Efficient Compositing Strategies for Automotive
HMI Systems

Simon Gansel*, Stephan Schnitzer!, Riccardo Cecolin*,
Frank Diirr’, Kurt Rothermel’ and Christian Maihofer*
*System Architecture and Platforms Department, Mercedes-Benz Cars Division, Daimler AG, Germany
Email: firstname.lastname <at> daimler.com
TInstitute of Parallel and Distributed Systems, University of Stuttgart, Germany
Email: lastname <at> ipvs.uni-stuttgart.de

Abstract—The relevance of graphical functions in vehicular
applications has increased significantly during the last years.
Modern cars are equipped with multiple displays used by
different applications such as speedometer, navigation system,
or media players. The rendered output of the applications is
stored in so-called off-screen buffers and then bitblitted to the
screen buffer at the respective window sizes and positions. To
guarantee the visibility of the potentially overlapping windows,
the compositing has to match the z-order of the windows. To
this end, two common compositing strategies 7Tile compositing
and Full compositing are used, each having performance issues
depending on how windows overlap. Since automotive embedded
platforms are restricted in power consumption, installation space,
and hardware cost, their performance is limited which effectuates
the need for highly efficient bitblitting. In order to increase the
performance in compositing the windows, we propose Hybrid
Compositing which predicts the required bitblitting time and
chooses the most efficient strategy for each pair of overlapping
windows. Using various scenarios we show that our approach is
faster than the other strategies. In addition, we propose Cache-
Hybrid Compositing which reduces the CPU execution time of our
approach by up to 66 %. In case of an automotive scenario we
show that our optimized approach saves up to 51% bitblitting
time compared to existing approaches.

I. INTRODUCTION

Innovations in cars are mainly driven by electronics and
software today [1]. In particular, graphical functions and appli-
cations enjoy growing popularity as shown by the increasing
number of displays integrated into cars. For instance, the
head unit (HU)—the main electronic control unit (ECU) of
the infotainment system—uses the center console screen to
display the navigation system, or displays integrated into the
headrests of the front seats together with the center console
screen to display multimedia content. Displays connected to
the instrument cluster (IC) replace analog indicators displaying
speed information or warnings. Additionally, head-up displays
are used for displaying navigation instructions or assistance
messages on the windshield.

As demonstrated by advanced use cases already imple-
mented in concept cars [2], there is a trend to share the
different available displays flexibly by displaying content from
different applications on dynamically defined display areas.
For instance, while parking, applications can output informa-
tion on any display, including, in particular, the IC display.
For example, this allows for playing full-screen videos on the
IC display while the car is not moving. Moreover, window

sizes and positions can change dynamically, e.g., to reduce
the size of the speedometer in favor of a larger display area
of the navigation software. To support these use cases, a
suitable graphical window system is required which allows
for efficient compositing of windows whose parameters change
during runtime.

The applications typically render their content into off-
screen buffers. The graphical system (e.g., X11) then copies
the content of the off-screen buffers into the screen buffer,
which updates the screen. This specific copy operation is called
bitblitting and typically performed by dedicated 2D hardware
components. Automotive embedded platforms are restricted
in power consumption, installation space, and hardware cost.
Thus, the available performance is limited which effectuates
the need for highly efficient bitblitting. The bitblitting time
depends on the number of bitblit operations and the respective
areas’ sizes. Bitblitting the content of an off-screen buffer
into the screen buffer requires GPU processing which com-
mon graphical window systems apply by using either a Full
Compositing strategy or a Tile Compositing strategy. Full
Compositing means that the whole content of each window
will be bitblitted in z-order into the screen buffer which causes
the system to overwrite overlapped parts of windows multi-
ple times. In contrast, Tile Compositing cuts the overlapped
windows according to their visibility in so-called tiles and
bitblits only the visible tiles of overlapped windows. Thus, Full
Compositing minimizes the number of bitblitting operations
at the cost of a higher amount of copied data, whereas Tile
Compositing minimizes the total amount of copied data at the
cost of more bitblitting operations. In general, neither of these
approaches is optimal, since both, the amount of copied data,
and the number of bitblitting operations, affects the bitblitting
time.

To choose an efficient strategy, we created a model that
accurately predicts the execution time of bitblitting commands
for a given hardware platform. Using this prediction model we
propose Hybrid Compositing, which chooses an efficient se-
quence of bitblitting commands between the two extremes Full
Compositing and Tile Compositing. Although our approach
reduces the bitblitting time, the CPU overhead to determine
the sequence of bitblitting commands increases. To compen-
sate this, we additionally propose Cache-Hybrid Compositing
which caches already determined optimized combinations of
windows and tiles. We implemented and evaluated the different
compositing strategies using random and automotive scenarios

Published in 9th IEEE International Symposium on Industrial Embedded Systems (SIES), 2015, pp.1-10, 18-20 June 2015

© IEEE 2015
http://dx.doi.org/10.1109/SIES.2015.7185036

Administrator
Textfeld
Published in 9th IEEE International Symposium on Industrial Embedded Systems (SIES), 2015, pp.1-10, 18-20 June 2015
© IEEE 2015
http://dx.doi.org/10.1109/SIES.2015.7185036

and show that our concepts outperform existing approaches.

Our contributions in this paper are (1) a prediction model
for the bitblitting time of command sequences, (2) a hybrid
compositing approach, (3) optimized hybrid compositing using
caching, and (4) evaluation results for different scenarios.

The rest of this paper is structured as follows. In Sec. II
we present our system model. In Sec. III we describe the Full
and Tile Compositing approaches and explain our concept in
Sec. IV. We explain our implementation and evaluation results
in Sec. V. In Sec. VI we discuss related work and conclude
with a summary in Sec. VIL

II. SYSTEM MODEL

In Fig. 1 we depict the system model of a graphical system as
used in modern HMI systems.

\ Applications |

Window Manager
Compositing
Hardware acceleration (2D/3D GPU)

| Displays |

2D/3D Graphics
libraries

Figure 1. System Model

Applications An application is a process which uses graphics
libraries to render 2D or 3D content. Before the graphical
content of an application can be displayed on a screen, it needs
to interact with a Window Manager to create a window.

2D/3D graphics libraries Each window is mapped to a
dedicated framebuffer, i.e., an off-screen buffer used as render
target. The graphics libraries provide 2D and 3D APIs to render
content into framebuffers. Each time a frame is rendered into
a framebuffer the compositing is informed.

Window Manager The Window Manager provides an API for
applications to create, delete, or modify windows. A window
is a rectangular area which is unambiguously identified by its
location on screen given by X, y, and z coordinates and its size
given as width and height. Additionally, each window has a
unique ID to identify the window.

Compositing API By using the compositing API the Window
Manager triggers the requests insert, remove, and modify
to inform the compositor about window changes. The request
mark is issued by the graphics libraries to notify about a
framebuffer update. The request compose triggers the update
of the screen buffers with the content of all updated windows
which were marked by the graphics libraries. Next, we describe
the five requests in more detail.

Insert a window: The Window Manager calls the request
insert(WindowId wid, Rect r) to add a rectangle r
which represents a newly created window with WindowlId
wid to the set of rectangles in the compositor. The
rectangle r can overlap existing rectangles but can also
be overlapped by them and therefore has to be inserted
by the compositor in correct order, i.e., in z-order.

Remove a window: Removing a window also requires a re-
quest remove(WindowId wid) sent by the Window
Manager using the window id wid of the deleted window.

Modify a window: Each time a window is modified in size
or position the Window Manager sends the request
modi fy(WindowId wid, Rect r) to the compositor con-
taining the window id wid and the new rectangle 7.

Mark a window: Using the request mark(WindowId wid)
the graphics libraries notify the compositor about an
update of a window which requires an update of the
associated screen buffer.

Compose: The request compose() triggers the compositor to
update the screen buffers with the graphical content of
the marked windows.

Compositing The Compositing layer is responsible for bit-
blitting the framebuffer contents of the applications into the
mapped window locations of the target screen buffer by using
GPU hardware acceleration. Compositing consists of two
steps, namely, the CPU execution of the compositing algorithm
that determines the required bitblitting commands, and the
execution of the bitblitting commands on the GPU. Thus,
the compositing time tm, consists of the CPU execution
time tcpy and the bitblitting time ¢pp. Formally, we define
tBB = Ccommit + ZbeFB (C + tbitblit(fb))v where ccommit
is the constant overhead of flushing a command batch, ¢ the
overhead for each operation inside a batch, and ¢p;sp1i:(fb) the
execution time depending on the dimensions of fb. The target
of this work is to minimize tcomp = tcpu + tBB.

GPU hardware acceleration Hardware accelerated GPUs are
used to render the 2D/3D content into the framebuffers on
behalf of the applications by using the graphics libraries. In
addition, GPUs can efficiently bitblit the framebuffer contents
into the screen buffers and display the screen buffers on
screen triggered by the compositing layer. A bitblit operation
can either be used to fully bitblit a framebuffer or only a
rectangular part of it into the screen buffer. Thus, the bitblit
operation directly operates on the memory of the GPU.

III. BACKGROUND

The two strategies Full Compositing and Tile Compositing both
are commonly used in graphical window systems. Since we
compare our approaches with these two strategies we describe
them in more detail in the following.

1) Full Compositing: The simplest way to update a screen
buffer is to bitblit the framebuffer fully beginning with the
lowermost up to the topmost window, which is why this is also
called the painter’s algorithm [3]. The algorithm is depicted in
List. 1.

function compose_full (w_list, marks)
win = w_list.bottom
while (win)
if (marks[win.id])
bitblit(win.x, win.y, win.w, win.h, win.fb)
mark_dependencies (win.id, marks)
end if
win = win.next
end while
10 end function

NelNeLIEN e Y R O N S

Listing 1. Full compositing algorithm

The function compose_full gets as input a list (w_list) of
the windows and an array that contains all marked windows.
The algorithm starts with the lowermost window (line 2) and
iterates through the list of windows (line 3). If a window
is marked (line 4) then the algorithm bitblits (line 5) the
according framebuffer for the given window location and size.
Then, all overlapping windows are also marked (line 6) and the
algorithm continues with the next window. While the number
of bitblit operations is minimal, areas that are written more
than once can significantly decrease performance.

2) Tile Compositing: Bitblitting only the visible parts of
a window requires the tiling of the window in its visible
rectangles, called tiles. Each rectangle which is overlapped
by another rectangle is split into tiles which represent the
visible rectangular areas of the rectangle. The Tile Compositing
strategy divides overlapped windows into multiples tiles where
the set of all its tiles represents exactly all parts of the window
which are not overlapped. The Tile Compositing algorithm is
depicted in List. 2.

1 function compose_tile (w_list, marks)
2 win = w_list.bottom

3 while (win)

4 if (marks[win.id])

5 bitblit_tile (win. tiles , win.fb)
6 end if

7 win = win.next

8 end while

9 end function

10

11 function bitblit_tile (tiles , fb)

12 for (each t in tiles)

13 if (t.visible)

14 bitblit(t.x, t,y, t.w, t.h, fb)
15 else

16 bitblit_tile (t.tiles, fb)

17 end if

18 end for
19 end function

Listing 2. Tile compositing algorithm

The function compose_tile also gets a list w_list which
contains the windows with the respective tiles and the array
marks which contains the marked windows. Beginning from
the lowermost window the algorithm checks for each window
if it is marked (line 4) and calls the function bitblit_tile (line
5) with the tiles of the window and the according framebuffer.
The function bitblit_tile (line 11) checks for each tile if it
is visible or if the tile is also covered by other windows.
If the tile is visible then it is bitblitted (line 14) else the
function is recursively called with the visible tiles of the tile.
In Fig. 2 we depict an example to compare Full and Tile
Compositing for a simple setup where Rectangle B partially
overlaps Rectangle A.

Rectangle B Rectangle B
Rectangle A
Full compositing Tile compositing

Figure 2. Overlapping windows and resulting tiles

The Full Compositing strategy first bitblitts Rectangle A, then
Rectangle B into the screen buffer (cf., left side of Fig. 2).
This implies that a part of Rectangle A is overdrawn by
Rectangle B. In contrast, the Tile Compositing strategy splits
up Rectangle A into the two tiles Tile 1 and Tile 2 by using a
horizontal line (cf., right side of Fig. 2). The combined area of
Tile 1 and Tile 2 represents those areas of Rectangle A which
are not hidden behind Rectangle B.

If larger amounts of window areas overlap, the bitblitting
time of Full Compositing significantly suffers from unneces-
sary copying. On the other hand, for Tile Compositing we ob-
serve that adding a window which overlaps other windows can
create at most four additional tiles, where Full Compositing
would create only one. Hence, the Tile Compositing strategy
can result in the scale of up to 400 % of the number of bit-
blitting operations compared to the Full Compositing strategy.
Since each bitblitting operation increases the bitblitting time by
a constant, a higher number of rectangles can also be inefficient
and wastes bitblitting time. For instance, the bitblitting of a
rectangle of size 1000 x 1000 pixels requires less bitblitting
time than the bitblitting of two rectangles of size 1000 x 500
pixels. From this insight, it follows that—depending on the
window positions and sizes—neither Full Compositing nor Tile
Compositing are optimal.

IV. CoOMPOSITING CONCEPTS

In this section we describe the concepts of our bitblitting
strategy. We first briefly explain our compositing strategy,
followed by our compositing architecture and a description
of the relevant components. Then, we present the API used by
the applications to manage their windows. Finally, we describe
the algorithms for our Hybrid Compositing strategy and the
Cache-Hybrid Compositing strategy.

A. Overview

The existing strategies Full Compositing and Tile Com-
positing provide advantages and disadvantages in efficiently
bitblitting windows. The Full Compositing strategy requires
only a minimal number of bitblit operations to update the
windows but bitblits overlapping window areas multiple times
which can increase the bitblitting time significantly depending
on the size of the overlapping window areas. In contrast, the
Tile Compositing strategy bitblits only the minimal visible
window area but requires up to about 300 % more bitblitting
operations to bitblit the visible tiles. This causes overhead and
also increases the bitblitting time significantly depending on
how windows overlap. For many scenarios, neither Full nor
Tile Compositing is optimal, since the bitblitting time increases
with both, the number of bitblit operations, and the amount of
pixels that are bitblitted.

We propose the Hybrid Compositing strategy which
searches for a combination of bitblitted rectangles that re-
duces the bitblitting time. To choose such a combination,
the execution time of a bitblit command must be accurately
estimated in advance. We created a prediction model that
estimates the bitblitting time depending on the windows sizes’
and the number of bitblit operations. This prediction model is
calibrated for the target hardware platform.

For our Hybrid Compositing we use an efficient data
structure which stores the relevant information necessary for
our Hybrid Compositing strategy and optimizes the bitblitting
time for screen buffer updates. Since the CPU execution
time, needed to search for a good combination of bitblitted
rectangles, is significantly higher than the CPU execution time
of Full and Tile Compositing, we additionally propose Cache-
Hybrid Compositing. This further optimized hybrid strategy
saves already calculated knowledge about good combinations
of rectangles in a cache, thus providing a speedup for future
decisions.

B. Compositing architecture

For framebuffer compositing we propose the architecture
depicted in Fig. 3. Next, we present the main architecture
components of Fig. 3 and their interaction.

\ Application ...
lZD/:s’D commands lcreateWindow
Graphics lib WM API
2D/3D Driver |Compositor API Window Manager
mark(id) Compositor API

00")\e

Swap front N

and back

insert(id, x,y,h,w,z)

,,l Compositing Layer

Compositing .
Graph Algorithm Predictor
B Bitblitting Functions
Front

Off-screen buffers Screen buffer

Display

Figure 3. Compositing architecture

1) Applications: As presented in Sec.Il, applications use
graphics libraries like OpenGL to render into their frame-
buffers. Each time an application has completed the rendering
of a frame it eventually calls a swap command (e.g., eglSwap-
Buffers) which makes the new content available in the front
buffer from where it is eventually bitblitted to the screen buffer.
Additionally, the swap command marks the window at the
compositing layer to notify about the required refresh on the
screen buffer and additionally blocks the application until the
screen buffer has been updated.

2) Window Manager: In order to create a window, an ap-
plication initially calls createWindow on the Window Manager.
The Window Manager registers with the request insert the
window at the compositing layer and allocates the respective
framebuffers. Deleting a window can be performed by the
request delete.

3) Compositing: The information about windows and tiles
is stored in the Graph data structure that holds the set of all
windows in z-order, their respective sizes, positions, and status.
Each time the window manager adds, modifies, or removes a
window, the tiling algorithm described in Sec. IV-C is executed
which generates the new tiles. The prediction model is initially
calibrated for the target hardware. The compositing algorithm
executes one of the four compositing strategies described in
Sec. IV-D. In case of the Hybrid Compositing and Cache-
Hybrid Compositing strategies the compositor uses predicted
bitblitting times which are determined using the Predictor.

C. Tiling concepts

Next, we propose a tiling algorithm which efficiently
generates tiles of overlapped rectangles. We first classify all
cases of two overlapping rectangles and unify them to four
cases.

In [4] 17 different cases of two overlapping rectangles are
identified. According to the number of covered edges, these
17 cases are mapped to five equivalence classes. We ignore
the equivalence class with no covered edges, since both, Full
and Tile Compositing would effectively be equivalent, making
the optimization choice trivial.

Rec B
T4
T3
T2
M M
2 1

Figure 4. Four cases of overlapping rectangles and resulting tiles

M

3

As depicted in Fig.4, in M3 three edges of Rec A are
overlapped by Rec B, which produces one tile, only. On the
other side, for My, where no edge is overlapped, four tiles are
produced.

Using the four cases My to Mz, we propose the tiling
algorithm depicted in List. 3 which generates the visible tiles
in case of overlapping windows.

1 function tiling (windows) // in z—order
2 while (not windows.isempty)

3 win = windows. pop

4 rectangles .push(win)

5 for each w in windows do

6 r_tmp.clear

7 for each r in rectangles do

8 if (not overlap(w, r))

9 r_tmp.push(r)

10 else

11 r_tmp.push(cut_new_tiles(w, 1))

12 end do;

13 rectangles = r_tmp

14 end for

15 resultlist.append({win, rectangles })

16 rectangles.clear

17 end while

18 return resultlist // windows with visible tiles

19 end function

Listing 3. Tiling algorithm

The function tiling(rectangles) iterates over a list of z-
ordered windows and calculates the visible tiles for each of the
windows. The algorithm begins with the lowermost window
and pushes it in the rectangle list rectangle (c.f., List. 3 line 3
to 4). Then, the algorithm iterates over all remaining windows
(c.f., List.3 line 5) and checks for each rectangle in list
rectangle if it is overlapped by a window or not (c.f., List.3
line 8 to 11). If it is not overlapped the rectangle is stored
in a temporary list r_tmp. In case the rectangle is overlapped
by a window the function cut_new_tiles(t,v) determines the
visible tiles according to the four cases in Fig.4 and stores
these tiles in the temporary list r_tmp. Hence, a visible tile
which is overlapped by a window is further subdivided into

visible tiles. After each rectangle in rectangles is checked
the list is overwritten by the list r_tmp which contains the
subdivided visible tiles. Then, the algorithm checks if the next
window of the list windows overlaps a rectangle of the list
rectangles. Finally, for each window the list resultlist stores
its visible tiles.

D. Compositing Strategies

In this section we describe our Hybrid Compositing and the
optimized Cache-Hybrid Compositing algorithms in detail.
Both algorithms require a data structure that contains the
information about the windows and the visible tiles which are
calculated by the tiling algorithm (c.f. List. 3). Since the CPU
execution time tcpy of our compositing heavily depends on
the used data structure we next propose a data structure that
supports the compositing API described in Sec. II.

1) Data structure: The data structure supports the five
compositing API requests insert, remove, modify, mark,
and compose. Since tcpy depends on the number of requests
which need to be executed, the design of the data structure is
optimized for the requests that will be called most.

Our proposed data structure is based on a graph which
stores the information for windows and their visible tiles,
as depicted in Fig. 5. The requests insert and remove are
called if windows are created or deleted, which happens
seldomly. This also holds for the request modify, which
changes window sizes and positions. In contrast, the requests
mark can occur up to once per screen refresh interval (e.g.,
60 Hz) and window, since it is called each time an application
updates a window content. The request compose() is called
typically once per screen refresh interval, given that at least
one window is updated with each screen refresh. Thus, we
optimized the data structure to store the rectangles and tiles,
in order to facilitate their handling and retrieval executing the
requests mark and compose.

An example of our data structure for five windows is
depicted in Fig.5. For each window we store location, width,
and height. In addition, beginning with the lowermost window,
we link each window to the next window in z-order (e.g.,
window W4 to W5). If a window overlaps another window,
the tiling algorithm (c.f. Sec.IV-C) calculates the visible tiles
and links them to the corresponding window (e.g., W3 to T6).
Furthermore, each tile which was created by an overlapping
window, is added to the dependency links of the overlapping
window. For instance, window W1 is overlapped by W2 which
results in the tiles 7’1 and 7'2. Thus, 1’1 and 7'2 are linked from
W1 (arrow line) and dependency links from W2 are added
(dotted line). The same principles apply also to overlapped
tiles. For instance, tile 72 is overlapped by window W3 which
results in the visible tiles 73, T4, and T'5. Accordingly, these
tiles have dependency links to W3. Next, we describe the
compositing strategies in more detail.

2) Hybrid Compositing: To overcome the shortcomings
of Full Compositing and Tile Compositing we propose the
Hybrid Compositing strategy which decides at runtime for each
window and tile whether it is faster to bitblit it full or only its
visible tiles. Each time the request compose is called, the com-
positor bitblits all marked windows. To this end, the algorithm
has to walk through the data structure, and—depending on

> Wi |- W2 |»-[Wa | -[wa -»-{ws]-~ [

Figure 5. Data structure storing windows, visible tiles, and links

the compositing strategy—use the information about windows
and/or tiles to bitblit the corresponding framebuffer contents
into the screen buffers.

The Hybrid Compositing algorithm calculates the predicted
bitblitting time of a window and all of its tiles, and uses the
faster approach, i.e., Full Compositing or Tile Compositing.
Since we do this optimization at tile granularity instead of
window granularity, we often save a significant amount of
bitblitting time.

1 function compose_hybrid (graph, marks)
2 win = graph.bottom

3 while (win)

4 if (marks[win.id])

5 bitblit_hybrid (win, marks, win.fb)
6 end if

7 win = win.next

8 end while

9 end function

10

11 function bitblit_hybrid (n, marks, fb)
12 if (n.tiles && t_full(n) > t_tiled(n))

13 for (each t in n.tiles)

14 bitblit_hybrid (t, marks, fb)

15 end for

16 else

17 bitblit(n.x, n.y, n.w, n.h, fb)

18 mark_dependencies (win.id, marks)

19 end if

20 end function

21

22 function t_full (n)

23 time_full = predicted_time (n.size)
24 for (each d in n.dependencies)

25 time_full += min(t_full(d), t_tiled(d))
26 end for

27 return time_full

28 end function

29

30 function t_tile (n)

31 time_tile = 0

32 if (n.visible)

33 time_tile = predicted_time (n.size)
34 else

35 for (each t in n.tiles)

36 time_tile += min(t_full(t), t_tiled(t))
37 end for

38 end if

39 return time_tile

40 end function

Listing 4. Hybrid Compositing algorithm

The Hybrid Compositing algorithm is depicted in List. 4.
The function compose_hybrid walks through the list of win-
dows and checks if a window needs to be bitblitted. For each
marked window the function bitblit_hybrid is called (line 5)
which checks if a window overlaps the marked window and if
the predicted bitblitting time using Full Compositing is higher
than using 7ile Compositing (line 12). If this holds, the function

bitblit_hybrid is called recursively for all tiles of the marked
window (line 14). Otherwise, the algorithm bitblits the marked
window and marks all windows that overlap it (lines 17 & 18).
The functions ¢_full and t_tile predict the required bitblitting
time for Full Compositing and Tile Compositing. In t_full
the bitblitting time required to bitblit the window (or tile) n
is predicted and stored in the variable time_full. Then, for
each window that overlaps n—using its dependency links—
the bitblitting times of Full Compositing and Tile Compositing
are calculated and the smaller bitblitting time is added to
time_full (line 25). Finally, the sum of all minimal bitblitting
times is returned (line 27). The function t_tile is similar to
t_full, but additionally checks whether a window or tile is
visible or not. If a tile is visible, the predicted bitblitting time is
returned (line 33 & 39). Otherwise, for each tile the bitblitting
time for Full Compositing and Tile Compositing is calculated
and the smaller bitblitting time added to time_tile (line 36)
which is eventually returned.

3) Cache-Hybrid Compositing: To improve the perfor-
mance of our Hybrid Compositing we introduce a caching
strategy that stores the optimized combinations of windows
and tiles. The Cache-Hybrid Compositing reduces the CPU
execution time tcpy and, therefore, also reduces the com-
positing time f.omp. Our evaluations (cf., Sec. V) show that
using our cache reduces tcpy by up to 66 %.

The approach to using a cache is driven by the assumption
that the positions and sizes of windows seldomly change. Thus,
already calculated windows and tile sequences can be reused
multiple times. For the addressed automotive scenarios, this
is a valid assumption. On the other hand, the frame rates of
different windows might vary a lot. The frame rates directly
influence the set of marked windows of each frame. Thus,
our cache uses the set of marked windows as keys and the
already calculated tiling sequences as values. In the rare case
where windows change their positions or sizes, the cache is
invalidated.

1 function compose_cache_hybrid (graph, marks)
2 key = HASH(marks)

3 if (match(cache[key], marks))

4 for (each r in cache[key])

5 bitblit(r.x, r.y, r.w, r.h, r.fb)
6 end for

7 else

8 cache_enable (key, marks)

9 compose_hybrid (graph, marks)

10 cache_disable ()

11 end if

12 end function

Listing 5. Cache-Hybrid Compositing algorithm

More precisely, the Cache-Hybrid algorithm (cf. List. 5)
calculates the hash value of the array containing the marked
windows and checks whether the set of marked window is in
the cache or not (line 3). If the set of windows is in the cache
the cached bitblitting sequence is bitblitted (line 5). Otherwise,
the cache will be enabled. To enable the cache, the algorithm
first inserts a new entry into the hash table and then sets a
flag which causes each bitblitted rectangle to be recorded and
appended to the new cache entry. For bitblitting, the Hybrid
Compositing algorithm (cf., List. 4) is used. Finally, the cache
will be disabled, which means that the recording mode ends
and the new cache entry is available for future requests.

V. EVALUATION

Using our compositing architecture described in the previous
section, in this section we evaluate the performance of our
two compositing strategies. Initially, we present our imple-
mentation platform and the results of the prediction model
calibration. Thereafter, we present and discuss the evaluation
results of the Hybrid Compositing and Cache-Hybrid Com-
positing compared to Full Compositing and Tile Compositing
strategies using multiple scenarios. In addition, we compare
our Cache Hybrid Compositing strategy with optimal tiling.

A. Platform and Measurement Setup

For our evaluation, we used a Freescale i.MX6 SABRE
for Automotive Infotainment quad core embedded platform
running a fully preemptive 3.10.17 Linux kernel. The platform
provides three different GPUs from Vivante [5]. The 3D GPU
GC2000 provides OpenGL ES support, the GC320 which
provides 2D compositing, and the GC355 supports OpenVG.
We used the Vivante “framebuffer” driver for bitblitting.

To measure the compositing time of a compositing strategy,
we used the POSIX function clock_gettime. To ensure precise
measurements we set the real-time priority of our application
to 99 while keeping all other processes at priority 0. We pinned
the compositing thread and GPU driver kernel threads to the
same CPU core. The compositing time .4, of a bitblitting
strategy consists of the CPU execution time ¢¢ py in user-space
and the bitblitting time ¢5p5 needed by the GPU. To increase
our insight, we measured both times separately.

B. Scenarios

To analyze the performance of our approaches compared to
existing compositing strategies we defined two types of scenar-
ios which we used to evaluate the performance. Each scenario
consists of a set of windows given as rectangles with width,
height, and position on screen given by the coordinates X.y,
and z. Hence, windows can overlap other windows partially or
completely. We first evaluated the performance if all windows
are always marked, i.e., the set of windows (or tiles) which
need to be bitblitted is always the same. Additionally, it is
important to note, that in realistic scenarios not all applications
update with the same frame rate, which directly influences the
bitblitting time. This is due to the fact that it might not be
necessary to bitblit parts that did not change. Therefore, we
evaluated the influence of the update rate by using for each
window a random mark interval in the range 1 to 4, i.e., the
windows were marked at each, every second, every third, or
every forth frame.

To create a Random Scenario like the one depicted in
Fig. 6, we implemented a generator that randomly selects the
width for each of the windows in the range of 10 to 1440
pixels and the height in the range of 10 to 540 pixels. The
position is also randomly selected but the window has to be
fully contained inside the screen buffer which has a screen
resolution of 1440 by 540.

Furthermore, we created an Automotive Scenario that
represents the application windows visible on a typical instru-
ment cluster as depicted in Fig.7, representing speedometer,
tachometer, indicators, warning and information manager.

Window distribution, Automotive scenario

Figure 7.

C. Calibration of the prediction model

In order to choose a good combination of bitblitting com-
mands, our two concepts need a prediction model which has
to be calibrated for the given hardware platform. We measured
the bitblitting time for a wide range of different rectangle sizes
and number of bitblit commands.

As explained in Sec.Il, the bitblitting time {pp depends
on the number of bitblitting commands n and the respective
framebuffer dimensions (wy#, x hyy). We therefore measured
tpp using a wide range of n=|F B| and all possible combina-
tions of wyp and hyp,. In Fig. 8 we depict tgpp by n and the

measured tgg

10
bitblit commands

Figure 8. Bitblitting times of multiple bitblit commands

window dimensions wy, X hgp, each point representing the
mean value of 100 samples. Using Octave [6] with bilinear
least squares fitting we derived the prediction function Eq.1.

tpp = a+ Z b—|—C*wfb—|—d>khfb+€*’wfb*hfb (Eq.1)
fbeFB

using a=67.2us, b=9.03us, c=1.29e-4us, d=6.71e-4us, and
e=1.67e-3us. Note that, although in Fig. 8 we depicted w sy, X
hgp as combined value, we actually use wy, and hyy as
independent terms in favor of slightly better accuracy—thus
achieving an average prediction error of only 0.19%.

D. Evaluation of the compositing strategies

In this section, we present and discuss the evaluation of
the four compositing strategies using the setup and scenarios
described in Sec. V-A and Sec. V-B.

1) Bitblitting time if all windows are always marked:
To compare the different bitblitting strategies we measured
the compositing time required to bitblit multiple windows on
screen using the four different strategies Full Compositing,
Tiled Compositing, Hybrid Compositing, and Cache-Hybrid
Compositing with the Random Scenario and the Automotive
Scenario (cf. Sec. V-B).

:
— ~hybrid |:
)

800 e G - E e R EEE R

1000

@

o

S
T

IS
o
S

number of runs

0 1 1 1
-1000 -500 0 500 1000 1500 2000
difference to Cache-Hybrid in usec

Figure 9.
marked

Difference of tcomp, Random Scenario, all windows always

First, we executed 1000 times the Random Scenario
using between 10 and 17 different windows. For each of the
four strategies we bitblitted 2400 frames for each Random
Scenario and measured the average of t.op,p. The results are
depicted as a cumulative distribution function in Fig.9. The
y-axis represents the number of runs and the x-axis represents
the difference of the compositing times of the strategies in
us. The three lines depict the differences of the compositing
time for the three strategies Full Compositing (blue dotted
line), Tile Compositing (green line) and Hybrid Compositing
(red dashed line) compared to the Cache-Hybrid Compositing
strategy. It can be observed that in all cases the Cache-Hybrid
Compositing is more efficient in bitblitting a scenario than the
other strategies. The improvement we achieved in these 1000
scenarios with our Cache-Hybrid Compositing was in average
27 % less compositing time compared to Full Compositing
which is with 474 ps fairly good. Compared to the Tile
Compositing we saved in average 8 % of the compositing time.
Since the Cache-Hybrid Compositing primarily optimizes the
compositing time required to calculate the optimal bitblitting
we also achieved a noticeable improvement of our Hybrid com-
positing strategy with 6 % less compositing time in average.

We executed the Automotive Scenario 10000 times and
marked all 17 windows in every frame. We depicted the
average compositing time for each of the strategies in Fig. 10.
The y-axis represents the number of runs and the x-axis
represents compositing times of the strategies in us.

It can be observed that the Hybrid Compositing is about
44% (or 1570 us) faster than the Full Compositing and about
11% (or 243 ps) faster than the Tile Compositing. Our Cache-
Hybrid Compositing improves the performance about 5 % in
average compared to the Hybrid Compositing.

4000

I Bitblitting time

3500

3000

usec

2500

2000

1500

Figure 10. Difference of tcomyp, Automotive Scenario, all windows always
marked

2) Bitblitting time using random mark intervals: In a
second simulation, we randomly assigned for each window the
interval in which it is marked (cf., Sec. V-A). We executed the
Random Scenario and the Automotive Scenario each 1000
times for 2400 frames. We kept the set of marked windows
fixed for 20 frames and calculated the average of ¢, of these
20 frames. The results are depicted as a cumulative distribution
function in Fig. 11 and Fig. 12. Similar to Fig.9 the y-axis
represents the number of runs and the x-axis represents the
difference of the composting times of the strategies in us.

120000 -
100000 e
8
< 80000 B
g
Q
o . & . .
P 000 i S i
5 60000 i 5 : ;
5] 3 : :
Q | E : :
§ 40000 [: k 8
<
20000 [EGIEEEE : 8
O \ Il
-1000 0 1000 2000 3000
difference to Cache-Hybrid in usec
Figure 11. Difference of tcomp, Random Scenario, random mark interval

As depicted in Fig. 11 the compositing using Cache-Hybrid
Compositing is in average 46 % (683 us) faster than the Full
Compositing. The bitblitting time of our Hybrid Compositing
is in all cases better or as good as the bitblitting time of the Tile
Compositing. Thus, in average we achieved an improvement
at the compositing time of only 1 %. This is due to the
higher CPU execution time of our approach which—in some
cases—leads to a higher compositing time compared to Tile
Compositing. This drawback is overcome by our Cache-Hybrid
Compositing which outperforms the other approaches in all
cases and is in average about 7 % faster than Tile Compositing.

As depicted in Fig. 12, in the Automotive Scenario the
Full Compositing strategy (blue dotted line) is less efficient
than the other strategies. The compositing time of the Full
Compositing strategy is in average 1183 ps—about 51 %—
higher than the compositing time of the Cache-Hybrid Com-
positing strategy. Similar to the Random Scenario the bitblit-
ting time of our Hybrid Compositing is in all cases better or as
good as the bitblitting time of the Tile Compositing. However,

120000
— — — hybrid
full

100000

80000 [~y

0000 [gt

number of runs

40000 [~

20000 [~

0 | 1 L
-1000 0 1000 2000 3000
difference to Cache-Hybrid in usec

Figure 12. Difference of tcomp, Automotive Scenario, random mark interval

the compositing of the Hybrid Compositing is in average only
1 % faster than the Tile Compositing. Since our approach
requires more CPU execution time than the Tile Compositing,
in some cases the compositing time of our Hybrid Compositing
is higher. Again, our Cache-Hybrid Compositing overcomes
this drawback since it outperforms the other approaches in all
cases and achieves an improvement of about 6 % in average
compared to the Tile Compositing.

3) Optimal tiling: The performance of our Hybrid Com-
positing depends on the tiling algorithm (List. 3) which gener-
ates the visible tiles. While our algorithm is very fast, it is not
always optimal, since not all possible combinations of tilings
are considered. For instance, it starts traversing tiles always
with the uppermost rectangle, whereas other starting points
are ignored. In order to evaluate our algorithm, we measured
both, the bitblitting time and the CPU execution time of the
algorithm, in comparison to mathematically optimal tiling. To
this end, we brute force all combinations of tiles to determine
the optimal tiling. The number of combinations exponentially
depends on the number of overlapping tiles. For instance, the
maximum number of combinations for two overlapping tiles
is the permutation of the four possible cutting edges (cf. Fig. 2
case My) which makes 24 different cases of cutting and leads
to 16 combinations of different sets of tiles. We evaluated for
different scenarios the optimal set of tiles and compared the
predicted bitblitting time to that of our tiling algorithm.

6000

5000 [e B : ; B

N
o
S
S

number of runs
w
o
o
o

2000

1000

I I I
-400 -200 0 200 400 600
difference in usec

Figure 13. Difference of ¢t g g between optimal tiling and our tiling algorithm

We evaluated for 2 to 7 windows in 1000 randomly
generated scenarios the optimal bitblitting time (¢,7) and the
bitblitting time (t;,) using our tiling algorithm. The results are
depicted in Fig. 13. The y-axis represents the number of runs
and the x-axis the difference of the minimal bitblitting times

tys to the bitblitting time t;, in ps as cumulative distribution
function. Thus, the blue line represents Aty = t, — ty.

It can be observed that in about 17% of all runs our tiling
algorithm is not optimal. However, in average the bitblitting
time is only about 1% less than using our tiling algorithm.
On the other hand, the computational effort for brute force
was many orders of magnitude higher than with our approach.
For instance, to calculate the optimal tiling for one set of five
windows takes about 10° times longer.

E. CPU execution time

We evaluated the CPU execution time topy for all
four strategies using the Automotive Scenario (as Auto_X
and Auto_C) and the Random Scenario (as Rand_X and
Rand_C") described in Sec. V-B. For each of the scenarios we
evaluated with all windows always marked (as Auto_C' and
Rand_C) as well as randomly assigned mark intervals (as
Auto_X and Rand_X). In Fig. 14 the average of 1000000
runs is depicted, respectively.

200

e
I Cache-Hybrid
- i 0 Hybrid
0 Tile
150 [I Ry i
o
& 100 [1
=]
| I IJ I I HI I |
O I I I
+ [¢) [¢)
©7 ©7 4 kY4
& S & &

Figure 14. CPU execution time of the four strategies

As expected, the Full Compositing strategy requires less
CPU execution time than the other strategies since it simply
walks through the list of windows. The Tile Compositing
strategy walks through the list of tiles, which is typically longer
than the list of windows and therefore more CPU intensive.
Since the Hybrid Compositing strategy additionally predicts
the bitblitting time for windows and tiles it has the highest
CPU execution time. However, we observe that using our cache
significantly reduces the CPU execution time and is efficient
even compared to Tile and Full Compositing.

We summarize and conclude that the bitblitting time of our
Hybrid Compositing strategy outperforms existing approaches
in realistic scenarios. Although our Hybrid Compositing had
in some cases a higher CPU execution time compared to
other approaches, this drawback is overcome by our Cache-
Hybrid Compositing strategy which always outperformed ex-
isting approaches in our evaluations. Compared to optimal
tiling, we showed that our approach consumes only 1% less
bitblitting time, but outperforms optimal tiling by saving orders
of magnitude of CPU execution time tcpy .

VI. RELATED WORK

Since the invention of raster graphics a broad variety of
graphics window systems emerged that manage the graphical
output of applications and compose them on screens.

Meyrowitz and Moser [7] developed a window manager
called BRUWIN which focuses on the adaptability of the
graphical system to a variety of devices and operating systems.
They propose a display manager that is responsible for the
compositing of z-ordered windows. They propose to use a
Full Compositing approach which skips all windows that are
fully overlapped. From this it follows that for partly overlapped
windows, BRUWIN uses expensive Full Compositing.

Myers [8, 9] developed a window manager called Sapphire
(the Screen Allocation Package Providing Helpful Icons and
Rectangular Environments) that supports rectangular windows
which can overlap each other. Sapphire also imposes a total
z-ordering of all windows. In [10] they propose to hold the
visible part of windows on the screen buffer and store in
the off-screen buffers only the covered parts to minimize the
required memory. Sapphires maintains a list of rectangles for
each window that contains the visible parts which is similar to
the Graph data structure used for our concepts. However, since
Sapphire does not store the complete content of windows in
off-screen buffers, shifting windows often requires applications
to costly redraw their screen content, potentially making short-
time artifacts occur on the screen.

Pike et al. [11] developed a data structure for storing the
covered parts of a window (called layer by the Authors) to
reduce the window update latency. The fully visible windows
or visible parts will not be stored there, since their content is
stored in the screen buffer. Thus, they extended the domain of
the bitmap operator bitblt—defined in [12]-to be able to include
wholly or partly covered windows. Basically, they propose Tile
Compositing where visible tiles are only kept in the screen
buffer. Although this saves a small amount of memory, it
is very costly to change the tiling, which happens, e.g., if
windows change their positions, since data has to be moved
between the screen buffer and their off-screen data structure.

One of the most commonly used graphical systems is
the X windowing system (X11) [13] which also supports
3D rendering, e.g., using OpenGL ES 2.0 and EGL. The
X Server handles windows and supports compositors by the
Xdamage or the Xcomposite extension. xcompmgr [14] is a
simple compositor for X that uses the Xdamage [15] extension
to get X event notifications about window regions that were
modified and require an update. Since no backbuffers are
used, affected applications need to refresh their content on
request which is sent in z-order. By using the Xcomposite
of the X server the content of all windows is held in off-
screen buffers from where the compositor bitblits it to the
screen buffer. When a window is updated the compositor is
notified and can update the screen. While this might be a good
concept for systems where window contents are stored on high-
performance memory (e.g., dedicated GDDRY), this is not the
case for many embedded systems. For X11 compositing the
Full Compositing strategy is prevailing.

A successor of X11 is Wayland [16] which is less complex
than X11 and limits the functionalities to the main tasks which
is managing and compositing of windows. Wayland does not
separate display server, window manager, and the compositor.
An efficient Wayland implementation is Weston which uses
the Pixman library [17] for tiling. Pixman considers how
windows overlap and calculates lists of the resulting visible
tiles of windows. Hence, the compositor can minimize the

region that has to be bitblitted, avoiding unnecessary redraws
of windows which are covered by other windows. By using
Pixman, the compositor in Weston is affected by advantages
and disadvantages of using the 7ile Compositing strategy.

In the Android operating system a surface manager is used
to manage the surfaces (widgets and view) of applications
rather than traditional windows, since windows typically cover
the whole screen on Android. Windows are represented by
surfaces which are composited by SurfaceFlinger [18]. Sur-
faceFlinger performs the compositing in a way similar to X11,
comparing rectangles at runtime to detect what regions have
been updated to redraw the surfaces which have to appear on
top of them [18]. Thus, Android uses slightly optimized Full
Compositing, since at typical use cases windows don’t overlap,
this seems to be a reasonable, yet not very generic choice.

VII. SUMMARY

The trend towards more graphical functions and applications
and the increasing number of displays in cars lead to advanced
use cases that allow for dynamic and flexible display usage.
Applications are not bound to a display and a static location
which enables dynamic configuration of application windows
like resizing or moving. In conjunction with z-ordered win-
dows, which allows for overlapping, the graphical system can
be as flexible as common desktop systems. Unfortunately, the
embedded platforms used in cars are highly restricted in power
consumption which limits the performance. Hence, efficiency
is a key requirement in automotive graphical window systems.

Typically, automotive applications like speedometer,
tachometer, navigation system, and video player draw their
content in off-screen buffers which are bitblitted by the graph-
ical window system like X11 in the screen buffers of the
displays. In case of overlapping windows the compositing
strategy can either bitblit all windows in z-order—Full Com-
positing—which leads to overdrawing of overlapped window
areas or bitblit only the visible tiles of the windows—T7ile
Compositing—which requires additional bitblit operations for
these visible tiles. To save bitblitting time we proposed the
Hybrid Compositing algorithm which searches for a combi-
nation of bitblitted rectangles to reduce the bitblitting time.
To this end, the execution time of a bitblit command must be
accurately estimated to choose such a combination. We created
a prediction model that estimates the bitblitting time depending
on the window sizes and the number of bitblit operations.

In addition, we presented our Cache-Hybrid Compositing
approach which uses a cache to store the determined sequence
of bitblit operations for future use and has a significantly
lower CPU execution time. We showed that our Cache-Hybrid
Compositing strategy is faster than or as fast as the Full
Compositing and Tile Compositing strategies. The compositing
time is, in random generated scenarios, with all windows
always marked, in average up to 5 % faster compared to the
Tile Compositing strategy. When using a randomly selected
interval to mark the windows the compositing using the Cache-
Hybrid Compositing strategy was even 51 % faster compared
to the Full Compositing strategy.

To this end, we showed that in our evaluations, our ap-
proach always achieved a significant increase in performance

compared to existing approaches. Especially for novel auto-
motive HMI systems, the GPU is a vital component. Since
the GPU is shared among all applications, using our Cache-
Hybrid Compositing compellingly reduces GPU utilization,
thus providing performance gains for other applications.

ACKNOWLEDGMENT

This paper was supported by the ARAMiS project of the
German Federal Ministry for Education and Research with
funding ID 011S11035.

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts,
figures, and future,” Computer, April 2009.

[2] Mercedes-Benz F125. http://www.motorauthority.com
/mews/1070046_mercedes-benz-ponders-the-future-ofin-
car-tech,2014.

[3] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,
Computer Graphics: Principles and Practice (2Nd Ed.).
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1990.

[4] B. A. Myers, “A taxonomy of window manager user
interfaces,” j-IEEE-CGA, vol. 8, no. 5, pp. 65-84, 1988.

[5] (2015, Mar.) Freescale i.mx 6quad processors.
[Online]. Available: http://www.freescale.com/webapp/
sps/site/prod_summary.jsp?code=i.MX6Q

[6] (2015, Mar.) GNU Octave. [Online]. Available: https:
/Iwww.gnu.org/software/octave/

[71 N. Meyrowitz and M. Moser, “Bruwin: An adaptable
design strategy for window manager/virtual terminal sys-
tems,” SIGOPS Oper. Syst. Rev., vol. 15, no. 5, pp. 180-
189, 1981.

[8] B. A. Myers, “A complete implementation of covered
windows for a heterogeneous environment,” University
of Toronto, Computer Science Dept., Tech. Rep., 1984.

[9] ——, “The user interface for sapphire,” vol. 12, pp. p.
12-23, Dec. 1984.

, “A complete and efficient implementation of cov-
ered windows,” Computer, vol. 19, no. 9, pp. 57-67, sep
1986.

[11] R. Pike, “Graphics in overlapping bitmap layers,” ACM
Trans. Graph., vol. 2, no. 2, pp. 135-160, 1983.

[12] L. J. Guibas and J. Stolfi, “A language for bitmap
manipulation,” ACM Trans. Graph., vol. 1, Jul. 1982.

[13] R. W. Scheifler and J. Gettys, “The x window system,”
ACM Trans. Graph., vol. 5, no. 2, pp. 79-109, Apr. 1986.

[14] (2015, Mar.) xcompmgr. [Online]. Available: http:
/freedesktop.org/xapps/release/xcompmgr- 1.1.tar.gz

[15] J. Gettys and K. Packard, “The (re) architecture of the
x window system,” In Proceedings of the 2004 Linux
Symposium, vol. volume 1, pp. pages 227-237, 2004.

[16] (2015, Mar.) Wayland (display server protocol). [Online].
Auvailable: http://wayland.freedesktop.org/docs/html/

[17] (2015, Mar.) Pixman: The pixel-manipulation library for
x and cairo. [Online]. Available: http://cgit.freedesktop.
org/pixman/

[18] (2015, Mar.) Surfaceflinger. [Online]. Available:
https://android.googlesource.com/platform/frameworks/
native/+/android-cts-4.1_r1/services/surfaceflinger/
SurfaceFlinger.cpp

(10]

