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Abstract—Recently, a new class of mobile applications has
appeared that takes into account the behavior of physical
phenomenon. Prominent examples of such applications include
augmented reality applications visualizing physical processes on
a mobile device or mobile cyber-physical systems like autonomous
vehicles or robots. Typically, these applications need to solve
partial differential equations (PDE) to simulate the behavior of
a physical system. There are two basic strategies to numerically
solve these PDEs: (1) offload all computations to a remote server;
(2) solve the PDE on the resource-constrained mobile device.
However, both strategies have severe drawbacks. Offloading will
fail if the mobile device is disconnected, and resource constraints
require to reduce the quality of the solution.

Therefore, we propose a new approach for mobile simulations
using a hybrid strategy that is robust to communication failures
and can still benefit from powerful server resources. The basic
idea of this approach is to dynamically decide on the placement
of the PDE solver based on a prediction of the wireless link avail-
ability using Markov Chains. Our tests based on measurement
in real cellular networks and real mobile devices show that this
approach is able to keep deadline constraints in more than 61 %
of the cases compared to a pure offloading approach, while saving
up to 74 % of energy compared to a simplified approach.
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I. INTRODUCTION

Recent years have seen two new kinds of mobile applications:
mobile cyber-physical systems (MCPS) and augmented reality
(AR). MCPS are used to control the behavior of robots [1],
self-driving cars [2], or even blood values in human bodies [3]
where sensor data is used to control aspects of the physical
world. AR displays information about objects into the field of
vision of the user [4]. For instance, the information displayed
could be the result of a physical simulation interesting for
an engineer, e.g., showing the flow of air in a room, the
distribution of heat in an objected based on sensor readings,
or even the combination of airflow and heat in a multi-physics
simulation.

Many such physical phenomenons controlled by MCPS
or visualized by AR applications are described by means of
partial differential equations (PDE) [3]. PDEs describe how a
function representing the system has to behave. Solutions to
a PDE are therefore functions. For applications it is sufficient
to approximate the solution of a PDE numerically. There are
a number of techniques to approximate the solution of a PDE,
e.g., the finite elements method (FEM), the finite differences

method (FDM), or the finite volumes method (FVM), among
others [5].

Traditionally, PDEs have been solved on huge compute
clusters in high performance computing. However, for MCPS
and AR applications, the solution needs to be available on mo-
bile devices. Mobile devices are very restricted in computing
power. Therefore, current MCPS and AR solve PDEs either
on a connected server or compute results in low-quality on
the mobile device itself. While the latter may give insufficient
results, the former is subject to disconnections of the wireless
communication link.

In order to avoid both problems, we present a new method
for solving PDEs on a distributed infrastructure consisting of
a mobile device and a server. Our method uses both nodes
for computation to benefit from fast compute resources while
connected and still be tolerant to disconnections. In order to
adapt to the dynamic quality of the wireless network, we
present a method of how to detect disconnections and how
to predict the duration of disconnections statistically. Using
this information, our method is able to decide on whether to
wait for the link to become available or to start computation
on the mobile device, once disconnection is detected.

In detail, our contributions in this paper are (1) the identi-
fication of a new problem, solving PDEs on mobile devices
using a distributed infrastructure; (2) a method of how to
provide energy efficient computation on the mobile device
while fulfilling time constraints, suitable for mobile real-time
applications; and (3) an evaluation of our method based on
real-world data taken from cellular networks in the region of
Stuttgart.

Our evaluations show that using our method we are able to
keep the deadline in more than 61 % of the cases compared to
a pure remote computation in a real-world setting including
disconnections. At the same time, we still can reduce the
additional computation overhead on the mobile device to a
constant, compared to a simplified approach. Computation
overhead on the device also represents additional energy
consumption. Therefore, our method carefully meets decisions
on the trade-off between energy and execution time, as needed
for real-time applications, with only small energy cost for the
mobile processor.

The reminder of this paper is structured as follows: Sec-
tion II presents the system model followed by the problem
statement for solving PDEs on mobile device in Section III.
Section IV presents an architecture and overview of our
method. Sections V–VIII present our method to solve PDEs in



a mobile and distributed environment. In Section IX we eval-
uate our methods against a simple approach, before presenting
related work in Section X and concluding the paper with an
outlook on future work.

II. SYSTEM MODEL

This section introduces our system model consisting of the
numerical solver as the application, the mobile and fixed
compute nodes, the wireless link connecting the nodes, and
an energy model for the mobile device.

Many processes in science and engineering are described
by means of partial differential equations (PDEs). PDEs define
how a function, describing properties of a physical system,
has to behave. For example, function u depends on time t and
space x and describes the transfer of heat in an object, which
is known to fulfill the PDE

∂u

∂t
−∇2u = 0. (1)

For applications, it is sufficient, and in many cases the only
practical way, to approximate a solution, i.e., a function
fulfilling the properties of the PDE. Finding an approximate
solution is called solving the equation and is implemented in
a solver. There are a number of methods available of how
PDEs can be solved, e.g., implicit or explicit methods for finite
differences, for the heat transfer example. For such methods,
the solution is not approximated continuously, but at discrete
points in time and space. For example, for the heat transfer, the
initial values for all discrete points in physical space at time t0
might be given at discrete points and we want to compute the
evolution of the system for time t > t0 at those points. This is
also called an initial value problem and is common in many
engineering applications. For finding an approximate solution
for this problem, we can split time into equidistant time slots,
ti = t0+i·∆t, and compute the approximation at each discrete
point in space for each ti. We call the approximation at one
ti a state and denote it as si. For computation of state si, the
state si−1 at time ti−1 is required. For explicit methods, this
computation is simply one equation for each point in time.
However, for implicit methods, which have better numerical
stability, the computation of a state requires the solution of
algebraic equations [5] (see Fig. 1). We assume the application
needs n states. The set of all states to be computed by the
solver is denoted as S = {s1, . . . , sn}.
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Fig. 1. Implicit discretization method transforms PDEs to algebraic equations

The solver, as described above, is implemented for two
compute nodes, server and mobile device. These two nodes
are very heterogeneous. On the one hand, the server is located
inside a data center. It is well connected to other computing
resources nearby and therefore can scale to current workload
on demand. On the other hand, the mobile device runs on
battery and is therefore constrained in energy. It has to rely
on energy efficient processors being much slower than server

processors. Therefore, we assume the server processor to be
much faster than the mobile processor.

Mobile device and server are connected over a wireless link
provided via cellular networks (3/4G). Such a link experiences
communication errors on the wireless link layer which will
result in packet loss on higher layers. There are two kinds
of communication errors in wireless networks, single packet
errors and burst packet errors [6]. While the former effects
single packets only, the latter effects all packets over a pe-
riod. Single packet errors are easily avoided by introducing
retransmission on the link layer as it is implemented in
LTE [7]. Therefore, the majority of errors are burst errors
(cf. Section IX). Notice that loosing all packets over a period
causes temporary disconnection.

Computation on the mobile device and communication
between mobile device and server effects energy consumption
and therefore the limited energy stored in the battery of the
mobile device. In order to give the user best experience, energy
consumption of the application should be minimized. We con-
sider computations on the mobile device as the dominant factor
for energy consumption and neglect the energy consumption
for communication. Especially when computation of one step
for the application might involve multiple intermediate steps,
not being necessary for visualization or reasoning but for
improved quality, e.g., for finer coupling between different
solvers for multi-physics simulations, computation becomes
the predominant factor of energy consumption. Therefore, we
will minimize the number of steps computed on the mobile
device.

III. PROBLEM STATEMENT

This section introduces a detailed problem statement for min-
imizing energy consumption for iterative computation of the
states in S = {s1, . . . , sn} to be finished at wall clock time
tmax. Each state si ∈ S can be computed on the mobile device,
the server, or both. In case of server computation, the result
has to be transferred over the wireless link to the mobile
device. The decision, whether a state should be computed
on the mobile device or the state should be transferred over
the network is a schedule (M,T ), consisting of two sets: M
represents computation on the mobile device, and T states to
be transferred over the network.

Computation on the mobile device is represented in the set
M . Every element (si, ti) ∈ M represents the computation
of state si on the mobile device starting at time ti. For this
computation, the state si−1 has to be available on the mobile
device at time ti. We assume all computations on the mobile
device to take equal time tM until the computation is finished
and the result is available. The set M̂(t) represents the results
of computations on the mobile device at time t and is defined
as M̂(t) = {si, ti) ∈ M : ti + tM ≤ t}. Notice, we consider
sequential execution only. Therefore, no two states can be
computed in parallel.

For computation on the server, we have to decide on the
time when the result should be send to the mobile device. This
decision is part of a schedule (M,T ) and represented in T .
Every element (si, ti) ∈ T represents the transfer of state si
from the server to the mobile device, starting at time ti. The
time when the message will be received on the mobile device



can be either finite or, in cases of disconnections, infinite. The
unknown function d : R+ → R+ ∪ {∞}, t 7→ d(t) represents
the time of delivery of a message sent at time t. At any point
in time t, at most one message can be sent. If a message is
sent at time t and d(t) <∞, the message is delivered on the
mobile device at time d(t). If d(t) is infinite, the message is
lost. We define T̂ (t) = {(si, ti) ∈ T : d(ti) ≤ t} as the set
of all messages successfully received on the mobile device at
time ti.

Using the introduced notation, we can formulate our opti-
mization problem as

min |M |
s.t . M̂(tmax) ∪ T̂ (tmax) = S

That is, we want to minimize the number of computations on
the mobile device, under the constraint that all states should
be available on the mobile device at time tmax.

IV. ARCHITECTURE

In this section we present our architecture to solve PDEs on
the two computation nodes, the mobile device and the server.
This architecture is partly based on [8].

Our system consists of four components (see Fig. 2), (1) a
scheduler to distribute the computation among the computation
nodes, (2) a statistics component to collect data about the
availability of the wireless link on the mobile device, (3) a
disconnection detector, and (4) a predictor to predict the
length of a temporary disconnection based on the statistics.
All components run on the mobile device.

Scheduler

StatisticsPredictor Detector

execution
time

message delays network model

disconnectionduration of
disconnection

Fig. 2. Overview of the architecture

The scheduler decides on computation and communication
on and between the compute nodes. The goal of the scheduler
is to minimize energy consumption on the mobile device, while
fulfilling real-time constraints. As we assume computations
to be very complex and much more energy intensive than
communication of results, the scheduler computes all states on
the server and sends them to the mobile device as long as the
wireless link is available. However, when the mobile device
is temporary disconnected, the scheduler has two options
(1) waiting for the link to become available (2) starting the
computation on the mobile device. The scheduler will use the
predicted duration of disconnection, provided by the predictor
and information about the execution time on the mobile device
provided by the statistics component to make this decision.

The statistics component collects information about the
execution time for the computation of states on the mobile

device, information about the packet transfer time of packets
from the server to the mobile device, and information about the
availability of the wireless link. Information about execution
time will be needed by the scheduler. This information will
be collected every time the mobile device computes a state.
The information about packet transfer time and availability of
the link will be collected using probe messages periodically
sent from the server to the mobile device. If such a message is
received, the statistics component informs the scheduler about
the availability of the link.

The disconnection detector monitors the state of the wire-
less link. It uses the same probe messages sent periodically
by the server as the statistics component. If no such message
is received on the mobile device for a longer period of time,
the detector will inform the scheduler about the mobile device
being disconnected from the server. To detect disconnections,
the detector uses a timeout mechanism. To choose this timeout,
the detector needs further informations about the link charac-
teristics from the statistics component.

The predictor gives a prediction about the duration of
temporary disconnections of the mobile device. To this end,
it uses recent data about the link availability provided by
the statistics component to learn a Markov Chain. Using
this Markov Chain, the expected duration of a temporary
disconnection can be computed. The predictor is invoked by
the scheduler once disconnection is detected.

The following sections will provide detailed descriptions
about each component of the architecture.

V. SCHEDULING COMPUTATION STEPS

The scheduler decides on when and where to execute compute
steps and if results of computations should be sent from the
server to the mobile device, i.e., construct the sets M and T
for a schedule (M,T ).

Notice, it is never beneficial to send states from the mobile
device to the server, as (1) we assume server computation
to be much faster and (2) computation on the server to not
induce any cost, as it does not cost energy on the mobile
device. Sending a state from the mobile device to the server
would therefore only cost time. However, we want to optimize
energy consumption, which is to minimize the number of
computations on the mobile device. Therefore, the scheduler
tries to compute as many steps as possible on the server and
will start computation on the mobile device only if it might be
absolutely necessary, e.g., if the risk of missing the deadline
is high.

The scheduler operates in three different modes, “con-
nected”, “disconnected”, and “recovery”. On the start of the
computation, the scheduler operates in “connected” mode.
The “disconnected” mode is triggered by the disconnection
detector. The statistics component triggers the “recovery”,
once the scheduler was in “disconnected” state and the link
became available. The state transition from “recovery” to
“connected” is handled by the scheduler itself (see Fig. 3).

In “connected” mode, all computation is executed on the
server and results are sent to the mobile device. For garbage
collection on the server, the mobile device sends cumulative
acknowledgments to the server. If the server receives such a
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Fig. 3. Modes and mode transition of the Scheduler

message for state si, it will forget about all prior states sj with
j < i. Preliminary tests, which will be presented in the next
section, show that this mode is the most efficient in terms of
computations on the mobile device, since server computation
is very fast compared to computation on the mobile device.

If a disconnection between mobile device and server is de-
tected, the disconnection detector triggers the “disconnected”
mode of the scheduler. The scheduler has two options during
disconnection (1) wait for the link to become available again
(2) compute on the mobile device. The two alternatives have
different effect on the objective function. Waiting does not
introduce any additional cost, while computation increases
energy consumption, and, therefore, the objective function of
the optimization problem. However, if the scheduler waits too
long, the deadline for the computation cannot be kept and the
constraint is violated.

To decide on the two alternatives, the scheduler uses two
values: an estimate on the duration of the disconnection E
and an estimate on the time to finish the full computation
on the mobile device tM . These values are provided by the
predictor and the statistics component. The scheduler evaluates
two predicates. The first predicate evaluates if, according to
the predicted disconnection duration E, the deadline cannot be
kept. This is denoted as t + E > tmax, where t is the current
time and tmax is the deadline. The second predicate evaluates
if computation on the mobile device is faster than waiting and
can be denoted as tM < E. Only if both predicates are true, the
scheduler decides to start computation on the mobile device.
While the scheduler is in “disconnected” mode and decides
to wait, it will periodically verify its decision based on new
predictions of the components. Notice, that uncertainty bounds
for the prediction can be introduced to adapt the accuracy of
the predictor and the respective cellular network situation, for
example the mobility scenario.

When the scheduler is in “disconnected” mode and the
statistics component receives messages from the server it
triggers “recovery” mode. In this mode, the scheduler pauses
all computation on the mobile device. It sends a recovery
request to the server, containing the numbers of missing states.
The server answers by sending previously computed states
to the mobile device. Once the mobile device received all
requested states computed on the server during disconnection,
the scheduler returns to “connected” mode. Notice that the
detector component can also trigger “disconnected” mode from
the “recovery” mode.

VI. STATISTICS COMPONENT

The statistics component collects data about three aspects:
(1) timing information for solving states on the mobile device,
(2) packet transfer time to the mobile device, and (3) the
availability of the wireless link. All data is stored directly on
the mobile device.

As mobile devices have different processors and execution
time varies from device to device, timing information about
the computation is needed for prediction of execution time.
Execution time depends on the method used for solving the
PDEs. Typically, such methods reduce the problem to algebraic
equations, like in the heat equation example given in Section II.
Solving these equations is the hardest part of solving PDEs.
The statistics component collects information about how long
it took the specific device to solve the algebraic equations
depending on the problem size. For example, for a given
matrix size, it provides the mean time for computation as well
as an upper and lower bound on the computation time. This
information is used by the scheduler to estimate computation
time on the mobile device.

In preliminary tests, we evaluated the time to solve matrix
equations on different device classes. We choose the Conjugate
Gradient method [9] which is often used when applying
the finite elements method (FEM). For portability reasons,
we choose the Java CG-Solver implemented in the Apache
Commons Math library. Figure 4 depicts the mean time for
solving linear equations on different device classes. We chose
four different device classes: (1) classical stationary desktop
PCs ; (2) mobile laptops ; (3) Smartphones like the LG
Nexus 5 ; (4) small and cheap SoC like the Raspberry Pi 2.
The error bars represent the maximum and minimum time
for solving the algebraic equation. All three values, mean
time, minimum time, and maximum time are provided by the
statistics component. Maximum and minimum execution time
are very close. Therefore the mean execution time describes
the actual execution time of any execution very accurately.
Also notice the difference in execution time on mobile devices,
like Smartphones, and servers. This strongly supports our
assumption of the server being much faster than the mobile
device.
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In order to make the decision when to consider the mo-
bile device to be disconnected, the detector needs detailed



timing information about the transfer time of packets sent
from the server to the mobile device. The server periodically
sends probe messages to the mobile device. These messages
contain timing information. Probe messages are sent via a
connectionless protocol, like UDP, and are not retransmitted
by the transport layer. The statistics component receives probe
messages and computes the relative delay of the packet. Notice
that this relative delay is only used for comparison between
delays of different packets. For this task, the delay does not
have to be exact and clocks do not have to be synchronized.

For predicting the duration of disconnections, the statistics
component collects information about lost packages for the
predictor. Therefore, probe messages, periodically sent by
the server contain a sequence number. Using this sequence
number, the statistics component is able to detect lost pack-
ages. This information is used by the disconnection duration
predictor to predict the duration of disconnection once a
disconnection is detected.

VII. DETECTING DISCONNECTIONS

This section describes the detector component for detecting
disconnections. Detecting disconnections as early as possible
is an important task, as the system can react faster to the new
situation.

There are two basic approaches for detecting disconnec-
tions: (1) detecting disconnections by lower layer information,
e.g., signal-to-noise ratio (SNR), or (2) detecting disconnec-
tions using a timeout mechanism for reception of periodically
sent probe messages. The former method requires additional
link layer information like SNR, which might not be available
on the application layer and which highly depend on the link
layer protocol. We therefore focus on the timeout mechanism.
The timeout mechanism introduces additional messages and
needs a carefully chosen timeout value. However, it respects
the layer model and does not need any additional information
from lower layer protocols.

For the timeout method, the server periodically sends
packets to the mobile device using a connectionless protocol,
such as UDP. The mobile device registers reception of the
packages. If no package arrives after the timeout ttimeout, the
mobile device considers itself to be disconnected from the
server. The challenge is to choose the timeout value ttimeout.
Choosing ttimeout is a trade-off between detection time and
rate of false positive disconnection events. If ttimeout is too
large, the detection time is increased, which might lead to
suboptimal execution, e.g., the scheduler might start mobile
computation too late and the deadline for the computation
is missed. If ttimeout is too small, the detector might signal
disconnection shortly before the missing probe packet arrives.
This false detection might lead to wrong execution strategies
and unnecessary computations on the mobile device, leading
to increased energy consumption.

In order to deal with this trade-off, we choose ttimeout
dynamically, depending on the actual situation of the exe-
cution. We use a lower timeout, when the risk for missing
the deadline is high. To this end, we consider the time when
the computation could be finished by just using the mobile
processor tM . We subtract this value from the deadline, so
that the values get smaller when we reach the critical point to

finish the computation on the mobile device. Too small timeout
values do not make sense, therefore we set the timeout to be
at least tmin.

To determine good values for tmin, we did preliminary
tests. We set up a server and a laptop. The server was well
connected to the campus network. The laptop was located
inside a train and connected to the server over 3G cellular
network. The server sent messages to the laptop every 50
ms using UDP. The messages contained a 2 byte sequence
number only. Server and laptop recorded timing information
when messages were sent and received. Using this timing
information we were able to compute the variance of message
delay.

Figure 5 depicts the empirical distribution function of re-
ceived messages over time. The time is calibrated to minimum
transfer time of any packet. Figure 5 show that the empirical
distribution function has a long tail. The longest message
delay of any received message was 6227 ms. The number of
messages never received on the mobile device was 16.42 %.
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Fig. 5. Empirical distribution of received packets over time.

As a result of this tests, we found the 0.9-quantile as
a good trade-off between time to detection and number of
false detections. The 0.9-quantile guarantees to detect 90 %
of received packets correct, while detecting 10 % of later
received packages as disconnections. The 0.9-quantile of the
preliminary tests was 103 ms. Notice that any quantile can be
easily identified based on historical data stored by the statistics
component or requested by a central database for the given
provider and location.

VIII. PREDICTING THE DURATION OF DISCONNECTIONS

In the previous section, we showed how to detect disconnec-
tions. This section covers the prediction of the duration of a
disconnection based on collected data. For this prediction, we
learn the characteristics of the network using recent data in
a Markov Chain and use the expected error duration of this
Markov Chain as prediction.

Higher order Markov Chains are a common method to
model burst errors in wireless networks [6]. We will use second
order Markov Chains to predict the link state, which might be
either available (A) or disconnected (D). Thus, states of the
Markov Chain are boolean. Second order Markov Chains give
the probability of the next state based on the current and the



previous state. If a denotes the previous state and b denotes the
current state of the link, P ((a, b)→ c) is the probability of c
being the next state. However, Markov Chains are memoryless
and do not depend on the longer history of previous link states.

For learning the Markov Chain, we use recent data about
the link availability. Learning can be implemented by counting
the number of three consecutive link states (see Fig. 6). The
probability p = P ((x, y)→ A), can be derived by counting
the combinations a = #{(x, y,A)} and d = #{(x, y,D)} for
all combination of three consecutive link states in recent data
starting with x followed by y. The probability p can then be
set to p = a/(a + b). In the special case of a + b = 0, the
value should be set to 1/2 to keep principles of probabilities.

For predicting the duration of a disconnection, we use the
expected value of disconnections. If the device gets discon-
nected, the state of the Markov Chain will be shortly (A,D)
and then remain (D,D). The probability p of the wireless link
to become available again is in every step p = P ((D,D) →
A). The expected duration of a disconnection E can therefore
be derived as

E = 1/p

We use this value to predict the duration of the disconnection.
Notice, if the Markov Chain is not based on enough data, p
might not represent the actual properties of the network. In
this case, the predictor returns a very low estimate to collect
more data. Markov Chains can also be shared among users of
the same cellular network provider in the same region.

Figure. 6 shows how learning and prediction can be im-
plemented. Notice, all functions are implemented in O(1).
Therefore, this approach for predicting link availability can be
implemented very efficiently and can be applied in an online
fashion.

1: backlog← new queue()
2: counter← [0, . . . , 0]
3: procedure LEARNLINKSTATE(link state a)
4: backlog.append(a)
5: (a, b, c)← first three link states in backlog
6: counter[(c, b, a)]← counter[(c, b, a)] + 1
7: if |backlog| ≥ max_backlog then
8: (x, y, z)← last three link states in backlog
9: counter[(x, y, z)]← counter[(x, y, z)]− 1

10: backlog.pop()

11: function GETPROB((a, b)→ c) . returns P ((a, b) → c)
12: sum← counter[(a, b, c)] + counter[(a, b,¬c)]
13: if sum = 0 then return 1 / 2

14: return counter[(a, b, c)] / sum
15: function EXPECTEDDURATIONDISCONNECTION
16: prob← GetProb((D,D)→ A)
17: if prob = 0 then return ∞
18: return 1 / prob

Fig. 6. Learning and prediction using Markov Chains for the link state
can be realized efficiently. Link states are represented as booleans, denoted as
either available (A) or disconnected (D).

IX. EVALUATION

In the previous sections, we explained our method for solving
PDEs on a mobile distributed infrastructure. In this section we
will evaluate our method. First we will explain our evaluation
setup, including the application, devices, and our setup for
measuring real-world data. Second, we will use the collected
data to evaluate the disconnection detector. Last, we evaluate
our approach with our real-world collected data on the avail-
ability of the wireless link.

A. Evaluation Setup

Our evaluation setup consist of three parts, the application, the
compute nodes and the wireless network.

As application, we assume a well-known textbook example,
namely, the heat equation. We already introduced the heat
equation as an example in section II. It is given as

∂u

∂t
−∇2u = 0.

and describes the evolution of heat u at any position x in
an object over time t. We choose 1,400 equidistant steps for
discretization of the positions x at any fixed time t. During
the evaluations, the time discretization was chosen randomly,
while the deadline was fixed. We ensured that the computation
can be finished on the server. We assume to use an implicit
scheme for the discretization. This method needs to solve a
system of 1, 400 linear equations in every time step.

For the computation nodes, we assume the mobile device
to be equally equipped as an LG Nexus 5 Smartphone and the
server to have four cores at 2.6 GHz. For computation of one
time step, the devices have to solve a system of 1, 400 linear
equations. According to our preliminary tests in Section VI
(see Fig. 4), solving such a system on these nodes would cost
roughly 200 ms on the mobile device and 20 ms on the server.
We neglect any additional time for other computations.

For the network, we use different assumptions for link
availability, throughput and latency. For the availability of the
link, we collected real-world data on the train and per-pedes
as already described in Section VII. We sent packets every 50
ms from the server to the mobile device and recorded detailed
timing information on the devices. For the final evaluation,
we used different cellular provider and routes than in the
preliminary tests. For throughput and latency we used the spec-
ification of recently deployed LTE. LTE promises to provide
throughput of up to 100 Mbit/s [10]. However, technology
deployed today mostly provides only up to 50 Mbit/s. One
state plus metadata fits in 12 UDP packets, where each packet
has 512 byte payload. Using a 50 Mbit/s link, we are able to
send over 950 states per second. We therefore simply assume
unlimited bandwidth.

Figure 7a depicts the relative arrival times of packets sent
by the server over time in one of our collected real-world
datasets. Notice the very high latency of nearly 14 s. Figure 7b
depicts the link state of the mobile device, which is either
available or disconnected, of the same dataset. Notice that high
latency of particular packets does not imply disconnection. For
instance at 471 s, the mobile device was not disconnected, but
packages had a very high latency of 4.5 s compared to other
messages. One possible explanation for this high latency are
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Fig. 7. One of the samples collected per-pedes and on the train. Both figures are based on the same data.

retransmissions of the cellular link layer in areas with bad
reception. Especially at underground stations on the train, but
also under small obstacles, such as bridges, we observed an
increased message delay.

B. Evaluation of the Disconnection Detector

For the evaluation of the disconnection detector we use the
real-world data of cellular networks. In Section VII, we already
described how we did preliminary tests and found a 0.9-
quantile for the minimum timeout for detection of disconnec-
tions a good choice. However, in the data collected for the
evaluation, the 0.9-quantile is 301 ms, which is much higher
as in the preliminary tests, where it was 103 ms. The median
message transfer time of eventually received messages was 54
ms, whereas the maximum was 7153 ms.

Figure 8 depicts the latency of messages, the discon-
nections and the results of the detector of a sample trace.
The deadline was at the end of the plot. We used received
messages to simulate progress of the computation. Our dy-
namic timeout mechanism only detects messages at the end of
the computation, where detection is critical in order to meet
the deadline. It assumes to have detected six disconnections.
However, five are false positives, all with message latency
over 464 ms, which are received eventually. One of the false
positives is received even after 3.9 s, whereas the only real
disconnection, the detector has detected correctly, has a latency
of 417 ms. In other words, the probe message with the smallest
delay was a disconnection, while the other messages were
eventually received. Any timeout mechanism detecting the real
disconnection has to detect the others.

C. Evaluation in an LTE Scenario

In the reminder of this section, we will evaluate our method to
solve PDEs on mobile devices against two other approaches,
namely a pure offloading approach and our approach without
the disconnection predictor.

The pure offloading approach simply computes all states on
the server and sends the results to the mobile device. While the
link is disconnected, there is no progress on the mobile device.
However, the mobile device sends a retransmission request to
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Fig. 8. Sample data and decision of the disconnection detector. The detector
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the server, once the link is recovered from disconnection. If the
server receives a retransmission request, it answers with data
of states available on the server but not yet available on the
mobile. The pure offloading approach does not use the mobile
processor. Therefore, it provides the optimal solution, if the
constraint on the deadline can be fulfilled.

Our approach without the disconnection predictor does not
have an estimate on the length of disconnections. It therefore
starts computation of any missing states on the mobile device,
once the device is disconnected. If the connection is recovered,
the mobile device sends a retransmit message to the server and
stops the mobile computation. The server will then answer with
all its available states, requested by the mobile device.

To evaluate the performance of the three methods, we used
different deadlines and tested each of the methods with random
time discretization. We were interested in two aspects: (1) the
fraction of simulation runs, where the deadline could be kept
and (2) the energy consumption, expressed as the time of the
mobile processor usage.

Figure 9 depicts the fraction of deadline misses over the
deadline. As the deadline is later, the pure offloading approach



misses more and more deadlines. However, our approaches
with and without the predictor have a very constant rate of
deadline misses, independent on the actual deadline. Compared
to the pure offloading approach, our approach without the
predictor is able to increase the fraction of kept deadlines by
61.25 % and our approach with the predictor by 61 %. If the
application requesting the results is able to handle 10 % to
15 % deadline misses, our approaches can be used, while the
pure offloading approach does not provide sufficient results.
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Figure 10 depicts the performance in terms of the opti-
mization goal. Whereas the pure offloading approach yields
optimal solutions with no mobile processor use, it mostly does
not fulfill the constraint on the deadline of the computation.
Our two methods use the mobile processor and are able to
keep the deadline more often. However, they also use the
mobile processor and therefore do not yield optimal solutions.
Comparing our approaches with and without the predictor, the
approach with the predictor is able to reduce energy consump-
tion by more than 74 %. The difference in energy consumption
with and without the predictor can be described as a constant.
Therefore, the predictor is an essential component to provide
better results in terms of energy consumption on the mobile
device.

Overall, our approaches with and without the predictor are
able to fulfill the constraint on the deadline much better than
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Fig. 10. Energy consumption on the mobile device of our methods with and
without the predictor.

the pure offloading approach. However, using the predictor, we
are able to save a constant time of mobile processor utilization.
Especially in a scenario such as AR or MCPS, where the solver
has to provide results continuously, this constant time adds up
to a linear improvement in energy consumption on the mobile
device.

X. RELATED WORK

This section discusses related work of how PDEs can be solved
for mobile devices.

Classically, PDEs are computed on clusters in high per-
formance computing (HPC). HPC assumes a set of homoge-
neous and well connected compute nodes. They often have
the exactly same processor model and are fast and reliable
connected via a wired network. Usually, the computation task
is distributed using MPI [11]. This protocol distributes the
task to a number of processors. To provide the result to a
mobile device, either the result is computed on the cluster and
is transferred to the mobile device, or the mobile device is
included into the computation using MPI.

Other related research fields are mobile code-offloading
approaches and cyber foraging. These approaches utilize the
mobile processor and additional remote resources. Code-
offloading uses resources provided by a single server located
in a data center. Cyber foraging utilizes unused computing
resources nearby [12], [13]. Both approaches either try to
speed up the application [14], [15] or to save energy [16],
[17]. The main problem is the decision of how to distribute
different parts, called modules, of the application to optimize
for energy or execution time. This problem is reduced to a
graph partitioning problem, where nodes represent different
modules and edges represent dependencies between modules,
e.g., one module calls a function of another module. Nodes
and edges are adjunct with cost for computation and commu-
nication on different nodes. To find the best partitioning of
modules, the graph has to be partitioned into two distinct sets
with respect to energy, time, throughput, latency, volume, and
space constraints.

Both classical and mobile approaches provide insufficient
results for our problem. The classical HPC approach does
not provide any solution in the case of disconnections. Many
mobile approaches use remote execution to reduce the energy
consumption or execution time, when the link and resources
are available and do not provide any solution in the case of
disconnections. Recent code-offloading approaches are able to
cover disconnections [18], [19]. However, those approaches
rely on the transfer of one single application state, which
makes merging of remotely executed and locally executed
states impossible and therefore significantly increases the vol-
ume and latency of data to be transferred over the network.

XI. CONCLUSION & FUTURE WORK

We described a new problem for solving PDEs on a distributed
infrastructure, which will be needed for future applications in
augmented reality and Mobile Cyber-Physical Systems. We
also described how we can solve this problem using a mobile
device and a server connected over a wireless communication
link. Wireless links such as over 3/4G cellular network are
subject to burst errors, where multiple successive packets are



not delivered and the link is not available for a longer period,
i.e., the device is temporary disconnected. By using prediction
on the availability of the wireless link, we showed that we can
improve the energy consumption on the mobile device during
disconnections while fulfilling constraints on the deadline of
the computation.

In the future we also want to focus on available bandwidth
and the ability of numerical applications to change quality.
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