
On the Privacy of Frequently Visited User Locations
Zohaib Riaz, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems
University of Stuttgart, Germany

Email: {zohaib.riaz, frank.duerr, kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract—With the fast adoption of location-enabled devices,
Location-based Applications (LBAs) have become widely popular.
While LBAs enable highly useful concepts such as geo-social
networking, their use also raises serious privacy concerns as it
involves sharing of location data with non-trusted third parties. In
this respect, we propose an approach that protects the frequently
visited locations of users, e.g., a bar, against inferences from long-
term monitoring of their location data. Such inferences equate
a privacy leak as they reveal a user’s personal behavior and
interests to possibly malicious non-trusted parties.

To this end, we first present a study of a dataset of location
check-ins to show the existence of this threat among users of
LBAs. We then propose our approach to protect visit-frequency of
the users to different locations by distributing their location data
among multiple third-party Location Servers. This distribution
not only serves to avoid a single point of failure for privacy in our
system, it also allows the users to control which LBA accesses
what information about them. We also describe a number of
possible attacks against our privacy approach and evaluate them
on real-data from the check-ins dataset. Our results show that
our approach can effectively hide the frequent locations while
supporting good quality-of-service for the LBAs.

I. INTRODUCTION

With growing use of smart-phones, Location Based Appli-
cations (LBAs) have also thrived in the past decade. Not only
do LBAs benefit end-users by providing them with valuable
functionality such as location sharing with friends (e.g. via
Foursquare), they also enable the application providers to
generate revenue by translating the collected location data into
high-end services, such as real-time traffic information (e.g.
Waze).

However, sharing location data with third-party LBAs is
known to raise personal privacy concerns among users. Ob-
viously, a pair of geo-location coordinates may represent
significant private information when analyzed along with
contextual information, such as the publishing time and the
visited place type. Moreover, this context is not hard to acquire
given rapid increase in popularity of geo-social networks,
such as Foursquare (over 55 million users), where publishing
location equates to announcing presence at semantically well-
categorized, real-world venues, e.g., bars, restaurants, hos-
pitals, etc. Since users may frequently share their location,
explicitly or along with geo-tagged content such as tweets and
photos, an adversary could collect and analyze contextually
rich movement trails over time, and thus, can make undesired
inferences about users’ habits, interests, and inclinations etc.

While many works have offered to defend location privacy
in use of LBAs, protecting visits to sensitive semantic lo-

cations1, e.g., hospitals, has only been a recent focus [1]–
[3]. However, these approaches focus on avoiding privacy
breaches associated with individual visits only. We argue that
frequent visits to seemingly non-sensitive locations, e.g., a bar,
may also represent special personal behavior/interests, and if
unprotected, amount to a privacy leak. The underlying privacy
threat is well-described by the following observation made in
a United States court-case where a suspect was tracked using
a GPS device for a month by the police. The court ruled: “A
person who knows all of another’s travels can deduce whether
he is a weekly church goer, a heavy drinker, ...” and continuing
to finish with “... and not just one such fact about a person,
but all such facts.” [4].

Against the above motivated threat, we propose an approach
to avoid the uncontrolled release of users’ frequent semantic
locations to LBAs. We leverage the finding from works such
as [5] that users share their location differently with various
classes of audiences, e.g., friends, employers, etc. Therefore,
our approach allows users to define a set of representative
personas, i.e., portrayals of their personality, e.g., professional,
social, family, etc., which they wish to present to the various
LBAs. It then ensures that an LBA may only make those
inferences by analyzing a user’s location data stream which
match the traits represented by the shared persona. A naive
way to achieve this would be to fully deny an LBA the access
to any location context that does not match its persona. How-
ever, doing so reasonably leaks information to the LBA that
the user is hiding certain information. Instead, our approach
chooses to selectively share location updates with LBAs for
non-matching context such that they do not convey strong
user interest. Consequently, our approach allows a users to,
for example, appear “normal” to their employer albeit their
drinking habits, or avoid annoying ads even though they shop
frequently.

In designing our approach, we also account for another
important privacy threat that arises particularly in the use of
location sharing LBAs. These LBAs typically build upon a
back-end Location Server (LS), which manages user-reported
locations and implements access-control mechanisms to en-
force strictly authorized access to reported locations by LBAs.
However, we believe that trusting a third-party LS for location-
data security is naive since data-breach events at popular
data-houses where sensitive customer information is hacked,
leaked, or stolen are significantly prevalent [6]. Therefore, in

1semantic place-categories associated with venues, e.g., home, work etc.

riazzb
Typewriter
Published in Proceedings of the 17th International Conference on Mobile Data Management: MDM'16; Porto, Portugal, June 13-16, 2016
© IEEE 2016

our proposal, we store privacy-sensitive information on non-
trusted server infrastructures. To this end, we distribute a user’s
location data among multiple non-trusted LSs from different
providers. This distribution is done such that any LS stores
only a portion of the privacy-sensitive information to limit
the data revealed to an attacker if the server is compromised
(no single-point-of-failure with respect to privacy). Thus, it is
impossible for a single LS to build a precise profile of a user.

With many available back-end LS providers (cloud-based
as well as self-hosted), e.g., [7]–[10], we believe that our
proposal is highly practical. Moreover, as our approach does
not modify location data but rather only distributes it among
LSs, it can act as a lower layer for other privacy preserving
approaches such as obfuscation [1]–[3] for the protection of
individual visits.

Overall, our contributions are as follows. First, we establish
the relevance of protecting frequent locations to our daily lives
by studying a real-world dataset of location check-ins. Second,
we propose the first approach for protecting frequent user-
locations. Finally, we evaluate our approach on the check-in
dataset for the attained privacy for the users (against both, a
user’s location history-aware as well as a population’s location
history-aware adversary) and quality-of-service (QoS) for the
LBAs. Our results show that our approach not only disables
powerful attacks against protected frequent user locations, it
also supports good QoS for LBAs.

Discussions in the rest of the paper are organized as
follows. First, we introduce and study a dataset of location
check-ins to show the privacy threat of frequent locations. In
Sections III and IV, we present the system model and the
problem statement for our approach respectively. In Section V,
we explain our frequency-protection algorithm. Finally, before
our conclusion, we evaluate our algorithm for the attained
privacy and QoS in Sections VI and VII respectively.

II. EXPLORING THE DATASET

In order to study the relevance of the threat posed by
frequent locations in our daily lives, we analyzed a dataset
of check-ins, based on geo-tagged posts from Twitter’s public
feed, collected by Cheng et. al. [11] during a period of
5 months from late September 2010 till Jan 2011. In this
section, we will discuss our pre-processing of the data as well
as provide the evidence of prevalence of frequent locations
among a large number of users in the dataset.

A. The Dataset and its Pre-processing

Overall, the dataset consists of 22, 506, 721 check-in en-
tries from 225, 098 users. Apart from user IDs and latitude-
longitude pairs, each entry also contains tweet text and a
venue-ID. A high percentage of check-ins (53%) were from
users who had linked their Foursquare accounts to Twitter.
From these, we selected a subset of 10, 306 users who had
a minimum of 1 check-in per day and a total reporting time
spanning at least 30 days. These users were selected from
across the United States, to where 36% of all Foursquare users

in the dataset belong, to increase our chances of finding a
semantically-labeled venue for their check-ins at Foursquare.

To acquire semantic labels for the check-ins, we used
Foursquare’s free API [12]. However, we simplified their
elaborate hierarchy of semantic labels to obtain a high level set
of semantic locations, as shown in Figure 1. These high-level
semantic locations (referred as locations for the rest of paper)
were intended to be intuitively linkable to users’ personality
traits. Moreover, we ignore check-ins at user residences as
this information does not represent user’s interests. Similarly,
check-ins at Professional Places and Education institutions are
also ignored unless they represent special user-behavior, e.g.,
check-ins at work-place after 6 pm.

After the above filtering of uninteresting check-ins, we were
left with an average of 141 check-ins and a reporting period
of 114 days per user. For the rest of the document, we will
refer to these users as the population.

B. Evidence of threat

For identifying frequent user locations, we want to de-
termine whether a user’s visit-frequency to a location is
abnormally high compared to other users in the population.
To this end, we rely on the notion of Percentile Rank (PR).
Given a dataset of single attribute values X = {x1, ..., xn},
the percentile rank of a particular value xi in the dataset
determines the percentage of dataset values which are less
than or equal to xi.

For each user uj in the population U , we summarize all
of their check-ins to the set of semantic locations, S =
{s1, ..., s14}, from Fig. 1, into a set of visit-frequencies as:

fuj = {fuj
s1 , ..., f

uj
s14} (1)

Next, we determine their frequency-rank profile as:

ruj = {ruj
s1 , ..., r

uj
s14} (2)

where each entry ruj
si represents percentile rank of fuj

si among
non-zero frequencies of other users in U to the semantic
location si. Given the frequency-rank profile of uj , we can
now determine the set of locations, C ⊂ S, which the user
visits more frequently than a certain proportion, thcrtl, of the
population, i.e.:

C = {c1, ..., cn} s.t. ci ∈ S ∧ ruj
ci > thcrtl (3)

For the rest of the paper, we term all frequent locations in set
C as user’s critical locations. Similarly, the threshold thcrtl

Fig. 1. The high-level semantic locations S from our check-ins dataset.

is called the criticality threshold and represents a user-tunable
parameter in our protection algorithm.

Following the above described steps, we determine the
critical locations of all users in U . Figure 2 shows the
histogram of number of critical locations found per user when
criticality threshold is set to 90 and 80. Note that even with
thcrtl as high as 90, approximately 4000 users have one,
and around 1500 users have two critical locations. The plot
of cumulative percentage, on the other hand, shows that at
thcrtl = 90, only 40%, and at thcrtl = 80, only 16% of
the population do not have any critical location. Also note
that the mass of the frequency-distributions shifts to the right
when thcrtl is changed from 90 to 80 because more users have
visit-frequencies ranking higher than 80% of the population.
In short, Fig. 2 shows that the population exhibits significant
prevalence of critical locations, even with values of criticality
threshold as high as 80 and 90.

Figure 3(a) also shows actual visit frequencies at various
percentiles in our population for all locations in S. Note,
for example, that while 10 trips per month equate 70th
percentile in “Shop & Service” category, only 7 trips are
enough to reach the 95th percentile for “Medical Center”.
Alternatively, in part (b) of Fig. 3, we plot the cumulative
distribution of users against visit-frequencies for a subset of
locations in S. Note that the cumulative proportion on the y-
axis of the figure is equivalent to the percentile rank of the
corresponding frequency on the x-axis. This figure suggests
even more evidently that each location has a characteristic
cumulative distribution function (CDF) of percentile ranks
over visit frequencies which naturally makes them differently
sensitive to a given visiting-frequency value (see the various
percentiles at 10 visits/month in Fig. 3(b)).

From the above study, it can be generally concluded that
high-visit frequencies expose users to easy inference about
their interests by placing them in top ranks among the popu-
lation. Consequentially, we will describe our proposal against
such inference in the next section which aims to protect the
critical user locations. Note that for the rest of the paper,
we assume that the characteristic CDFs of locations in S,
as seen above in Fig. 3(b), are publicly known and thus,
are available as functions of the visit-frequency parameter to
our algorithm as well as the adversary. This is a reasonable
assumption since these CDFs are intuitively easy to understand
and verify, and may be obtained from a dataset like ours
or by conducting a public survey. Moreover, these CDFs,
as functions of visit-frequency, depict an aggregate behavior
of the population and thus, do not convey information about
particular users. Similar assumptions about the availability of
various aggregated characteristics of locations are common
in the location privacy literature such as knowledge of place
popularities in [1], [13] and staying durations in [2].

Thus, for a given location category si, our algorithm as
well as an adversary may determine the rank r of a certain
visit-frequency value f and vice versa as follows:

r = CDFsi(f) ∗ 100 and f = CDF−1
si (r/100) (4)

Fig. 2. Distributions of number of critical locations among the users in the
dataset for criticality threshold of 90 and 80.

Fig. 3. (a) Monthly visit-frequencies for semantic locations at various
percentiles in our dataset. (b) Cumulative distribution of users (equivalent to
percentile ranks) against visit-frequencies for a subset of locations in S. Note
that a given frequency value implies different percentile ranks for different
locations.

III. SYSTEM MODEL

For our approach, the system comprises three components,
namely: the mobile device, the Location Servers (LSs), and
the Location-Based Applications (LBAs).

The mobile device is capable of determining its location
using positioning technologies such as GPS. It runs our trusted
Location-Privacy (LP) system service which has exclusive
access to the captured location data. The LP-service performs
location updates to the LSs as governed by our visit-frequency
protection algorithm. Note that in our system location updates
are user-triggered only, i.e., the LP-service does not update
the user location autonomously. Moreover, the LP-service
requires to know the underlying location semantics for each
update. To this end, we assume that the LP-service can access
an (offline) map of places which extends to, at least, the
regions of the user’s daily movement. We also assume that
the communication channel between the mobile device and
the LSs is secure.

In our system, Location Servers (LSs) are provided by dif-
ferent non-trusted providers and are responsible for managing
the user location updates. For instance, LSs could be provided
by different self-hosted [10] or cloud-based providers [7]–
[9]. Using multiple such non-trusted LSs, we implement a
distributed location service. For each user, the LP-service
distributes their location updates among (n + 1) LSs where
n is a user-defined parameter. Moreover, the LSs implement
access-control mechanisms for enabling authorized access to a
user’s location data by the LBAs. While the LBAs query about

a user’s latest location update only, we assume that the LSs
may store the past location updates received from all users,
e.g., for data-mining purposes. Therefore, data-breaches at the
LSs pose a privacy threat. Furthermore, since the LS providers
are not trusted, we assume that they may collude with each
other to undermine user privacy.

Finally, the LP-service allows the user to define personas,
e.g., work, family, social, etc., and assign them to different Lo-
cation Based Applications (LBAs). Based on these personas,
our LP-service specifies, for each LS, those LBAs which are
allowed to access the user’s data. Therefore, LBAs acquire the
user’s last updated location by querying their accessible LSs.

IV. PROBLEM STATEMENT

We now formally define the requirements from our (visit-)
frequency protection algorithm for ensuring privacy of critical
user locations.

The goal of our algorithm is to ensure that location data
shared with any LBA matches its user-assigned persona. If a
user’s critical locations are not part of the assigned-persona,
then the LBA in question should not be able to infer from the
location data, shared over long period of time, that the user
visits these locations with high frequency.

More precisely, a persona Pi ∈ P comprises a subset of
those semantic locations from S (see Fig.1) for which the user
feels comfortable to share location data in full with the LBAs
irrespective of whether these locations are critical or not. The
complement set P ′i , however, represents those locations from
S which should be protected if critical, i.e., if the user’s visit-
frequency for these locations is higher than the user-defined
criticality threshold thcrtl (see Eq. 3).
Functional Requirement: Formally, an LBA with persona Pi

may build an observed frequency-profile fobs of the user by
aggregating their accessible location updates. From fobs, the
LBA determines the set of observed critical locations Cobs.
Given the set of the user’s actual critical locations Cu, the
functional requirement from our algorithm is:

Cobs

⋂
(P ′i ∩Cu) = ∅ (5)

In words, the observed critical locations should not contain
any critical location which was left out in the persona Pi.
Adversary Model: In our system, a “weak” adversary may
take the role of an LBA that combines location informa-
tion from their authorized LSs (access-rights granted by LP-
service) as well as from any compromised/colluding LSs. We
also assume that the weak adversary knows our algorithm,
the number of total critical locations of the user n, and the
set value of criticality threshold thcrtl. Moreover, “strong”
adversaries may possess additional auxiliary attack knowledge
which we will gradually introduce in the next two sections
for ease of readability. In general, the adversary may use their
knowledge to perform probabilistic attacks for determining the
still unknown critical locations of the user against which we
define the following requirement.
Privacy Requirement: Assume a user u who visits a total of

m ≤ |S| different semantic locations out of which n ≤ m
are critical, i.e., |Cu| = n. If an adversary already knows
k < n critical locations, then their attack probability Pattack

of finding the remaining (n− k) critical locations should not
exceed the probability of random selection αrand:

Pattack(k) ≤ αrand(k) where αrand(k) =
(n− k)

(m− k)
(6)

In other words, the prior knowledge of k critical locations
should not help the adversary to distinguish the still unknown
critical among the remaining (m− k) user locations.

In order to protect the critical locations, our algorithm
hides a portion of location updates from the LBAs. However,
this might reduce their Quality of Service (QoS). Therefore,
another design consideration for our algorithm is to maximize
the QoS for the LBAs, i.e., by hiding minimal number of
location updates from the LBAs while still ensuring privacy
for critical locations. Accordingly, we quantify QoS as the
average proportion of the all location updates of the user that
are shared with the LBAs.

V. THE FREQUENCY PROTECTION ALGORITHM

In this section, we present two versions of our visit-
frequency protection approach, namely, a basic and an ad-
vanced version, which differ in the considered adversary
knowledge. As the name implies, the basic version is designed
against the weak adversary mentioned in Section IV.

A. Overview of the Basic Algorithm

The fundamental idea of our privacy approach is that each of
the n LSs, denoted as, LSi ∈ LS1..n, only stores a limited set
of location visits that, if aggregated into a frequency profile,
can only reveal a small number of (without loss of generality
in our case exactly one) critical locations. Thus, compromising
one LS out of LS1..n will only reveal a user profile with ex-
actly one critical location instead of the complete and precise
user profile with all critical locations. Consequently, no LS is
a single point of failure in terms of privacy. Moreover, one LS,
denoted as LS0, stores a completely safe profile that does not
reveal any critical information. This safe profile can be refined
selectively by adding information from other LSs from LS1..n.
Therefore, in our system, all LBAs are allowed to access LS0.
By additionally granting the LBAs access rights to certain
LSs from LS1..n, the LP-service can give individual LBAs
access to certain critical locations which are permitted by their
persona without revealing other critical profile information. In
this way, our algorithm can meet the functional requirement in
Eq. 5. For an adversary, getting access to the complete profile
is very hard since this would require to compromise all LSs.
Moreover, the approach implements “graceful degradation of
privacy”: the number of critical locations revealed increases
linearly with the number of compromised LS.

More precisely, for a user’s critical location ci ∈ Cu, our
algorithm protects the actual visit-frequency by distributing
its visits among LS0 and LSi, such that the visits at LS0

alone do not reveal ci as critical. As an example, Fig. 4

Fig. 4. Left half: the actual frequency (top) and rank profiles (bottom) of
the user. From the rank-profile, Food and Nightlife are critical locations given
thcrtl = 70. Right half: the rank-profiles after distribution of location data
on 3 LSs by our algorithm.

shows on the left the actual frequency-profile of a hypothetical
user. Having set thcrtl = 70, their actual rank-profile, given
underneath the frequency-profile, shows that the user has two
critical locations, namely Food and Nightlife. When using our
algorithm, the resulting inferred rank-profiles of the user at
the LSs are shown on the right half of the figure. While LS0

sees all user locations, it cannot determine anyone of them as
critical, i.e., the user profile is safe. As for LS1 and LS2, they
can at most determine one critical location from its rank.

Generally, it can be seen, as shown by this example, that
by accessing at least LS0, all LBAs can acquire a significant
proportion of user’s location data thus promising high average
QoS. Moreover, since a high number of users in our dataset
have few critical locations (upto three for almost 90% of users
for thcrtl = 80 in Fig. 2), we believe that two to four LSs
suffice for most users (one LS per critical location and one LS
for the safe user profile). Nevertheless in Section VIII, we also
discuss the special case where the number of critical locations
of a user exceed the number of available LSs.

Next, we first discuss how our algorithm, while running on
any single user’s device, performs a one-time determination
of the user’s set of critical locations Cu, and later, the steps
taken to ensure their protection.

B. Determination of a user’s critical locations

For determining the critical location set Cu, our algorithm
first performs continuous background monitoring of the user’s
visited locations for a short period of time, e.g., a week or two
(during which no location updates are published). Note that
such prior background monitoring is a popular requirement for
all state-of-the-art privacy-preserving approaches that model
user mobility with, for example, Markov chains, prior location
distributions, etc. such as [3], [14], [15]. At the end of the
monitoring period, our algorithm uses the logged visits to
first approximate the actual visit-frequency profile fa of the

user (see Eq. 1). Then, the corresponding rank-profile ra for
this frequency-profile is determined by computing the rank
of each individual visit-frequency in fa using Eq. 4. Since
Eq. 4 exploits the publicly known characteristic CDFs of
the semantic locations for rank determination (as discussed
in Section II-B), the rank-profile can be computed indepen-
dently on the user’s device, i.e., without requiring any real-
time aggregation of visit-frequencies of other users. With the
computed rank-profile ra, the set Cu of critical locations
of the user is determined as per the user-specified value of
criticality-threshold thcrtl (see Eq. 3).

C. The Basic Algorithm

With the critical locations set Cu of the user known to our
algorithm, we now explain its basic execution.

Since LS0 is meant to hold a completely safe user profile
(not revealing any critical locations), our algorithm needs to
publish the user trips to each critical location ci ∈ Cu at a
reduced frequency to LS0. The remaining trips for each ci are
then published to its corresponding LSi.

To this end, our algorithm modifies the user’s actual rank-
profile ra into a desired rank-profile rd where the ranks
of critical locations are reduced to lie below the criticality
threshold thcrtl. Note here that the method used to compute
rd can pose a privacy risk. Considering Fig. 4 again for
an example, let us first assume the case that our algorithm
decides for both critical locations (Food and Nightlife), a
desired rank of 70. Although, this value of desired rank is
safe (≤ thcrtl = 70), it invites attack from the adversary who
can infer critical locations as the ones closest in rank to thcrtl.
More generally, if the method used to determine the desired
ranks is deterministic, the adversary can, by knowledge of our
algorithm, find out all critical locations of the user.

Therefore, our algorithm selects for each ci ∈ Cu the
desired ranks rd in a non-deterministic, random fashion. To
be more precise, it sorts the frequency-ranks of non-critical
locations to form the set rnc. Then, it randomly selects a
consecutive pair of ranks from the union {0 ∪ rnc ∪ thcrtl},
as the range over which to randomly select the rank for
ci. Against the determined set rd, we also calculate the
corresponding set of desired frequencies fd using the notion
of inverse percentile.

For performing user-triggered location updates during exe-
cution, our algorithm (see Algorithm 1) always publishes non-

Algorithm 1 Perform user-triggered location update
1: procedure PERFORM LOCATION UPDATE
2: (lt, st)← Get Location And Its Semantics()
3: if st ∈ Cu AND Rand()> fdst/f

a
st then

4: Update: lt → LSi . since st = ci
5: else
6: Update: lt → LS0

7: end if
8: Schedule Fake Events() . for Advanced Algorithm
9: end procedure

critical visits to LS0. As for the visits to critical locations ci,
LS0 is updated with a probability of fdci/f

a
ci , i.e., with the

ratio of desired to actual visit frequency of user to ci. The
remaining visits for ci are published to LSi.

From the perspective of the LBAs, they may acquire a user’s
last updated location from their authorized LSs in two ways,
i.e., by subscribing at these LSs for location notifications,
or, by querying them explicitly. In the later case, each LS
replies with its last received location update. The LBA can
then determine the latest among the received location updates
by comparing their time stamps.

D. The Advanced Algorithm

The advanced algorithm extends the basic one against
“strong” adversaries. Particularly, these adversaries, in the role
of malicious LBAs running on a user’s device, can also sniff
the communication channel used by our LP-service. While
the communication content, i.e., the location data, is protected
by encryption, such an adversary is, nevertheless, able to
determine the time and the destination LS for all location
updates. Note that this capability is realistic since LBAs that
monitor network traffic statistics of other LBAs already exist,
e.g., the “Network Connections” app for Android.

For finding the critical locations, the adversary is most in-
terested in the critical location updates that are sent to LS1...n.
To limit attack possibilities however, our algorithm hides the
destination LS for critical updates by performing a uniform
update, i.e., by sending syntactically similar messages with
fake data to the rest of LSs among LS1...n. Note that while
these fake messages do not corrupt actual location data at the
LSs (are identified and discarded), they disable the adversary
from knowing which inaccessible LS actually received the
location update since a message is sent to all of them.

As our protection algorithm runs, the adversary aggre-
gates the location update history of the user as a stream,
H = {ot1 , ot2 , et3 , ot4 , et5 , ot6 , ...}, comprising observable
events otj ∈ O and unobservable events etj ∈ E. For an
adversary Advk that can access k LSs and LS0, observable
events otj are those which are published at these LSs. In
contrast, unobservable events etj are location updates for those
(n − k) critical locations which are published to the rest of
the LSs. However, since Advk knows the update times for all
ei ∈ E, they may attempt to identify user’s critical locations.
We analyze this attack and then discuss the corresponding
defense offered by our algorithm.
Attack: At first, Advk builds a mobility model Ω from
observable events O. Using Ω, Advk may attempt to identify
the actual visited semantic location si represented by an
unobservable event et at time t by maximizing the conditional
probability P (si|et,Ω) over si ∈ S. By Bayes’ rule:

P (si|et,Ω) =
P (et|si,Ω)P (si|Ω)

P (et|Ω)
(7)

Ignoring the denominator, which is same for all locations,
Advk’s goal is to maximize the numerator, i.e., the product
of the likelihood P (et|si,Ω) and prior P (si|Ω) over S.

Considering first the prior P (si|Ω), it represents the total
probability of visiting si compared to all locations in S
according to Ω. Since Advk computes Ω from events in O
only, the computation of prior is erroneous as the number of
events in O for critical locations are artificially reduced by our
algorithm. In Fig. 4 for example, from LS0, the approximated
prior for Nightlife would turn out to be small relative to all
other locations due to severe clipping of its frequency.

As for the likelihood term P (et|si,Ω), it represents the
probability of visiting si at time t (e.g., particular hour of
day) compared to all other times as per Ω. Unlike the prior,
whose computation depends heavily on information about
other locations in S, the likelihood is a relatively intrinsic
probability distribution for each location si. Therefore, it
can be approximated correctly by the adversary, even for
critical locations, by accessing LS0 only. For example, if a
user shops more frequently on Saturdays, then this trend is
kept intact even after a proportion of all shopping trips are
probabilistically hidden by our algorithm.

Although the prior P (si|Ω) is erroneous, the likelihood term
may still be informative to the adversary Advk. For instance,
with Ω representing visit-time distributions over S, events
eday,hour may be correctly identified as trips to a particular
location sj since no other location is visited by user at
t = {day, hour}, e.g., only church visits every Sunday noon.
For Ω modeling correlated location updates with a Markov
chain, the same scenario may occur if sj is uniquely visited
after another location, e.g., only visiting shopping centers
after visiting an ATM. As a general conclusion, the mobility
model Ω can increase adversary’s knowledge of user’s critical
locations by narrowing down their search space to only a
subset of locations S′ ⊂ S for which likelihoods are non-
zero for event et. This attack can, therefore, increase attack
probability Pattack(k) for the adversary to a value more than
the probability of random selection αrand(k) (see Eq. 6).
Defense: To prevent the above attack, our algorithm must
ensure that the nature of a location si being critical or not
is independent of the set of events E seen by the adversary.
Enforcing this independence implies that all locations of the
user, apart from the already known critical ones, are equally
likely candidates for the unknown critical locations, thus,
conforming to the probability αrand(k) in Eq. 6.

To implemet the above requirement, our algorithm generates
an additional fake set of unobservable events E′ for each
visited location si such that si appears critical to the adversary,
even if it is non-critical. More precisely, the sum of actual
and fake events for each location amount to a frequency-rank
which is equivalent to the maximum rank rmax in user’s rank-
profile. Like events in E, all e′t ∈ E′ are uniform updates,
although fake. This means that none of the messages sent to
the LSs for each event e′t contain any real location update.
Note that the adversaries cannot syntactically differentiate
between a real or fake unobserved event. To generate E′,
the function “Schedule Fake Events” (see Algorithm 2) is
called after every user-triggered update (see Algorithm 1)
or previously scheduled fake update (see Algorithm 3). This

Algorithm 2 Schedule fake update events
1: procedure SCHEDULE FAKE EVENTS
2: Update Ω, fa, ra, ffake

3: f∆ ← Get Fake Frequency Profile(fa, ffake, ra)
4: ∀si∈S : tnext ←SampleP (t|si,Ω) for t ∈ (tnow, 2T]
5: ∀si∈S : Enqueue Scheduled Event (si, tnext)
6: end procedure

Algorithm 3 Generate fake update events
1: procedure GENERATE FAKE EVENT
2: Uniform Update “fake” → LS1...n

3: Schedule Fake Events()
4: end procedure

function first determines the delta frequency f∆ representing
the number of fake uniform update events for each location si
that still need to be published in order to make si appear
critical. This is achieved by subtracting the user’s actual
frequency fa and current fake event frequency ffake from the
required fake frequency freq. Here freq represents frequency
to each location si corresponding to the maximum rank rmax

in user’s rank profile. Next, the “Schedule Fake Events”
function schedules the next fake event e′next for each location
si with frequency f∆

si ∈ f∆. With time-period T = 1/f∆
si ,

it schedules e′next at time tnext, with respect to current time
tnow, in the time range (tnow, tnow + 2T]. More specifically,
tnext is sampled in the range t ∈ (tnow, tnow + 2T] using
normalized likelihood P (t|si,Ω) as the sampling probability.
Consequentially, the timings of fake events in E′ for all loca-
tions si comply with adversary’s mobility model of the user Ω,
thus making them indistinguishable from actual unobservable
events for si in E.

Note that, for our algorithm, computing the likelihood
P (t|si,Ω) is straightforward. For instance, with Ω being
temporal distribution of visits to si, the likelihood can be
computed by normalizing visit counts over hours in a week.
Moreover, for modeling all adversaries Advk, with k ∈ [1, n],
it suffices for our algorithm to compute these likelihoods (and
Ω) from observable events at LS0 only since Advk∈[1,n] also
learn likelihoods for unknown critical locations from LS0.

VI. SECURITY ANALYSIS

In our system, the adversary Advk attacks user’s location
data, for determining their critical locations, in two fundamen-
tal forms: (1) as the user’s update history H , (2) as observed
frequency profile fobs in comparison with frequency profiles
of other users in the population. Note that the later form
of attack knowledge, i.e., the adversary’s awareness of other
users’ movement behavior, is ignored by most existing location
privacy mechanisms.

As for the attacks based on the update history H , we have
shown, in the previous section, that our algorithm guarantees
privacy against them. In this regard, our algorithm limits the
number of observable events O ∈ H for the adversary (cf.
Section V-C) as well as corrupts the unobservable events E ∈

H by addition of fake ones (cf. Section V-D). However, this
privacy guarantee incurs additional communication overhead,
due to generation of fake events as evaluated in Section VII-A.

Considering now the second form of attack, we wish to
answer the following question: Can Advk identify the critical
locations in the user’s observed profile fobs by their general
knowledge of the frequency-profiles from other users? Note
that for this attack, we are assuming that the strong adversary
additionally possesses a large dataset of location check-ins
like ours. Based on this auxiliary knowledge, Advk may for
example know that, in general, people who often visit shopping
centers also visit food places frequently. Then if a user’s
observed profile fobs only satisfies the first part of this relation,
then Advk has reason to believe that food places are this
user’s critical location. Analyzing the strength of this kind of
attack requires its formulation as a machine-learning problem
where a learner can educate itself about the correlations in the
visit-frequencies of different locations by analyzing frequency-
profiles from many users. Then, it can possibly predict critical
locations for an unseen user from their observed profile fobs.
Next, we show the detailed formulation of this attack and
evaluate its strength on our check-in dataset.
Machine-learning based attacks: To simplify the following
explanation, we assume a target user with observed frequency-
profile, fobs,n=1, where only one visited location is critical.
The goal of the adversary is to identify this unknown critical
location from fobs,n=1. In this regard, the adversary may pur-
sue two representative methodologies from machine learning,
namely, Classification and Regression. However, due to space
limitation, we will only discuss classification here. A thorough
analysis with regression can be found in [16].

To perform the attack, the adversary attempts to learn a
classifier which identifies the correct critical location given
an observed frequency profile. Such a classifier needs to be
trained on example observed-profiles from many other users
where exactly one critical location is protected by our algo-
rithm (supervised-learning). More specifically, each observed
profile fobs,n=1 and its corresponding critical location si
form a training example. During training, the classification
algorithm learns to distinguish between observed profiles for
different critical locations in S. Thus, after training, the
classifier can be used to predict the critical location for a given,
previously unseen, observed profile.

However, as described in Section V-C, our algorithm modi-
fies the observed frequencies for critical locations in a random
fashion. By this, it obfuscates correlations in frequencies of
different locations, which obviously degrades the predictability
of these frequencies. Our evaluations below show that existing
machine learning techniques cannot predict frequencies with
a sufficiently high accuracy due to this obfuscation.

For our experiments, we applied our frequency-protection
algorithm (c.f. Section V) to protect the frequency profiles
of 3539 users in our check-in dataset who had exactly one
critical location (n = 1). From these users, we created a
training-dataset where their protected frequency-profiles and
the corresponding actual critical location formed the training

Fig. 5. Confusion Matrix for the Random Forest Classifier. Note the high
prediction accuracy of classification (87%) for the non-critical frequency-
profiles in the left-bottom corner of the matrix.

examples. We trained and tested two popular classification
algorithms on this dataset, a multi-class Random Forest clas-
sifier (RF) and a Support-Vector Machine (SVM). While RF
classifier performs prediction based on an ensemble of learned
decision-trees, the SVM attempts to project the input data
into a higher dimensional space where different classes in
the data are easily separable. Both the algorithms are known
for their good classification performance [17]. However, our
best tuned versions of both classifiers (RF: 5000 decision-
trees with 5 variables tried per tree-splits, SVM: radial kernel,
cost= 50, gamma= 0.005, 10-fold cross-validation, class
imbalance taken into account for both RF and SVM) resulted
in a similar, but low overall classification accuracy of 25%.

A possible reason for this low identification rate of critical
locations from observed profiles could be the wrong choice
of RF and SVM classifiers for modeling the correlations
in the frequency-profile data. To examine this possibility,
we performed another experiment where the above created
dataset was appended with frequency profiles of those users
who did not have any critical locations. For these users, the
corresponding output label of “non-critical” was used. After
re-training the RF and SVM classifiers on the modified dataset,
the classification accuracy of both classifiers turned out to be
similarly high for the “non-critical” class (∼ 87%) whereas
the classification accuracy for identifying critical locations
was again low, i.e., 22%. This result asserts that while the
RF and SVM classifiers are actually well-suited to identify
the frequency correlations in the unchanged data, the random
modification of visit-frequencies for critical locations by our
algorithm results in their poor predictability for the adversary.

The detailed confusion matrix for this evaluation is shown

Fig. 6. Number of fake update events per day (left) and maximum frequency
ranks (right) vs. n (number of user’s critical locations)

in Fig. 5. Here, the diagonal entries give the classification
accuracy of each class. Apart from the “non-critical” class, all
classes have at most 39% accurate predictions. Therefore, an
adversary cannot use a classification attack to detect critical
locations from the observed user profiles.

VII. EVALUATION OF COMMUNICATION COST AND QOS

For evaluations of communication cost and QoS, we chose
a select set of 1228 long-history users from 10306 users in our
check-in dataset who had more than 250 check-ins. We now
present the results of application of our frequency-protection
algorithm on the location histories of these users while setting
the criticality threshold thcrtl to 80 and allowing a maximum
of 5 critical locations.

A. Communication Cost

As discussed in Section V-D, our algorithm generates fake
unobservable events e′t ∈ E′ for avoiding attacks based on
location update history H . For each user, we quantify the
communication cost as the fake-event rate, i.e., number of
fake events that were generated per day by our algorithm.
In our evaluations, we use visit-time distributions as users’
mobility model since check-ins from users were, on-average,
infrequent (less than 2 a day). Figure 6 shows the results. The
left half of the figure shows the boxplot of fake-event rate
for users with varying number of total critical locations n. As
n increases from 1 to 5, the fake-event rate increases almost
linearly from a median of 1 to 2 events per day. This increase is
explained by the distribution of maximum rank rmax values in
user-rank profiles (see right half of Fig. 6). With more critical
locations (increasing n), the chances of having a higher value
of maximum rank rmax also rise. Therefore, correspondingly
greater number of fake events are generated for each location
to appear at the rank rmax. However, the overall low fake event
rate of 1−2 events per day for users in our dataset represents
an affordable price for the privacy guarantee against the update
history based attacks presented in Section V-D.

B. Quality of Service (QoS) for LBAs

For quantifying QoS, we evaluate the proportion of location
updates that are still accessible to the LBAs when access to k
out of (n+ 1) LSs is denied. Note that k = n, i.e., only one

Fig. 7. QoS (proportion of accessible location updates) vs. k (number of LSs
out of n to which access is denied).

accessible LS out of n, always implies access to LS0 in our
scenario since any LBA can be given access to LS0 without
revealing any critical location.

For each user, we computed the average proportion of
accessible updates over all combinations of n − k accessible
LSs for k ∈ [1, (n − 1)]. Figure 7 shows the achieved QoS
for all users grouped by n, i.e., the total number of critical
locations. For all values of n in general, it can be seen that
for lower values of k (1 and 2), LBAs are still informed about
∼ 80% and ∼ 70% of the location updates, respectively, for
the majority of the population. With increasing values of k,
however, the LBAs get to access less and less of all location
updates thus highlighting the tradeoff between achievable QoS
and the privacy of critical locations. However, since a high
proportion of the population users had 2 or less total critical
locations (see Fig. 2), we believe that the QoS for LBAs used
by most of the population would be high.

VIII. THE CASE OF LIMITED NUMBER OF LSS

We now briefly discuss how our approach may be extended
to handle the case where the number of critical locations of
a user exceed the number of available LSs. In such a case,
some of the critical locations of a user remain unprotected. We
propose two solutions to address this problem. While both of
our solutions meet the privacy requirement of implementing
user-defined personas (see Eq. 5), they differ in whether a
single LS is allowed to learn about more than one critical
location of the user or not.
LSs may learn more than one critical location: For pro-
tecting the remaining critical locations of a user, this solution
allows the publishing of more than one critical location per
LS. By exploiting the access control mechanisms that are
implemented by the LSs, fine-grained access to the critical
locations stored on the same LS can be defined for different
LBAs. Thus the user-defined personas for the LBAs can be
fully implemented as per Eq. 5.

The drawback of this solution, however, is that an LS
may give up more than one critical location of the user to
the adversary if it is malicious or is compromised. The next
solution aims to avoid this problem.
LSs learn at most a single critical location: Similar to
the first solution, this solution also publishes multiple critical

locations at the LSs to accommodate for high number of
critical locations of the user. However, we require that the user
publishes at most one critical location per LS per user-identity.
Consequentially, a user must possess distinct fake identities
(one per critical location stored on the LS) and that these
identities are shared with the LBAs in order to allow them to
access some or all of the user data. Note that in this case, the
LS may be able to correlate two fake-ids of a user by matching
the network-based identifiers, such as IP address, from the
communication channel. Therefore, we assume that the mobile
device communicates with the LSs using an anonymization
service such as Tor [18]. Note that this assumption does not
disable the location-update timing based attacks discussed in
Section V-D since the adversary can still observe the timing
of the outgoing updates from our LP-service. Therefore, the
defense proposed in Section V-D is still necessary.

It may apparently seem that by using distinct fake-ids for
all critical locations and the safe-profile, a user can place all
of their location data at a single LS without any privacy threat.
However, this reasoning has a serious pitfall. An LS can easily
correlate the fake-ids of the critical locations to that of the safe-
profile by matching the visited venues in the critical visits to
the venues in the safe-profile. This necessitates that the safe-
profile should be stored on a separate LS where no critical
location is stored. Note that this venue-correlation attack
cannot be directly applied to two or more critical locations that
are stored on the same LS because the venues of these critical
locations are different from each other since they belong
to different semantic categories. Thus it is possible to store
multiple critical locations at a single LS. However, to mitigate
any correlation attacks that may be possible within a single LS
and to increase the robustness against colluding/compromised
LSs, data of critical locations should be distributed among the
maximum number of available LSs.

IX. RELATED WORK

Uptil today, location privacy has received a lot of attention
from the research community as surveyed in [19]. However,
we limit our discussion to those approaches which take loca-
tion semantics into account for privacy preservation.

Most schemes offering semantic location privacy build upon
the idea of location obfuscation [20]. In its basic form,
obfuscation replaces the actual location to be shared with an
LBA by a region whose size determines the tradeoff between
privacy and quality of service. Building on top of the region-
size privacy metric, later works also include a number of
semantically heterogeneous locations, e.g., school, shopping
center, etc., inside the obfuscation region to hide the actual
semantic context from the adversary [2], [21]. To incorporate
personalization, Damiani et al. [1] propose a probabilistic
model of space for the generation of obfuscation regions which
respect user preferences regarding their sensitive semantic
locations. Their approach ensures that the probability of the
actual user location lying inside a sensitive place is limited
to under a desired level relative to the total probability of
being located inside the whole obfuscation region. Yigitoglu

et al. [13] extend this model to an urban setting with road-
network and represent location probabilities inside a region
by relative popularities of actual venues.

While still protecting individual visits only, other works
also consider adversary’s knowledge of user’s location update
history [3], [14], [15]. These approaches model user mobility
as Markov chains, and for protecting privacy, either obfuscate
the sensitive locations [14] or replace them with dummy
locations [15].

However, the above privacy mechanisms are unsuitable for
the protection of visit-frequency information. For instance,
obfuscating frequent trips may still allow an adversary to
estimate the user’s visit-frequency to different regions on the
map. Consequentially, if highly frequented regions are not
sufficiently heterogeneous in terms of location semantics, e.g.,
a shopping district, the adversary may be able to identify
user’s critical locations. In general, obfuscation approaches
can also be attacked by techniques related to automatic se-
mantic labeling of user visits such as [22]. Using machine-
learning, these techniques exploit the contextual information,
such as visit timings, nearby businesses, etc., to identify the
actual visited semantic location. In contrast, our approach
blocks out any contextual information about critical visits
by publishing them to those LSs for which the adversary
does not have access authorization. Moreover, by explicit
inclusion of multiple non-trusted LSs in the system model,
our approach mitigates the threat of a single point of failure
for privacy under data-breaches. In this regard, our work is
similar to that of [23]. However, their work also protects
single location updates only while not considering location
semantics or visit-frequency information. Finally, the problem
of hiding individual visit-frequency statistics has also been
addressed in offline publishing of check-in history statistics,
e.g., for venue recommendations [24], [25]. These works
require trusted servers for their implementations and cannot
be used for online location sharing.

X. CONCLUSION

In this paper, we have presented a new attack to user privacy
based on the analysis of visiting frequencies of location traces.
By analyzing real data, we have shown that an attacker can
derive user profiles including private information like their
interests from such traces. To counter such attacks, we have
proposed an approach that hides critical information from at-
tackers including malicious location servers and location-based
applications. Our evaluations show that our approach hides
critical information successfully while preserving sufficient
quality of information for the location-based applications.

For future, one possible extension of our work is to consider
additional contextual information than just location for hiding
users’ interests. This may especially be beneficial in the geo-
social networking scenario where user’s posts may contain
frequent mentions of their interests, e.g., as hashtags, and thus,
require additional measures for their privacy.

ACKNOWLEDGMENT

This work is a part of the PriLoc project (Privacy-Aware
Location Management) of the University of Stuttgart funded
by German Research Foundation (DFG) grant RO 1086/15-1.

REFERENCES

[1] M. L. Damiani, E. Bertino, and C. Silvestri, “The probe framework for
the personalized cloaking of private locations,” Trans. Data Privacy,
vol. 3, no. 2, pp. 123–148, 2010.

[2] B. Lee, J. Oh, H. Yu, and J. Kim, “Protecting location privacy using
location semantics,” in Proc. of KDD. ACM, 2011, pp. 1289–1297.

[3] G. Theodorakopoulos, R. Shokri, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Prolonging the hide-and-seek game: Optimal trajectory
privacy for location-based services,” in Proc. of WPES. ACM, 2014,
pp. 73–82.

[4] “United States of America v. Antoine Jones,” [Online]. Available:
http://tinyurl.com/q5rxpkf.

[5] H. Cramer, M. Rost, and L. E. Holmquist, “Performing a check-in:
Emerging practices, norms and ’conflicts’ in location-sharing using
foursquare,” in Proc. of MobileHCI. ACM, 2011, pp. 57–66.

[6] “World’s biggest data breaches & hacks — information is beautiful,”
[Online]. Available: http://tinyurl.com/lgyx9lc.

[7] “App42 Cloud APIs: Backend as a Service,” [Online]. Available:
http://api.shephertz.com/.

[8] “Backendless: Backend as a Service Platform,” [Online]. Available:
https://backendless.com/.

[9] “Heroku: Building Location Based Apps with Heroku PostGIS,” [On-
line]. Available: http://tinyurl.com/pd42b5d.

[10] “Geocoda: Geocoding and Spatial Database,” [Online]. Available:
https://geocoda.com/.

[11] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring Millions of
Footprints in Location Sharing Services,” in Proc. of ICWSM. Menlo
Park, CA, USA: AAAI, 2011.

[12] “foursquare for Developers,” [Online]. Available:
https://developer.foursquare.com/.

[13] E. Yigitoglu, M. L. Damiani, O. Abul, and C. Silvestri, “Privacy-
preserving sharing of sensitive semantic locations under road-network
constraints,” in Proc. of MDM, 2012, pp. 186–195.

[14] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-
Y. Le Boudec, “Protecting location privacy: optimal strategy against
localization attacks,” in Proc. of the CCS. ACM, 2012, pp. 617–627.

[15] C. Ardagna, G. Livraga, and P. Samarati, “Protecting privacy of user
information in continuous location-based services,” in Proc. of CSE,
2012, pp. 162–169.

[16] Z. Riaz and K. Rothermel, “On the privacy of frequently visited user
locations,” Distributed Systems Department, University of Stuttgart,
Tech. Rep., 2015. [Online]. Available: http://tinyurl.com/nor5bjs

[17] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proc. of ICML. ACM, 2006, pp.
161–168.

[18] “Tor Project: Anonymity Online,” [Online]. Available:
https://www.torproject.org/.

[19] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel, “A classification
of location privacy attacks and approaches,” Personal Ubiquitous Com-
puting, vol. 18, pp. 163–175, 2014.

[20] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,” in Pervasive Computing, ser. LNCS.
Springer Berlin Heidelberg, 2005, vol. 3468, pp. 152–170.

[21] M. Xue, P. Kalnis, and H. Pung, “Location diversity: Enhanced privacy
protection in location based services,” in Location and Context Aware-
ness, ser. LNCS. Springer Berlin Heidelberg, 2009, vol. 5561, pp.
70–87.

[22] J. Krumm, D. Rouhana, and M.-W. Chang, “Placer ++: Semantic place
labels beyond the visit,” in Proc. of PerCom, 2015, pp. 11–19.

[23] F. Dürr, P. Skvortsov, and K. Rothermel, “Position sharing for location
privacy in non-trusted systems,” in Proc. of PerCom, 2011, pp. 189–196.

[24] D. Riboni and C. Bettini, “Differentially-private release of check-in data
for venue recommendation,” in Proc. of PerCom, March 2014, pp. 190–
198.

[25] J.-D. Zhang, G. Ghinita, and C.-Y. Chow, “Differentially private location
recommendations in geosocial networks,” in Proc. of MDM, vol. 1, July
2014, pp. 59–68.

