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Abstract—Conventional manufacturing systems like assembly
lines cannot handle the constantly changing requirements of a
modern-day manufacturer, which are driven by volatile market
demands. In a bid to satisfy such requirements, modern manufac-
turing systems, comprising innumerable cyber-physical systems
(CPS), aim to be reconfigurable. CPS implement production
processes through an ICT infrastructure networked with sensors
and actuators embedded in the shop floor. Reconfigurability,
in context of manufacturing systems, must include the entire
system of networked components and hence requires a flexi-
ble ICT infrastructure. Providing flexible ICT infrastructures,
often, comes at the cost of diluted quality of service (QoS)
guarantees. This, however, is not an option for manufacturing
systems, most of which require strict QoS guarantees to function
correctly. To overcome this obstacle, we propose a new software-
defined environment (SDE) for reconfigurable manufacturing
systems with real-time properties in this paper. Software-defined
environment is an emerging technology that provides flexible
ICT infrastructures modifiable using software. Our contribu-
tions include an SDE-based system architecture for dynamically
configuring the underlying infrastructure for a manufacturing
system. In particular, we focus on configuring the network for the
time-sensitive communication flows essential for realising CPS.
Moreover, we propose a pair of routing algorithms to calculate
routes for these flows while configuring the network.

Keywords—Time-sensitive networks, Industry 4.0, Quality of
service, Genetic Algorithm, Software-defined networks

I. INTRODUCTION

Gone are the days when manufacturers targeted producing
standardized goods with increased production rates. In this
modern era, they are forced to offer higher degrees of cus-
tomization in their products to retain their competitive edge.
Daimler, a leading automotive manufacturer, offers around
1024 variants of its Mercedes E-Class model [1]. Further, there
is a dramatic decrease in the average product life-cycle to
the extent that it is no longer viable to design a dedicated
manufacturing system for a specific product. For instance,
in the fiercely competitive automotive market, the average
product life-cycle for cars has reduced from 10.6 yrs in the
1970’s to 5.6 yrs in the early 2000’s [2]. In these modern
scenarios, manufacturers seek to produce highly customized
products at mass production costs. Moreover, they expect their
manufacturing facilities to turnaround in a short timespan to
produce new products or variants. Existing systems like the
assembly lines etc., fall short of these expectations.

Smart factories, as envisioned by the Industry 4.0 initiative,
adapt themselves to volatile environments for satisfying the

requirements of a modern-day manufacturer [3]. For this, they
use manufacturing systems that can be reconfigured rapidly.
Such manufacturing systems can adjust their production capac-
ities and processing functionalities to respond in-time towards
changing market demands, regulations etc. They also support
various kinds of production processes — the sequence of
steps involved in manufacturing a product — albeit with some
reconfiguration effort.

Reconfigurability in manufacturing systems not only ap-
plies to the mechanical (“physical”) components of a factory
such as robots and machines, but also to its information and
communication technologies (ICT) infrastructure consisting of
compute, storage, and network resources. Modern manufac-
turing systems are, in fact, cyber-physical systems (CPS) that
control production processes through an ICT infrastructure. In
these systems, CPS controllers sense the state of the production
processes through a set of sensors and manipulate this state
through actuators. Often, these components are distributed
physically across the shop floor and communicate through
a communication network. Thus, reconfigurability must com-
prise the entire system of networked components and, hence,
requires a flexible ICT infrastructure.

A. Challenges

Why is it hard to provide a flexible ICT infrastructure
for manufacturing? Most manufacturing systems require strict
quality of service (QoS) in order to function correctly. In
particular, this applies to the real-time system behaviour since
most of these systems control time-sensitive production pro-
cesses. Providing QoS is typically much easier if a dedicated
infrastructure is provided, for instance, dedicated computers
hosting the CPS controllers. Another typical example, which
we will focus on in this paper, are real-time communication
networks. Often, such networks are made from dedicated field-
buses that provide real-time guarantees for communication.

Although dedicated components can provide the required
QoS more easily, they often do not meet the flexibility re-
quirements of reconfigurable systems. For instance, changing
the hardware configuration (sensors, actuators) might require
cumbersome “re-wiring” of the field-bus network. Therefore,
we strive for a system that can provide flexibility without
sacrificing essential QoS properties.

In order to keep our discussions and solutions focused,
we will focus on the networking domain in the following.
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Thus, our concrete goal is to develop methods for flexible time-
sensitive networking suitable for reconfigurable manufacturing
systems.

B. Proposed Solution

To improve flexibility of manufacturing systems, we pro-
pose a software-defined environment, inspired from the basic
principles of software-defined networking (SDN), targeted at
manufacturing scenarios [4]. The primary goal of SDN is
to increase the flexibility of networking. To this end, SDN
clearly separates the basic network functionality of forwarding
(network data plane) from the network configuration (network
control plane). The network data plane is implemented “in
hardware” by network switches, whereas the network control
plane is outsourced to standard hosts implementing the logic to
configure the network, e.g., the forwarding tables of switches.
By implementing an application-specific network control logic,
we can shape the network to meet the requirements of the ap-
plication. This also enables the dynamic reconfiguration of the
network according to the requirements of the reconfigurable
manufacturing system, for instance, by configuring suitable
paths between a dynamic set of sensors and actuators.

Although this concept in general improves flexibility, it
is an open question how to provide the desired QoS to the
manufacturing systems through suitable network control logic.
So far, the concepts for SDN and time-sensitive networking
(TSN) — for instance, proposed in the IEEE 802.1 standard
[5] — have been developed independently of each other. Thus,
the major question is, can we combine the benefits of SDN
and TSN to build a time-sensitive software-defined network
(TSSDN)? Such a TSSDN would become one cornerstone of
a software-defined environment for manufacturing, which can
then be complemented by additional concepts for the compute
and storage domain.

In this paper, we make the first step towards such a
“software-defined factory” by making the following contribu-
tions:

• We present an architecture of a software-defined envi-
ronment for reconfigurable manufacturing systems. In
particular, we focus on time-sensitive software-defined
networking to support real-time communications in
manufacturing systems.

• We introduce a specific routing problem for TSSDN
and present heuristic-based routing algorithms for
tackling it.

• Our evaluations demonstrate the effectiveness of
software-defined environments for handling time-
sensitive communication flows in manufacturing sys-
tems.

The rest of the paper is structured as follows. First, we
discuss related work in Section II. Section III introduces
the operating principles of a software-defined approach and
presents our architecture of software-defined environment for
reconfigurable manufacturing systems. We present a problem
related to routing of time-sensitive communication flows in
manufacturing systems and a set of algorithms to solve it
in Section IV. We evaluate these algorithms in Section V
followed by a short discussion in Section VI. Finally, we

Fig. 1: Basic principles of software-defined environments —
separation of data plane and control plane, logical central-
ization of control plane providing a global view onto the
infrastructure

conclude and present the future outlook for our work in
Section VII.

II. RELATED WORK

Though reconfigurable manufacturing systems are seen as a
central feature of smart factories, their exact design is currently
a subject of research. Various issues involved in the design of
reconfigurable manufacturing systems have been discussed in
the literature [6], [7], [8]. However, these are focused only
on aspects of mechanical design for making manufacturing
systems reconfigurable. Despite an indispensable role of ICT
infrastructures in modern manufacturing, not much has been
done to incorporate reconfigurability in it.

With respect to communication networks, there exists a
wealth of literature on mechanisms that provide QoS guar-
antees for communication in manufacturing environments [9],
[10]. However, most of these mechanisms use field-bus tech-
nologies which are not flexible while others provide QoS
guarantees only in static scenarios.

Our vision of the software-defined factory fills these re-
search gaps by creating highly flexible ICT infrastructures for
reconfigurable manufacturing systems that provide the desired
QoS guarantees for the manufacturing systems, especially with
respect to the networking domain.

III. SOFTWARE-DEFINED ENVIRONMENT FOR

MANUFACTURING SYSTEMS

As already mentioned in Section I, one of the major
requirements for reconfigurable manufacturing systems is a
flexible ICT infrastructure that can be reconfigured easily
to follow the dynamic setup of sensors, actuators, and CPS
controllers deployed on the shop floor. Fixed infrastructures
with statically assigned dedicated hardware cannot provide the
required flexibility. Instead, we strive for a “software-defined”
environment, where the hardware configuration can be adapted
to the dynamic configuration of the manufacturing system.



The two basic operating principles of software-defined en-
vironments are shown in Figure 1. The first of these principles
is the separation of data plane and control plane. These
terms, as already explained in Section I, originate from the
networking domain. However, they can also be translated to
the compute and storage domains by separating their core
functionality (processing and storing data respectively) from
the control and configuration of the corresponding systems.
For instance, managing (creating, migrating, terminating, etc.)
virtual machines can be seen as a typical task of the control
plane of a software-defined compute system. The software
process implementing the control plane is called the SDN
controller or more generally SDE (software-defined environ-
ment) controller if we do not restrict ourselves to network
resources. Typically, this SDE controller offers two interfaces:
a southbound interface between itself and the underlying
infrastructure resources like network switches or hosts, and
a northbound interface towards the SDE control applications
that implement control logic for specific management tasks
like a routing algorithm for configuring switches.

The second operating principle of our envisioned software-
defined environment is logically centralized control to facilitate
the implementation of control logic. Basically, logical central-
ization provides a global view onto the infrastructure to the
SDE control applications, which simplifies the implementation
of control logic significantly. For instance, an SDN controller
can implement improved routing algorithms with a global view
onto the whole network including network topology, traffic
(link loads), etc. Thus, instead of implementing a distributed
routing algorithm, we can simply use a centralized algorithm.
Of course, logical centralization does not imply that the
SDE controller is also physically centralized. Usually, it is
physically distributed to several hosts to increase availability
and performance.

Applying these two basic principles to a software-defined
environment for a reconfigurable manufacturing system means
that we outsource the control of the manufacturing system
to a logically centralized SDE controller. This provides it
with a global view onto the whole infrastructure including
all sensors, actuators, network switches, compute resources,
storage resources along with applications like the constituting
CPS controllers. The SDE controller can then configure the
infrastructure based on its holistic view. In order to adapt
to dynamic changes, which is essential in a reconfigurable
system, the SDE controller implements a so-called MAPE
(Monitor, Analyze, Plan & Execute) loop as shown in Figure 2.
The tasks executed by the SDE controller as a part of the
MAPE loop are enumerated as follows:

• Monitoring - In the monitoring phase, the SDE
controller gathers the state of the infrastructure for
generating the aforementioned global view. For this,
it measures performance metrics like network latency,
computing load, system throughput, etc., in the data
plane. State-of-the-art techniques which utilise the
south-bound interfaces could be readily used for esti-
mating these performance metrics [11].

• Analysis - The state of the infrastructure gathered
in the monitoring phase is analysed by the SDE
controller. Advanced techniques using machine learn-

Fig. 2: MAPE loop in the control plane of the software-defined
environment for Reconfigurable Manufacturing Systems

ing, time series modelling etc. may be used for this
purpose.

• Planning - In the planning phase, the SDE controller
uses the information inferred from the analysis phase
and plans suitable reconfiguration steps by implement-
ing centralized control logic. For instance, the con-
troller can use the state obtained from monitoring to
implement a traffic-aware adaptive routing algorithm
for the underlying network.

• Execution - In this final phase, the SDE controller
executes the planned reconfigurations through com-
mands via the southbound interfaces. An example of
such reconfiguration would be modifications to the
forwarding tables in the network switches.

One specific requirement of an SDE for manufacturing
systems, most of which are highly time-sensitive in nature, is
to configure the infrastructure in such a way that time-bounds
of these systems are fulfilled, e.g., guaranteed upper-bounds
on communication delay between sensors or actuators and the
CPS controller. The basic principle of logically centralized
control also facilitates the control of time-sensitive systems.
For instance, as we will show in this paper in detail, by
knowing all applications (data sources and sinks), application
requirements (time bounds), and by having control over all
network resources (switches), we can configure network paths
through a logically centralized routing algorithm such that
network flows do not interfere and time-bounds are met.

Thus, a general challenge is to implement control logic
that provides desired QoS to the time-sensitive manufacturing
systems. In this paper, we will focus on control algorithms
for time-sensitive software-defined networking, although the
problem also applies to other resources like the scheduling of
computation processes.

IV. ROUTING TIME-SENSITIVE COMMUNICATION FLOWS

In this section, we present a problem related to routing
of time-sensitive communication flows constituting the CPS
in a factory along with a basic algorithm to solve it. Such
algorithms play a role in the planning phase of the MAPE loop
executed by the SDE controller. We further introduce a pair



of heuristics to guide this basic algorithm towards improved
solutions.

Generally, CPS require varying numbers of time-sensitive
communication flows between its components based on the
type of production process it implements and the number of
components it has on the shop floor. For instance, CPS re-
sponsible for open-loop production processes typically require
lower number of time-sensitive flows compared to the ones
responsible for closed-loop production processes. These time-
sensitive flows have stringent QoS requirements, in particular
the strict bounds they place on acceptable end-to-end network
delay and corresponding jitter [9]. The network delay comprise
propagation delay, processing delay, and queuing delay [12].
Propagation delay is the time required for a data packet to
propagate through the network links, processing delay is the
time required for the network switches to process and forward
the packet, while queuing delay is the time that the packet
spends in the queues of the network switches. Of these delays,
propagation delay (hundreds of nanoseconds) and processing
delay (few microseconds) are negligible compared to the
queuing delay (couple of milliseconds). Thus, a significant
part of the end-to-end delay results from the queuing delay
which occurs mainly due to in-network congestion. Fluctuating
queuing delays result in jitter. Hence, while routing time-
sensitive flows, a routing algorithm must additionally consider
queuing effects in network switches, which is otherwise not
required.

If network links are exclusively allocated to communication
flows, queuing delays can be eliminated bounding end-to-end
delays along with jitter [13]. Hence, to provide the desired
QoS guarantees to these time-sensitive flows, we intend to
exploit the path diversity in the network and allocate an edge-
disjoint path (paths that do not share network links) to each of
these flows. The allocated routes are then programmed into the
network by the SDE controller in the execution phase of the
MAPE loop. In case of over-subscription of network resources,
we aim to maximise the number of CPS that have edge-disjoint
paths for all their flows. Such routing algorithms execute on
the control plane of the software-defined environment and can,
hence, benefit from the global view of the infrastructure along
with the knowledge of the CPS requirements with respect to
its time-sensitive flows. The following subsections present the
system model and the formal problem statement followed by
the routing algorithms.

A. System Model

In our system model, we address the underlying network
for the CPS along with their time-sensitive flows. The network
is modelled as a directed graph, G ≡ (V,E), where V is the
set of network nodes and E is the set of edges representing
the network links connecting the nodes. Further, V ≡ S ∪H ,
where S is the set of network switches and H is the set of
hosts in the network. Also, E ⊆ V × V such that if (v1, v2)
∈ E, then (v2, v1) ∈ E. This models the full-duplex nature of
switched Ethernet used in software-defined environments.

CPSSet represents the set of target CPS required for
implementing the production processes in the shop floor. For
cps ∈ CPSSet, cps = {(hi, hj) | hi, hj ∈ H}, i.e., a cyber-
physical system is described as a set of tuples, each containing

a pair of hosts — the source host and the destination host for
a time-sensitive flow.

We refer to a CPS as “realised” if the used routing
algorithm assigns network paths for all its time-sensitive flows.
We model the solution to this routing problem of time-sensitive
flows as a tuple — (CPSSeq, FlowSeqMap). CPSSeq is a
sequence of the target CPS, CPSSeq ≡ [cps1, cps2, . . . cpsn].
While, FlowSeqMap is a map that gives the sequence of
the flows corresponding to a CPS. i.e., FlowSeqMap[cpsi] ≡
[fi,1, fi,2, . . . fi,j ], where fi,j is the jth flow of system cpsi.
Further, we define the fitness (quality) of a given solution as the
number of CPS that are realised by the basic routing algorithm
described below.

B. Problem Statement

Our routing approach allocates edge-disjoint paths to the
time-sensitive flows while seeking to maximise the number
of CPS so realised. Edge-disjoint paths avoid the problem of
competing flows along any path, thus, eliminating the problem
of network congestion and high queueing delay. Note, that in
this paper we do not strive to allocate several flows to the
same link. Although this could further increase throughput
and number of supported CPS, it requires more complex
solutions including scheduling mechanisms at switches, which
are subject to future work.

Merely maximising the number of realised CPS raises
fairness issues for those requiring higher number of flows. We
can mitigate this issue by allocating weights to each CPS based
on their importance and then maximise the sum of weights for
the set of realised CPS. While our algorithms can be easily
extended for this, it is currently out of scope for this paper.

C. Calculating edge-disjoint routes for time-sensitive commu-
nication flows

Given a graph G along with a set T ≡
{(s1, d1), (s2, d2), . . . (sn, dn)} containing pairs of hosts
in the networks, the problem of maximising the number of
pairs to which edge-disjoint paths can be allocated is known as
the maximum edge-disjoint paths problem. This well-known
problem is NP-Hard and requires heuristic approaches for
finding solutions that are close to the optimal ones [14]. Our
problem formulation takes the maximum edge-disjoint paths
problem a step further. Instead of maximising the number of
flows for which edge-disjoint paths can be allocated, we seek
to maximise the number of CPS that are realised as a result.
Our problem however reduces to the maximum edge-disjoint
paths problem, if all the CPS in CPSSet consist of only one
time-sensitive flow.

Algorithm 1 describes the basic routing algorithm to al-
locate edge-disjoint paths to the time-sensitive flows based
on an input solution described by the tuple (CPSSeq,
FlowSeqMap).

The algorithm realises the CPS as per the order dictated by
the CPSSeq (Line 2). For realising a CPS, the algorithm cal-
culates and allocates routes to all its flows in the order defined
by the map FlowSeqMap indexed by the corresponding CPS
(Line 3). The routes for the flows are determined by executing
Dijkstra’s algorithm (described in [15]) on graph G (Line 4).



Algorithm 1 Basic algorithm to route time-sensitive flows

Require: Graph G, Solution (CPSSeq, FlowSeqMap)
1: Routes← { }
2: for cps in CPSSeq do
3: for flow in FlowSeqMap[cps] do
4: flowPath← Dijkstra(G, flow.src, f low.dst)
5: if flowPath != NULL then
6: Routes[flow] ← flowPath
7: G.edges← G.edges− flowPath
8: else
9: deallocate all the assigned flows of cps

10: add corresponding links back to G

11: return Routes

To ensure that a network link is not allocated to multiple flows,
we remove the corresponding edge from the graph G when it
is allocated to a flow (Line 7). If no route can be found for
some flow, then the corresponding CPS cannot be realised. It
is then futile to allocate the expensive network resources for
its other flows. Hence, we deallocate such flows and return the
respective network links to the graph G (Line 9–10).

The fitness of a solution with this basic algorithm depends
on the ordering of the CPS in CPSSeq and the corresponding
ordering of flows in FlowSeqMap. In the following, we
improve the basic algorithm to derive a greedy algorithm
(heuristic approach) and a genetic algorithm (meta-heuristic
approach) that generate better solutions, i.e., increase the
number of realised CPS.

1) Greedy Algorithm: In the greedy algorithm, we generate
a few candidate solutions heuristically and then select the
best one from them. This algorithm takes four inputs: i)
G, the network graph, ii) CPSSet, the set of target CPS,
iii) MaxSolns, the number of candidate solutions to be
considered, iv) FlowSeqMap, a map that gives the initial
ordering of the flows corresponding to a CPS.

Algorithm 2 Greedy algorithm for maximising the number of
realised CPS

Require: Graph G, Set of CPS CPSSet, Flow Sequence Map
FlowSeqMap, No. of candidate solns MaxSolns,

1: CandidateSolutions← [ ]
2: BestSolution← NULL; BestSolnF itness← 0
3: for i = 0 to MaxSolns do
4: CPSSeq ← stable sort(shuffle(CPSSet))
5: CandidateSolutions.add((CPSSeq, F lowSeqMap))

6: for Soln in CandidateSolutions do
7: SolnF itness← calculate fitness(G, soln)
8: if SolnF itness > BestSolnF itness then
9: BestSolnF itness← SolnF itness

10: BestSolution← Soln
11: return BestSolution

In the greedy algorithm, described in Algorithm 2, we use
the number of flows required to realise a CPS as the heuristic.
We create different sequences of target CPS in which they
are sorted in an ascending order of the number of constituent
flows, i.e., CPSSeqi, where i ≡ {1, 2, . . .MaxSolns}. Each
of these sequences is combined with the default ordering

of flows given by FlowSeqMap to generate MaxSolns
candidate solutions, i.e., (CPSSeqi, FlowSeqMap). To allow
these candidate solutions to vary significantly, we generated
CPSSeqi by randomly shuffling the set of target CPS,
CPSSet, and then executing a sorting process (Line 4). Since
we used a stable sort, the relative order of the CPS before
sort is maintained after sort as well. We select the best of
the candidate solutions after evaluating their individual fitness
(Line 6–8). Function calculate fitness() (Line 7) (essentially
similar to the Algorithm 1) tracks and returns the number of
CPS realised by the solution using the basic routing algorithm.

The greedy algorithm uses the default ordering of flows, as
given in the FlowSeqMap, due to lack of reliable heuristics
for ordering the flows of a particular CPS for routing. To
explore the solution space effectively, we developed a meta-
heuristic approach using a genetic algorithm that also varies
the ordering of flows in FlowSeqMap.

2) Genetic Algorithm: Typically, the first step in genetic
algorithms is to generate a set of candidate solutions, known as
the population. The quality (fitness) of the population is then
iteratively improved by execution of three genetic operators
— Selection, Cross-over and Mutation. The genetic algorithm
described in Algorithm 3 needs an additional input as com-
pared to the greedy algorithm: MaxIterations, the number
of iterations/generations for which the candidate solutions are
allowed to evolve.

We generated the initial population using the method sim-
ilar to the one used in the Greedy Algorithm, i.e., using stable
sort after random shuffling of CPSSet (Line 3). Additionally,
we randomly shuffled the ordering of flows in FlowSeqMap
corresponding to every CPS (Line 4–5) for each candidate
solution. Further, we improved the calculation of solution
fitness to break ties between candidates that realise an equal
number of CPS. In such cases, the fitness calculation procedure
takes into account the number of flows set up for breaking
the tie. The higher the number of flows set up, the better the
solution.

Algorithm 3 Genetic algorithm for maximising the number of
realised CPS

Require: Graph G, Set of CPS CPSSet, Flow Sequence Map
FlowSeqMap, No. of candidate solns MaxSolns, No. of
iterations MaxIterations,

1: Population← [ ]
2: for i = 0 to MaxSolns do
3: CPSSeq ← stable sort(shuffle(CPSSet))
4: for cs in CPSSet do
5: FlowSeqMap[cs] = shuffle(FlowSeqMap[cs])

6: Population.add((CPSSeq, F lowSeqMap))

7: for i = 0 to MaxIterations do
8: SelectPopulation← selection(G, Population)
9: NextGeneration← crossover(SelectPopulation)

10: Population← mutate(NextGenPopulation)

11: return fittest(Population)

With each iteration, the population evolves with improving
quality of solutions. In each iteration, three genetic operators
(Line 8–10) are applied on the population:



1) Selection is responsible for selecting the candidate
solutions from the current generation that contribute
towards the candidate solutions for the next gener-
ation. We used roulette wheel selection mechanism
for this operator [16]. With this method, candidate
solutions with higher fitness have a higher probability
of making the cut while solutions with lower fitness
head for extinction. This operator, hence, needs graph
G as input for calculating the fitness of the popula-
tion.

2) Cross-over combines two “selected” candidate so-
lutions of the current generation to generate two
solutions for the next generation. This operation must
be carefully designed to ensure that the candidate
solutions for the next generation have a high proba-
bility of improving over their parents from the current
generation. We used a uniform cross-over method for
this operation [16]. This implies that two parent solu-
tions are combined to construct two child solutions,
such that the children get approximately half of the
solution (CPSSeq as well as FlowSeqMap) from
each parent. Further, we also used elitist selection
method that allows the fittest solution to walk into
the next generation unaltered.

3) Mutation alters candidate solutions slightly to main-
tain diverse solutions for a wider exploration of the
solution space. Typically, the mutation operator is
applied with a very low probability to avoid ran-
domizing the candidate solutions. While applying this
operation, we mutated randomly selected candidate
solutions by swapping a randomly selected pair of
systems in its CPSSeq.

At the end of the specified iterations, we choose the fittest
solution present in the population (Line 11).

V. EVALUATIONS

Our algorithms route the time-sensitive communication
flows over edge-disjoint paths. The resulting end-to-end delay
is then the sum of propagation delay of the network links and
the processing delay of the network switches over which the
flow is routed. The queuing delay is eliminated as no two flows
contend for access to any network link. The evaluation results
in [12] found the processing delay of a state-of-the-art SDN
switch to be constant (around 3.8µs). Further, the propagation
delay in the corresponding 1 Gbps link was estimated to be
constant (around 5–15ns) depending on its length. Thus, using
edge-disjoint paths for routing results in minimal end-to-end
delays (in the microseconds range) for the time-sensitive flows.

In the following, we also evaluated our algorithms in terms
of the quality of the solution that they generate, i.e., the number
of CPS that they realise, and their runtimes. For this, we
simulated them to calculate the edge-disjoint network paths
for time-sensitive flows of a varying set of CPS over random
network topologies generated using Erdős-Rényi model [17].
We used NetworkX to generate these random topologies for
simulating the evaluation scenarios [18].

The algorithms were primarily evaluated in two phases. In
the first phase, we compared the quality of solution with the
optimal solution for a small topology. Note that due to the

Fig. 3: Small topology for benchmarking. S indicates the
network switches while H indicates the end-hosts.

Algorithms Category Mean Std. Dev Optimal Solu-

tion

Genetic Algorithm
Systems Realised 6.42 0.49 42 times

Flows 9.95 1.81 42 times

Greedy Algorithm
Systems Realised 6.16 0.37 16 times

Flows 8.76 1.61 16 times

TABLE I: Results of 100 execution runs of greedy and genetic
algorithm on the benchmark topology shown in Figure 3.

high complexity of the problem, such a comparison with the
optimum is only possible for smaller scenarios. The goal here
was to gauge if the solutions generated by our algorithms are
close enough to the optimal solutions. In the second phase, we
compared the performance of the algorithms with each other
when executed on larger problem sizes. Here, we evaluated the
runtime of the algorithms along with the quality of solutions
generated in each of the evaluation scenario.

A. Performance Comparison with Optimum for Small Problem
Sizes

To determine if the solutions generated by our algorithms
are close enough to the optimal solution, we created a small
benchmark topology with high path diversity consisting of 5
network switches and 12 hosts, as shown in Figure 3. Further,
we created a set of 20 CPS, each requiring between 1 to 5
time-sensitive flows. By exhaustively searching the solution
space, we determined that the optimal solution for this problem
realises 7 CPS consisting of 12 flows in total.

We executed the greedy and the genetic algorithms on
the benchmark topology with inputs to consider 6 candidate
solutions. We allowed the genetic algorithm to perform 4
iterations to improve the candidate solutions. The results of 100
execution runs of these algorithms are summarised in Table I.
For these executions, the solutions generated by the genetic
and the greedy algorithm could, on an average, realise 6.42
and 6.16 CPS respectively compared to the 7 CPS realisable
using the optimal solution. Moreover, the genetic algorithm
could produce the optimal solution 42 times out of the 100
execution runs.

Thus, for smaller topologies, the solutions generated by our
algorithms are quite close to the optimal ones. Further, they
are able to generate the optimal solutions frequently in case
they are executed multiple times.

B. Comparison of algorithms

In the second phase of evaluations, we compared the
performance of our algorithms with each other. For this, we



(a) Quality of solutions produced (b) Runtime of the algorithms

Fig. 4: Execution results (Average of 100 execution runs) of genetic algorithm and greedy algorithm considering varying number
of candidate solutions.

n
Genetic Algorithm Greedy Algorithm

Systems

Realised

Flows Runtime Systems

Realised

Flow Runtime

30 29.72 54.2 105ms 29.04 52.25 18ms

40 39.36 70.45 138ms 38.87 63.48 24.3ms

50 49.43 91.49 188ms 48.8 90.07 34.2ms

TABLE II: Average results of 100 execution runs of greedy
and genetic algorithm on random topologies generated using
Erdős-Rényi model (p = 0.25 and varying n).

created random graphs using the Erdős-Rényi model, denoted
as G(n, p) [17]. These graphs consist of n nodes with p
denoting the probability that any two nodes are connected by
an edge. We also created a set of target CPS containing 2n sys-
tems, each consisting of between 1 to 3 (uniformly distributed)
time sensitive flows. We executed our algorithms on these
randomly generated graphs and compared their performance
with respect to the quality of the solutions they generated and
their corresponding runtimes.

To ensure that none of these algorithms gain an undue
advantage, we executed both the algorithms with the input to
consider only 6 candidate solutions. The genetic algorithm was
executed to perform 4 iterations.

The Table II summarises the results of 100 execution
runs of the algorithms on random topologies generated using
the Erdős-Rényi model with varying n. These results show
that when both the algorithms consider an equal number
of candidate solutions, the average solution provided by the
genetic algorithm is better than the greedy algorithm although
its runtime is an order of magnitude higher than that of the
greedy algorithm.

Finally, we also executed the algorithms to evaluate if the
genetic algorithm can outperform the greedy algorithm despite
considering a lower number of candidate solutions, thereby
decreasing the penalty in runtime for the genetic algorithm.
For this purpose, we created random topologies, G(n = 12

to 22, p = 0.25), again using the Erdős-Rényi model. Similar
to the preceding evaluation scenario, we created a random set
of target CPS containing 2n systems for each of the corre-
sponding topologies. The results of executing the algorithms
with different number of candidate solutions (average of 100
execution runs) is summarised in Figure 4. For this evaluation,
we executed the greedy algorithm with 6 candidate solutions
while the genetic algorithm was executed with 2, 4, and 6
candidate solutions. An obvious result of this experimentation
was that the quality of solutions generated (Figure 4a) and the
algorithm runtime (Figure 4b) increases with an increase in
number of candidate solutions considered irrespective of the
topology. Figure 4a further shows slight fluctuations in the
quality of the solutions produced by the algorithms on various
topologies. We attribute these fluctuations to the randomness
of generating initial candidate solutions in both of these
algorithms. Despite these fluctuations, we can infer that the
genetic algorithms produce better quality results as compared
to the greedy algorithm despite using far lower number of
candidate solutions for all the topologies that were considered.
For instance, the genetic algorithm considering 4 candidate
solutions provided better solutions than the greedy algorithm
considering 6 candidate solutions.

To summarise, the genetic algorithm can be fine-tuned us-
ing its input parameters like the number of candidate solutions
it considers and the number of iterations it undergoes. The fine-
tuning involves a trade-off between the quality of the solution
it generates and the algorithm runtime.

VI. DISCUSSION

Our control algorithms, which allocate edge-disjoint paths
to the time-sensitive communication flows in manufacturing
systems, perform well only with network topologies with
high path diversity, e.g., in multi-rooted trees. Without high
path diversity, it would be difficult to allocate edge-disjoint
network paths to most time-sensitive flows. One might argue
against allocating network links exclusively to communication



flows. While data-center topologies do assign “non-conflicting
paths” for some of their flows, they do so only for en-
suring that bandwidth constraints on all network links are
respected [19]. However, the QoS levels, in particular the
communication latency and jitter, desired by time-sensitive
flows of manufacturing system are a notch higher than the
soft real-time communication flows in data-centers. Further,
it has been shown that time-sensitive communication flows
are negatively affected when network resources (like switch
buffers, network links etc.) are shared across them [20]. In
principle, allocating edge-disjoint network paths to these time-
sensitive flows ensures that the desired QoS is provided to all
these flows.

On the other hand, the time-sensitive flows constituting
CPS, often, insufficiently load the network links assigned to
it resulting in low network utilisation. We also agree that
the approach of assigning network links exclusively for a
communication flow is not scalable to systems consisting of
thousands of time-sensitive flows. To address these issues, the
time-sensitive flows must use the links in a time-multiplexed
manner, i.e., the flows are assigned time-slots during which
they have exclusive access to all the resources in a network
path, but overall the network links are used by more than one
flow. This will lead to an improvement in network utilisation
and solve the scalability issue as well. The implementation of
such an approach would require additional support not only
from the underlying network but also from the end-hosts, for
instance the ability to modify the queuing strategies in the net-
work switches and accurate clock synchronisation among the
end-hosts [5], [21]. However, we underscore the significance
of the global view of the infrastructure provided through the
logical centralization of software-defined environments which
would simplify the control algorithms for such multiplexed
access to network resources.

VII. CONCLUSION & OUTLOOK

In this paper, we highlighted the importance of flexible
ICT infrastructures for reconfigurable manufacturing system.
To address the need for a flexible ICT infrastructure that pro-
vides desired QoS for manufacturing systems, we proposed an
architecture of a software-defined environment with real-time
properties. In particular, we focused on the networking domain
by combining time-sensitive networking with software-defined
networks. We also introduced a routing problem for time-
sensitive communication flows in the manufacturing system
along with a set of algorithms that efficiently solve this routing
problem exploiting the logical centralization of the software-
defined environments.

In our future work, we will address the issues discussed
in Section VI and further strengthen this cornerstone for a
“software-defined factory”. We will also look into develop-
ing further concepts for the storage and compute domain to
complement our algorithms on time-sensitive software-defined
networking.
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[17] P. Erdős and A. Rényi, “On random graphs I,” Publicationes Mathe-

maticae 6, pp. 290–297, 1959.

[18] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings

of the 7th Python in Science Conference (SciPy2008), (Pasadena, CA
USA), pp. 11–15, Aug. 2008.

[19] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks.,” in
NSDI, 2010.

[20] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues Don’t Matter When You
Can JUMP Them!,” in 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), (Oakland, CA), pp. 1–14,
USENIX Association, May 2015.

[21] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: a centralized zero-queue datacenter network,” in Proceedings

of the 2014 ACM conference on SIGCOMM, pp. 307–318, ACM, 2014.


