
Context-aware Access Control in Novel
Automotive HMI Systems

Simon Gansel1, Stephan Schnitzer2, Ahmad Gilbeau-Hammoud2, Viktor
Friesen1, Frank Dürr2, Kurt Rothermel2, Christian Maihöfer1, and Ulrich

Krämer3

1 System Architecture and Platforms, Mercedes-Benz Cars, Daimler AG, Germany?
2 Institute of Parallel and Distributed Systems, University of Stuttgart, Germany??

3 Telemotive AG, Germany? ? ?

Abstract. The growing relevance of vehicular applications like media
player, navigation system, or speedometer using graphical presentation
has lead to an increasing number of displays in modern cars. This effec-
tuates the desire for flexible sharing of all the available displays between
several applications. However, automotive requirements include many
regulations to avoid driver distraction to ensure safety. To allow for safe
sharing of the available screen surface between the many safety-critical
and non-safety-critical applications, adequate access control systems are
required. We use the notion of contexts to dynamically determine, which
application is allowed to access which display area. A context can be de-
rived from vehicle sensors (e.g., the current speed), or be an application-
specific state (e.g., which menu item is selected). We propose an access
control model that is inherently aware of the context of the car and the
applications. It provides delegation of access rights to display areas by
applications. We implemented a proof-of-concept implementation that
demonstrates the feasibility of our concept and evaluated the latency in-
troduced by access control. Our results show that the delay reacting on
dynamic context changes is small enough for automotive scenarios.

1 Introduction

Within the last 30 years the development of cars in the automotive industry
has increasingly depended on electronics and software instead of mechanics [3].
The growing relevance of graphics functions and applications using integrated
displays in modern cars is a good indicator for this trend. For instance, the Head
Unit (HU) uses displays integrated into the backside of the front seats and center
console to display multimedia content, navigation system, and web browser.
Additionally, the Instrument Cluster (IC) uses the instrument and the head-up
displays to show car specific information like speed, warnings, and navigation
instructions. In order to support these applications, cars are equipped with a
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growing number of displays of steadily increasing size. The availability of these
displays has lead to the desire to use them flexibly, by dynamically mapping
applications to display areas. For instance, users desire to customize the Human-
Machine Interface (HMI), e.g., reduce the size of the speedometer in favor of a
larger display area for navigation, or choose between HMI themes.
The dynamic mapping of applications to display areas introduces one great chal-
lenge: ensuring safety. It is the responsibility of the Original Equipment Manu-
facturers (OEMs) to ensure that graphical outputs from the various applications
do not violate safety requirements. Different standards like [15, ISO 26262] and
automotive guidelines (e.g., [7]) address the safety aspects of displaying informa-
tion in vehicles. For example, as regulated by German law (StVZO §57 [16]), the
speedometer must be visible. Additionally, warning messages must be displayed
at consistent places on the displays, easily perceivable by the driver (e.g., the
brake warning light is statically mapped to a place and guaranteed to be visible).

Most of these requirements apply to specific situations or states of a vehicle,
only. For instance, the visibility of the speedometer applies only to moving ve-
hicles, thus the display area of the speedometer could be used for any purpose
while the car is parking. Moreover, the display area used by the break warning
light could be used for extended radio information. In order to guarantee safe
display access, the flexibility must be restricted adequately, using the automotive
requirements and guidelines. To this end, we use the notion of contexts to dy-
namically determine at some point in time, which application is allowed to access
which display area. A context can be derived from vehicle sensors (e.g., speed,
location, or time), or be an application-specific state (e.g., which menu item is
selected). Integrating context natively into access control, significantly improves
safety, flexibility, and efficiency, since a certified component is in charge.

Moreover, the growing number of applications and the desire to integrate
third-party applications (e.g., from Google Play), favors a decentralized devel-
opement process. While traditional access control assumes a central authority,
e.g., to assign the access control matrix, a decentralized development process
requires access control that supports decentralized granting of permissions.

In [10] we proposed an access control model that provides access control
to display areas, where access decisions only depend on the applications and
reaction on context changes is completely left to the applications in a distributed
fashion. However, correctly considering the context of the car or applications
often determines whether the automotive requirements are fulfilled or not. Thus,
inherent support for contexts is an obvious evolution of the concepts in [10].

In this paper, we extend our approach by concepts for context-aware access
control, which allow for adapting access permissions based on the context of the
car or the applications without compromising on safety. Our model grants per-
missions to exclusively access certain display areas to applications depending on
the current context. In detail, we make the following contributions: (1) A formal
definition of the context-aware access control model and the required properties
like isolation. (2) A proof-of-concept implementation to show the feasibility of
the approach. (3) An evaluation of the performance of our implementation.
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The rest of this paper is structured as follows. In Sec. 2 we present our system
model. In Sec. 3 we define our context-aware access control model and address
correctness in Sec. 4. In Sec. 5 we define the protocol for state transitions and
proof the correctness of our protocol. We present our implementation in Sec. 6
and evaluate the latency introduced by access control in Sec. 7. We discuss related
work in Sec. 8 and conclude in Sec. 9.

2 System Model

In this section, we introduce our system model (c.f. Fig. 1) for context-based dis-
play access control in automotive HMI systems. The display surface is a shared
resource represented by the set of all available pixels of the connected displays.
Applications present their graphical output on display areas, which are defined
as subsets of the display surface. The mapping between applications and display
areas is dynamic and performed by the Access Control Layer depending on the
current context and the permissions. Each application authenticates itself to the
Access Control Layer. To this end, each application has a Universally Unique
Identifier (UUID). A context represents a distinct situation of the car or of an
application and can be set only by the responsible application using the Con-
text Manager. A permission defines which application is allowed to access which
display area in which context. To prevent inconsistencies, each pixel must be
mapped to at most one application. In case the visibility of an application is
restricted, depending on the context permissions must be revoked if this context
is active, e.g., context “car in motion” requires that a video playback must not be
visible to the driver. To guarantee conflict-freeness either two permissions do not
allow access to the same or part or the same display area or their mapped con-
texts cannot be active at the same time. If the context changes, the application
allowed to access a certain display area might also change.

Figure 2 shows an example where a display area located in the center of
the IC display is shared between four applications. Based on the automotive
requirements, in such a case the decision which of the four applications gets
exclusive access to the display area shall be based on the current set of contexts—
namely, “Imminent collision”, “Incoming phone call”, and “Navigation selected”.
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To facilitate the software development process, the OEM shall be able to
pass context-based usage permissions for display areas to software development
companies or even individual developers, which again shall be able to pass usage
permissions to others in a hierarchical fashion. This allows the OEM to meet
all safety-relevant requirements without being a central certification authority
for all applications. Nevertheless, for the sake of security, the deployment of
applications is centralized using the Vehicle Backend (cf., Fig. 1).

3 Context-aware Access Control Model

In this section we present our model for access control to display areas based on
contexts. First, we present an overview. Then, we define the entities and describe
the granting of permissions—constrained by contexts—between applications.

3.1 Overview

Access control mechanisms determine which subjects are allowed to access which
objects. In this work, subjects correspond to applications and objects to display
areas whose pixels are accessed by applications. We use permissions that allow
applications to access display areas. Access to display areas is restricted by con-
texts of the car or applications. An application requires a permission restricted
to certain contexts—called constrained-permission—to access a dedicated dis-
play area. Only if the contexts specified in the constrained-permission match
the current contexts of the car and applications, access is granted. An appli-
cation that owns a constrained-permission cp can grant another application a
constrained-permission not exceeding cp in both, size and context. Since our
model guarantees that at any point in time each pixel is accessed by exactly one
application, an application might need to revoke a constrained-permission if it
wants to access a certain pixel itself. Providing dynamic granting and revoking of
constrained-permissions our model suits to a decentralized development process
where the OEM delegates the development of certain application components
to a contractor, who delegates parts of the application to subcontractors, etc.
Next, we define these concepts in a formal model.

3.2 Objects and Subjects

We define a display area (object) as a set of pixels as depicted in Fig. 3. The
smallest display area consists of a single pixel called an atomic object. The com-
plete display surface is called the display surface and consists of all pixels.

Definition 1. Λ = {λ1, ..., λn} is a finite set of pixels (atomic objects). A dis-
play area is a subset of the set of pixels, formally a display area o is an object
o ∈ O = P(Λ)\∅ with O representing the set of all display areas.

An application (subject) requires a permission to access a display area’s content.

Definition 2. S = {s1, ..., sn} is a set of applications (subjects) with n ≥ 1.
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3.3 Contexts

In automotive scenarios setting the graphical content of display areas often de-
pends on context. As depicted in Fig. 4, contexts are identified by three Data
Sources. The source car sensor data provides information about the status of the
car (e.g., the RPM of the wheels, or the status of the brakes) or environmental
conditions (e.g., the distance to the car in front). The source communication
events considers events occurring due to incoming information via communi-
cation devices, e.g., phone calls, SMS, and mails. Finally, user interface (UI)
events are triggered by the user input events like selecting the radio in the HU
menu. The data from the data sources is interpreted by Context Providers, which
decide for their contexts whether they are active or inactive. Each context is ex-
clusively mapped to one application which serves as context provider and has an
ID, unique within the scope of its application. Next, we define contexts formally.

Definition 3. C = (S × N) is the set of all contexts, where each context is
represented by an application and the context ID. CTX = {f : C → A} is the
set of functions that return for each context its status A = {active, inactive}.

A context (e.g., with id 1) describes a state like “car is in motion” which is
determined by the application speedometer ssp, i.e., (ssp, 1) ∈ C. Hence, in case
the current speed is above 0mph, the speedometer sets the status of its context
(ssp, 1) to active otherwise to inactive. For instance, if set ctx ∈ CTX is a set of
contexts and the context (ssp, 1) is active then ((ssp, 1), active) ∈ ctx. Let a ∈ A.
If a = active, the function inv(a) = a′ returns a′ = inactive else a′ = active.

3.4 Constrained-Permissions

A constrained-permission represents a permission restricted to contexts. An ap-
plication is only allowed to access a display area if it has a constrained-permission
matching the current contexts. We define a constrained-permission as follows.

Definition 4. CP : CTX×S×O is the set of constrained-permissions express-
ing that an application is allowed to access a display area in certain contexts.

We assume the application speedometer ssp shall only be visible in case the car
is in motion (i.e., c1 = (ssp, 1) is active), as depicted in Fig. 5. To this end, ssp
has a constrained-permission cp1 which allows access to display area o1, iff the
current contexts of ctx1 ∈ CTX contains (c1, active) and (c2, inactive).
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Next we define conflict-freeness of two constrained-permissions, which guar-
antees that at no point in time a pixel is accessibly by more than one applica-
tion. Let cp = (C1, (s1, o1)) ∈ CP and cp′ = (C2, (s2, o2)) ∈ CP . We say two
constrained-permissions cp and cp′ are conflict-free, iff either the intersection of
the two objects o1 and o2 is empty or a context c is in the set of contexts C1

and in C2, and the status of both is different.

Definition 5. cp and cp′ are conflict-free ⇔ cpucp′ = ∅ ⇔ o1∩o2 = ∅∨∃cx =
(c, a) ∈ C1,∃cx′ = (c′, a′) ∈ C2 : c = c′ ∧ a 6= a′. Let Im(ctx) = {ctx(c)|c ∈ C}.
We say cp v cp′ ⇔ Im(ctxcp′) ⊆ Im(ctxcp) ∧ ocp ⊆ ocp′ .

For instance, let cpsp = (Ĉ, ssp, o) ∈ CP and cpacc = (C̃, sacc, ô) ∈ CP be
constrained-permissions of speedometer and adaptive cruise control, respectively,
where o covers ô. In this case, to guarantee conflict-freeness means that Ĉ and
C̃ cannot both match the same set of current contexts.

To increase flexibility of obtaining and releasing constrained-permissions, we
next introduce hierarchical granting and revoking of constrained-permissions.

Hierarchical Granting of Constrained-Permissions An application that
received a constrained-permission cp can itself grant a constrained-permission cp′
to other applications under the following conditions. First, the display area of cp′
is a subarea of the display area of cp. Second, cp′ must be at least as constraining
(in terms of contexts) as cp. Third, if other constrained-permissions have been
granted based on cp, all of them must be conflict-free with cp′. An application is
no longer allowed to access any pixels included in one of its granted constrained-
permissions which match the current contexts. Formally, we define a set that
maps to each application its granted and received constrained-permissions.

Definition 6. CONS = {f : S → P(S×CP )×P(S×CP )} maps to each ap-
plication two sets P(S×CP ) that contain mappings of constrained-permissions
to applications representing the constrained-permissions an application has re-
ceived and the constrained-permissions it has granted to other applications.

Let cons ∈ CONS, s ∈ S. Set receivedcp(cons, s) := {r|(r, g) ∈ cons(s)} denotes
the set of constrained-permissions s has received. Similarly, set grantedcp(cons, s)
:= {g|(r, g) ∈ cons(s)} is the set of constrained-permissions s has granted. Ac-
cordingly, (s′, cp′) ∈ receivedcp(cons, s) indicates that application s has received
a constrained-permission cp′ from application s′ and (s′, cp′) ∈ grantedcp(cons, s)
indicates that application s′ granted cp′ to s′.
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In Fig. 6 we depict an example of granting constrained-permissions between
the applications s1, s2, and s3. We assume set cons ⊆ CONS contains the
current constrained-permissions and s1 received a constrained-permission cp1
from application ŝ (not depicted in Fig. 6) and granted {cp2} and {cp3} to s2
and s3, respectively. Thus, the display areas of cp1, cp2, and cp3 are all the
same. The constrained-permissions cp2 and cp3 are conflict-free (cp2 u cp3 = ∅)
since the context c3 must be active in cp2 and inactive in cp3 which cannot
happen at the same time. Since each context that matches cp1 also matches
either cp2 or cp3, s1 has no longer access to o1 in any context (as long as it does
not revoke cp2 or cp3). Hence, the display area an application can use actually
depends on the current contexts and the constrained-permissions it granted to
other applications.

We define the comparison operator <cp for applications to indicate the chain
of dependencies according to constrained-permissions. An application which re-
ceived a constrained-permission has a dependency to its granting application.

Definition 7. Let s, s′ ∈ S; cp ∈ CP ; cons ∈ CONS. We say s <cp s
′ ⇔

∃s1, ..., sn ∈ S;∃cp1, ..., cpn−1 ∈ CP : (7.1)
s1 = s′ ∧ sn = s ∧ cp v cpn−1∧ (7.2)
∀i : 1 ≤ i < n : (si, cpi) ∈ receivedcp(cons, si+1)∧ (7.3)
∀i : 1 ≤ i < n− 2 : cpi+1 v cpi (7.4)

If an application s has received a constrained-permission cp from application s′
or indirect by using a chain of intermediate applications then s <cp s

′. Hence, s
depends on s′ according to the constrained-permission cp.
Formally, with s, s′ ∈ S, we say s 6=cp s

′ ⇔6 ∃cp ∈ CP : s <cp s
′ ∨ s′ <cp s.

4 Safety Property

In this section, we introduce states in our model and describe the correctness of
our model using a safety property defined using states. States are called safe, if
they fulfill the safety property. A state in our model is a set of sets of constrained-
permissions and contexts.
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Definition 8. U : CONS × CTX represents the set of contexts, granted and
received constrained-permissions. We say u ∈ U is a state in U .

Next, we define a safety property which can be satisfied in a state in U or not.
States satisfying this property are safe states and a sequence of safe states is
called safe state sequence.

Definition 9. A state satisfies the Conflict-freeness Property (CFP), if
each constrained-permission is conflict-free. Let u = (cons, ctx) ∈ U .
u satisfies CFP ⇔

∀s, s′, s1, s2 ∈ S;∀cp, cp′ ∈ CP : s′ 6=cp s ∧ s′ 6=cp′ s ∧ cp 6= cp′∧
(s1, cp) ∈ receivedcp(cons, s) ∧ (s2, cp

′) ∈ receivedcp(cons, s′)
⇒ (cp u cp′ = ∅)

This means, it exists at most one constrained-permission that allows access to a
display area for a given set of contexts at a time. This property implies exclu-
sive access, i.e., in each context each display area is accessed by at most one
application. Thus, an application that has access to a pixel is guaranteed to be
visible if the according context is given.

5 Protocol

In this section, we describe the requests that can be issued by applications in
order to change contexts or constrained-permissions and are performed by tran-
sitions using rules. Moreover, we discuss the verification of our protocol, i.e.,
that our defined model fulfills the defined safety property using our transitions.

5.1 Requests and Transitions

A transition is triggered by a request to add or delete a constrained-permission,
or to set the status of a context.

Definition 10. A request r ∈ RP = RA × S × S × CP consists of the op-
eration mode RA = {append, discard}, grantor, grantee, and the constrained-
permission. A request RC = S×C ×A consists of the application, the context,
and the desired status. The set of all possible requests is R = RP ∪RC.

We define transitions between states. To maintain consistency, these transitions
are restricted by rules. If none of the rules apply then the state does not change.

Definition 11. trans : U×R→ U is a function which represents the transition
from one state to another in U initiated by a request r ∈ R.

The three possible types of request, in particular, grant a constrained-permission,
revoke a constrained-permission, and set the status of a context, are described
in the following.
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To grant a constrained-permission cp to another application s′, an appli-
cation s initiates a request r ∈ RP with ra = append. The request is accepted,
if s has received a constrained-permission which is an super-set of cp and cp is
conflict-free to all granted constrained-permissions of s—expressed by Rule 1.
Rule 1 To satisfy Rule 1, the following condition cond1 has to be fulfilled.

cond1 = (r = (ra, s, s′, cp) ∈ RP ∧ ra = append ∧ cp = (C1, ŝ, ô)∧
s 6= s′ ∧ s′ = ŝ ∧ [∀cp′ ∈ {ĉp ∈ CP |∃(ŝ, ĉp) ∈ grantedcp(cons, s)} : cp u cp′ = ∅]∧
[∃c̃p ∈ {ĉp ∈ CP |∃(ŝ, ĉp) ∈ receivedcp(cons, s)} : cp v c̃p = (C̃, (s̃, õ)) ∧ s̃ = s])

To perform the grant transition we use the function addcp : CONS × S ×
S × CP → CONS that adds a constrained-permission. Let s, s′ ∈ S; cp =
(Ccp, scp, ocp) ∈ CP . We say [cons′ = addcp(cons, s, s

′, cp)] ⇔

cons′(s) = (receivedcp(cons, s), grantedcp(cons, s) ∪ {(s′, cp)})∧ (5.1.1.1)
cons′(s′) = (receivedcp(cons, s

′) ∪ {(s, cp)}, grantedcp(cons, s′))∧ (5.1.1.2)
[∀s′′ ∈ S\{s′, s} : cons′(s′′) = cons(s′′)] (5.1.1.3)

If the condition cond1 is fulfilled the function addcp adds cp to the set of
receivedcp and grantedcp constrained-permissions for s and s′ in cons (5.1.1.1-
2). All other applications are not affected by this function (5.1.1.3).

To revoke a constrained-permission cp, an application s initiates a re-
quest r ∈ RP with ra = discard. If s has granted cp, the request is accepted, and,
additionally, constrained-permissions depending on cp will also be revoked—
formally expressed by Rule 2.
Rule 2 To satisfy Rule 2, the following condition cond2 has to be fulfilled.

cond2 =(r = (ra, s, s′, cp) ∈ RP ∧ ra = discard∧
(s 6= s′ ∧ (s′, cp) ∈ grantedcp(cons, s) ∧ (s, cp) ∈ receivedcp(cons, s′)))

To perform the transition we use the function delcp : CONS×S×S×CP →
CONS that deletes a constrained-permission. Let s, s′ ∈ S; cp = (Ccp, scp, ocp);
cp′ = (Ccp′ , scp′ , ocp′) ∈ CP . We say [cons′ = delcp(cons, s, s

′, cp)] ⇔

[∀s1 ∈ S : s1 <cp s⇒ (5.1.2.1)
receivedcp(cons

′, s1) = receivedcp(cons, s1)\ (5.1.2.2)
{(s2, cp′) ∈ S × CP |s2 <cp′ s1 ∧ cp′ v cp}∧ (5.1.2.3)
grantedcp(cons

′, s1) = grantedcp(cons, s1)\ (5.1.2.4)
{(s2, cp′) ∈ S × CS|s1 <cp′ s2 ∧ cp′ v cp}]∧ (5.1.2.5)
cons′(s) = (receivedcp(cons, s), grantedcp(cons, s)\{(s′, cp)})∧ (5.1.2.6)
[∀s3 ∈ S\{s′, s};∀cp′ ∈ CP : cp′ v cp ∧ s 6=cp′ s3 ∨ s <cp′ s3 (5.1.2.7)
⇒ cons′(s3) = cons(s3)] (5.1.2.8)
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If the condition cond2 is fulfilled, the function delcp removes cp and all depending
constrained-permissions from receivedcp (5.1.2.2-3) and grantedcp (5.1.2.4-5).
All other constrained-permissions that did not receive or grant a permission
depending on cp are not affected by this function (5.1.2.8).
To change the status of a context c, an application s initiates a request
r ∈ RC. The request is accepted, iff s introduced c.
Rule 3 To satisfy Rule 3, the following condition cond3 has to be fulfilled.

cond3 = (r = (s, c, a) ∈ RC ∧ c = (s̃, n) ∈ C ∧ s̃ = s)

To perform the transition, we use the function setctx : CTX × C × A → CTX
which adds a context to the set of current contexts. Formally, setctx(ctx, c, a) =
ctx′ ⇔ ctx′(c) = a ∧ ∀c′ ∈ C\{c} : ctx′(c′) = ctx(c′)
Next, we use the three rules to define the function trans. Let u = (cons, ctx) ∈ U ,
and r ∈ R with r = (ra, s, s′, cp) ∈ RP , or r = (s, c, a) ∈ RC. We define

trans(u, r) =


(addcp(cons, s, s

′, cp), ctx), if cond1 (Rule 1)
(delcp(cons, s, s

′, cp), ctx), if cond2 (Rule 2)
(cons, setctx(ctx, c, a)), if cond3 (Rule 3)
u, otherwise

5.2 Protocol Correctness Verification

To verify the correctness of our model we use the Conflict-freeness Property
(CFP) (cf., Sec. 4) and a system that consists of sequences of states and re-
quests. We use this system to define a proposition which we prove by using
complete induction over the states. Finally, we prove that the system is safe
if the initial state fulfills the CFP. For instance, using an initial state where a
single application has a constrained-permission for the whole screen area for a
certain context, is a safe state. Our proof implies that using our protocol, only
safe states can be reached. Next, we give the formal definitions.

System In this section, we give the formal definitions for the sequence of states
and the system. A system consists of all possible sequences of requests and the
sequence of all states starting from a given initial state. We denote In ⊂ N0 as
a finite set with In = {0, 1, 2, 3, ..., n}.

Definition 12. The set of sequences is a set of n-tuples and defined as XIn

=
{(x0, ..., xi, ..., xn)|xi ∈ X ∧ i ∈ In ∧ xi = f(i) with f : In → X}.
We say (x0, x1, ..., xn) ∈ XIn

is a sequence with x0 := x0 ∈ X, x1 := x′1 ∈ X,...,
xn := x

(n)
n ∈ X.

The operator � indicates whether an element is part of a sequence or not. Let
(x0, x1, ..., xn) ∈ XIn

. We define x � (x0, x1, ..., xn)⇔ ∃i ∈ In : x = xi.

This means, a sequence is an ordered list of elements and the operator �
indicates whether an element is part of that sequence. After the generic definition
of sequences we next define sequences of requests and sequences of states.
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Definition 13. For a sequence of requests (r0, ..., rn−1) ∈ RIn−1

the se-
quence of states generated by (r0, ..., rn−1) is defined as (u0, u1, ..., un) ∈ U In

with ∀i ∈ In−1 : ui+1 = trans(ui, ri).

Using the definition of sequences of requests and states we next define a system
that consists of an initial state and all possible states that can be reached by using
sequences of requests. In addition, we define the operator � that indicates
whether a transition (u, r, u′) is part of a system or not.

Definition 14. A system Ψ(ustart) ⊂ RIn ×U In

is generated by initial state
ustart. Let xr = (r0, ..., rn−1) ∈ RIn−1

; xu = (u0, ..., un) ∈ U In

.
We define (xr, xu) ∈ Ψ(ustart) ⇔

u0 = ustart ∧ ∀i ∈ In\{0} : ui = trans(ui−1, ri−1)

Let (u, r, u′) ∈ U ×R× U , u0 ∈ U . We define (u, r, u′) � Ψ(u0) ⇔

∃xr ∈ RIn−1

,∃xu ∈ U In

,∃i ∈ In\{0} : (14.1)
(xr, xu) ∈ Ψ(u0) ∧ ui � xu ∧ ui+1 � xu ∧ ri � xr∧ (14.2)
(u, r, u′) = (ui−1, ri−1, ui). (14.3)

This means, that (u, r, u′) is part of a system if a sequence of requests and states
(14.1) exists, of which u, r and u′ are part of (14.2) and a transition from state
u to u′ by request r (14.3) exists.

Next, we define a safe state and a safe system that consists only of safe state
sequences.

Definition 15. u ∈ U is a safe state ⇔ u satisfies the CFP. (u0, ..., un) ∈ U In

is a safe state sequence ⇔ ∀i ∈ In : ui is a safe state. A system Ψ(u0) ⊂
U In × RIn

with xr ∈ RIn−1

and xu = (u0, ..., un) ∈ U In

is a safe system ⇔
∀(xr, xu) ∈ Ψ(u0) : xu is a safe sequence.

By using the definition of a safe system we prove in the next section that the
CFP defined in Sec. 4 is always satisfied if the initial state satisfies CFP.

5.3 Proof

Since the states and transitions of our model consist of mathematical formula-
tions, we define a proposition that corresponds to the CFP defined in Sec. 4 and
helps us to prove the safety of our model. Let u, u′, u0 ∈ U ; u′ = (cons′, ctx′);
u = (cons, ctx); r ∈ R.

Proposition 1: All sequences in Ψ(u0) satisfy CFP for all u0 that satisfy CFP
⇔ ∀(u, r, u′) ∈ U ×R× U : (u, r, u′)� Ψ(u0)⇒ u, u′ ∈ U satisfy CFP.
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Proposition 1 says that all sequences in a system Ψ(u0) satisfy CFP if, and only
if, for all states u′ which can be directly generated from any state u with one
request, the respective states u and u′ also satisfy CFP. If this proposition holds,
every system Ψ(u0) is a safe system if state u0 satisfies the CFP in Sec. 4.

To prove the correctness of Proposition 1 we define a lemma to prove the
proposition using complete induction over the states of the system.
The following Lemma CFP states that a transition from a state which satisfies
the CFP will always end in a state which also satisfies the CFP.

Lemma CFP: All sequences in Ψ(u0) satisfy CFP for all u0 which satisfy CFP
⇔ ∀(u, r, u′) ∈ U ×R× U : (u, r, u′)� Ψ(u0)⇒ u, u′ ∈ U satisfy CFP.

Proof: According to Sec. 5, a request r ∈ R is either in RP or in RC. The case
r ∈ RC is trivial, since Rule 3 (Sec. 5) does not change the set of constrained-
permissions cons and therefore is not relevant for Lemma CFP. In case r =
(ra, s, s′, cp) ∈ RP , we have to consider the following three sub-cases:
(R1): Let ra = append and the condition cond1 be fulfilled. We follow that

the transition trans(u, r) = (addcp(cons, s, s
′, cp), ctx) leads to the set of re-

ceived constrained-permissions receivedcp(cons′, s′) = receivedcp(cons, s
′)∪

{(s, cp)}.
We first show that cp is conflict-free with all granted constrained-permissions
of s. Then, we show that cp is conflict-free with all constrained-permissions
which do not depend on s. Finally, we follow that state u′ satisfies the CFP.
In detail, since u satisfies CFP and condition cond1 is fulfilled, we follow
∀(s̃, c̃p) ∈ grantedcp(cons, s) : cpu c̃p = ∅ with cp granted by s. In addition,
we know that (s, cp) 6∈ receivedcp(cons, s′) due to cond1. We follow in state
u′ that cp is conflict-free with all granted constrained-permissions of s.
In addition, cond1 implies ∃ŝ ∈ S with (ŝ, ĉp) ∈ receivedcp(cons, s) : cp v ĉp.
Since state u satisfies CFP, we know that ĉp is conflict-free for all applications
and constrained-permissions in the state u. We follow with cp v ĉp and
(s, cp) ∈ receivedcp(cons

′, s′) that cp is conflict-free with all constrained-
permissions which do not depend on s in state u′.
Finally, due to ∀cp′′ ∈ CP, ∀s, s1, s2 ∈ S′′: (s1, cp′′) ∈ receivedcp(cons′, s′′)
and (s2, cp) ∈ receivedcp(cons′, s′), it follows cp u cp′′ = ∅ since s′ 6=cp s

′′

and s′ 6=cp′′ s.
(R2): Let ra = discard and cond2 be fulfilled. Then it follows trans(u, r) =

(delcp(cons, s, s
′, cp), ctx).

Since u satisfies CFP we know ∀(s̃, c̃p) ∈ grantedcp(cons, s) : cp u c̃p = ∅.
Moreover, we know that in the state u the constrained-permission cp received
by the application s′ ((s, cp) ∈ receivedcp(cons, s

′)) is conflict-free to all
other constrained-permissions, i.e.,

∀s, s′, s1, s2 ∈ S;∀cp, cp′ ∈ CP : cp 6= cp′ ∧ (s1, cp) ∈ receivedcp(cons, s)∧
(s2, cp

′) ∈ receivedcp(cons, s′) ∧ s′ 6=cp s ∧ s′ 6=cp′ s⇒ cp u cp′ = ∅

We know that all constrained-permissions in the set of received constrained-
permissions are conflict-free in state u and therefore cp is also conflict-free.
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After the transition we know that the function delcp(cons, s, s
′, cp) leads

to (s, cp) 6∈ receivedcp(cons, s
′) and additionally removes all constrained-

permissions that depend on the constrained-permission cp, i.e., ∀s1 ∈ S :
s1 <cp s⇒ receivedcp(cons

′, s1) = receivedcp(cons, s1)\
{(s2, cp′) ∈ S×CP |s2 <cp′ s1∧cp′ v cp}. Hence, in state u′ the constrained-
permission cp and all depending constrained-permissions are removed from
the set of received and granted constrained-permissions of all applications,
whereas all the other constrained-permissions are not changed, i.e., ∀s3 ∈
S\{s′, s};∀cp′ ∈ CP : cp′ v cp∧s 6=cp′ s3∨s <cp′ s3 ⇒ cons′(s3) = cons(s3).
We follow, that in state u′ all remaining constrained-permissions are also
conflict-free and state u′ satisfies the CFP.

(otherwise): We know that u′ = u. Since u satisfies the CFP, it follows that u′
also satisfies CFP.

Finally, we prove Proposition 1 by complete induction.
Let (xr, xv) ∈ Ψ(ustart) with xr = (r0, ..., rn−1) ∈ RIn−1

, xu = (u0, ..., un) ∈
U In

. We define u0 = ustart as initial state and generate the states in xu by using
our transition: ∀i ∈ In\{0} : ui = trans(ui−1, ri−1). The state u0 satisfies the
CFP (induction base). Let ∀i ∈ In\{0} : (vi−1, ri−1, vi)� Ψ(v0), cf. Def. 14.3.

Base: u0 satisfies the CFP. With u1 = trans(u0, u0) we conclude u1 satisfies
the CFP, according to Lemma CFP.

Induction hypothesis: ui satisfies the CFP.

Induction step: Let ui satisfy the CFP. From the Lemma CFP follows ui+1 =
trans(ui, ri) satisfies the CFP. �

We follow that all systems Ψ(u0) are safe systems if the state u0 satisfies the CFP.
This means, that our transitions do not violate the CFP. Hence, implementing
our access control model by initially assigning all available display area for a
certain context to a single application—which is a state that satisfies the CFP—
leads to a safe system.

6 Implementation

In this section we describe the proof-of-concept implementation of our access con-
trol model for an automotive HMI system. Basically, an application that wants
to display content on the screen, first needs to obtain a permission which then
is used to create a window. Our compositor copies the content of the windows
to the screen-buffer which makes them appear on the displays.

Traditionally, compositors operate on rectangular windows. In contrast, our
compositor operates on (typically) non-rectangular windows, since the set of pix-
els (atomic objects) in a constrained-permission (CP) might not be rectangular.
To this end, our implementation uses windows with a bitmap attached that rep-
resents the subset of pixels of the windows, the application is actually allowed
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Fig. 7. Automotive Scenario using typ-
ical IC applications

Fig. 8. Bitmasks of the Automotive Sce-
nario

to access. In Fig. 7, we depict a typical Automotive Scenario for a given set
of CPs and active contexts, using applications like speedometer, tachometer, in-
dicators, trip, car status, and menu. In Fig. 8, we depict the bitmasks used in
the active CPs of Fig. 7. All CPs are conflict-free and hierarchically granted in
the order of their criticality. Besides this depicted scenario, our implementation
includes many more scenarios for IC and HU. For instance, we implemented
CPs that allow to display half of the speedometer and the tachometer in the
left and the right corner, respectively, in favor of a bigger display area for the
presentation of the navigation system in the middle of the screen.

The implementation consists of the software components depicted in Fig. 9.
To isolate the safety-critical applications (e.g., brake failure warning) from the
non-safety-critical applications (e.g., media playback) traditionally running phys-
ically isolated on IC and HU, we use different virtual machines (VM) running on
the virtualization solution PikeOS from Sysgo. We use a dedicated VM—called
Virtualization Manager—which provides access control and has exclusive access
to the hardware components GPU, displays, and input devices.

The Isolated Communication Channel provides session-based FIFO commu-
nication between the applications in the VMs and the system components of the
Virtualization Manager by using shared memory. The applications communicate
via Communication Channel with the Virtualization Manager to get access to
the hardware components. The Communication Manager stores the certificates
of the applications, forwards them to the Authentication Manager (AM), and
creates a dedicated communication channel to the system components for each
authenticated application. The AM restricts the communication between appli-
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Fig. 9. Implemented architecture
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cations and system components based on their identification. The context-based
access control layer performs access decisions using contexts. The Context Man-
ager (CM) provides context handling for applications which can set the status of
contexts by using the API call setContext(CTX c,CA a) (cf. Rule 3 in Sec. 3)
with context c and status a. The CPM handles granting and revoking of CPs and
provides access decisions for the Window Manager (WM) which is responsible
for creating, destroying, and positioning of windows. Applications can grant or
revoke CPs by calling grantConsPerm(CTX[(c1, a1), (c2, a2), ...], uuidA, o) (cf.
Rule 1 in Sec. 3) with the list of contexts [(c1, a1), (c2, a2), ...], the targeting ap-
plication uuidA, and the display area o or revokeConsPerm(ID cpid) (cf. Rule 2
in Sec. 3) with the id cpid of the CP. Access control is enforced through pixel-
exact CPs which are implemented using rectangular areas in combination with
bitmasks that restrict operations to the allowed pixels. Applications can create,
modify, or move a window within the bounds of a received CP. We created a
Compositing Layer that provides an API for resizing and mapping of windows.
Applications directly render into the off-screen buffers of their windows, and
the compositing takes care of pixel-exact copying of the window contents to the
screen buffers of the two displays. Due to the exclusive access property of our
system, the compositing does not need to care about the layering of windows.

We use a cockpit demonstrator (cf. Fig. 10) with two automotive 12" displays
each with a resolution of 1440×540 pixels and common input devices like steering
wheel buttons and the central control knob to control the applications. The
hardware platform is a Freescale i.MX6 SABRE for Automotive Infotainment
quad core embedded board with three GPUs, namely, the GC2000 3D GPU
providing OpenGL ES 2.0 support, the GC355 which supports vector graphics
with OpenVG 1.1, and the GC320 which provides compositing of framebuffers
with a 2D API. We use the OpenGL ES 2.0 API for the rendering of the graphical
content into the applications’ backbuffers. The compositing layer uses the 2D
API of the Image Processing Unit (IPU) for copy operations in framebuffers.

Fig. 10. Cockpit demonstrator
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7 Performance Evaluation

We evaluated the performance of our access control model implementation. To
this end, we measured the latency introduced by our access control. Since some
context changes are safety-critical the time required to change the access to
display areas delays the visibility of safety-critical applications. As described
in [11], important information shall be visible within given time constraints.
The time constraint is not a fixed value, but determined by the OEM based
on automotive guidelines, ISO standards, and legal requirements. However, the
required maximum latency for graphical output does not exceed 2 seconds. For
instance, the image of the rear view camera shall be visible in no more than
2 s after shifting into reverse (as demanded by US National Highway Traffic
Safety Administration). Thus, 2 s can be considered as generic upper bound.
On the other hand, for time-critical user interaction, typically latency shall not
exceed 250 ms [11]. More precisely, the time delay required to change the access
to display areas and to allow applications to request new windows is crucial
since it delays the visibility of safety-critical applications. Next, we describe the
evaluation setup and present the results.

7.1 Setup

The latency introduced by our access control system primarily depends on the
number of permissions that need to be changed. A permission can change ei-
ther by being disabled, so that the application window is no longer visible, or
by being enabled, making an application window visible. The latency to get a
new permission, is denoted as ∆tget, i.e., the time between sending the com-
mand setContext(CTX c,A a) to set a context c and receiving the command
confirmWindow(WinID id) which returns the id of the created window. The
latency to cede an owned permission, is denoted as ∆tcede, i.e., the time between
sending setContext(CTX c,A a) and revoking access by using the command
revoke(ox). Fig. 11 depicts the messages sent between the components of our
model, for a scenario where the permissions of two applications (B and C) are
affected. In more detail, application A sets the context c1 = (A, 1) to status a by
sending setContext(c1, a) to the CM. The CM changes the context status and
notifies the CPM. The CPM determines the affected permissions and notifies
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the WM (nofify(ox, B), where ox is the new bitmap) and the affected appli-
cations. Application C is notified (revoke(ox)), that it has no longer access to
ox. Application B is granted a new permission (grant(ox)) and creates windows
wx with createWindow(wx, ox) using the bitmap ox. Finally, the WM sends
confirmWindow(wid) to B.

We evaluated two different scenarios consisting of up to 16 applications. In
the first scenario one application provides up to 15 constraint-permissions to
15 separate display areas, as depicted in Fig 12. By setting a context, access
to these dedicated display areas is granted to up to 15 different applications
at once. After each applications successfully created a window the application
revokes the granted permissions by setting back the context status. We call this
flat-granting of permissions.

In the second scenario, each of the 15 applications provides one constraint-
permission to part of its display area. The constrained-permissions are derived
from one display area where (except for the last) each application grants exactly
one application access to a subset of its display area, as depicted in Fig 13.
All granted constrained-permissions depend on the same context, i.e., if this
context is changed, all applications eventually need to get or cede their respective
window. We call this scenarios deep-granting of permissions.

7.2 Results

We measured the latencies ∆tget and ∆tcede for different numbers of affected
applications. The average latencies over 100 runs of the flat-granting and of the
deep-granting of permissions are depicted in Fig. 14 and Fig. 15. In addition, the
minimal and maximal latencies are depicted.

We observe, that the latency∆tget linearly depends on the number of affected
applications that get a new permission and create new windows. Even with 15
new application windows, the latency did not exceed 1 s in both evaluations.
Situations where many new windows are created occur only in mode changes
of big screen areas, e.g., if the rear-view camera needs to be switched off, or
the IC display switches from full-screen video playback back to driving mode.
Thus, the upper bound of 2 s (cf., [11]) applies and our implementation is always
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Fig. 14. Latencies of context changes affecting flatly granted permissions

Fig. 15. Latencies of context changes affecting in deeply granted permissions

fast enough. For situations of time-critical user interaction, typically only one
application gets a new permission which takes in our implementation up to 58 ms
at worst. This is below the 250 ms threshold. In case of sequential granting, the
upper bound of ceded permissions ∆tcede did not exceed 200 ms, thus staying
below the 250 ms threshold. Although flatly granted permissions exceed the
250 ms in case of more than 10 applications, but still stay below 1 s. Thus,
our measurement results indicate, that it is fast enough to fulfill automotive
requirements for a sufficient amount of applications.

8 Related Work

In [10] we presented an access control concept, a formal model for defining and
controlling the access to display areas to guarantee the safe and secure sharing
of displays. However, this concept is not aware of contexts, which leaves the
applications the complex task to detect combinations of distributed contexts
and change the access rights accordingly within tight latency constraints. Win-
dow compositing for virtual machines is target of some works (e.g., [8, 9, 12]).
However, they do not provide fine-grained access control and assume that the
user has full control over window placement which incompatible with automo-
tive requirements. Epstein addresses security issues in the X-server and proposes
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mechanisms [6] to prevent them. Again, the user controls compositing without
restrictions. For context-aware access control, there exists a plethora of work.
Schilit and Theimer [18] first introduced context-awareness and used context as
location, identities of nearby people and objects, and changes to those objects.
They focus on providing clients with information about located-objects and how
those objects change over time. However, they do not consider any access control.
The focus of [2, 14, 17, 19] is on role-based access control (RBAC) using contexts
to decide which roles are currently active and which according permissions are
valid. But either do they consider a system administrator to be responsible for
defining the applicable set of permissions for each context or do not provide del-
egation of access rights. Context-aware access control models which do not rely
on RBAC are using context information similar to roles in the access decision
process (e.g., [5], [4]). Since they do not provide hierarchically depending permis-
sions the access control prioritized usage of resources is not possible. Herges et al.
[13] introduced a generic access control framework which uses an access control
model based on context information, a trust model, and the concept of isolation
domains to cope with automotive related requirements for infotainment applica-
tions. However, they focus on the communication between the components using
messages. Our models are state-based systems similar to the Bell and LaPadula
model (BLP) [1] which also defines a state machine for enforcing access control.
BLP focuses on confidentiality of information and uses an access control matrix
for restricting access to data. However, the BLP does neither prevent concurrent
access nor allow flexible granting of permission by subjects.

9 Summary and Future Work

Sharing the available screen area between an increasing number of automotive
applications becomes more and more important. Due to automotive safety re-
quirements an appropriate access control system is required. Since the context
of the car or applications often determines whether the automotive requirements
are fulfilled or not it is an obvious evolution to use the context in the access deci-
sions of automotive HMI. In this paper, we present a context-aware access control
model that targets safety-critical automotive HMI systems. Our model provides
the ability to hierarchically grant access to display areas depending on the con-
texts of the car and applications and offers dynamic flexibility without compro-
mising on safety. This allows for guaranteed displaying of safety-critical appli-
cations and prevents intended or unintended presentation of driver-distracting
content while the vehicle is in motion. Our fully formalized model meets the
automotive safety requirements which can be formally proved using our defined
safety property. To demonstrate the feasibility of our concept we presented a
proof-of-concept implementation and evaluated it using an automotive scenario.
Our next steps will be the optimization of the graphics forwarding between vir-
tual machines to improve the rendering performance and a GPU scheduler that
meets the timing requirements of the safety-critical applications. Additionally,
we want to add a virtualized Android VM.
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