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Abstract Optimization algorithms typically perform a series of function evaluations
to find an approximation of an optimal point of the objective function. Evaluations
can be expensive, e.g., if they depend on the results of a complex simulation. When
dealing with higher-dimensional functions, the curse of dimensionality increases
the difficulty of the problem rapidly and prohibits a regular sampling. Instead of
directly optimizing the objective function, we replace it with a sparse grid interpolant,
saving valuable function evaluations. We generalize the standard piecewise linear
basis to hierarchical B-splines, making the sparse grid surrogate smooth enough to
enable gradient-based optimization methods. Also, we use an uncommon refinement
criterion due to Novak and Ritter to generate an appropriate sparse grid adaptively.
Finally, we evaluate the new method for various artificial and real-world examples.

1 Introduction

In this work, we want to solve optimization problems of the following form: Assume
we are given a continuous function f: [0,1]¢ — R (objective function). Our goal is
to find a minimal point

Xopt = argmin f(x) , (D
x€[0,11¢

i.e., we want to solve a general, bound-constrained optimization problem. Optimiza-
tion algorithms, whether gradient-free or gradient-based, usually perform a series of
evaluations of f, its gradient, or its Hessian (if available) to find an approximation
Xopt Of Xopt. As each evaluation can be expensive, e.g. by triggering a cascade of
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nested simulations, we want to use as few evaluations as possible. Of course, for
increasing d, the problem suffers from the curse of dimensionality, which obviously
suggests the employment of sparse grids for the solution. Optimization with the aid
of sparse grids was studied before, e.g. with additional constraints and piecewise
linear functions [11] or with sparse grid surrogates defined via Lagrange polynomials
on Chebyshev points [9, 10]. However, 1D Lagrange polynomials are asymmetrical,
have global support [0, 1], and their degree 2" is not tunable. In addition, polynomial
interpolation prevents us from using equidistant grid points. We want to use B-splines
as basis functions instead, as they do not have these drawbacks, but additionally
feature many nice properties. B-splines have already been used in the context of
sparse grids, e.g. for the purpose of data mining [27,28] or quasi-interpolation [19].
The sufficient smoothness of B-splines allows us to use gradient-based optimization
methods on the sparse grid interpolant efficiently, even if the gradient or Hessian of f
are not available or costly to evaluate. Our optimization approach will be as follows:

1. Generate a spatially adaptive sparse grid X = {xg }x adapting to the peculiarities
of f.

2. Interpolate f at X by an interpolant f defined by a linear combination of B-
splines on sparse grids.

3. Apply gradient-based optimization techniques to f to get Xg ;.

In Sec. 2, we will define hierarchical B-splines and prove their linear independence
in the univariate case, which generalizes to higher dimensionalities d. The B-splines
will be modified to allow good approximations near the boundary of the domain
[0,1]4. We will explain in Sec. 3 the refinement criterion by Novak and Ritter [26]
we use to construct spatially adaptive sparse grids. A description of implementational
details follows in Sec. 4. Finally, we evaluate our algorithm and compare it to
established methods by studying various artificial and real-world examples in Sec. 5.

2 B-Splines on Sparse Grids

Conventional basis functions for sparse grids, including the piecewise polynomial
functions by Bungartz [3], all share the shortcoming of not having globally continu-
ous derivatives, hindering the use of gradient-based optimization. B-splines, which
generalize the well-known hat functions, can tackle this problem. They were first stud-
ied by Schoenberg [34], who claimed that they were already known to Laplace [8].
But it was not until the 1960s when Schoenberg’s results were rediscovered and the
potential of B-splines for the emerging finite element method (FEM) was recognized.
Important work was done by de Boor, who found simple B-spline algorithms [7].
B-splines have found application in a number of fields, e.g., for the aforementioned
FEM [14], as non-uniform rational B-splines (NURBS) for geometric modeling
[4,15], for atomic and molecular physics [1,23], and for financial mathematics [28],
to name just a few examples. We will now repeat the definition of hierarchical
B-Splines [28] and then prove their linear independence.
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Fig. 1: Left: cardinal B-splines of degree p = 0, 1,2,3. Right: hierarchical B-splines
of degree p = 3 and level [ = 1,2,3.

2.1 Cardinal B-Splines

The cardinal B-spline b” : R — R of degree p € Ny is defined by
b0 (x) = xpo.)(x)

1
bp(x>=f PPl (x—y)dy, px1, 2)
0

with the indicator function y4 of A C R, i.e., b” is the convolution of »”~! and »°.
This definition implies the following simple properties [15] (see Fig. 1, left). The
support of b” is [0, p + 1]. On every interval [k,k + 1), k = 0,. .., p (knot interval),
bP is a non-negative polynomial of degree p. The B-spline is bounded by 1 and
symmetric with respect to x = ”TH bP is (p — 1) times continuously differentiable at
x=0,...,p+ 1 (knots). By differentiation of (2) we get the simple identity

ibf’(x) =pP )= (x-1). 3)
dx

2.2 Hierarchical B-Splines

The hierarchical B-spline gofi: [0,1] > Roflevel ] € N and index i € [; :=
{1,3,5,... 2 - 1} is defined by an affine parameter transformation [28],
p+1

. X . -l
wﬁi(x)._bp(h_l+ . _,), h=27
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gof’l.(x) has support [0,1] N (h; - [i + (p + 1)/2]) (see Fig. 1, right). For p = 1, we
obtain the well-known piecewise linear hierarchical basis (hat functions). To simplify
the next considerations, we only consider odd degree p, as the knots (where the
B-spline is not infinitely many times differentiable) of cpf ; then coincide with the
grid points ’

xl,i—(p+l)/2 > e X1,i s -xl,i+(p+l)/2
with x; ; := ih;. For even degree, the knots lie between the grid points, i.e.
hy hy N hy N hy
Xliop/2 = == s wev» XLi—==, Xiit+t—=—, ..., XLi -,
Li-p/2 ) 1,i ) 1,i ) Li+p/2 B

leading to slightly different, but related arguments. We can define the nodal B-spline
space le and the hierarchical B-spline subspace Wlp of level [ by

VP = span{goii li=1,....2 =1}, W) = span{(p‘zl. liel}.

2.3 Linear Independence of Hierarchical B-Splines

In the piecewise linear case (p = 1), the relationship V,! = @?:1 Wll can be seen
easily. We prove that a similar relationship also holds for higher B-spline degrees. To
this end, we first show the linear independence of the union {ga‘lv Sl <niel}of
the hierarchical functions up to level n with the aid of B-splines on general knots.

Letm,p € Ng and € = (&,...,&n+p) be an increasing sequence of real numbers
(knot sequence). Then for k = 0,...,m — 1 the B-splines bZ’ £ of degree p with knots
¢ are defined by the Cox-de Boor recurrence [5,7, 15]

0 ._
bk,.f = XékEra) o

X — fk
Ekip — &

For the special case of ¢ = (0,1,...,p+1) and k = 0, we obtain the cardinal B-spline
b? (x).

P ._ P pp-l p p-1 p ._
bk,g = 7k,§bk,§ + (1 _7k+1,§)bk+1,§ , yk’g(x) = p=>1.

Proposition 1. Let € = (£o, .. .,Em+p) be a knot sequence. Then the B-splines bf &

k=0,...,m—1, form a basis of the spline space
Sé’ = span{b‘z’glk:O,...,m—l}. 4)

S contains exactly those functions which are continuous on D := [£,,,&p], polyno-
mials of degree < p on every knot interval [&x,€x+1] in D and at least (p — 1) times
continuously differentiable at every knot &y in the interior of D.
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The proposition, a proof of which can be found in [15], implies linear indepen-
dence of the nodal B-splines {c,oil7 ;1i=1,...,2" — 1} of level n € N by choosing

p+1

szz(k+1— )hn, k=0,....m+p, m:=2"-1, %)
which leads to ¢” , = b¥ | gfori=1...m ie. Sg = VP when restricting all
B-splines to D = [£,,,&,]. In particular, this means {¢” . | i € I,} is a basis of W} .
Proposition 2. For every n € N, the hierarchical B-splines {gof 1l <niel}are
linearly independent, i.e., the sum @?:1 Wlp is indeed direct.

Proof. We prove the assertion by induction over n for the most common degrees
p € {1,3,5,7}. For rather uncommon higher degrees, the proof can be viewed as
a sketch. For n = 1, only one function exists. To proceed from n — 1 to n, we
assume that {¢}’, | / < n—1,i € I} is linearly independent, so its span P} wY
is a direct sum of hierarchical subspaces. Because both sets {goi: ;i €l,}and
{gaf ; | I <n—1,ie€ [} are linearly independent, it is necessary and sufficient to
; -1 .

show that span{goﬁl”i liel,}n @l":] Wlp = {0}. Let f; € span{gof:’i | i €l,}and
fr € ;:ll Wlp with f1 = f>. Then coeflicients ¢, ;,c;,; € R exist such that

1
Z Cn,i‘ps’i =fi=fr= nZ Z Cl’i(pf,i :

iel, I=1 i<l

The right-hand side is smooth in every grid point x, ;, j € I, of level n, as these
grid points are not knots of the B-splines of level < n. So the left-hand side must be
smooth there as well, i.e.

affl(xn,j)zaffl(xn,j)s (6)

denoting with 8” and 4?7 the left and right derivative of order p, respectively. Now
we use the combinatorial identity

o bP (k) = (—1)k(1]:) =P (k+1), keZ,

setting (Z) :=0for k < 0or k > p. The identity stems from the repeated application
of relation (3) (cf. [15]). Calculating the left and the right derivative in x,, ; of each
summand of f] respectively, we obtain from (6)

k-1 P ) _ k(P . . o pHl
D eni(=D (k_l)—ch,i<—1> (k) k= k() =j—i+=——.

iel, iel,

due to <pZ ;(xn,j) = DP (k). The inner derivative 1/ h‘lD canceled out from both sides.

Using the relation (kljl) + (’,j) = (”;1), we get
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ch,i(—l)"(””)ﬂ, jeln. ()

iel, k

As k is always odd or always even (for fixed j), we get

p+1 ) .
Cn.i 20, GIn,
2. (f—i+”7“ !

iel,

by multiplying (7) by —1 if k is odd. This is a linear system with variables ¢, ;,
whose sparsity pattern depends on p. The corresponding matrix A = A(p) is a
symmetric @n-1 x2n-h Toeplitz matrix with bandwidth {pT_l]. For example, we
obtain tridiagonal matrices for p = 3 or p = 5:

6 1 20 6
ad =" am=|°
SR 6
16 6 20

A(p) is strictly diagonally dominant for p = 1,3,5,7 and therefore invertible. For
higher degrees, the regularity of A(p) must be shown differently. If A(p) is regular,
we infer ¢, ; = 0 for alli € I,,, implying f> = fi; = 0, which completes the proof for
the common cases p € {1,3,5,7}. O

Proposition 3. Let n € N. If we choose & as in (5) and restrict all functions involved
t0 D = [£p,Em), then B, W] =S¢ = V..

Proof. We already mentioned that W/ C Sg = V" holds. When restricting all of the
basis functions go‘lp ;D= [£p.Em], Wlp - Sg also holds for smaller levels [ < n:

Each basis function gof Py i € I, is continuous on D, a polynomial of degree < p on
every knot interval of £ (due to p odd) and at the knots themselves at least (p — 1)
times continuously differentiable. From proposition 1 it follows tpf ;€ Sg and hence

W) Sg for I < n. Consequently, @;_, W/ < Sé_? and with a dimension argument,

: P _ _ -1 _»n _ 1 _ — 14
dlmle?WI—IZ;HH—IZ;Z =2"—1=m=dimSL,

we obtain @, W/ = Sg = V¥, which proves the proposition. i

2.4 Modified and Multivariate Hierarchical B-Splines

In [0, 1]\ D, linear combinations of hierarchical B-splines experience an unnatural
decay towards the boundary of [0, 1]. As a side effect, this can result in overshoots
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Fig. 2: Left: interpolation of the parabola y = 4(x—0.5)? (dotted line) with unmodified
(solid) and modified B-splines (dashed) for p = 3. Right: modified hierarchical B-
splines of degree p = 3 and level [ = 1,2,3.

of the linear combinations even when interpolating simple polynomials (see Fig. 2,
left). Note that Fig. 2 does not contradict Prop. 3, as the (p — 1)/2 leftmost and the
(p — 1)/2 rightmost grid points, where compliance with the interpolation condition
is enforced, do not lie in D = [£p,,&m].

Grids with boundary points can help, but they spend proportionally too few points
in the interior, most notably in higher dimensions. To overcome this difficulty, we
modified the B-spline of level 1 and the first and last B-splines of higher levels [28],

1
p,mod . 'ﬁf(x)
O
@7 ()

ifl=1,i=1,
i ; [(p+1)/2]
ifl>1,i=1
’ ’ P o._ P
if1s1i=2 -1, W17 D kDl
’ ’ k=0
otherwise,

adding B-splines which have their maximum outside of [0, 1] (see Fig. 2, right). Due

to the relation

x=Z(k

keZ

1
+‘I%)b”(x—k), xeR,

which can be proven with Marsden’s identity [15], we infer for degree 1 < p < 4

Yy (x) =

X 5-p
2—-— —nh| .
T XG[O, > l]

In other words, modified B-splines with index i € {1,2/ — 1} extrapolate linearly
towards the boundary of [0, 1], providing meaningful values for linear combinations
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near the boundary. For higher degrees p > 4, the deviation from 2 — x/#; is hardly
visible, as the second derivative at the boundary is numerically small.

Hierarchical B-splines of one dimension are generalized to the d-dimensional
case as usual by a tensor product approach,

d
¢EI(X) = l_lépzt’lt (-xl) > Xl,i = (-xl],l'l" .. ’-xld,id) [l
t=1

using multi-indices L,i € N9, pe N9, and x € [0, 1]9. We define d-variate nodal and
hierarchical subspaces by

le = span{gafi | Viz1,atir=1,... ,2[’ -1},

Wlp :=span{gofi|iell}, h=Ix---x1I,,

Tensor products of linearly independent functions are linearly independent, i.e. the
generating sets of le and Wlp are their bases, respectively. By using an analogous
d-variate formulation of Prop. 1 (defining Sg appropriately), it follows as above that

V,?:SE:@W*&

I<n

if we choose the d knot sequences & = (£1,...,€q), & = (&1,0.-- > Enmyp.)s
accordingly to (5) and restrict all functions to D = [£1 p,, &1 m, 1X X [Ea,pys€a,my]-
The sparse grid space V,>* of level n can now be constructed as usual by

P = @Wlp .

[}y <n+d-1

We get the familiar piecewise linear sparse grid space with p = 1 := (1,...,1).
Sparse grid spaces consisting of modified B-splines are defined similarly.

3 Adaptive Grid Generation

The surrogate, which replaces the objective function f to be minimized, is defined as
the interpolant on an adaptively generated sparse grid. The most widespread method
is the refinement of the grid points whose hierarchical surpluses aj; (in the piecewise
linear basis) have the highest absolute value [29]. However, this approach does not
generate more points close to minima than elsewhere. Instead we want to use a
slightly modified version of the Novak-Ritter refinement criterion [11, 16,26] which
was specifically made for optimization (initially for hyperbolic cross points, which
are closely related to sparse grids).

The method works iteratively: We start with an initial regular sparse grid, e.g. of
level 3. Let X = {xx :=x1.5, | k=1,...,N} C R4 be the current sparse grid at
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Fig. 3: Adaptive grid generation of N = 500 points with Novak-Ritter’s refinement
criterion for the Schwefel 2D test function with y = 0.6 (left), ¥ = 0.8 (center), and
v = 0.95 (right). The global minimum lies in the upper right corner.

the beginning of an iteration. The Novak-Ritter criterion selects one point Xz« of
X, which is then refined by inserting the 2d neighbors into the grid. The neighbors
of x); in the #-th dimension have level /; + 1 and index 2i; + 1 in dimension ¢ and
the same level and index in all other dimensions. If one of the neighbors already
exists in X, then the first higher-order neighbor, which is not in X, is inserted instead.
The neighbor of order m has level /; + m and index 2™i, + 1 in the #-th dimension.
Therefore, in each iteration exactly 2d points are inserted. The grid generation is
completed when a specific number N € N of grid points, which is due to the overall
effort that can be invested, has been reached.

The Novak-Ritter criterion determines X+ as follows: Associate with each grid
point x; = Xy j, three scalars ||Ix|l1, di and rg. [|lg]ly is the sum of the levels, as
usual. dj represents the degree of Xy, the number of times the point was already
selected (initially 0). r is the rank of x; defined by ry = |{k" | f(xx') < f(Xx)}],
i.e., the point with the smallest objective function value gets rank 1, the next bigger
one gets rank 2 etc. Now, k* is selected as the index for which the quality Sy~ is
minimal:

Br = (Mglly +di + 1) -1

We added 1 to the base of the first factor to prevent ambiguities if levels and degree
sum up to zero (possible when working with boundary grids). y € [0, 1] is the adaptiv-
ity parameter with y = 0 meaning pure adaptivity and y = 1 leading to an unadaptive
algorithm with the function values being irrelevant. y must be chosen carefully to
allow the algorithm to explore the whole domain [0, 1]¢, while refining in promising
regions sufficiently well to increase the accuracy of the sparse grid interpolant (see
Fig. 3 for an example). Its best choice depends a lot on the characteristics of the
objective function at hand. As a compromise, we choose a priori y = 0.85 for all
applications. Note that for y large enough, the set X of generated grid points gets
dense in [0,1]¢ in the limit N — oo, implying that for arbitrary objective functions
f, a global optimum will be found eventually (if N and y are chosen large enough).
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4 Implementation

After adaptively generating the grid as the first step, we replace the objective function
f by the sparse grid interpolant f and then apply existing optimization algorithms to
f- In this section, we want to elaborate on the two remaining steps.

4.1 Hierarchization

The interpolant f on the sparse grid X = {x;,...,Xy} € R? is defined by the linear
combination of the basis functions ¢ := ‘Pﬁ,ik (either modified or not) interpolating
f in the grid points X := X, j, . This leads to a linear system with the variables
ai,...,an € R (hierarchical surpluses):

N
fo=Y e, Foxp)=fi:=fx), j=lL...N.  @®
k=1

The basis transform f — @ is usually called hierarchization. For p = 1, the linear sys-
tem can efficiently be solved via the unidirectional principle [28]: It suffices to apply
one-dimensional hierarchization operators to all one-dimensional subgrids (so-called
poles) of X in each dimension, working with updated values. However, the principle
only works if every pole is a proper 1D sparse grid: Every hierarchical ancestor of
a grid point of X must be in X, too. This requirement has severe effects, because
every grid point insertion by Novak-Ritter’s algorithm in the grid generation phase
implies the recursive insertion of all (indirect) hierarchical ancestors. The number
of the ancestors to be inserted grows rapidly with the number d of dimensions. For
example, performing Novak-Ritter’s grid generation for the well-known Rosenbrock
function and y = 0.8 leads to 1128, 223, 61, 33, 16 refinement iterations for d = 2, 3,
4,5, 10 respectively, stopping when N = 10000 points have been generated. As a
result, for d = 2 only 45% of the maximum possible number N/(2d) of iterations has
been exploited, for d = 3 only 13% and for d > 4 less than 5%. The ancestors often
lie at uninteresting places, wasting valuable evaluations of the objective function.
For higher B-spline degrees p > 1, the unidirectional principle is in general
not applicable anyway. This is due to the fact that in this case basis functions
do not vanish at all grid points of coarser levels (unlike in the piecewise linear
case). For our purposes with limited overall effort N, it is sufficient to solve the
linear system (8) directly or iteratively. We thus do not have to generate additional
hierarchical ancestors, allowing to exhaust the full number N/(2d) of iterations in
the grid generation phase. In general, the linear system is asymmetric and its sparsity
structure depends on how many grid points are contained in the supports of the basis
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functions. For lower numbers d of dimensions and lower B-spline degrees p, the
system is sparse, which allows a solution by adequate solvers in reasonable time!.

4.2 Global Optimization

The constructed sparse grid B-spline interpolant f is (p, — 1) times partially contin-
uously differentiable in dimension ¢ = 1,...,d. For p; > 1, we can apply gradient-
based optimization methods to f without having to evaluate f additional times.
We used local gradient-based algorithms [25], particularly the gradient descent
method, the nonlinear conjugate gradient method with Polak-Ribiere coefficients
(NLCG, [30]), Newton’s method, BFGS, and Rprop [32], in addition to the local
gradient-free Nelder-Mead algorithm (NM, [24]). We also used Storn’s and Price’s
Differential Evolution (DE, [35]), using a population size of 10d, as a non-local
gradient-free method. To prevent being stuck in local minima, we globalized all
mentioned local algorithms by using a multi-start approach with m := min(10d, 100)
uniformly random starting points (i.e. m parallel calls of the local algorithm, each
with 1/m of the permitted function evaluations). The gradient-free techniques NM
and DE are not only used for the global optimization of the surrogate £, but also to
directly optimize the objective function and the standard piecewise linear interpolant
(case of p = 1), as we will explain later.

Our optimization algorithm to solve problem (1) for a given objective function
f: 10, 119 - R works as follows, assuming that the adaptivity parameter y € [0, 1]
of the grid generation and the maximal number N € N of evaluations of f is given:

1. Generate the grid X = {xi,...,X,}, n < N, using the adaptive Novak-Ritter
method. This requires to evaluate the objective function n times, obtaining
fi =1 &xp). i

2. Solve the linear system (8) to get the interpolant f: [0,1]¢ — R.

3. Optimize the interpolant: First, find yo := x;+ with j* := argmin; f;. Then apply
all gradient-based methods to f with y( as starting point. Let y; be the resulting
point with the minimal objective function value. Now use the globalized local
algorithms and DE applied to f; let y, be the best (i.e. in terms of the f value)
point of the results. Take the point of {yo,y1,y>} with the smallest f value as

approximation sz)pt to the optimum X of f.

The third step requires (beyond the n evaluations during grid generation) some,
say c, additional evaluations of f. Thus, a total of up to N + ¢ evaluations have to
be performed during the algorithm. To keep the overall effort to at most N one can
enforce n < N — c in step 1. Because yo is taken into account when determining Xg,
the returned optimum is the point with the smallest objective function value of all
points where f was evaluated during the algorithm.

' We used Gmm++ ([31], GMRES) and UMFPACK ([6], LU factorization) for sparse systems and
Armadillo ([33], LU factorization) and Eigen ([13], QR Householder factorization) for full systems.
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Table 1: Employed test functions in two and arbitrary dimensions with abbreviations
in bold.

Name Domain Xopt  Kopt) Reference

Branin [-5, 10] x [0, 15] (==, 12.275), («,2.275), 0.397887  [18, Branin RCOS]
(9.42478, 2.475)

Eggholder  [-512, 512]? (512, 404.2319) -959.6407 [37, F101]

Rosenbrock [-35, 10]? (1, 1) 0 [38]

Ackley [-1, 9]¢ 0 0 [38]

Rastrigin ~ [-2, 8]¢ 0 0 [38]

Schwefel ~ [-500, 500]1¢  420.9687 -1 -418.9829d [38]

We compared our optimization algorithm to the following common optimization
techniques:

e Optimization of the piecewise linear sparse grid interpolant. Therefore we proceed
as above with B-spline degree p = 1, using only the gradient-free methods NM
(globalized) and DE to optimize f. The best of the two results is called Xopt-

e Direct optimization of the objective function f (with globalized NM) without
using sparse grids, but with only N evaluations permitted. The resulting optimum

. s
is called Xopt-

5 Numerical Results and Applications

In this section, we want to review our optimization method with the aid of artificial
test functions and real-world applications. As standard parameters, we used modified
B-splines of degree p = 5 as basis functions and y = 0.85 as adaptivity.

5.1 Test Functions

We studied a wide variety of test functions for different dimensionalities [36]. In
the following, we present three functions for two dimensions and three functions
defined in arbitrary dimensions. The domain of each function is transformed to the
unit hypercube [0, 1] by an affine transformation. Additionally, some of the domains
were translated and/or scaled first (when compared to the literature) to make sure
that the optimum does not lie at the center of the domain. Otherwise sparse grid
approaches would have been in advantage, because they spend proportionally few
points near the corners of [0, 114. In Table 1 we give the domains, minimal points,
and corresponding function values (all before parameter scaling and translation). The
two-dimensional test functions are shown in Fig. 4. All functions were perturbed in
the parameter domain by a small pseudo-random normally distributed translation
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In(Ro(x) +1)

=500 0 500

Fig. 4: Bivariate test functions with location of the minimal points (after normaliza-
tion of the domain to [0, 1]?).

(standard deviation 0.01), while making sure that the optima of the perturbed func-
tions still lie in the original domains. To increase the validity of our results, all results
shown are the mean of five passes with different perturbations.

The plots depicted in Figs. 5, 6, and 8 show the difference between approximated
and true minimal value of the objective function over the number N of evaluations
of f. Each test function is associated with three lines: The solid lines represent the
performance of our optimization algorithm with result xg,,;, the dotted lines display
the performance of the optimization of the piecewise linear sparse grid interpolant
with Nelder-Mead (NM) and Differential Evolution with result x; ., and the dashed
lines show the optimization of the objective function using globalized NM with result
Xopi- Note that in the notation of the last section, we have f(x,) < f(yo), implying
that the gain of our method compared to the best Ritter-Novak grid point yy is at
least f (x(’th) - f (xf,pt) (difference between solid and dotted lines).

As can be seen in Fig. 5, functions like Branin and Rosenbrock are generally easier
to optimize since they feature few local minima and few oscillations. Such functions
can be approximated by B-spline linear combinations very well, which leads to a
considerable advantage for the B-splines compared to the standard piecewise linear
basis. Our method even beats the globalized NM method (dashed lines) for most of
the test functions. For the Eggholder function, fast convergence of all methods is
impeded not only by high oscillations and many local minima, but also by the fact
that the global optimum lies on the boundary of the domain (before perturbing).

Figure 6 shows that for higher-dimensional functions, the problem of optimization
rapidly becomes very difficult. With increasing d, the rate of convergence becomes
substantially slower. We note that for moderate dimensions d € {3,4}, B-splines
can provide a significant boost in the performance compared to the piecewise linear
basis. For higher dimensions d > 6, both sparse grid approaches (B-splines and
piecewise linear) perform better in general in comparison to the globalized NM
optimization technique. It can be seen that Rastrigin is a very tough function as it
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Fig. 5: Approximation errors f (xf)pt) — f(Xopt) (solid lines), f (x(’)pt) — f(Xopt) (dotted),
and f (x(’);t) — f(Xopt) (dashed) over the number N of evaluations for different test
functions with d = 2 variables.

exhibits numerous local minima in a neighborhood of the global minimum, all with a
similar function value. This can lead to a non-monotonous error decay of our method
as seen in the plots for d € {3,4,6}, since the global minimum X, of the interpolant
occasionally does not match with the actual optimum X, of the objective function.

5.2 Model of a DC Motor

As an example application we study an inverse problem of a simple DC (direct
current) motor. If we denote with 6 and w the angular position and velocity in rad
and rad/s, respectively, then an idealized model (with zero disturbance and torque) of
the motor can be deduced [22], obtaining the linear state-space representation

. 1 k
00) =), &) =-—wO+ U0, 060)=6. w0 =s. ©

with (6,w) as both state and output, input voltage U, and motor-dependent constants
T (time constant) and k (steady-state gain). It can easily be seen that for constant
inputs U = Uj, w then satisfies w(t) = (wo — kUp)e '™ + kUj.

We have generated artificial data for the motor sampled at ¢; with 10 Hz over a
time span of 60 s (see Fig. 7). The sampled data (6;,w;) was generated by adding an
artificial Gaussian noise with standard deviation 0.1 rad and 0.1 rad/s to the solution
(6,w) of (9) for the generated voltage data U}, respectively. Our goal is now to
determine (7, k,0p,wp) so that the resulting solution (8, w) of (9) minimizes the £2
norm (3 (w(t;) — w;)*)!'/? of the difference of experimental and simulated angular
velocity. The error functional does not need to take 6 into account, as 6 = w should
imply a good match of 6 and #; and including 6 in the error functional would lead to
worse results due to overfitting. In total, this leads to a 4D optimization problem.
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Fig. 6: Approximation errors f (xf)pt) — f(Xopy) (solid lines), f (x(’)pt) — f(Xopt) (dotted),
and f (x(’);t) — f(Xopt) (dashed) over the number N of evaluations for different test
functions with d = 3, d = 4, d = 6, and d = 10 variables (from top left to bottom

right).

Before we can start optimizing, we need to determine reasonable parameter inter-
vals. Looking at the data, we guess 6y € [-2rad,2rad] and wq € [—2rad/s,0rad/s].
We guess 7 by looking at the half-life period 71n2 of the transient response after
a change in input voltage polarity. This period roughly equals 0.3 s which would
imply T = 0.43 s, justifying the assumption of 7 € [0.25,0.6s]. For the interval of
k, we look at the steady-state angular velocity kUy, which is around 1 rad/s, leading
with Uy = 5V to k = 0.2rad/(Vs). Therefore, we generously set the interval to
k € [0.1rad/(Vs),0.4rad/(Vs)].

Figure 8 (log-log plot as above) shows the performance of our optimization method
as well as the performance of the piecewise linear basis and the direct optimization
of the objective function with the globalized Nelder-Mead method (NM). We see
that the objective function is sufficiently smooth to allow good B-spline interpolation,
leading to a faster convergence compared to the piecewise linear basis and to the
classical NM technique, with convergence beginning at N = 100 grid points. Our
method exactly finds the optimal parameters 7o, = 0.4965s, kope = 0.214rad/(Vs),



16 Julian Valentin and Dirk Pfliiger

U [V]

0 [rad]
V)]
‘

N\

{

7/
\

({
/
\

/

t[s]

Fig. 7: Input voltage U (solid black line), artificial motor data (6;,w;) (solid gray),
and simulated data (6,w) of optimal model (dashed).
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Bo,0pt = —0.1981ad, wo,opc = —0.411rad/s with error functional value 2.693 using
just N = 1000 evaluations.

5.3 Shape Optimization with Homogenization

As another application, we have also employed B-splines on sparse grids in a two-
scale shape optimization setting [17]. Classical approaches in shape optimization
share the drawback of severely restricting the set of feasible topologies before starting
to optimize, which leads to homeomorphic results. However, one often does not know
the topology of the optimal shape beforehand. For example, if we take the cantilever
in Fig. 9 (left), which is fixed at one side and deformed by a force F at the other side,
and want to determine the cantilever shape which minimizes displacement, we do
not know if we should use one, two, or even more crossbars, if the cantilever is only
allowed to take up a specific volume.

In the homogenization approach [2], the whole domain Q is potentially filled
with material with varying density o(x) € [0, 1]. For a fixed force F, we want o to
minimize the compliance function J(u,) with a volume constraint,
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Fig. 9: Left: shape optimization of a 2D cantilever fixed at the left side with force
F resulting in a deformation. Right: optimized model consisting of macro cells
(compounds of micro cells).

minJ(u,) st L o(X)dX < Omax »  J(Up) = f F-u,(x)dx, (10)
e 1Q Jo Q

where pmax € [0, 1] is the maximal total density and u, (x) is the displacement in

x € Q (depending on the density o), which can be determined by the finite element

method (FEM, [14,17]). In the following, we restrict ourselves to the two-dimensional

case, but the 3D case could also be handled in an analogous way.

We choose a two-scale approach as Hiibner [17]: First, we discretize the domain in
(N1 X Ny) macro cells. Each macro cell k is a compound of tiny periodic and identical
micro cells (see Fig. 9), which are formed by shearing an axis-parallel cross with
thicknesses ag, by by an angle ¢ € (—7/2,7/2), resulting in parallelogram-shaped
micro cells. If ag, by, are known, one can compute the symmetrical elasticity
tensor Ex = (Ex;)1<i,j<3 € R of macro cell k by the FEM (micro problem).
When we know all the Ey, we can compute u, with the density o given by the
3N N, parameters ay,bg, ¢k, k = 1,...,N1N;, again by solving a FEM problem
(macro problem). Our goal is finding a combination of the 3/N| N, parameters which
solves (10). Because every evaluation of J(u,) triggers the solution of a macro
problem (which depends on N;N, micro problems), a single evaluation is very
expensive. As in [17], we use the FEM solver CFS++ [20] which provides interfaces
to established optimizers like SNOPT [12], requiring gradients that have to be
approximated by finite differences, since they are not available explicitly.

To increase performance, Hiibner [17] precomputes values of the elasticity tensor
E: [0,1]® - R3S for different combinations of normalized parameters a,b, ¢ and
replaces the task of solving micro problems by the evaluation of an interpolant
E:[0,1]> — R of E. Full grid interpolation approaches are possible, but more
complex micro cell models (e.g. in 3D) will feature more parameters, which would
imply a prohibitively large precomputational effort in terms of both computing time
and storage space. In [17], also the suitability of sparse grid interpolation with
piecewise linear functions was studied. However, these lead to problems because of
the discontinuous derivatives calculated by the gradient-based optimizer. It seems
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Table 2: Results for the two-parameter case (where ¢, = 0 is fixed) and the three-
parameter case with optimal compliance function value, number of iterations, and
time needed by SNOPT for optimization without precomputation of the elasticity
tensors (Pmax = 0.5).

#Param. Grid Basis Obj. Fen. #lter. Time

2 full, level 6 piecewise tricubic interpolation 42.85 170 128's

2 sparse, level 7 modified piecewise linear 43.00 704 5465

2 sparse, level 7 modified cubic B-splines 42.80 377 299s

3 full, level 6 piecewise tricubic interpolation 41.86 1307 27 min
3 sparse, level 8  modified piecewise linear 41.95 4203 163 min
3 sparse, level 8 modified cubic B-splines 41.26 1483 139 min

natural to employ B-spline basis functions instead, as the function E to be interpolated
is supposedly relatively smooth. Additionally, the optimizer can use exact derivatives
of the interpolant.

As an example, we consider the cantilever in Fig. 9 (“example A” in [17]), where
the domain consists of 40 - 26 macro cells. The emerging optimization problem
with 3 - 40 - 26 = 3120 variables is solved by CFS++/SNOPT and visualized as in
Fig. 9 (right), where each macro cell is represented by a single micro cell cross. We
compare the performance of B-splines to the piecewise linear basis and to piecewise
tricubic interpolation [21] on the full grid of level 6.

First, we examine the B-spline sparse grid interpolation method when all ¢; = 0
are fixed and only a; and by are optimized. In this case, four elasticity tensor
entries E1 3 = E»3 = 0 = E3 = E31 vanish. This makes a significant difference
in complexity as there are only four non-trivial entries of E left and only two
variables per interpolant, resulting in an optimization problem of 2 - 40 - 26 = 2080
variables. If we look at the results in Table 2 (top half), we observe that sparse grid
interpolation produces similar objective function values as tricubic interpolation on
the full grid. However, using a full grid interpolant leads to better convergence and
faster termination. With sparse grid B-splines (see Fig. 10, left) we even get a smaller
compliance function value than the full grid interpolation.

Second, we look at the general case where all 3N; N, are to be optimized. The
optimization now takes much more time since there are more tensor entries to be
interpolated, more partial derivatives to be evaluated, and more unknown optimization
parameters. But as we have more degrees of freedom, the obtained objective function
values (cf. Table 2, bottom half) are slightly better than in the case of ¢ = 0. If
we compare the visualizations in Fig. 10, we note the exploitation of the additional
degrees of freedom as the incline of the crossbar is more gentle in the case of three
parameters per micro cell.

For the trivariate sparse grid interpolants, it is not sufficient to discretize [0, 1]
with a regular sparse grid of level 7 due to too many oscillations of the resulting E.
Even for a regular sparse grid of level 8 and piecewise linear functions, the optimizer
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Fig. 10: Results with modified B-splines of degree p = 3 and a material fraction of
Pmax = 0.5 for fixed ¢ = 0 with a regular sparse grid of level 7 with 2815 points
(left) and optimized ¢, with a refined sparse grid with 4439 points (right).

terminates early because of numerical difficulties, showing the problems introduced
by approximating discontinuous derivatives by difference quotients. Again, B-splines
perform quite well since they find the best parameter combination in terms of compli-
ance function values compared to full tricubic or sparse piecewise linear interpolation,
spending a multiple of the computational time of the full grid interpolation, though.
This will, however, change as soon as we consider a more complicated micro cell
model (e.g. in three dimensions), where we will not be able to employ full grid
interpolation anymore.

Starting from the regular sparse grid of level 7, we also generated a spatially
adaptive sparse grid, specifically tailored for this interpolation problem [36]. With
only 4439 points (cf. 2815 and 7423 points of the regular grids of level 7 and 8,
respectively), we get moderately worse results (objective function value of 42.14)
for the modified cubic B-splines than for the regular sparse grid of level 8, but
the optimization then only takes 84 minutes. Additionally, we have not taken into
account the precomputation time to create the elasticity tensor data at the sparse grid
interpolation points, which, accordingly to the smaller number of grid points, would
be smaller, too (compared to the level 8 regular grid). Of course, the precomputation
effort for the full grid of level 6 is much larger as it needs 258,048 data points.

6 Conclusion

We constructed a surrogate-based optimization approach using B-splines on sparse
grids. After proving their linear independence and studying the direct sum of hier-
archical subspaces, we used an adaptive grid generation method by Novak-Ritter
to generate spatially adaptive sparse grids with adjustable adaptivity y € [0, 1]. Fi-
nally, we successfully employed our new optimization method to various artificial
test functions and real-world examples. The new method works well for smooth,
moderately dimensioned objective functions without high-frequency oscillations. We
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would like to mention we have applied our method to a lot more test functions (e.g.
Beale, Goldstein-Price, Griewank) [36], and we picked a somewhat representative
subset for this work. We also studied other sparse grid types like grids with boundary
points or Clenshaw-Curtis grids with non-uniform Chebyshev points. However, the
modified B-splines on the standard grid without boundary points seem to exhibit the
best performance for a given number of grid points.

Certainly, there is room for improvement, as we used the same fixed B-spline
degree p = p - 1 for all of the dimensions. We could start to use different degrees
p: depending on the dimensions 7. Going one step further, we could even choose p
adaptively depending on the objective function f, to adapt to discontinuities of f or
its derivatives.
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