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Abstract. By 2020, the Internet of Things will consist of 26 Billion
connected devices. All these devices will be collecting an innumerable
amount of raw observations, for example, GPS positions or communica-
tion patterns. In order to benefit from this enormous amount of infor-
mation, machine learning algorithms are used to derive knowledge from
the gathered observations. This benefit can be increased further, if the
devices are enabled to collaborate by sharing gathered knowledge. In a
massively distributed environment, this is not an easy task, as the knowl-
edge on each device can be very heterogeneous and based on a different
amount of observations in diverse contexts. In this paper, we propose
two strategies to route a query for specific knowledge to a device that
can answer it with high confidence. To that end, we developed a con-
fidence metric that takes the number and variance of the observations
of a device into account. Our routing strategies are based on local rout-
ing tables that can either be learned from previous queries over time or
actively maintained by interchanging knowledge models. We evaluated
both routing strategies on real world and synthetic data. Our evaluations
show that the knowledge retrieved by the presented approaches is up to
96.7% as accurate as the global optimum.

Keywords: Knowledge retrieval, Distributed knowledge, Confidence-
based indexing, Query routing

1 Introduction

In many areas, such as social media or the Internet of Things (IoT) an enormous
amount of data is produced. According to Cisco [7], the IoT alone will generate
over 400 ZB of data annually by 2020. This data will mainly be in the form of
raw observations, ranging from GPS positions to video streams, made by billions
of interconnected devices, such as smart phones or myriads of ubiquitous sensors
integrated in many modern devices. All these observations can be processed to
generate knowledge. For example, by monitoring its GPS position over time, a
smart phone can learn the working place and home of its owner [1]. Starting
from such basic knowledge, more complex inferences about the owners habits

Published in R. Meersman, H. Panetto et al. OTM 2015 Conferences, LNCS ToBeDecided, pp. 1-18, 2015.
c©Springer-Verlag 2015 The original publication is available at
www.springerlink.com: http://www.springerlink.com/content/ToBeDecided



and daily routine are possible. Over time the phone can provide valuable knowl-
edge to the user, for example, the best time to leave home dependent on the
travel time to work. Greater benefit can arise if knowledge is not only generated
and used locally, but also made accessible to others. In order to generate synergy
effects, the devices of all users could form a hive mind. For example, by shar-
ing knowledge about commuting habits, this hive mind can help to coordinate
commuting, reduce traffic jams, save energy, and reduce CO2 emissions [19].

One way of sharing knowledge is collecting at a central location, such as a
cloud or a data center. This recent practice of massive data centralization has
raised huge privacy concerns [16], as centralized data is regularly subject to
breaches [11]. However, today there is nothing like one single central location to
share all knowledge, the opposite is the case. Today every smart phone, every
application and every company, every connected entity is gathering and analyz-
ing as many observations as possible. In general, all these entities are not willing
to share their, possibly private, observations directly [33]. For example users are
uncomfortable sharing their exact GPS trajectories. However, in order to ben-
efit from the knowledge and experience of other entities they might be willing
to share gathered knowledge. This might be their knowledge about traffic at a
specific road segment during the morning rush hour.

For instance, a public transport company could be interested in gathering
knowledge about traveling patterns of its customers, while customers might be
interested in more exact and up to date train timings and delay reports. In order
to harness all these diverse sources of knowledge, we envision a scenario where
many heterogeneous entities can share knowledge they have derived from many
(possibly private) observations. Whenever an entity needs to acquire specific
knowledge, such as knowledge about the traffic at a specific road, it can request
this knowledge from other entities.

To enable such a fully decentralized system, all entities need to have the
ability to search for (i.e., query) and retrieve specific knowledge generated by
other entities. Locating knowledge in a fully decentralized system is a great
challenge as we are facing three core difficulties. First, there exists no central
index of all available knowledge. Second, knowledge is evolving fast, as previous
observations may become outdated over time and new observations, made in
different contexts, arise. Finally, knowledge is very heterogeneous, as each node
learns individually, based on possibly high dimensional observations. Therefore,
the learned knowledge is different, dependent on the number of observations and
the context they are made in. For example, the traveling time between a users
workplace and home might be dependent on weather, public holidays, time of the
day, road works, etc. In consequence, the confidence with that a node can answer
a specific query depends mainly on the context and amount of observations.

In order to tackle these issues, we propose two different routing strategies to
retrieve specific knowledge by forwarding a query to the node that can answer
it with high confidence. At the first glance, this problem looks as if it could be
solved with a traditional peer-to-peer (P2P) approach. Traditional P2P-systems,
however, cannot be applied as they are mainly designed for exact query searches.



In knowledge retrieval, many nodes may be able to answer a query. The con-
fidence in these answers, however, may be completely different as nodes have
gathered completely different knowledge. Furthermore, traditional P2P-systems
assume homogeneous attributes for searching, however, knowledge is usually
learned with respect to many different contexts that even differ between the
devices.

In particular, our contributions are as follows: Based on our query model, we
present two different, fully distributed, strategies to route a query to a node that
can answer it with high confidence. To that end, we developed a confidence metric
that takes the number and variance of observations into account. We evaluate
both routing strategies on a synthetic- and a real-world data-set. In order to
show that our algorithms can deal with heterogeneous, high dimensional data,
we evaluated them in combination with an dimension selection technique to avoid
the curse of dimensionality. Our results show, that the knowledge retrieved by
the presented approaches is up to 96.7% as accurate as the global optimum.

2 System Model and Problem Formulation

We assume a fully distributed system of heterogeneous computing nodes S =
{S1, ..., Sk}. These nodes can join and leave the system at any time and fail
temporarily or permanently. They can range from user owned portable edge
computing devices, such as laptops and desktop computers, to private cloud in-
stances or even third party services located in the nearby fog or big data centers.
All nodes communicate on a peer-to-peer basis and form an acyclic, undirected
topology. Maintaining such a topology, even under dynamic conditions, is a well
studied problem (e.g., [6]) and is, therefore, not discussed in this paper.

Each node Si ∈ S collects raw observations oj (e.g., GPS positions) produced
by arbitrary sensors or mobile devices like smart phones. Machine learning al-
gorithms, such as Markov Models, Conditional Random Fields (CRF), Bayesian
networks, etc., can then be used to derive knowledge from these raw observa-
tions. In this paper, we use N-dimensional spaces to represent the raw observa-
tions oj . This way, observable attributes, like time or position are represented
by dimensions and every observation oj as a point in space (oj ∈ IRN). For in-
stance, in a traffic scenario, a concrete journey would be defined by its start-time,
end-time, start-coordinates, and end-coordinates and represented as a point in
N-dimensional space. Based on this representation, learning approaches, such as
linear regression, multivariate adaptive regression, or time series analysis, can
be applied to derive knowledge, e.g., the travel time between two locations with
respect to the time of the day. In the following, we use the term knowledge model
KMSi to represent the observations collected by a node Si and the correspond-
ing knowledge derived from these observations.

As all nodes make observations individually and, thereby, gather different ob-
servations in their knowledge models KMSi , the nodes have different confidence
in the knowledge they have gathered. For example, a person traveling only in



one part of the city has intuitively higher confidence in estimated travel times
in that part of the city than a person traveling mainly in another part.

To retrieve specific knowledge from the knowledge model, a query is issued.
Such a query can be retrieving the travel time in the context of a journey at a
specific time of the day. In an N-dimensional space (IRN), we define a query −→q
as a tuple:

−→q = (δ, ω, ρ−→q ) (1)

This tuple consists of a context (δ), a request (ω), and required confidence (ρ−→q ).

We define the context as a point in a subspace IRC ( IRN, where N is the total
number of dimensions and C is the number of dimensions in the subspace of the
context.

δ ∈ IRC : C < N. (2)

Similarly, the request is defined as an element in a different subspace IRR (
(IRN \ IRC), where R is the number of dimensions of the requested subspace.

ω ∈ IRR : R ≤ N− C. (3)

In a traffic scenario, for example, the knowledge models could consists of
four dimensions (source, destination, travel time, and time of the day). A query
(δ, ω, ρ−→q ) to retrieve travel time for a specific journey can be structured as
follows: context (δ) = (source, destination, time of the day) and request (ω) =
(travel time) and confidence (ρ−→q ) = 0.8.

Based on the above discussion, we can now define the concrete knowledge
retrieval problem. Given i) a dynamic set of nodes S = {S1, ..., Sk}, ii) continu-
ously evolving and heterogeneous knowledge models KMSi maintained by each
node Si ∈ S and iii) a knowledge retrieval query −→q , our objective is to find the
node Sj ∈ S that can answer the query −→q with confidence ρ > ρ−→q .

In the following, we first introduce the notion of confidence and establish a
metric to determine the confidence of a knowledge model KMSi to answer a
specific query −→q (cf. Sec. 3). Afterwards, we present two algorithms that utilize
the confidence metric to route a query for specific knowledge towards the node
that can reply with the required confidence (cf. Sec. 4). Finally, we thoroughly
evaluate and compare the performance of the proposed routing algorithms on
synthetic and real-world data (cf. Sec. 5).

3 Confidence

In this section, we develop a notion of confidence and introduce a metric that
reflects the confidence with that a query can be answered by a specific knowledge
model KMsi . As observations in a knowledge model are usually neither concen-
trated in a single area of the model, nor distributed equally, it is not desirable
to assign a single confidence value to a whole knowledge model. Instead, we use
clustering to group similar observations and determine the confidence of these
clusters individually.



3.1 Clustering

In order to cluster the observations in a knowledge model, we can use well known
algorithms, such as K-means [5], spectral clustering [28], hierarchical clustering
[12], etc. However, these algorithms need to know the number of clusters (denoted
as K) in advance. Determining the number of clusters, however, is not easy and
is usually based on preknowledge or practical experience. In our case, choosing
the number of clusters K is even more difficult, as different knowledge models
may witness highly heterogeneous observation patterns.

Clearly, the observations in each knowledge model are directly dependent on
real world events. These real world events are usually highly chaotic as they
are based on a vast amount of influence factors (Butterfly Effect). Therefore,
the observations stored in the knowledge models can be treated as independent
random variables. Consequently, the arithmetic mean of these observations fol-
lows a Gaussian distribution according to the central limit theorem [14]. Based
on this we can conclude that the observations in each knowledge model are a
combination of several Gaussian distributed clusters, located in different “areas”
of the model. To determine the actual number of clusters, we use the following
algorithm: We start by assuming a single cluster (K = 1) in a knowledge model
and perform a statistical test for the hypothesis that all observations of the
cluster follow a Gaussian distribution. If this test fails, we increase the assumed
number of clusters by one (K = K+1) and repeat the process. This process ter-
minates, when all observations assigned to each cluster are following a Gaussian
distribution. This approach is similar to the G-Means algorithm [9].

3.2 Cluster-Based Confidence

Now that the clusters are obtained, in the following we present how to deter-
mine the confidence in these clusters. Usually, machine learning algorithms are
performed on a large number of observations. If not enough observations are
available (for example, in the region of a query), machine learning algorithms
can not derive meaningful information. Thus, we base our confidence metric
on the amount and variance of observations in a cluster. The combination of
both parameters is important as they can be misleading if interpreted individu-
ally. The number of observations in a cluster for example does not tell anything
about the cluster’s usability for learning, as the observations can be highly vari-
ant. Consider for instance, a cluster that models the waiting time at a busy
intersection of a road. If the cluster consists of observations scattered over the
whole day, then it might not be qualified to answer a query for the waiting time
at a specific time of the day. On the other hand, low variance alone is also not
adequate, as the variance can be based on a very small number of observations.

ρ(−→q ,−→c c, Σc, Nc) = Nc · fN (−→q ,−→c c, Σc) (4)

This duality is reflected in our confidence metric ρ (Eq. 4) that consists of
a N -dimensional Gaussian distribution function fN , multiplied by the number



of points (Nc) in a cluster c. The Gaussian distribution function fN is charac-
terized by the mean value −→c c (also termed as centroid) and variance Σc of the
cluster c. This way, the confidence value behaves according to the distribution
of observations and is proportional to the total number of observations in a clus-
ter. We used a Gaussian distribution function in Eq. 4 for two reasons. First, as
stated in Sec. 3.1 the observations in each cluster are following this distribution.
Second, it enables the confidence in a cluster to degrade exponentially, such that
queries −→q close to the centroid −→c of a cluster have high confidence, while with a
continuously growing distance to the centroid, the confidence gets exponentially
worse. As our knowledge models are N-dimensional spaces, clusters can have
different variance in each dimension. Moreover, clusters can be clinched or ro-
tated in different dimensions. Thus we use a multivariate Gaussian distribution
function (cf. Eq. 5) that uses a covariance matrix Σc to take the variance in the
different dimensions into account. Figure 1(a) shows the confidence for a cluster
in a two dimensional knowledge model. The confidence of a cluster to answer a
certain query is then the confidence value ρ of a cluster c at the point of a query
−→q , i.e. ρ−→q = ρ(−→q ,−→c c, Σc, Nc).

fN (−→q ,−→c c, Σc) =
1

(2π)0.5N |Σc|0.5
exp−0.5(

−→x−−→c c)TΣc−1(−→q −−→c c) (5)

3.3 Discussion

The above presented confidence metric can be used to compare the confidence
of two knowledge models, however, the value of confidence is unbounded. This
makes it difficult to determine when a knowledge model has “good enough”
knowledge or is saturated (as each cluster in a knowledge model can have ar-
bitrarily large number of observations). To solve this problem, we propose to
artificially bound the confidence ρB as shown in Eq. 6.

ρB(−→q ,−→c ,Σ,Nc) = min(1, Nc · f(−→q ,−→c ,Σ)) (6)

The behavior of this bounded confidence function (ρB) is shown in Fig. 1(b).
The figure shows the confidence with that a cluster can answer a query with
respect to the distance between a query and the cluster center. According to
Eq. 6 we assume a saturation when the confidence value exceeds 1. On the
left side of Fig. 1(b), clusters with the same variance and different number of
observations are compared. On the right side, clusters with the same number of
observations and different variance are compared. This shows, how the saturation
of a cluster is dependent on the variance and number of observations. In essence,
clusters with low variance need less observations to saturate then clusters with
high variance.

Another approach would be to employ domain specific knowledge to define
when a cluster is saturated or has “good enough knowledge”. For instance, by
introducing a threshold that specifies the minimal distance between two ob-
servations in a cluster. If all the observations of a cluster obey the threshold
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Fig. 1. Confidence dependent on distance to cluster-center, variance, and number of
observations. Multivariate Gaussian distance function for all queries.

criteria, the cluster is assumed to have maximal confidence. Mathematically this
threshold can be defined as the mean distance between observations in a cluster.

4 Routing

Now that the confidence metric is defined, we describe the routing of queries
towards the nodes that can reply with the desired confidence. In particular, each
node Si maintains a routing model RMSi

Sn
for each direct neighbor Sn ∈ S \ Si.

A routing model RMSi
Sn

is an N-dimensional space (similar to the knowledge
model) and summarizes the knowledge that is reachable (by forwarding the
query) through the respective neighbor Sn.

On receiving a query −→q (cf. Sec. 2) a node Si decides whether to answer
−→q based on its local knowledge model KMSi or to forward −→q to one of its
neighbor Sn ∈ S \Si. In more detail, a node Si uses its knowledge model KMSi

to calculate the confidence ρ at the point of the query −→q and reply −→q locally if
ρ > ρ−→q . Otherwise, Si uses the routing model RMSi

Sn
maintained for each of its

neighbor Sn to calculate the estimated confidence with which −→q can be answered
if forwarded to that respective neighbor Sn. The query −→q is finally routed to
the neighbor with the highest estimated confidence. In the following, we present
two different strategies to maintain the routing models and route queries.

4.1 Knowledge Aggregation Based Routing

With Knowledge Aggregation Based Routing (KAR) the routing models RMSi
Sn

that a node Si maintains for each neighbor Sn are managed in a proactive fashion.
In general, a routing model contains the summary of the knowledge reachable
through a neighbor. This is done by enabling routing models to store the (subset
of) N-dimensional observations that are reachable through the respective neigh-
bors. The observations stored in a routing model are clustered similar to that of
knowledge model and, thus, the calculation of confidence is alike.



To maintain routing models, each node Sn sends a compact representation of
the clusters in its knowledge model KMSn to all of its neighbors. This compact
representation includes the number of observations Nc, the centroid −→c c, and
the covariance matrix Σc of each cluster c in the knowledge model. Moreover,
the node Sn also sends to each neighbor Si the compact representation of the
observations stored in the RM of its other neighbors. This is required to ensure
that the routing model not only contains the summary of the knowledge available
in the knowledge model of the direct neighbor but also the knowledge reachable
by routing the query through that neighbor.

On receiving the compact cluster representation from Sn, the node Si can
regenerate clusters along with all the observations in its routing model RMSi

Sn
,

representing the knowledge available through Sn. A complete regeneration is
not very scalable for clusters containing a large number of observations, there-
fore, we introduce a regeneration factor δ ∈ (0, 1] that controls the fraction of
observations that are regenerated (Nc · δ).

To regenerate the clusters described by the received compact cluster repre-
sentation (Nc,

−→c c, Σc), we use an approach described in [10]. This approach
consists of three steps, shown in Fig. 2. First, we generate the desired number
of observations (Nc · δ) following a multivariate Gaussian distribution. Second,
we skew and rotate the resulting point-cloud (the new cluster) according to the
provided covariance matrix Σc. In the final step, we translate each point of the
new cluster by the given centroid −→c c.
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Fig. 2. Transforming a normal distributed cluster into a cluster rotated and skewed
according to given compact cluster information.

Fig. 3 shows the KAR strategy for a network consisting of four nodes (S1,
S2, S3, S4). To reduce complexity only relevant routing and knowledge models
are shown. Initially, all routing models of node S1 (i.e., RMS1

S2
and RMS1

S4
) are

empty, as shown in Fig. 3(a). Afterwards, S2 and S4 generate the compact cluster
representation for their knowledge and routing models (cf. Fig. 3(b)) and send
these representations to S1 (cf. Fig. 3(c)). From the received compact represen-
tations S1 regenerates its routing model for S2 and S3 (i.e., RMS1

S2
and RMS1

S4

respectively), as depicted in Fig. 3(d).
As the knowledge models are subject to continuous change, each node is

responsible for keeping the routing models, maintained at other nodes, up to
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Fig. 3. Propagating the knowledge and generating the routing models.

date. If a node detects a significant change of knowledge in its own models, it
generates new compact cluster representation and forwards it to its neighbors.

Routing a Query Routing of a query works as described in the beginning of
this section. To determine the confidence in both models (i.e., KM and RM),
we use the confidence metric described in Sec. 3.

4.2 Query Learning Based Routing

In a large-scale system, the routing models of the previously introduced KAR
strategy require frequent updates. This is due to the continuously evolving knowl-
edge models, as well as the unpredictable churn caused by joining and leaving
nodes at arbitrary times. To reduce the overhead of managing the routing mod-
els, we designed a query learning based routing strategy (QLR) that continuously
learns the routing models of a node, based on previously routed queries. This
means, whenever a query was answered successfully, a feedback is send back-
wards on the routing path to the source of the query. This feedback consists of
the query −→q and the confidence ρ−→q with that it was answered. Whenever a node
Si receives such a feedback from a neighbor Sn, it adds the query-confidence pair
(−→q , ρ−→q ) to its respective routing model RMSi

Sn
(cf. Fig. 4(a)).

Routing a Query With QLR, routing works exactly as described in the be-
ginning of this section. However, as we are storing query-confidence pairs in the
routing models, instead of observations, we have to estimate the confidence for
an incoming −→q in (i.e., the confidence with that the incoming query −→q in can
be answered or forwarded) a bit different. This is done in three steps: First,
the query-confidence pairs in each routing model RMSi

Sn
are clustered with the

weighted K-means clustering algorithm [5], where the queries represent points
that are clustered and their respective confidence value is used as a weight (cf.
Fig. 4). In consequence, the centroid of each cluster is not in the middle of the
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cluster, but rather drawn towards the query-confidence pairs that have high con-
fidence values (cf. Fig. 4(b)). We named such a centroid weighted centroid, −→c w.
Second, we calculate the euclidean distance d between the incoming query −→q in
(for which the confidence has to be estimated) and the weighted centroid −→c w
(i.e., d = −→q in−−→c w). Third, we estimate the confidence of incoming query ρ−→q in
by weighing this distance d according to the distribution of confidence values in
the query-confidence pairs of the cluster, represented by the distribution function
fc(d) (i.e., ρ−→q in = f(d)).

To determine this distribution function fc(d), we start with the generic form
of a Gaussian function (cf. Eq. 7), dependent on the parameters a1 and a2.

fc(x) = a1exp(
−x2

2a22
) (7)

To calculate these parameters we need two additional equations that specify
our requirements for the distribution function fc. The first requirement states
that if the distance between the weighted centroid −→c w and the query −→q in is
zero, the confidence should be equivalent to the confidence value of the weighted
centroid µconf (Eq. 8).

fc(0) = µconf (8)

The second requirement states that the confidence of a cluster should decrease
with increasing distance between incoming query −→q in and −→c w, proportional to
the standard deviation of the confidence values σconf in the query-confidence
pairs, i.e., for high standard deviation in the confidence values of the query-
confidence pairs in the cluster, fc should decrease slower than for low standard
deviation. This is expressed by Eq. 9, where σc is the standard deviation of the
cluster, µconf the confidence value of the weighted centroid −→c w and σconf the
standard deviation of the confidence values of the query confidence pairs.

fc(σc) = |µconf − σconf | (9)

Based on above two requirements we can now determine a1 and a2 and get
the following distribution function.



fc(d) = µconf (
µconf − σconf

µconf
)
d2

σ2c (10)

Discussion As described above, QLR uses past queries to keep routing models
up-to-date. However, sometimes, it might be necessary to proactively explore the
knowledge reachable through different neighboring nodes. This is, for example,
necessary to bootstrap the system or when not enough queries are routed through
a node. In this case, a node issues exploration queries. This can be done randomly
or interest-based, i.e., a node can either try to learn about an area of interest
or just a randomly selected area. An exploration query is a regular query with
additional selectivity and hop count parameters, that control the magnitude of
exploration. The selectivity parameter controls the number of neighbors to which
a query is sent. The hop count parameter controls the depth of exploration and
is decreased on reception by every node.

Furthermore, in dynamic environments, the query-confidence pairs stored in
the routing models may become stale and should be removed. We use a de-
cay based approach, where the confidence values of the query-confidence pairs
(−→q , ρ−→q ) stored in the routing models decay according to a specified decay factor
α over time ρnew = ρ · α. When the confidence value has become lower than a
certain threshold, the query-confidence pair is removed from the routing model.

5 Evaluation

In this section, we evaluated the knowledge retrieval strategies (KAR and QLR),
presented in Sec. 4, w.r.t. network size, message overhead and retrieval quality.
We also evaluated the influence of protocol specific parameters such as hop count
and selectivity for QLR and the regeneration factor δ for KAR. Furthermore,
we show that our routing strategies can work, even when a large number of
dimensions in the knowledge models contain noise. To evaluate the performance
in the presence of noise, we used a dimension selection algorithm in combination
with QLR.

We implemented our retrieval strategies on top of the network simulator
PeerSim [18] and performed our evaluations on a compute cluster, consisting of
24 Intel R©Xeon R©, 3.00GHz CPUs, with a total of 377.8GB of RAM. We mea-
sured the retrieval quality θ as retrieved confidence divided by global maximum
confidence (θ = ρret

ρmax
).

We performed our evaluations on synthetic and real world data. To produce
synthetic data we randomly generated clusters in the knowledge models of each
node in a way, that neighboring nodes contained similar observations. Such a
localization is realistic in many scenarios, for example, when neighboring devices
collect similar observations, or can be created by an overlay network. We plan
to cover the creation of such an overlay network in future work. To evaluate our
approach on real world data, we used the GeoLife data set [32, 30, 31]. This data
set represents mobility data and contains 17,621 GPS trajectories gathered by
178 people, mainly around Bejing.



5.1 Knowledge Aggregation Routing (KAR)

In the following, we evaluated the Knowledge Aggregation Routing (KAR) strat-
egy presented in Sec. 4.1. In Fig. 5, we measured the retrieval quality (θ) for
different network sizes, real world, and synthetic data. We compared our results
to a random routing strategy, also using the real world data set, because this
strategy can be seen as a lower bound for routing performance. During this ex-
periment we used a regeneration factor of 1 (δ = 1) (cf. Sec. 4.1). The reason
for the reduced retrieval quality of the real world data is due to massively over-
lapping and highly similar knowledge in the knowledge models. This leads to
suboptimal routing decisions, because a node cannot clearly distinguish the best
neighbor to forward the query. However, as we can see, the retrieved quality is
still significantly better than the random approach.

Fig. 5. Retrieval quality of KAR for different network sizes.

In Fig. 6 (left) we evaluated the retrieval quality for different regeneration
factors δ (cf. Sec. 4.1). Overall, the routing quality decreases only slightly with
the regeneration factor, as long as all clusters have a certain minimal size which
is the case for the synthetic data and the synthetic data with GeoLife sized
clusters, where we used the average cluster size of the GeoLife data set. However,
the GeoLife data set also contains many clusters with very few observations. If
the number of observations in these small clusters is further reduced the retrieval
quality becomes worse.

To get an indicator, if the real world data provided by the GeoLife data set
can be modeled as a multivariate Gaussian distribution, we performed the Kol-
mogorov Smirnov goodness-of-fit test. The subject of this test is the hypothesis,
that we can represent a real world cluster by its respective multivariate Gaussian
distribution. In statistical testing, the so called p-value is calculated to indicate
if the hypothesis under test needs to be rejected. A large p-value provides evi-



Fig. 6. Left: Routing quality for different regeneration factors (δ). Right: The p-values
for clusters of different dimensionality.

dence that the hypothesis is true. We tested 14000 real world clusters, obtained
from the GeoLife data set and plotted the mean of the p-value for up to four
dimensional clusters in Fig. 6 (right). With a p-value significantly above the
usual threshold of 0.05, we can conclude that it is reasonable to use multivariate
Gaussian distributions to represent real world clusters.

5.2 Query Learning based Routing (QLR)

Similar to the evaluations for KAR, we determined the retrieval quality of QLR
for different network sizes, real and synthetic data. As we can see in Fig. 7, the
retrieval quality of QLR on synthetic data is not as high as with KLR. The reason
is that in KAR every node regenerates clusters similar to the “original” clusters
of its neighbors in its routing models. This leads to a precise representation of
the clusters in the routing models. However, the advantage of QLR lies in its
higher retrieval quality for real world data. Because QLR is building its routing
models based on the success of previous queries, it can better reflect the real
world distribution of observations in the knowledge models of its neighbors.

In QLR, each node has to gather a number of queries in its routing model,
before reasonable routing performance can be reached. This learning phase is
clearly visible in Fig. 8, where we compared the bootstrapping of QLR with
KAR. We can see, that the retrieval quality for QLR is gradually increasing with
an increasing amount of queries, while the retrieval quality of KAR immediately
jumps from low to high after all routing models have been successfully generated.

We use exploration queries in QLR to probe the knowledge available in the
network and keep routing models up-to-date. In our system, two parameters
(selectivity and hop count) controls the spread of these exploration queries. In
Fig. 9, we evaluated the influence of these parameters on the retrieval quality and
message overhead. We measure the exploration query overhead as the number
of exploration queries per “retrieval” query. Comparing message overhead and
retrieval quality, we can see that it is not necessary to choose high values for
selectivity and hop count. Instead, it seems adequate if each node explores its
closer neighborhood. For instance, setting selectivity and hop count to two results
in high retrieval quality and low message overhead.



Fig. 7. Retrieval quality for different network sizes.
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Fig. 9. Impact of hop-count and selectivity on message overhead and retrieval quality.



As already mentioned in Sec. 1, the knowledge of the different nodes can
be heterogeneous and high dimensional, which may result in sub optimal rout-
ing. In order to deal with this challenge, literature proposes various dimension
selection approaches [29, 15]. We extended QLR to select the most important
dimensions for query routing using a simple variance based dimension selection
approach. In a nutshell, our approach determines the important dimensions of
a routing model based on the variance of the observations in each dimension.
If the observations in one dimension exceed a certain variance threshold, the
dimension is marked as not important. To evaluate this, we started with four
dimensional observations and added up to 20 highly variant (noisy) dimensions.
Fig. 10 compares the retrieval quality of QLR with dimension selection to QLR
without dimension selection. The figure clearly shows, that QLR with dimen-
sion selection can perform almost without loss of retrieval quality, even in the
presence of 20 highly variant dimensions.
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6 Related Work

Retrieving information from a distributed system is a well-studied research prob-
lem [20, 25, 21, 13, 22, 24, 28, 27]. In this section, we review the related work in a
chronological order.

An early bulk of work is centered around the question of how to find and
retrieve specific data items or files in a distributed P2P system, given by exact
keys, such as hash values. Examples of such systems are Chord [25], CAN [20] and
Pastry [21]. While Chord allows only one dimensional keys for the distributed
search, routing in CAN is performed based on a multidimensional, euclidean key



space. These systems are, however, only suitable for the retrieval of items that
can be identified by an unique index.

The second wave of data retrieval systems identified the need for more com-
plex queries, such as multidimensional range queries (e.g. retrieve all people with
age ≥ 18 and income ≥ 50k). Examples include Mercury [3], Squid [23] and
Znet [24]. These systems enable clients to retrieve data within a specified range
of values of certain attributes. The attribute space has to be partitioned and
mapped to the participating peers. Data locality in the multidimensional space
can be achieved with dimensionality reduction techniques such as space-filling
curves (e.g. [8]). However, range-queries are often too restricted, for instance,
if there is sparse or no data in the specified range. For example, a person with
income = 49, 99k might be interesting for the query issuer, too.

To fill this gap, another branch of research enabled semantic and similarity
search in a P2P-environment [22]. Two examples are pSearch [26] and Semantic
Small World [13]. Both provide routing mechanisms to find similar data items
to a certain multidimensional query. In Semantic Small World, a node maintains
links to nodes with similar data items and some long range contacts to distant
nodes. This enables efficient routing of arbitrary multidimensional queries to
retrieve semantically related data items.

Other approaches [17] [4] [2] provide nearest neighbor search, i.e., finding
the k closest data items in a large collection of high dimensional data, where
a predefined similarity measure, such as euclidean distance defines closeness of
data items. These systems aim to find peers with data that is similar to the
query, while ignoring the quality and confidence of retrieved information. To the
best of our knowledge, there is no approach in the literature enabling scalable,
quality-oriented knowledge retrieval in a distributed environment.

7 Conclusion

Today, many devices, such as smart phones, gather an enormous amount of ob-
servations. Machine learning algorithms can be used to derive knowledge from
these observations. In order to benefit from this enormous amount of distributed
knowledge, we need methods to search and retrieve specific knowledge. To ac-
complish this, we first developed a metric to determine the confidence in the
local knowledge of each device. This confidence metric takes the number and
variance of observations made by each device into account. Based on this confi-
dence metric, we proposed two methods to route a query for specific knowledge
to a device that can answer it with high confidence. To that end, each device
maintains routing models that can either be learned from previous queries or
maintained actively by exchanging knowledge models. Our evaluations show,
that the knowledge retrieved by our approaches is up to 96.7% as accurate as
the global optimum.
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