benchmarking BPEL service engine,
2007. http://wiki.open-esb.java.net/Wiki.jsp?page=
BpelPerformance.html.

[22] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic,
S. Dustdar, and F. Leymann. Monitoring and analyzing
influential factors of business process performance. In Proc.
of EDOC’09, pages 141–150, 2009.

