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ABSTRACT

Realizing a communication middleware in a software-defined
network can leverage significant performance gains in terms
of latency, throughput and bandwidth efficiency. For ex-
ample, filtering operations in an event-based middleware
can be performed highly efficiently in the TCAM memory
of switches enabling line-rate forwarding of events. A key
challenge in a software-defined network, however, is to en-
sure high responsiveness of the control plane to dynami-
cally changing communication interactions. In this paper,
we propose a methodology for both vertical and horizontal
scaling of the distributed control plane that is capable of im-
proving the responsiveness by enabling concurrent network
updates in the presence of high dynamics while ensuring
consistent changes to the data plane of a communication
middleware. In contrast to existing scaling approaches that
aim for a general-purpose distributed control plane, our ap-
proach uses knowledge of the application semantics that is
already available in the design of the data plane of a commu-
nication middleware, e.g. subscriptions and advertisements
in an event-based middleware. By proposing a methodology
for an application-aware control distribution, we show, in
the context of PLEROMA, an event-based middleware, that
application-awareness is significantly beneficial in avoiding
the synchronization bottlenecks for ensuring consistency in
the presence of concurrent network updates and thus greatly
improves the responsiveness of the control plane.
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1. INTRODUCTION

The emergence of software-defined networking (SDN) has
enabled network designers to go beyond the limitations of
traditional network architectures and to allow software to
flexibly configure the network. With the help of standards
like OpenFlow [6], the lower-level network functionalities are
abstracted and presented as network services. In doing so,
SDN establishes a clear distinction between the control plane
and the data (forwarding) plane by extracting all control
logic from the forwarding devices and hosting it on a logi-
cally centralized component, the controller. A controller has
an integrated view of the entire network. It has the ability
to collect and process information (e.g., network statistics,
application-specific requests) from the data plane and carry
out network updates accordingly by modifying the state of
network devices (i.e., switches).

The SDN technology can especially be exploited by ex-
isting middleware to enhance application performance on
the data plane w.r.t. throughput, end-to-end latency and
bandwidth efficiency. In particular, event-based systems can
largely benefit from SDN. This is because the expressive fil-
tering of events which was previously done at the application
layer is now performed on the TCAM memory of switches
(in the date plane) at line-rate [20]. Moreover, since the
logically centralized controller has a global view of the un-
derlying topology, it is possible to avoid dissemination of the
same packet multiple times over the same physical link in
contrast to an overlay network [14].

Preserving the aforementioned benefits of SDN in a highly
dynamic environment is rather challenging. For example,
applications such as financial trading, traffic monitoring,
online gaming and electronic auctions are not only latency
sensitive but also very dynamic in terms of number of ap-
plication users and their interactions. As a consequence,
the control plane has to engage in very frequent network
topology updates and this is where the traditional design of
SDN, consisting of a single controller instance, does not scale
well. The bottleneck at a single controller instance results
in increased response times to requests for network updates,
rendering the middleware less responsive to dynamics.

Not surprisingly, research efforts [23, 15, 10, 8] propose a
distributed implementation of the control plane, which es-
sentially operates as a logically centralized controller. A
distributed control plane hosts multiple controller instances
capable of performing concurrent network updates, thus im-
proving responsiveness and throughput of the control plane.
While increasing the rate at which network reconfigurations
can be realized, it has been well established in literature that
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a distributed control plane is subject to inconsistencies [17,
3]. Inconsistencies may arise due to unsynchronized global
network state views at the distributed controller instances.
Every controller instance maintains a datastructure repre-
senting the view of the global network state. This implies
that the network acts as a shared resource. Depending on
the nature of the application, network updates are made
by each controller instance based on the state of its local
datastructure. Inconsistencies between the global network
state maintained at each controller may lead to incorrect
application-specific behavior. Performing updates based on
a stale copy of the network view may result in routing loops
and black holes on the data plane. Existing literature [17]
shows the severity of degraded application performance in
the absence of strong consistency.

To ensure strong consistency of network state, synchro-
nization mechanisms must be employed among all controller
instances such that all network updates are coordinated.
Synchronization involves state distribution and, depending
on the desired level of consistency, various classical ap-
proaches available in the field of distributed systems may
be used for the same [15, 3]. However, synchronization
techniques always come with a cost that may compromise re-
sponsiveness to data plane requests. For instance, according
to literature [15], synchronization techniques using transac-
tional persistent database backed by a replicated state ma-
chine yields severe performance limitations for applications
requiring frequent network updates.

The significant overhead in synchronization cost can be
attributed to the attempt of designing a general-purpose dis-
tributed control plane capable of supporting any SDN use-
case. However, as SDN can help to shape application-aware
data plane, it is worth exploring how application-aware con-
trol distribution can help to reduce this overhead. In this
paper, we illustrate the benefit of application-aware control
distribution in the context of the very popular event-based
middleware, i.e., publish/subscribe, to allow for increased
responsiveness while ensuring strong consistency (in the con-
text of control plane) even in the presence of failures. We
design our system based on PLEROMA [20], an SDN-based
middleware. It is worth mentioning that our concepts can
apply to any application using event-based middleware.

In this paper, we propose to scale the control plane by in-
troducing multiple controllers, which may reside on a single
physical machine with a multi-core architecture (i.e., ver-
tical scaling) or on separate physical machines in a physi-
cally distributed setting (i.e., horizontal scaling), to improve
the responsiveness and throughput of network updates han-
dled by the PLEROMA middleware. We design two ap-
proaches — shared everything and shared nothing — each
reaping the benefits of vertical and horizontal scaling respec-
tively. Moreover, we address limitations of SDN-compliant
switches w.r.t. the rate at which flow updates are performed,
again by exploiting application-awareness. Our evaluations
show that application-aware control distribution allows to
increase responsiveness significantly for both vertical and
horizontal scaling while ensuring control plane consistency.

2. PRELIMINARIES AND SYSTEM ARCHI-
TECTURE

In this section, we first give an overview of PLEROMA,
an SDN-based middleware with a centralized controller de-
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Figure 1: SDN-based Pub/Sub Middleware

signed to support content-based publish/subscribe (in short
pub/sub) [20]. We then present an architecture to scale such
a middleware for improved control plane performance.

2.1 SDN-based Pub/Sub Middleware

A content-based pub/sub system consists of mainly two
participants — publishers and subscribers — which are con-
nected to switches in a software-defined network. Publish-
ers specify the information they intend to publish by send-
ing advertisements to the SDN controller. Likewise, sub-
scribers specify information they are interested in receiving
by sending subscriptions. The controller collects all control
requests ((un)advertisement/(un)subscription) from partic-
ipants based on which it installs paths on the data plane
between each publisher and all its interested subscribers (cf.
Figure 1). In doing so, it configures the network’s data
plane by proactively installing suitable flow table entries
— representing content-based filters — on SDN-configurable
switches by utilizing the widely accepted OpenFlow stan-
dard [6]. The aforementioned paths between publishers and
their interested subscribers enable line-rate forwarding of
published events through header-based matching of packets
at the TCAM memory of switches on the data plane (cf.
Figure 1).

The PLEROMA middleware ensures high expressive-
ness and low bandwidth usage by following the content-
based subscription model where events are represented by
attribute-value pairs. To ensure the aforementioned packet-
header-based filtering of events at the data plane, we need an
efficient mapping between content attributes and flow iden-
tifiers (i.e., one or more header fields that uniquely identify
flow entries in the flow tables of switches). There are two
steps to this mapping process.

The first step yields a binary representation of content fol-
lowing the principle of spatial indexing [14, 21]. The entire
event-space (denoted by §2) comprising of say d attributes
is modeled as a d-dimensional space where each dimension
represents an attribute. Recursive binary decomposition of
Q) generates regular subspaces that serve as enclosing ap-
proximations for advertisements, subscriptions and events
which are represented by binary strings called dzs. As a



consequence of spatial indexing, dzs have certain character-
istic properties depending upon the subspaces they repre-
sent. For instance, 1) a dz with smaller length, denoted as
|dz|, represents a bigger subspace in 2, and 2) a subspace
represented by dz; is covered (contained) by the subspace
represented by dzj, i.e., dz; = dz;, iff dz; is a prefix of dz;.
For instance, in Figure 1, subspace dzqdv1 = {0} mapped
by the advertisement {T = [0,50] A P = [0,100]} covers the
subspace dzsup1 = {00} mapped by the subscription {T =
[0,50] A P =[0,50]}. As a result, dzqav1 = {0} has shorter
length and forms the prefix of dzsus1 = {00}.

The second step involves the mapping of the generated
binary strings (dzs) to flow identifiers. To this end, we use a
range of IPv6 multicast addresses, reserved for pub/sub traf-
fic, as the flow identifiers. So, a subscription/advertisement
is represented by an IPv6 multicast address which is used
by the flow entries in the flow tables of switches for event
matching and forwarding. The covering relation between
subspaces is accommodated in IP addresses with the help of
Class-less Interdomain Routing (CIDR) style masking sup-
ported by hardware switches where the ’don’t care’ symbol
(*) is used to represent masking operations. For instance, a
subscription with dz = {001} is converted to an IPv6 multi-
cast address ff0e:2000:*. In Figure 1, the flow table of switch
Ry shows the flow fields that are relevant for our middleware.
This constitutes the match field (MF), in our case an IPv6
multicast address representing a dz, e.g., 11* in fl1, and the
instruction set (IS), which specifies the port through which
an event should be forwarded on account of a match, e.g., 2
in fl;. An event is also represented as an IPv6 multicast ad-
dress and forms part of the header of the event packet. This
enables header-based matching and subsequent forwarding
of the event packet as dictated by the outgoing port of the
instruction set (IS) on account of a match.

An efficient approach to topology reconfiguration is cen-
tral to pub/sub on SDN. For this purpose, a spanning tree
(comprising switches) is maintained to account for an acyclic
dissemination structure on which paths are embedded be-
tween publishers and subscribers by installing appropriate
flows (filters) on switches along these paths. A path is noth-
ing but a sequence of switches (denoted as R) on which flows
are deployed to ensure connectivity between the publisher
and the subscriber. The flows to be deployed on a switch
depend largely on the already existing pub/sub flows on that
switch and as a result it is important for the controller to
identify the state of each switch in the network.

In more detail, the network state is represented by network
configuration that consists of (i) all switches constituting the
network, (ii) all links connecting the switches in a spanning
tree to account for an acyclic dissemination structure, and
(iii) all pub/sub flows deployed on each switch. In general,
the network configuration is maintained both at the data
plane and the control plane of a software-defined network.
The network configuration at the data plane (denoted as
DP-config) is maintained implicitly as a result of pub/sub
flows deployed in the TCAM memory of hardware switches.
On the other hand, the control plane network configuration
(denoted as CP-config) is maintained by the controller and
serves as a reflection of DP-config. As mentioned before,
installing paths between publishers and subscribers involves
reading the existing flows of each switch (along the path),
taking decisions on flow changes and writing these changes
to the switch. Since the controller assumes CP-config to

be identical to DP-config, it uses CP-config to read existing
flows and decide on flow changes. On taking a decision,
the controller sends the new flow changes to the hardware
switch, resulting in a change in DP-config. Meanwhile, the
controller also performs these flow changes in the CP-config
to ensure that it remains consistent with DP-config.

In order to understand the decision-making process to de-
termine flow changes on a switch, it is important to note the
containment relation between flows w.r.t. a single switch.
A flow fl; covers (or contains) another flow fl;, denoted by
fli = fl;, if the following two conditions hold: (i) the dz as-
sociated with the destination IP address in the match field
of fl; is covered by the dz of fl;, and (ii) the out ports to
which a packet matching f1; is forwarded are subset of those
specified in the I.S of fl;. Likewise, a partial containment
relation () can be defined between flows of a switch (or
flows to be installed on a switch). A flow fl; partially cov-
ers (or contains) another flow fl;, denoted by fl; 5 fl;, if dz
associated with the match field of fl; covers dz of fl;, but
not all the out ports used for forwarding packets matching
fl; are listed in the IS of fl;. For example, in Figure 1, fl;
> flz and fli T fls, whereas fl4 is unrelated to all other
flows in the flow table of R;. Based on these containment
relations, flows are either installed or modified or no actions
are taken w.r.t a switch while establishing the routing path.
Assume that a new flow fl, is to be installed on a switch,
then decisions are taken as follows : 1) If an existing flow
fle already covers fl, , then no further actions are taken.
This also includes the special case where fl,, is identical to
fle. 2) If an existing flow fl. is covered by fl,, then fl, is
added and fl. is deleted from the flow table as it is redun-
dant. 3) If fl, is partially covered by an existing flow fl.,
then fl,, should be added with higher priority and should
include the out ports in the I.S of fl.. A higher priority
ensures that if a packet has multiple matches in the flow
table, it would be matched against and follow the 1.S of the
flow with highest priority. 4) If fl, partially covers the ex-
isting flow fl., then besides adding fI,, to the flow table, fl.
should be updated to include out ports used by fl,, and to
hold higher priority than fl,,.

2.2 Distributed Control Plane

In general, the topology reconfiguration efforts are signif-
icant in an SDN-based pub/sub middleware. In a scenario
with frequent concurrent control requests from multiple par-
ticipants, a design with a single SDN controller will result in
very poor control plane responsiveness. Here, we define re-
sponse time as the time from the issuance of a control request
by a participant till the completion of all topology reconfig-
uration associated with this request by the control plane.
For example, the response time to a subscription is the time
elapsed from the issuance of the subscription until the sub-
scriber starts receiving events. As a single controller pro-
cesses each control request sequentially, the response time
increases significantly in the face of high dynamics. This
problem motivates us to introduce multiple controller in-
stances in the control plane enabling concurrent processing
of control requests.

Figure 2 depicts a two-tiered architecture in the control
plane; a dispatcher collects control requests from publishers
and subscribers in a software-defined network, and a set of
components, known as configurators (denoted by C), pro-
cesses these requests and carries out network updates ac-
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Figure 2: Distributed Control Plane

cordingly. SDN allows the dispatcher and the configurators,
residing in the control plane, to acquire a global view of the
entire network and configure it as needed. The dispatcher
serves as the entry point to the control plane. It collects
all data plane control requests and forwards them to the
configurators. The configurators serve as the main workers
that are capable of modifying the state of every switch in the
network. Each of them receive control requests forwarded by
the dispatcher and process them as described in Section 2.1,
resulting in concurrent updates to the CP-config and DP-
config. The monitor is an additional component connected
to the configurators and the dispatcher. 1t plays an impor-
tant role in maintaining load statistics of each configurator,
which contributes to improved system performance. The
relevance of the monitor, in context of our designed middle-
ware, will be explained in details later in this paper.

In this paper, we scale the control plane both vertically as
well as horizontally. Vertical or horizontal scaling is mainly
achieved by scaling up or out the configurators. Here, ver-
tical scaling means hosting multiple configurator instances
on multiple cores of a single machine. In contrast, horizon-
tal scaling involves hosting multiple configurator instances
on cores of physically distributed machines. Irrespective of
the scaling type, the introduction of multiple configurators
implies concurrent processing of requests for improved re-
sponsiveness which in turn raises questions on control plane
consistency.

In the subsequent sections, we first discuss control plane
consistency in the context of pub/sub middleware and iden-
tify conflicting actions that may induce inconsistencies (cf.
Section 3). Afterwards, we present approaches for verti-
cal and horizontal scaling of the control plane that ensure
consistency by enabling concurrency control for conflicting
actions with low synchronization overhead (cf. Section 4).

3. CONTROL PLANE CONSISTENCY IN
PUB/SUB

In general, two important problems have to be addressed
to ensure control plane consistency in a SDN-based pub/sub
middleware. These problems are i) maintaining consistent
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network configuration (i.e., CP-config and DP-config) in the
presence of concurrent updates by multiple configurators,
and ii) keeping CP-config consistent with DP-config in the
presence of failures. In this section, we strictly focus on the
first problem and address the second problem in Section 5.
For simplicity and without loss of generality, we discuss the
first problem only with respect to CP-config, as consistent
maintenance of CP-config in the face of concurrency (and
absence of failures) implies consistent DP-config.

In more detail, the configurators execute the same control
logic and operate on the same CP-config concurrently. On
receiving a request, a configurator performs operations on
switches along the paths between publishers and subscribers
in order to deploy flow updates. As mentioned in Section 2,
at each switch, the configurator performs an action that con-
sists of an ordered sequence of three operations. The three
operations include reading flows from a switch, deciding on
the changes to be made to the flows, and finally writing
these changes back to the switch. The concurrent execution
of such actions by two or more configurators can result in
their sequences being interleaved. This raises concurrency
related issues resulting in false negatives (events not deliv-
ered to a subscriber despite its interest in receiving them) or
false positives (events delivered to a subscriber that is not
interested in receiving them) at the subscriber end.

Figure 3, depicts an example of a simple case of false
negatives at a subscriber due to the interleaving of se-
quences of operations constituting two actions and belong-
ing to two configurators. Let us suppose that two over-
lapping subscription requests subi={00} from subscriber S;
and subo={00} from subscriber Sy are simultaneously dis-
patched to configurators ci , co € C respectively. Both follow
the aforementioned request handling process and perform
actions on relevant switches. We specifically focus on the
terminal switch R; which already has a flow, fli, to match
event packets for subspace {00} (cf. Figure 3). We consider
a case where both configurators perform concurrent read on
this switch in CP-config. On reading the state, ¢; and ¢
independently decide on required flow updates and replace
the existing flow (fIl1) by adding two new flows flz and fl3
respectively (cf. Figure 3). As a consequence, there now
exists two flows with the exact same match field but with
different .S at R:. Since deploying flows on CP-config im-
plies deploying them on DP-config, now, if an event packet
lying in subspace {00} arrives at R: in the data plane, it



Dispatcher

O
O

Figure 4: Shared Everything Approach

follows the instruction set of either flo or fls, but never
both as the matching of a packet at a switch is terminated
as soon as the first match is found. In either case, one of the
two subscribers is affected by false negatives compromising
correctness of the system.

Clearly, false negatives at a subscriber in Figure 3 oc-
curred because flows flz and fl3 concurrently added by ci
and cy are in aforementioned partial flow containment rela-
tion (i.e., ), which essentially results in updating the same
flow in R:. In general, concurrent updates of the flows with
containment relations (i.e., > or ) have an effect of one of
the updates being overwritten by the other.

While understanding the above mentioned concurrency is-
sues, we identify conflicting actions in a SDN-based pub/sub
middleware.

Definition 1 Two actions are in conflict if (i) they belong
to different configurators (ii) both of them access the same
switch and (ii1) both of them affect flows that are bound by
the flow relations, i.e., complete containment (> ) and partial
containment (%).

In order to ensure consistency, all conflicting actions must
be serialized.

4. SCALING APPROACHES

Having identified conflicting actions, we propose two ap-
proaches — shared everything and shared nothing — that scale
the control plane both vertically as well as horizontally while
avoiding concurrent processing of conflicting actions.

4.1 Shared Everything Approach

The shared everything approach (SEA) works on the prin-
ciple that all configurators share CP-config among them-
selves. This implies that all of them read from as well as
write to every switch in CP-config. Section 3 explained the
undesirable consequences of such concurrent access of shared
state which means that the SEA approach must employ cer-
tain additional mechanisms for concurrency control. SEA
uses a locking mechanism that allows a configurator to ac-
quire exclusive access on CP-config at various granularity
levels. This means that no other configurator can access
the locked part of CP-config unless the configurator hold-
ing the lock relinquishes it. Locks can be held at different

levels of granularity in CP-config. In the absence of appli-
cation knowledge, a plausible strategy is to assign locks at
the granularity of switches. For example, with the advent of
a subscription, a configurator can determine the paths be-
tween the associated subscriber and all relevant publishers,
acquire locks on all switches in these paths, read, decide on
flow changes, deploy changes on the switches, and finally
release the locks. Acquiring locks at switch level, however,
would imply that no other configurator can execute an action
on a locked switch even if its action does not conflict with
the current action being executed. So, with respect to our
definition of conflicting actions (cf. Definition 1), locking at
switch-level may not be ideal.

Here, we propose an application-aware method that uses
knowledge of advertisements and subscriptions to control the
granularity at which CP-config can be accessed concurrently.
Since the dzs representing the subscriptions/advertisements
(in control requests) are directly mapped to flows added to
switches (cf. Section 2), two control requests where one dz
covers or is identical to the other (overlapping subspaces in
Q) yield flows related (> and Z) to each other. This means
that concurrent processing of overlapping control requests
at a switch will result in conflicting actions and must be or-
dered sequentially. Control requests with non-overlapping
subspaces in 2, however, can undergo concurrent process-
ing without any issues. For example, concurrent processing
of two subscriptions {00} and {000} which results in state
modification of at least one common switch will lead to in-
correct system behavior as {00} > {000}. However, two
unrelated subscriptions, {00} and {11}, can be processed
concurrently by two configurators without any issues as pro-
cessing will not yield any related flows. This directly leads
us to the idea of partitioning the event-space in a disjoint
way such that flows corresponding to different partitions in
2 are maintained in separate CP-configs. This enables con-
current processing of disjoint control requests that operate
on different CP-configs. Locking would only be required at
the level of a CP-config to ensure sequential processing of
overlapping control requests.

So, we divide the event-space (£2) into multiple disjoint,
continuous partitions. A partition is nothing but a sub-
space in €2 and may be represented in the same way, i.e.,
by a dz. Disjoint event-space partitioning may yield equal
or unequal partitions depending on the partitioning criteria.
However, it is important to note that, in any case, the par-
tition set, denoted by P, is non-overlapping and fully covers
Q. Mechanisms for content or event-space partitioning have
been extensively researched in various fields of computer sci-
ence [24, 25] and will not be discussed further in this paper.
Henceforth, we assume that P consists of k& partitions and
k >> n where n denotes the total number of configurators.

The middleware maintains a set of independently con-
figurable CP-configs (denoted by C'P) having a one-to-one
mapping with these partitions. This results in the creation
of k CP-configs where each configuration, cp € C'P, is repre-
sented by the dz of the corresponding partition. Again, each
switch in each ¢p contains only those flows that are associ-
ated with the event-space partition that this configuration
represents. This implies that the spanning tree maintained
by CP-config is responsible for the dissemination of only a
set of events that lies in its designated subspace. In the
remaining part of this paper, a CP-config (cp; € CP) is
considered to be synonymous with a partition (p; € P).



We focus on a SEA approach where locking is carried out
at the level of a ¢p € C'P which essentially means locking a
set of flows across all switches that correspond to a partition
in Q. This ensures concurrent access of unrelated flows on
the same switch. Each configurator maintains a pointer to
each CP-config/ partition. Figure 4 illustrates the same with
n configurators, ci,.., cn, operating on k partitions, pi,...,
pr. SEA ensures serial processing of requests within a single
partition while allowing concurrency otherwise.

The dispatcher collects all control requests from the data
plane and adds them to a global queue accessible to all
configurators. But before adding them, it performs an ad-
ditional step to prepare the requests for further processing.
Let us denote the dz representing a control request by dz.
and that representing any partition p; by dz,,. When a
control request arrives at a dispatcher, it is processed by
the dispatcher in two ways depending on whether (i) dz,,
> dz. or, (ii) dzc = {dzp,,....,dzp,; }. In the first case, the
dispatcher simply adds the request to the global queue as the
request is contained by one partition and affects a single CP-
config. However, the second scenario portrays a case where
the control request subspace spans more than a single par-
tition. Under such circumstances, the dispatcher splits up
the request into multiple dzs depending upon the nature of
the partitions and adds these partial requests to the queue.
For example, if we consider a system with 4 partitions —
00, 01, 10, 11 — and a request with dz {001101} arrives at
the dispatcher, the dispatcher immediately adds the request
to the global queue as {00} > {001101}. However, if the
request corresponds to {0}, the dispatcher first splits it up
into two partial requests {00}, {01} and then adds them to
the queue as {0} > {00, 01}. Consequently, two CP-configs
are reconfigured for this single request. Processing of a con-
trol request is considered complete only when all its partial
requests have been processed.

As soon as a request is available in the global queue, an
idle configurator tries to dequeue it and process it. However,
before dequeuing the request, it would first need to acquire
an exclusive lock on the CP-config to be reconfigured for
this request. Since a request is already preprocessed by the
dispatcher, it will always correspond to a single CP-config,
requiring the configurator to acquire the lock on this con-
figuration alone. If it is possible to acquire the lock, the
configurator dequeues the request from the global queue and
proceeds with reconfiguration of the locked CP-config. Re-
configuration follows the usual mechanisms discussed in Sec-
tion 2. Once all changes corresponding to this request are
made, the configurator releases the lock on the configuration.
On the contrary, if a configurator is unable to acquire a lock
on a CP-config for a particular request, it simply continues
traversing the queue for a request belonging to a partition
on which it can acquire a lock till it reaches the end of the
queue. So, a configurator does not get blocked if requests
affecting unlocked partitions are available in the queue for
further processing. It should be noted that a configurator
ensures that, if it acquires a lock on a partition, it always
processes the first request waiting in the queue for that par-
tition. This ensures fairness of request processing at least
within a partition. SEA enables the configurators to actively
look for a request to process as soon as they are idle, result-
ing in implicit load balancing among them. Also, multiple
partitions where k >> n allows for a possibility of a certain
degree of concurrency despite ensuring strong consistency.
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Figure 5: Shared Nothing Approach

The advantages of using such an approach for increased
responsiveness in a vertically scaled control plane are signif-
icant. This is because vertical scaling works with a shared
memory architecture where sharing of multiple CP-configs
does not cause much overhead. However, horizontal scaling
implies repeated remote access of multiple CP-configs by
every configurator. This involves transfer of large amount
of data over the control network resulting in severe perfor-
mance limitations. Not surprisingly, SEA cannot match up
to the requirements of a horizontally scaled control plane.
To overcome these limitations and exploit the benefits of
horizontal scaling, we propose the shared nothing approach
which is the subject of discussion in the remaining part of
this section.

4.2 Shared Nothing Approach

The shared nothing approach (SNA) also operates with
multiple disjoint CP-configs or partitions. However, in this
approach, each partition is assigned exclusively to exactly
one configurator. To ensure consistency, each configurator
is restricted to performing reconfigurations on its assigned
partitions only. So, two or more configurators may process
different requests concurrently as they operate on completely
different subspaces in €2, i.e., they may modify the flows on
the same switch concurrently without any inconsistencies
as the flows affected in each case are completely unrelated.
This ensures that no two configurators interfere with each
other while performing parallel topology reconfigurations on
the same network. As our design assumes k >> n, each
configurator may be responsible for multiple partitions. It
is important to note that each configurator needs to main-
tain only those CP-configs that have been assigned to it. By
employing such a mechanism, we avoid all kinds of coordi-
nation overhead among configurators while ensuring control
plane consistency in a distributed setting.

Figure 5 depicts a middleware where each configurator has
one or more partitions assigned to it and each partition is
represented by its corresponding dz. Such a representation
enables the direct mapping of advertisements/subscriptions
(represented by one or more dzs) to partitions. For example,
two partitions {000}, {0010} have been assigned to ¢1 € C,
implying that ¢; only maintains CP-configs for these two
partitions, affecting flows related to these subspaces.



4.2.1 Topology Reconfiguration

The dispatcher plays a significant role in this approach.
It maintains a map of the configurators and their associ-
ated partitions and performs partition-specific dispatch of
control requests. Again, the dispatcher first prepares a con-
trol request for further processing by splitting it into partial
requests, if necessary, depending on the partitions (cf. Sec-
tion 4.1). This guarantees the mapping of a request to a
single partition enabling the dispatcher to directly forward
a request to a configurator responsible for the corresponding
partition. For example, as per Figure 5, if a request cor-
responds to {00}, the dispatcher first splits it up into three
requests {000}, {0010}, {0011} and then dispatches them to
c1 and c2 as {00} > {000, 0010, 0011}. Consequently, all
three CP-configs are reconfigured for this single request.

Each configurator maintains a request queue for each par-
tition it is responsible for. Processing of control requests
at a configurator takes place sequentially. This, in turn,
ensures consistency within each partition. Once a request
is dispatched, it gets enqueued to the relevant queue and
waits for the configurator to dequeue it for further process-
ing. While choosing the next queue from which to dequeue
a request, a configurator considers the order in which re-
quests for all its assigned partitions arrived ensuring request
processing fairness. After dequeuing a request, it proceeds
with reconfiguration of a specific CP-config corresponding to
the request dz. Topology reconfiguration follows the usual
mechanisms discussed in Section 2.

The shared nothing approach enables concurrent process-
ing of requests corresponding to disjoint partitions at multi-
ple configurators, thus reaping the benefits of scaling. How-
ever, the true potential of this design can be realized if the
workload can be balanced between configurators. There may
be scenarios where the workload is much higher for certain
partitions which burdens a few configurators while others
remain idle. This degrades the responsiveness of the control
plane to control requests. For this reason, adaptive load bal-
ancing among configurators bears considerable significance
and features as the subject of discussion in the remaining
part of this subsection.

4.2.2 Adaptive Load Balancing

In the face of a dynamic incoming workload, an adaptive
policy is central to the load balancing approach. We iden-
tify load of a configurator at a given time by request queue
lengths of all partitions assigned to it. A request queue, spe-
cific to a partition (say, p;), consists of all control requests
waiting to be processed by the configurator for an assigned
partition. So, load at a configurator ¢; may be defined as,

L= Y QL (1)
j=1

where m is the number of partitions assigned to ¢; and QL;
represents queue length at p;.

When an overload condition is detected at a heavily loaded
configurator, one or more of its assigned partitions is mi-
grated to a configurator with current minimum load. This
implies that the task of processing all current and future re-
quests for the migrated partitions now lies with the newly
chosen configurator. An overload detection is carried out
by the monitor component. The monitor periodically col-
lects load information of every configurator and hence can

easily identify an overload condition. With every periodic
collection, the monitor calculates the average queue length
at each configurator, denoted by lq.4. If the ratio of the load
at a configurator, i.e., l;, to laug is greater than a threshold
value, then the monitor detects an overload and proceeds
with partition migration. More formally, an overload is de-
tected if,

l > threshold (2)

lavg

where lgug = # However, in order to avoid partition
thrashing, the monitor initiates migration only if the over-
load condition at a configurator is monotonically increasing
with time. Initially, the most heavily loaded partition at the
overloaded configurator is selected for migration and the ef-
fects of migrating it to the minimally loaded configurator is
calculated. If this results in a potential overload condition at
the minimally loaded configurator, the monitor proceeds to
calculate the feasibility of migration of the next most heav-
ily loaded partition until a balanced migration is achieved
or all partitions considered for migration.

Migration of a partition, say p;, essentially means trans-
fer of state from one configurator to another. This state
includes the CP-config, cp;, associated with p; and all pend-
ing requests related to it in the queue of the overloaded
configurator. Also, while this transfer is underway, all new
requests corresponding to p; that arrive at the dispatcher
need to be stalled to avoid unnecessary state transfer. Once
migration is completed, the dispatcher forwards the pending
requests and all corresponding ones associated with p; to the
newly assigned configurator.

It should be noted that SNA is suitable for both verti-
cal as well as horizontal scaling. However, in the case of
vertical scaling, it may perform worse than SEA in the pres-
ence of fluctuating unevenly distributed workload. Subject
to such workload, adaptive load balancing of SNA will al-
ways be outperformed by the implicit optimal load balancing
achieved in SEA. This is further confirmed by our evaluation
results (cf. Section 7).

S. CONTROL PLANE CONSISTENCY IN
PRESENCE OF FAILURES

As we have not considered failures previously, it has
been sufficient to assume that CP-config is consistent with
DP-config and therefore sufficient to only deal with in-
consistencies arising due to concurrency between multi-
ple configurators.  However, lost connections (between
configurators and switches) and switch failures may result
in inconsistencies between the two configs, irrespective of
whether the control plane is centralized or distributed.

Let us first consider a case where the connection be-
tween a configurator and a switch is lost. As a result,
the updates that were pushed by a configurator on to a
switch may not be reflected on the TCAM memory of the
switch at all. If the configurator continues processing of
requests assuming that the said changes are deployed on
the switch, then this would imply inconsistencies between
the two configs, resulting in incorrect system behavior. To
avoid this, our middleware pushes out the flow modifi-
cation requests, generated while processing a control re-
quest, to the switch and waits until the switch acknowl-
edges the successful completion of these updates within a
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Figure 6: Reducing Flow Operations

given timeout. The flow monitoring functionality introduced
by OpenFlow version 1.4 can be efficiently used to allow
a configurator to be notified by a switch about flow op-
erations (addition/modification/deletion) performed on its
tables. Such switch notifications can serve as acknowledg-
ments of completed flow table updates. On receiving an
acknowledgement from the switch, the configurator writes
these changes to the CP-config and considers the control
request as fully processed. If an acknowledgement does
not arrive at a configurator within the given timeout, the
configurator marks all the unacknowledged flow changes as
undefined in CP-config. The processing of all subsequent
requests that depend on undefined flows must be stalled.
A configurator must explicitly read the current status of the
switch with a missing acknowledgement using the OpenFlow
standard and reflect the same in the CP-config.

Inconsistencies between CP-config and DP-config also arise
due to switch failures. In case of a switch failure, the span-
ning tree maintained by CP-config has to be modified ac-
cordingly, which means that all paths need to be recalculated
according to the new topology. The same has to be done in
case of a switch recovery as this also involves a change in
the network topology and must be reflected in CP-config to
ensure consistency.

6. REDUCING FLOW OPERATIONS

Increasing responsiveness of the control plane to control
requests also increases the rate at which network updates are
pushed on to the switches by multiple configurators. With
today’s hardware switches supporting around 40-50 flow-
table updates per second [11], it would be really beneficial if
the total number of flow updates could be reduced. However,
this would have to be achieved while ensuring correctness of
the system, i.e. no false positives and false negatives.

We claim that the number of network updates can be re-
duced by exploiting the knowledge of advertisements and
subscriptions and their relations yet again. Using the rela-
tions, processing of control requests can be ordered to op-
timize the network update procedure. We explain the opti-
mization process at a switch level w.r.t. subscriptions and

identify two relations that make a difference in the ordering
of control requests. If two subscriptions sub; and sub;, where
sub; > subj, independently produce two new flows fl; and
fl; respectively, then the two relations between the flows
that ordering would benefit from are complete containment,
ie., fli = fl;, and partial containment, i.e., fl; 5 fl;.

Referring to the two subscriptions in the above example
and their relations, we first look at complete containment
between flows. The following updates would be done on a
switch depending on the order in which the two subscriptions
are processed. 1) If sub; is processed before sub;, sub; first
produces one add flow (fI;) operation on the switch. When
subj is processed, it does not produce any other flow updates
on the switch as fl; fully covers all events that need to be
forwarded in response to sub;. 2) If sub; is processed before
sub;, subj also produces one add flow (fl;) operation on
the switch. After this, when sub; is processed another flow
(fl;) add operation has to be performed to cover forwarding
of all events matching sub; and also those matching sub;
but not sub;. Also, a delete operation has to be performed
on fl; as it is now redundant. Given the limitations of
the flow table size on a switch, redundant flows cannot be
afforded. This clearly indicates that the first ordering yields
two operations less as compared to the second. Figure 6
illustrates the above discussion with an example where the
ordering of two subscriptions sub; ({00}) and subs ({000})
that would independently produce fl1 and fl> yield different
number of operations on switch R; as fl1 = fls.

Let us now consider the second relation of partial con-
tainment between the flows. Again, we look at the number
of operations required on ordering sub; and sub; differently.
1) If sub; is processed before subj;, sub; produces one add
flow (fl;) operation. When sub; is processed, a second flow
(f1;) add operation needs to be performed as this time the
flows are only partially related and a different out port needs
to be added only for sub;. 2) However, if sub; is processed
before sub;, sub; produces one add flow (fl;) operation on
the switch. Now, when sub; is processed, first a flow (fl;)
gets added for this subscription. Also, since the events rele-
vant to fl; are also relevant to fl; (as sub; > sub;), a modify
operation is performed on fl; to accommodate the out port
for sub;. Again, the first ordering yields lesser operations as
compared to the second. This is again illustrated in Figure 6
and this time the operations w.r.t. both orders are tracked
on switch Ro where a partial containment relation between
fli and flo (fli T fl2) occurs.

It is important to note that the reordering of subscriptions
does not have an impact on the correctness of the system.
This is because, no matter how processing of requests is
ordered, the final set of flows deployed on the switches is
always the same. In Figure 6, at the end of processing suby
and subz, both switches have the same flows irrespective of
the order in which they were processed. However, ordering
may have an effect on the response time to certain requests
that get scheduled later (cf. Section 7).

Similarly, efficient ordering of advertisements, unad-
vertisements, and unsubscriptions that have overlapping
switches and are bound by the above relations reduce the
number of network updates significantly. However, ordering
of two control requests of different types should never be
done. For example, the order of processing a subscription
with an unsubscription must not be changed as this may re-
sult in undesirable system behavior. Both our designed ap-



proaches benefit from relevant ordering of control requests
of the same type in the waiting queues of the configurators.

7. PERFORMANCE EVALUATIONS

This section is dedicated to an analysis of the design and
implementation of our architecture and related approaches.
A series of experiments are conducted to understand the ef-
fects of the design of the control plane on performance met-
rics such as (i) control plane throughput, (ii) average pro-
cessing latency of control requests, and (iii) required number
of flow operations on switches. We evaluate our approaches
w.r.t. vertical and horizontal scaling of the control plane in
order to understand the benefits of scaling up and scaling
out.

7.1 Experimental Setup

We scale the control plane both vertically and horizontally
on a test-bed consisting of a small local area network which
includes a cluster of physical machines capable of hosting
each component of the proposed architecture. Vertical scal-
ing is realized by hosting multiple configurators on a single
physical machine with 4 cores, 3.4 GHz processor and 8 GB
of RAM. On the other hand, horizontal scaling is achieved
by hosting multiple configurators on multiple physical ma-
chines where each machine in the cluster has 4 cores, 3.4
GHz processor, and 8 GB of RAM. Two separate machines
host the dispatcher and the monitor.

The aforementioned setup deals with the control plane. In
order to realize the data plane, our setup uses Mininet [16],
a very prominent tool for emulating software-defined net-
works. Mininet is an extremely flexible tool that allows
to conduct experiments with different types of topology
and application traffic. Since we use a very large fat-tree
topology with 64 hosts (publishers and/or subscribers) and
102 OpenFlow-compliant switches for all our experiments,
Mininet is an ideal choice. It is also important to note that
since our evaluations focus on control plane performance,
they are independent of a real or emulated data plane.

We use a content-based schema that consists of upto
10 attributes for our event-space (Q2), where the do-
main of each attribute varies in the range [0,1024].
Experiments are performed using two different mod-
els of data distribution for generating control requests
((un)advertisement /(un)subscription). The uniform model
generates control requests uniformly over {2, whereas, the
interest popularity model chooses 8 hotspot regions around
which control requests are generated using the widely used
zipfian distribution. The rate at which control requests are
sent by the participants (i.e., publishers and subscribers con-
nected to a SDN network) to the dispatcher also follows two
models of distribution, i.e., uniform and poisson. A uni-
form rate implies that the occurrences of incoming requests
at the dispatcher are distributed uniformly on an interval of
time. However, poisson rate involves a fluctuating workload
while maintaining an average rate of incoming requests at
the dispatcher within a given interval of time. So, there may
be bursts of incoming requests from time to time along with
lull periods to ensure an average rate at the dispatcher.

7.2 Vertical Scaling

In this section, we evaluate throughput and average pro-
cessing latency of a vertically scaled control plane following
the shared everything (SEA) and shared nothing with load

balancing (SNA-LB) approaches. We partition the event-
space into 64 disjoint partitions on which each approach op-
erates. Additionally, in SNA-LB, we randomly assign par-
titions to the configurators on system start-up. Also, 64
subscribers issue upto 200,000 subscriptions and unsubscrip-
tions at various uniform and poisson rates to generate load
at the control plane.

The first set of experiments measures the maximum rate
at which the control plane can process control requests, i.e.,
throughput, with increasing number of configurators. It is
important to note that control requests may be further bro-
ken down into partial requests to contain them in different
partitions. A control request is considered to be processed
only when all its partial requests have been processed. Fig-
ure 7(a) and 7(b) show that, with increasing number of
configurators, the throughput of the control plane increases
significantly for both uniform and zipfian data till the control
plane is scaled up by 4 configurators for both approaches.
Not surprisingly, as the configurators are hosted by a ma-
chine with a 4-core architecture, there is not much benefit
if the control plane is scaled beyond 4. Figure 7(b) shows
that, for control requests following zipfian distribution, the
throughput of SEA is higher as compared to SNA-LB. This
is because, for zipfian data, the workload is not evenly dis-
tributed among the partitions. This means that in SNA-
LB, some configurators may be more heavily loaded while
others remain relatively idle. Even though SNA-LB tries
to balance this load, it does so only after a threshold limit
is crossed while SEA ensures that no configurator is ever
idle unless there are no more requests to process. SEA im-
plies optimal load balancing among configurators. In case of
uniform data, where all partitions are equally loaded, Fig-
ure 7(a) shows that the performance of SEA is slightly worse
than the other as once the benefits of load balancing are not
visible, the additional synchronization overhead required in
SEA renders it less effective as compared to SNA-LB.

In the context of our paper, responsiveness is directly re-
lated to the overall time it takes for a control request to be
processed by the control plane (i.e., processing latency). We
define processing latency as the time elapsed from the is-
suance of the request by a publisher/subscriber to the time
when all partial requests for this request have been processed
by the control plane. In this experiment, we plot the aver-
age processing latency of control requests with increasing
number of configurators in a vertically scaled control plane.
We show a comparison of both the approaches when sub-
scription and unsubscription requests are generated using
both uniform and zipfian distributions and are sent by the
subscribers to the dispatcher at a poisson rate of 2500 re-
quests/sec. Figure 7(c) and Figure 7(d) show that, for both
uniform and zipfian data and for both approaches, the aver-
age processing latency reduces significantly with increasing
number of configurators till 4 configurators. Again, scaling
beyond 4 configurators may not have any benefits due to the
reason mentioned above. Figure 7(c) suggests that there is
not much difference in performance between the approaches
for uniform data as all partitions get similar amount of work-
load. This implies that all configurators get similar amount
of workload in SEA and SNA-LB. However, the difference
in benefits between the approaches is visible for zipfian data
and as a result we focus on comparing their performances by
zooming the graph in Figure 7(d). In general, with dynam-
ically changing incoming workload, SEA performs better as
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Figure 7: Performance Evaluations

compared to SNA-LB as it ensures optimal load-balancing.
As mentioned before, with uneven load corresponding to dif-
ferent partitions, and a poisson rate of incoming request,
the queues formed at different configurators are of different
lengths for SNA-LB. This implies much longer waiting times
for some requests waiting at the end of long queues resulting
in a higher average processing latency.

7.3 Horizontal Scaling

We also evaluate throughput, average processing latency,
and required number of flow operations in a horizontally
scaled control plane. We especially compare the perfor-
mances of shared nothing without load balancing (SNA) and
shared nothing with load balancing (SNA-LB) approaches in
order to show the effects of load balancing on this approach.
As SEA does not scale well in a physically distributed set-
ting, our evaluations in this section do not include this ap-
proach. As in the experiments for vertical scaling, we par-
tition the event-space into 64 disjoint partitions unless oth-
erwise specified. Also, 64 subscribers issue upto 200,000
subscriptions and unsubscriptions at various uniform and
poisson rates to generate load at the control plane.

Figure 7(e) and Figure 7(f) show the throughput of a hor-
izontally scaled control plane for uniform and zipfian data
respectively. In both SNA and SNA-LB, the throughput
increases with increasing number of configurators for both
distributions as a horizontally scaled setup does not suffer
from the limitations of a vertically scaled one in terms of
number of cores. Scaling out provides a lot of flexibility and

can be used effectively to increase control plane throughput
as shown in the graphs. Not surprisingly, there is not much
difference between the plots of SNA and SNA-LB for uni-
form data. However, the benefits of load balancing are again
visible for zipfian data where SNA-LB outperforms SNA.

We also conducted experiments which measure average
processing latency of control requests with increasing num-
ber of configurators when subscriptions and unsubscriptions
are generated using both uniform and zipfian data and sent
to the dispatcher at a poisson rate of 5000 requests/sec. Fig-
ure 7(g) and Figure 7(h) show behavior similar to that ob-
tained in vertical scaling where the average processing la-
tency reduces significantly with scaling. The plots for uni-
form distribution are similar for both SNA and SNA-LB,
whereas SNA-LB performs better when zipfian data is used
due to additional load balancing. This means that SNA-LB
provides a possibility to migrate partitions to manage the
maximum length of the waiting queues, whereas SNA has
no such possibility, because of which the average processing
latency for SNA-LB is lower than that of SNA.

It is also interesting to observe the average processing la-
tency of a control request with increased partitioning of the
event-space when SNA-LB is used. The more the number
of partitions, more is the possibility of load balancing in
SNA-LB, when dealing with requests following zipfian dis-
tribution. If a configurator has a large partition with very
high load, moving it to any other configurator will not bal-
ance the load. However, if the partitions are smaller, the
possibility of the load being distributed among these parti-



tions is more, which increases the flexibility of balancing the
load between multiple configurators. Figure 7(i) shows that
for zipfian data, the average processing latency reduces sig-
nificantly with increasing number of partitions upto a point.
However, beyond this point further partitioning has no ben-
efits as no further load balancing is possible for the consid-
ered workload. In fact, the graph indicates that once these
benefits are no longer applicable, further partitioning may
increase the average latency to some extent. This is because
increased partitioning has an effect on the number of par-
tial requests that are constructed from control requests. If
the partitioning is more fine granular, the probability of a
control request spanning multiple partitions is more. This
means that multiple CP-configs will be affected resulting in
increased number of flow operations. Figure 7(j) plots the ef-
fects of partitioning on total number of flow operations. The
graph clearly shows that partitioning increases the number
of flow operations significantly which can have an impact on
the flow updates on the network.

7.4 Reducing Flow Operations

In order to reduce the number of flow operations on
switches, we order control requests as discussed in the previ-
ous section. However, continuous sorting of a waiting queue
at a configurator not only poses a significant overhead but
also results in starvation for some fine-grained subscription
requests that get continuously pushed down in the sorted
queue. As a result, we sort only slices of contiguous sub-
scriptions at a time and not the complete waiting queue.
This set of experiments plots the number of flow operations
required to process a set of 5000 subscriptions with increas-
ing slice size. Figure 7(k) clearly shows that with increasing
slice size, the number of flow operations reduces. However,
Figure 7(1) shows that due to starvation of certain requests,
the average latency is affected on increasing the slice size.
We also plot the maximum processing latency for each slice
size that contributes to increasing the average processing la-
tency. So, there is always a trade-off between the slice size
and fairness in request processing that directly affects the
responsiveness to certain requests. It is important to note
that a slice size of 1 implies an unsorted queue.

8. RELATED WORK

Various approaches to the many aspects of content-based
pub/sub have been presented in literature [5, 12, 19, 21, 4,
13, 7, 22]. However, built on top of overlay networks, these
systems cannot take advantage of the properties of the un-
derlying physical topology and lack in performance, in terms
of throughput, end-to-end latency and bandwidth efficiency
as compared to network layer implementations of communi-
cation protocols. Realizing the potential of an implementa-
tion on the network layer, middleware such as DDSFlex [9]
and PLEROMA [20] build efficient pub/sub systems by us-
ing the capabilities of SDN. We have already discussed the
PLEROMA middleware at length in this paper and have
identified the inherent scalability limitations of a single con-
troller instance with respect to reconfiguration efforts in the
face of high dynamics. PLEROMA also introduces the con-
cept of multiple controllers responsible for separate admin-
istrative domains in its design where each controller per-
forms reconfiguration in its designated domain. However,
within a domain, the middleware may suffer from the same
aforementioned limitations. Also, in the presence of inter-

domain communication, the responsiveness of the control
plane may suffer. Efficient maintenance and handling of
dynamically changing subscriber interests has also been a
subject of much research in overlay-based pub/sub middle-
ware [4, 13, 7]. For instance, Jayaram et al. [13] propose
mechanisms to efficiently handle subscriptions that change
dynamically w.r.t. various parameters (such as location) by
introducing the concept of parametric subscription. These
methods, however, cannot be directly applied to the problem
addressed in this paper.

In the recent past, the emerging cloud computing model
prompted the realization of pub/sub as a cloud service. In
this respect, the importance of a scalable and elastic pub/sub
with high throughput has been impressed upon in literature.
Li et al., present an attribute-based pub/sub service, Blue-
Dove [18], that organizes multiple servers into an overlay and
achieves high throughput filtering (or matching) of events by
forwarding events to be matched to the least loaded servers.
Likewise, Barazzutti et al. design a scalable pub/sub service,
StreamHub [1], where a set of independent operators take
advantage of multiple cores on multiple servers to perform
pub/sub operations which include subscription partitioning
and event filtering. Since StreamHub only supports scale
out, Barazzutti et al., further propose e-StreamHub [2], an
elastic pub/sub which is capable of scaling in and scaling
out depending on the load observations of the system. It is
important to note that all these systems target parallelism
of event filtering and do not need to take care of concurrency
control as the servers enabling concurrent filtering of events
do not share any resources.

Scaling the control plane in SDN, however, involves con-
current access to the network, acting as a shared resource,
and has been subject to much research in recent times. Levin
et al. [17] explore the trade-offs of state distribution in a dis-
tributed control plane and motivate the importance of strong
consistency in their work. They investigate the impact of
eventual consistency on the performance of a load-balancer
implemented using SDN and infer that the lack of strong
consistency severely degrades application performance. To
ensure strong consistency of network state between multiple
controller instances, Onix [15] provides a transactional per-
sistent database backed by a replicated state machine. How-
ever, it claims that, for applications requiring frequent net-
work updates, dissemination of state updates using this tech-
nique yields severe performance limitations. As a result, to
accommodate such applications, Onix also proposes a mech-
anism for obtaining eventual consistency using a memory-
only DHT which has its limitations w.r.t. consistency guar-
antees. Similarly, Hyperflow [23] only provides guarantees
of maintaining weak consistency by passively synchronizing
the global network views of all controllers. On the other
hand, Botelho et al. [3] show that by using a classical state
machine replication technique the cost of coordination to
guarantee strong consistency may become bearable for cer-
tain SDN applications, but not in general. This paper, in
contrast to the aforementioned literature, not only focuses
on line-rate forwarding of events in the data plane but also
on achieving high responsiveness while ensuring strong con-
sistency on the control plane.

9. CONCLUSION

In this paper, we have proposed an application-aware con-
trol for software-defined networks that is capable of enhanc-



ing the responsiveness of the control plane by allowing con-
current network updates while ensuring consistent changes
to the data plane with low synchronization overhead even
in the presence of network failures. In particular, we have
designed two complimentary approaches in the context of
event-based middleware that take into account interests of
publishers and subscribers in order to reap the benefits of
horizontal and vertical scaling of the control plane. More-
over, we have proposed reordered (yet consistent) handling
of control requests at the control plane to mitigate the limi-
tations of current SDN switches w.r.t. number of supported
flow updates per second. Our evaluations show that the
application-aware control distribution drastically decreases
the response time to control requests (upto 99% in compar-
ison to a centralized controller) for both vertical and hori-
zontal scaling while ensuring control plane consistency. Fur-
thermore, reordered handling of control requests results in
upto 28% less flow updates on the SDN switches.
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