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Abstract—Vertex-centric graph processing systems such as
Pregel, PowerGraph, or GraphX recently gained popularity
due to their superior performance of data analytics on graph-
structured data. These systems exploit the graph structure to
improve data access locality during computation, making use
of specialized graph partitioning algorithms. Recent partitioning
techniques assume a uniform and constant amount of data ex-
changed between graph vertices (i.e., uniform vertex traffic) and
homogeneous underlying network costs. However, in real-world
scenarios vertex traffic and network costs are heterogeneous.
This leads to suboptimal partitioning decisions and inefficient
graph processing. To this end, we designed GrapH, the first
graph processing system using vertex-cut graph partitioning
that considers both, diverse vertex traffic and heterogeneous
network, to minimize overall communication costs. The main
idea is to avoid frequent communication over expensive network
links using an adaptive edge migration strategy. Our evaluations
show an improvement of 60% in communication costs compared
to state-of-the-art partitioning approaches.

I. INTRODUCTION

In recent years, a strong demand to perform complex data
analytics on graph-structured data sets, such as the web graph,
simulation grids, Bayesian networks, and social networks [1]–
[4] has lead to the advent of distributed graph processing
systems, such as Pregel, PowerGraph, and GraphX [5]–[7].
These systems adopt a user-friendly programming paradigm,
where users specify vertex functions to be executed in parallel
on vertices distributed across machines (“think-like-a-vertex”).
During execution, vertices iteratively compute their local state
based on the state of neighboring vertices, therefore efficient
communication across vertices is vital in building highly-
efficient graph processing systems. In fact, recent work on
data analytics frameworks suggests that network-related costs
are often the bottleneck for overall computation [8]–[11].

To overcome these inefficiencies, graph processing systems
require suitable partitioning methods improving the locality
of vertex communication. Mainly, there are two types of par-
titioning strategies: edge-cut and vertex-cut. These strategies
minimize the number of times an edge or vertex spans multiple
machines (cut-size). The idea is that a decreased cut-size
leads to lower communication costs due to less inter-machine
traffic [6], [7]. But this holds only under two assumptions:
vertex traffic homogeneity, i.e., processing each vertex involves
the same amount of communication overhead, and network
homogeneity, i.e., the underlying network links between each
pair of machines have the same usage costs (e.g., [6], [11]).

However, these assumptions oversimplify the target objective,
i.e., minimize overall communication costs, for two reasons.

First, real-world vertex traffic is rarely homogeneous. This
is due to computational hotspots causing processing to be
unevenly distributed across graph areas and vertices. Hotspots
arise mainly in three cases: i) the vertices process different
amounts of data, ii) the graph system executes vertices a
different number of times, and iii) the graph analytic algo-
rithms concentrate on specific graph areas. Examples of the
first case are large-scale simulations of heart cells [12], liquids
or gases in motion [13], and car traffic in cities [1], where each
vertex is responsible for a small part of the overall simulation.
Vertices simulating real-world hotspots (e.g., the Times Square
in NY) have to process more data. The second case consists
of algorithms defining a convergence criteria for vertices. The
graph system skips execution of converged vertices (dynamic
scheduling [6]) leading to inactive graph areas and therefore
different frequencies of vertex execution. Concerning this, a
popular example is the PageRank algorithm [6]. The third
case includes user-centric graph analytic algorithms such as
k-hop random walk and graph pattern matching. A prominent
example is Facebook Graph Search, where users pose search
queries to the system (“find friends who tried this restaurant”).
In general, our evaluations show that vertex traffic often
resembles a Pareto distribution, whereby a higher percentage
of the total traffic is contributed by a much lower percentage
of the vertices (cf. Fig. 2). We argue, that the one-size-fits-all
approaches for vertex traffic misfit real-world, heterogeneous
and dynamic traffic conditions in modern graph processing
systems.

Second, network-related costs, such as bandwidth, latency,
or monetary costs, are subject to large variations. Today, it
is common to run graph analytics in the cloud, because of
low deployment costs and high scalability [6], [14], [15].
Network heterogeneity exists even in a single data center
because the machines are connected via a tree-structured
switch topology, where machines connected to the same switch
experience high-speed communication, while distant machines
suffer from degraded performance due to multi-hop forward-
ing of network packages [16]. Nevertheless, modern cloud
infrastructures are geo-distributed [17]. Cloud providers are
deploying data centers globally to provide low latency user-
access. For instance, Amazon, Google, and Microsoft maintain
dozens of data centers world-wide. Global services, such as
Twitter and Facebook, are deployed on these data centers and

mayercn
Textfeld
Published in Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), 118-128, Nara / Japan, 2016.
© IEEE 2016
http://dx.doi.org/10.1109/ICDCS.2016.92



Vertex-cut Edge-cut
m1 m1

m2m2

m3 m3

Fig. 1. Vertex-cut and Edge-cut.

produce large amounts of data (e.g., user friendship relations)
that need to be analyzed. Data analytics spanning multiple
data centers is often the only option. For instance, data should
be stored close to the geo-distributed users to reduce access
latency, but replication may be prohibitive for legal reasons
or efficiency considerations [18], [19]. But here, network link
costs can differ by orders of magnitudes (cf. Fig. 2d, Tab. I).
These heterogeneous network costs should be considered when
partitioning the graph.

To overcome these limitations, we developed GrapH, a
graph processing system for distributed, in-memory data an-
alytics on graph-structured data. GrapH is aware of both dy-
namic vertex traffic during execution and underlying network
link costs. Considering this information, it adaptively partitions
the graph at runtime to minimize overall communication
costs by systematically avoiding frequent communication over
expensive network links. In particular, the contributions of this
paper are as follows:

• A fast partitioning algorithm, named H-load, and a fully
distributed edge migration strategy for runtime refine-
ment, named H-move, solving the dynamic vertex traffic-
and network-aware partitioning problem.

• A graph processing system named GrapH enabling
network-aware, geo-distributed execution of graph algo-
rithms. In contrast to most state-of-the-art graph process-
ing systems, we improve efficiency of multi-algorithm
execution by keeping the graph in memory across graph
algorithms.

• Evaluations on PageRank, and two important classes of
graph algorithms: subgraph isomorphism to find arbitrary
subgraphs in the graph, and cellular automaton to simu-
late social movement patterns of people in Beijing. We
show, that GrapH reduces communication costs by up to
60% compared to state-of-the-art partitioning methods.

Outline: we formulate the heterogeneity-aware partitioning
problem in Sec. II and present our novel partitioning algo-
rithms H-load and H-move in Sec. III. Afterwards, we evaluate
our system in Sec. IV, discuss related work in Sec. V, and
conclude in Sec. VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we provide background information about
the graph execution model and standard vertex-cut partition-
ing. Then, we present the network- and traffic-aware dynamic
partitioning problem to be addressed in this paper.

A. Preliminaries

We assume a widely-used distributed vertex computation
model similar to PowerGraph [6], where computation is or-
ganized in iterations. In each iteration, the system executes
the user-defined vertex function for all active vertices. It
proceeds with the next iteration only after all active vertices
have finished vertex function execution (synchronized model).
The vertex function operates on user-defined vertex data and
consists of three phases, Gather, Apply and Scatter (GAS). In
the gather phase, each vertex aggregates data from its neigh-
bors into a gathered sum σ (e.g., a union of all neighboring
vertex data). In the apply phase, a vertex changes its local data
using σ. In the scatter phase, a vertex activates neighboring
vertices for future execution in the next iteration. For example,
in PageRank each vertex has vertex data rank ∈ R. The
gathered sum σ is the sum over all neighboring vertices’ rank
values. A vertex changes its vertex data rank using σ (i.e.,
rank = 0.15 + 0.85 ∗ σ) and activates all neighbors, if rank
has changed more than a certain threshold.

Large real-world graphs have billions of vertices and the se-
quential execution of all vertex functions on a single machine
is not scalable. In order to parallelize execution, the graph has
to be distributed onto multiple machines by cutting it through
edges or vertices (edge-cut or vertex-cut). In Fig. 1, we divided
the graph into three parts using both strategies. Edge-cuts
distribute vertices to machines, therefore an edge can connect
vertices on different machines. Vertex-cuts distribute edges
across machines and make vertices span multiple machines,
each having its own vertex replica. The set of machines, where
vertex u is replicated, is denoted as replica set Ru (e.g.,
the set {m1,m2,m3} for vertex u). Note, that we do not
differentiate between replicas and machines, because there is
a one-to-one mapping given a vertex v. Now, we can define
the replication degree as the total number of vertex replicas.
Vertex-cut has superior partitioning properties for real-world
graphs with power-law degree distribution such as the Twitter
or Facebook graph [6]. Thus, we use vertex-cut in this paper.

Inter-machine communication happens only in the form of
vertex traffic between replicas. For instance, if all neighbors
of vertex v are on the same machine, no inter-machine
communication is needed because all neighboring data can be
accessed locally. However, if vertex v is distributed, replicas
have to communicate to access neighboring data by exchang-
ing the gather, apply, and scatter messages. One dedicated
replica, the master Mv , initiates the distributed vertex function
execution and keeps vertex data consistent on other replicas
denoted as mirrors. More precisely, there are three types of
communication.

First, a master sends a gather request to each mirror; in
reply each mirror sends back a gather response containing
an aggregation of local neighboring data (e.g., a sum of all
local ranks for PageRank). We denote the number of bytes,
exchanged in the gather phase between the master of vertex v
and a mirror r in iteration i as gvr (i). Second, after computing
the new vertex data in the apply phase, the master sends a
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Fig. 2. (a)-(c) Distribution functions of vertex traffic for PageRank, subgraph isomorphism, and cellular automaton. (d) Latency between machines intra-
Availability Zone (AZ), inter-AZ and intra-region, and inter-region.
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Fig. 3. (a) Vertex-cut minimizing replication degree. (b) Network- and traffic-
aware vertex-cut minimizing costs.

vertex data update to all mirrors (e.g., the new rank). The
size of this message, av(i), depends on the local vertex data
on the master and can vary significantly. Third, in order to
schedule neighbors of v for future execution, scatter requests
of constant size s are exchanged between master and mirrors.
With this, we can define vertex traffic tv(i) of vertex v in
iteration i (averaged over all replicas in the replica set Rv(i)).

tv(i) =
1

|Rv(i)|
∑

r∈Rv(i)

(gvr (i) + av(i) + s) (1)

B. Network- and Traffic-aware Vertex-cut

We now show heterogeneity of vertex traffic and the net-
work and formulate the heterogeneity-aware vertex-cut parti-
tioning problem.

In general, vertex traffic and network costs are heteroge-
neous. In Fig. 2(a)-(c), we show vertex traffic heterogeneity
for three algorithms: PageRank, subgraph isomorphism and
cellular automaton (cf. Sec. IV for details about the algo-
rithms). The graph shows the x/y distribution: x% of the top-
traffic vertices are responsible for y% of overall traffic. In
our evaluations, PageRank is 20/65 distributed, because of
different convergence behaviors of vertices as mentioned in
Sec. I. Subgraph isomorphism is more extreme with a 20/84
distribution, because some vertices match more subgraphs
than others. Cellular automaton is highly imbalanced (20/100),
because vertices simulating unpopular regions in Beijing have

almost zero traffic (cf. Sec. IV). Besides vertex traffic, network
communication is also subject to significant variations in terms
of bandwidth and latency, even in a single data center [9],
[14], [20]. For Amazon EC2 machines, we show orders-of-
magnitude variations of latency (cf. Fig. 2d). Likewise, many
cloud providers charge variable prices for intra and inter data
center communication. For instance, Amazon charges nothing
for communication within the same availability zone (AZ),
while communication across different AZs and regions costs
respectively 0.01$/GB and 0.02$/GB of outgoing traffic (cf.
Tab. I).

Therefore, efficient graph partitioning should utilize these
diverse costs. For example in Fig. 3(a), vertices are annotated
with their (normalized) vertex traffic, also indicated by the
vertex size. Machines m1 − m3 communicate via network
links with different costs, given by the weights in bold. The
vertex-cut leads to distributed vertices u1 and u4, both having
traffic 0.9. We define communication costs via a network link
as the costs of the link multiplied by the traffic sent over
this link. The summed communication costs over all network
links are the total communication costs. In the example, total
communication costs are (0.9 ∗ 1) + (0.9 ∗ 10) = 9.9. Here,
traditional vertex-cut leads to minimal replication degree, but
high communication costs, because high-traffic vertices u1

and u4 send many messages over the network. To this end,
we introduce the network- and traffic-aware dynamic vertex-
cut partitioning. The idea is to cut the graph on the low-
traffic vertices to decrease inter-machine communication. In
Fig. 3(b), we minimize communication by cutting the graph
on vertices u2,u3 and u5,u6. This increases the replication
degree, but decreases overall communication costs. Note that
this partitioning could be improved even further by exploiting
heterogeneous network link costs. Suppose, the subgraph
assignments of m1 and m3 were swapped. Then, the (relative)
high traffic vertices u5,u6 communicate over the inexpen-
sive link (m1,m2), decreasing overall communication costs to
2(0.2 ∗ 1) + 2(0.1 ∗ 10) = 2.4.

Problem Formulation: Let G = (V,E) be a directed
graph with the vertex set V and edge set E ∈ V × V . Let
M = {m1, ...,mk} be the set of all participating machines.
The network cost matrix T ∈ R

k×k assigns a cost value to
each pair of machines (e.g., monetary costs for sending one



Machine placement Incoming traffic Outgoing traffic

Same AZ 0.00-0.01 $/GB 0.00-0.01 $/GB
Different AZ, same region 0.01 $/GB 0.01 $/GB
Different region 0.00 $/GB 0.02 $/GB
Internet 0.00 $/GB 0.00-0.09 $/GB

TABLE I
HETEROGENEOUS COMMUNICATION COSTS FOR AMAZON EC2 CLOUD

INSTANCES (AUGUST 2015).

byte of data). Hence, Tm,m′ represents the network costs be-
tween machines m and m′. The set of all iterations needed for
the graph processing task be I = {0, 1, 2, ...}. Vertex traffic for
all iterations i ∈ I and vertices v ∈ V is denoted as tv(i). The
assignment function a : E, I → M specifies the mapping of
edges to machines in a given iteration. The replica set of vertex
v in iteration i based on assignment function a is denoted as
Ra

v(i). It represents the set of machines maintaining a replica
of v: Ra

v(i) = {m|a((u, v), i) = m ∨ a((v, u), i) = m}.
In the following, we denote Rv to be v’s replica set under
the assignment in the present context. One dedicated replica
Mv ∈ Rv is the master replica of vertex v.

Our goal is to find an optimal dynamic assignment of edges
to machines minimizing overall communication costs:

aopt = argmin
a

∑

i

∑

v∈V

∑

m∈Ra
v(i)

tv(i) Tm,Mv
(2)

The load Lm(i) of machine m in iteration i is defined as
the summed vertex traffic over all vertices replicated on m
in iteration i. To balance machine load, we require for each
iteration i and machine m (having vertices Vm) that load
deviation is bounded by a small balancing factor λ > 1:

Lm(i) =
∑

v∈Vm

tv(i) < λ

∑
v∈V tv(i)

|M | . (3)

Hardness: The dynamic network- and traffic-aware parti-
tioning problem is NP-hard.

Proof sketch: Reduce the NP-hard balanced vertex-cut
problem to Eq. 2. Set input: I = {1}, tv(i) = 1,
Tm1,m2

= 1. By, aopt = argmina
∑

i

∑
v∈V

∑
m∈Ra

v(i)
1∗1 =

argmina
∑

v∈V |Ra
v |, Eq. 2 becomes the network- and traffic-

unaware vertex-cut problem, which is NP-hard (e.g., [21]).
�

III. ALGORITHMS FOR NETWORK- AND TRAFFIC-AWARE
PARTITIONING

In this section, we present our novel algorithms addressing
the network- and traffic-aware partitioning problem. We de-
veloped two methods: a partitioning algorithm called H-load

for pre-partitioning the graph, and a dynamic algorithm called
H-move for runtime refinement using migration of edges. In
Tab. II, we summarize notation used in the paper.

A. H-load: Initial Partitioning

Graph processing systems have to pre-partition the graph,
so that each machine can load its partition into local memory.

M The set of machines.

k The number of machines.

a Function mapping edges to machines.

Rv Replica set of vertex v.

Mv Master of replica set of vertex v.

tv(i) Vertex traffic of vertex v in iteration i.

t̂v(i) Vertex traffic estimation of vertex v for iteration i.

Lm(i) Load (i.e., summed vertex traffic) of machine m in iteration i.

C Capacity of exchange partner machine.

β(v) Byte size of serialized vertex u.

μ Aggressiveness parameter specifying willingness-to-move.

c+ Investment costs of migrating edges.

c− Payback costs in terms of saved future traffic.

TABLE II
NOTATION OVERVIEW.

To this end, we developed H-load, a fast pre-partitioning algo-
rithm that consists of two phases. First, it partitions the graph
using a vertex-cut algorithm utilizing network heterogeneity.
Second, it determines a cost-efficient mapping from partitions
to machines. We describe these two phases in the following.

1) Initially, our goal is to find a reasonable partitioning of
the graph into k balanced parts, ignoring concrete mapping
of partitions to machines. In order to improve partitioning
performance of billion-scale graphs, we assume a streaming
setting: the graph is given as a stream of edges e1, e2, ..., e|E|
with ei ∈ E and we consecutively read and assign one edge
at a time to a partition until there are no more edges to read.
Hence, computational complexity is linear to the number of
edges. Our method is similar to the vertex-cut algorithm of
PowerGraph [6], which greedily reduces replication degree
of vertices. However, the PowerGraph pre-partitioning leads
to relatively homogeneous total traffic between each pair of
partitions. But to exploit heterogeneity of network costs, we
also require heterogeneity of inter-partition traffic: partitions
exchanging more traffic should be mapped to machines with
low-cost network links. More precisely, the network cost
matrix T often consists of several clusters of machines that
have low intra-cluster and high inter-cluster costs (e.g., EC2
machines running in different availability zones). The number
of clusters c can be determined from the matrix T using well-
established clustering methods (e.g., [22]). Next, we group
partitions into c clusters and map edges to partitions such that
replicas preferentially lie in the same cluster.

Each edge (u, v) is assigned to a partition p as follows. If
there exists no replica of u or v on any partition, assign (u, v)
to the least loaded partition. If there are partitions containing
replicas of u and v, assign (u, v) to the least loaded of those
partitions. Otherwise, a new replica has to be created, because
there is no partition containing both replicas of u and v. For
example, if we place the edge on a partition p that already has
a replica of u, we have to create a new replica of v. We choose
partition p, such that the new replica preferentially lies in the
same cluster as already existing replicas. With this method, our
algorithm ensures a clustered traffic behavior: partitions in the
same cluster share the same replicas and thus are expected to



exchange more traffic than partitions in different clusters. In
the next phase, we try to find a good mapping of partitions to
machines.

2) Now, we try to find a mapping of the |M | partitions
to |M | machines while minimizing overall communication
costs. In order to minimize these costs, an optimal mapping
of partitions to machines would assign two partitions with
higher inter-partition traffic to machines connected via a low-
cost network link. This is an instance of the well-known
quadratic assignment problem: map |M | factories (i.e., par-
titions) to |M | locations (i.e., machines), so that the mapping
has minimal costs of factories sending their goods to other
factories (i.e., communication costs). We used the iterated
local search algorithm of Stützle et al. [23] which greedily
minimizes (communication) costs. Initially, partitions are ran-
domly mapped to machines. Then the algorithm iteratively
improves the total costs using the following method. Find
two machines, such that an exchange of partition assignments
would result in lower total communication costs. For example
in Fig. 3, exchanging partition assignments of machine m1
and m3 results in lower total communication costs. If an
improvement is found, it is applied immediately. In order
to address convergence to local minima, we perturb a local
optimal solution by randomly exchanging two assignments.
Note, that this algorithm is computationally feasible, because
it runs on a relatively small problem set with size |M | << |V |.
Clearly, the above method assumes that the traffic exchanged
between each pair of partitions is known (i.e., cumulative
traffic exchanged between vertex replicas shared by each
pair of partitions). This information can be determined from
the previous executions of the GAS algorithm. Otherwise,
homogeneous traffic between vertex replicas is assumed.

B. H-move: Distributed Migration of Edges

The H-load algorithm is suitable for a static network-aware
and traffic-aware partitioning. However, often the vertex traffic
changes dynamically at runtime. To this end, we developed
the distributed edge-migration algorithm H-move solving the
dynamic heterogeneity-aware partitioning problem. The idea is
that each machine locally reduces the communication costs by
migrating edges to distant machines. To this end, we define the
term bag-of-edges as the set of edges to be migrated. Machines
migrate bag-of-edges in parallel after each GAS iteration. Fi-
nally, if no further improvements can be performed, migration
is switched off.

Approach overview: The overall migration strategy is given
in Alg. 1. After activation of the migration algorithm (line 1),
machine m first selects partner machine m′ (line 2) and then
calculates the bag-of-edges to be send to m′ (line 3). In
order to prevent inconsistencies due to parallel updates on the
distributed graph, machine m requests locks for all vertices
in the bag-of-edges (line 4). Afterwards, m updates the bag-
of-edges to contain only those edges, whose endpoint vertices
could be locked (line 5) and determines, whether sending the
updated bag-of-edges results in lower total communication
costs (line 6). When sending the bag-of-edges, communication
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Master vertex

m m’0.4

0.50.1

0.1
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m m’0.4
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Fig. 4. Example of bag-of-edges migration to reduce inter-machine traffic.

costs change due to modifications of the vertex replica sets.
To calculate Δc in line 6, machine m considers both: the
migration overhead c+ of sending the bag-of-edges, as well as
the decrease of communication costs c− when improving the
partitioning. If Δc is negative, the bag-of-edges is migrated to
m′. Finally, machine m releases all held locks in line 9.

Algorithm 1 Migration algorithm on machine m.

1: waitForActivation()

2: m′ ← selectPartner()

3: b ← bagOfEdges(m′)
4: lock(b)

5: b ← updateLocked(b)

6: Δc ← c+ − c−
7: if Δc < 0 then

8: migrateBag(b)

9: releaseLocks(b)

We give an example of this procedure in Fig. 4. Two ma-
chines m and m′ have replicas of high-traffic vertices u2 and
u3. In order to reduce communication costs, m decides to send
the bag-of-edges b = {(u1, u2), (u2, u3), (u3, u4), (u4, u1)} to
m′. Machine m′ receives b and adds all edges in b to the local
subgraph. The right side of the Fig. 4 shows the final state
after migration of b. Now, low-traffic vertices u1 and u4 are
cut leading to less inter machine traffic. In the following, we
describe the proposed migration approach (cf. Alg. 1) in more
details.

1) Selection of partner and bag-of-edges: Which machine
is suitable as exchange partner? Intuitively, two machines shar-
ing high-traffic replicas are strong candidates for exchanging
bag-of-edges, because improving their partitioning can poten-
tially reduce the overall communication costs. To this end,
each machine m maintains a list of potential exchange partners
(with decreasing priority). This list is computed by sorting
neighboring machines w.r.t. the total amount of exchanged
traffic. On each round of Alg. 1, the top-most machine m′

is selected as an exchange partner and removed from the list.
Once the list is empty, it is recomputed as mentioned above.

Now, we determine the maximal size of the bag-of-edges
to be sent to m′ in order to ensure balanced machine load
(cf. Eq. 3). Therefore, we introduce the notion of capacity
of a machine m′, i.e., the maximum amount of additional
load, machine m′ can carry. Capacity is defined as half the
difference of loads Lm and Lm′ of the sending and the
receiving machine: C = (Lm′ − Lm)/2. To learn about
the current load Lm′ of machine m′, machine m sends a
request to m′. Using the capacity, machine m can balance
the loads by only sending edges, such that the deviation of



the two machines traffic values is still bounded. For example,
if sending the bag-of-edges results in a new replica of vertex
v on m′, this increases load of m′ by the vertex traffic of v.
If this violates load balancing between m and m′, machine m
will not include v into the bag-of-edges.

Once the exchange partner is selected and we know its ca-
pacity, we determine a bag-of-edges (bag) to be send. Selecting
a suitable bag is crucial for optimizing communication costs
and migration overhead. Theoretically, the perfect bag could
be any subset out of p edges on a machine (i.e., 2p subsets). In
order to keep the migration phase lean, we developed a fast
heuristic to find a bag improving communication costs (cf.
Alg. 2). Initially, machine m determines the set of candidate
vertices, those replicated on both machines, because they are
responsible for all the traffic between m and m′. Machine
m sorts the candidates by descending vertex traffic in order to
focus on the high-traffic vertices first (line 3). Then, m iterates
the following steps until m′ has no more capacity. It checks
for the top-most candidate vertex (line 5), whether sending all
adjacent edges results in lower total communication costs of
the overall graph processing (line 6-7, cf Sec. III-B2). If the
total communication costs would decrease when sending the
edges, machine m adds them to the bag (line 8-9).

Algorithm 2 Determining the bag-of-edges to exchange.

1: function bagOfEdges(m′):
2: bag ← []

3: candidates ← sort(adjacent(m′))
4: while hasCapacity(m′, bag) do

5: v ← candidates.removeF irst()

6: b ← {(u, v)|u �= v}
7: Δc ← c+ − c−
8: if Δc < 0 then

9: bag ← bag + b

10: return bag

2) Calculation of costs: Clearly, migrating bag b from one
machine to another is only beneficial, if it results in lower
overall costs (i.e., line 6 in Alg. 1, and line 7 in Alg. 2). In
general, two types of costs have to be considered in calculating
the resulting overall costs: investment costs and payback costs.
Investment costs represents the overhead for migrating the bag
and should be avoided. Payback costs are the saved costs after
migrating bag b in the form of less future inter-machine traffic.
In the following, we formulate both costs.

Investment costs: After sending b to m′, m can remove
isolated replicas that have no local edges anymore (Fig. 4
vertices u2, u3). If machine m is the master Mv of a vertex v
to be removed, i.e., Mv = m, we have to select a new master
after removing v from m. We set the partner machine m′ to
be the new master of v: M′

v = m′. On the other hand, some
vertices may not exist on m′ leading to creation of new replicas
(Fig. 4 vertices u1, u4). In both cases, the replica set Ru of
a vertex u might have changed (i.e., remove m or add m′ to
Ru). Then m has to send an update to all machines in Ru with
the new vertex replica set, denoted as R′

u. Additionally, when

creating a new replica on m′, machine m has to send the state
of v, i.e., vertex data and meta information such as the vertex
id. This can be very expensive for large vertex data, and should
be taken into account when deciding whether to migrate a bag.
Together, the investment costs are the sum of three terms. The
first term calculates the costs of sending the bag b to m′. The
second term calculates the costs of sending new replicas to
m′, if needed. The third term calculates the costs of updating
machines in all replica sets that have changed.

c+ =
∑

e=(u,v)∈b

β(e)Tm,m′ +
∑

u∈Vb

δ(u)β(u)Tm,m′ +
∑

u∈V ′
b ,r∈Ru∪R′

u

β(Ru)Tm,r,

(4)

where (i) the function β(x) returns the number of bytes
needed to encode x (to be sent over the network), (ii) the
indication function δ(u) returns 1, if machine m′ has no local
replica of u, otherwise 0, (iii) Vb is the set of all vertices in
bag b, and (iv) V ′

b is the set of all vertices whose replica sets
will change when sending the bag b to m′.

Payback costs: we can also save costs when sending bag
b from m to m′. Suppose the replication degree decreases
because of sending (u, v), i.e., |R′

u| < |Ru| or |R′
v| < |Rv|.

Then, we save for each iteration (starting from the current
iteration i0) the costs of exchanging gather, apply, and scatter
messages across replicas, i.e., the vertex traffic tv(i) of vertex
v in iteration i. Theoretically, exact payback costs are given by
the following formula that calculates for all future iterations
and each vertex in the bag the difference of the new costs and
the old costs of v’s replica set.

c∗− =
∑

i>i0

∑

v∈Vb

(
∑

r∈R′
v

tv(i)Tr,M′
v
−

∑

r∈Rv

tv(i)Tr,Mv ) (5)

Here, it is assumed that vertex traffic is known for all future
iterations. This is not the case in real systems. Therefore,
we describe next, how to estimate the payback costs in the
presence of uncertainty about future vertex traffic.

In order to estimate payback costs, we have to predict
vertex traffic for future iterations. More formally, given ver-
tex traffic tv(0), tv(1), ..., tv(i), we estimate traffic values
tv(i + 1), ..., tv(|I|). The prediction should be quick, have
low computational overhead, and low memory requirements,
because we have to predict vertex traffic in each migration
phase for millions of vertices. We investigate three well-known
methods for time series prediction of the next traffic value
tv(i+1), that fit to our requirements [24]. The first method is
most recent value (Last) taking the last traffic value as predic-
tion for the next traffic value: t̂v(i + 1) = tv(i). The second
method is incremental moving average (MA) with the idea to
use the moving average of the last w observations, while not
storing the values in the window: t̂v(i+1) = t̂v(i)(w−1)+tv(i)

w .
The third method is incremental exponential average (EA)
that calculates the estimation based on the old estimation and
the last traffic value: t̂v(i + 1) = αtv(i) + (1 − α)t̂v(i).
The parameter α ∈ [0, 1] specifies the amount of decaying
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Fig. 5. Lost update problem for parallel edge migration.

older traffic values and thus, the importance of recent traffic.
We assume tv(0) = 0 for all methods. In Sec. IV, we have
compared overall system performance for these methods with
different parameter choices, i.e., window sizes w and decay
parameters α.

With the above mentioned methods, we can determine
the vertex traffic estimation for the next iterations. However,
Eq. 5 expects a vertex traffic value for all future iterations.
In general, accuracy of the predicted vertex traffic t̂v(i) can
decrease with increasing i, because vertex traffic patterns may
change over time. Therefore, we introduce a factor μ, which
represents the minimum number of iterations, we expect to
save communication costs as a result of migrating bag b.
This parameter can be used to specify the aggressiveness with
which migration should be performed. Together, our estimated
payback costs are the following.

c− = μ
∑

v∈Vb

(
∑

r∈R′
v

t̂v(i+1)Tr,M′
v
−

∑

r∈Rv

t̂v(i+1)Tr,Mv
) (6)

3) Graph consistency: When two machines independently
send edges and change replica sets of vertices, inconsistencies
of the data graph can arise. In Fig. 5, we give an example.
Machines m1-m4 maintain a replica of vertex u. Suppose
machine m4 wants to send edge (u, v1) to machine m3 and
machine m1 edge (u, v2) to m2. After sending the edge,
machines m4 (m1) removes the vertex replicas of u with no
further local edges. Therefore, machine m4 (m1) has to update
all other machines having a replica of v with the new replica
set. Machine m4 sends the new replica set {m1,m2,m3} to
all machines, while machine m1 sends {m2,m3,m4}. The
machines can receive these updates in different orders leading
to inconsistent views on the replica sets (lost update problems).
Only a sequential update would result in a consistent state
(machine m4 changes the replica set before machine m1).
To guarantee sequential updates during edge migration, we
lock endpoint vertices in the bag to be sent to the partner
machine. We use a simple master locking scheme, i.e., each
machine intending to change vertex u sends a locking request
to Mu. If vertex u is already locked, the master machine
returns false, otherwise it locks u and returns true. However,
this also implies that not all locks may be acquired. Therefore,
we exclude edges from the bag for which not both endpoints
have been locked successfully (see line 5 in Alg. 1). Only
after the locking machine has successfully implemented the
bag-of-edge exchange, it releases all locks.

Name |V | |E|
Gnutella 8,114 26,013
Facebook 4,039 88,234
WikiVote 7,115 103,689
Twitter 81,308 1,768,149
GoogleWeb 875,713 5,105,039
TwitterLarge 41,652,230 1,468,365,182

TABLE III
REAL-WORLD GRAPHS FOR EVALUATIONS.

IV. EVALUATIONS

In the following, we present evaluations for GrapH on two
computing clusters for three different algorithms with high
practical relevance, i.e., PageRank, subgraph isomorphism, and
cellular automaton, on several real-world graphs1 with up to
1.4 billion edges given in Tab. III. We compared our migration
strategies with state-of-the-art static vertex-cut partitioning
approaches: hashing of edges (Hash) and PowerGraph (PG)
[6], [7]. We show the efficiency and effectiveness of the
partitioning strategies H-load and H-move.

A. Graph Algorithms

For our experiments, we have implemented the three graph
algorithms: PageRank (cf. [6]), subgraph isomorphism, and
social simulations via agent-based cellular automaton, denoted
as PR, SI, and CA, respectively. For SI and CA there is, to the
best of our knowledge, no implementation using the GAS API,
so we have designed our own algorithms. For implementation
details on these algorithms, we refer the reader to [25].

Subgraph Isomorphism is an NP-complete graph problem.
It can be used to query a graph for certain patterns (sub-
graphs). Examples are simple queries for Facebook Graph
Search (“Has a friend of mine been in that restaurant?”) or
complex queries for community detection (“Is there a k-clique
in the graph?”). More precisely, given a graph G = (V,E)
and a graph pattern P = (VP , EP ), subgraph isomorphism is
the problem of finding subgraphs Gsub = (Vsub, Esub), with
Vsub ⊆ V,Esub ⊆ E, that are isomorphic to the graph pattern
P . Each graph vertex can have an optional label (e.g., an
importance weight such as a PageRank value). In this case,
the labeled SI additionally requires both vertices in Vsub and
VP to have matching labels (cf. [4]).

Cellular Automaton is a powerful and well-established
model of simulation, where the problem space is expressed as
a grid of cells with each cell having a finite number of states.
A cell iteratively calculates its own state based on the states
of neighboring cells. Many complex simulation problems can
be modeled as cellular automata and computation is easily
parallelizable using the GAS programming abstraction for
recent graph processing systems. We implemented an agent-
based variant for simulating movements of people in Beijing
using real-world movement data2 [1].

1http://konect.uni-koblenz.de/networks/twitter, http://snap.stanford.edu/data
2http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-

9fd4-daa38f2b2e13/
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Fig. 6. (a) Traffic- and (b) network-awareness reduce communication costs. (c)-(e) H-move reduces communication costs with low overhead. (f) Pre-partitioning
with H-load reduces communication costs.

B. Evaluation Setup and Experiments

We have implemented GrapH in the Java programming lan-
guage (10,000 lines of code). GrapH consists of a master ma-
chine and multiple client machines performing graph analytics.
The master receives a sequence of graph processing queries
q1, q2, q3, ... consisting of user specified GAS algorithms. All
machines communicate with each other directly via TCP/IP.
We used two computing clusters with homogeneous, and
heterogeneous network costs. The homogeneous computing
cluster (ComputeC) consists of 12 machines, each with 8
cores (3.0GHZ) and 32GB RAM, interconnected with 1 Gbps
ethernet. The heterogeneous computing cluster (CloudC) is de-
ployed in the Amazon cloud using 8 geographically distributed
EC2 instances (1 virtual CPU with 3.3 GHz and 1 GB RAM)
that are distributed across two regions, US East (Virginia)
and EU (Frankfurt), and four different availability zones. If
not mentioned otherwise, the experiments are performed on
CloudC. As network costs between these instances, we used
the real monetary costs charged by Amazon (cf. Tab. I).

1) Communication costs: The main idea of this paper is to
consider network- and traffic-heterogeneity while constantly
repartitioning the graph during computation. In the following,
we evaluate the effect of traffic- and network-awareness on
total communication costs. We show the improvement of
communication costs as defined in Eq. 2: total traffic sent via
each network link, weighted by the costs of the network link. In
our first experiment (cf. Fig 6a), we compared three different
partitioning methods: (i) hashing of edges to machines without
dynamic migration (Hash), (ii) our dynamic migration strategy
assuming homogeneous vertex traffic on the hash partitioned
graph (Traffic-blind), and (iii) our dynamic migration strategy
on the hash partitioned graph (H-move). We accumulated
communication costs over 50 iterations of PR on Twitter. As
we can see, taking heterogeneous vertex traffic into account

greatly improves total communication costs by up to 50%
compared to Traffic-blind. The reason is that GrapH implicitly
prioritizes high-traffic vertices, that are the major sources of
total traffic (cf. Sec. II, Fig. 2).

How does network-awareness improve total communication
costs? In Fig. 6b, we compare three different partitioning
methods: (i) PowerGraph partitioning without dynamic migra-
tion (PG), (ii) our dynamic migration strategy on the parti-
tioned graph using our static partitioning strategy, while both
strategies assume homogeneous network (Network-blind), and
(iii) our dynamic migration strategy H-move on the H-load
partitioned graph (GrapH). We performed 250 iterations of
PageRank on GoogleWeb (and restarted computation after
termination of one PageRank instance). It can be seen, that
Network-blind already reduces communication costs by 20%
compared to PG. However, taking heterogeneous network into
account reduces total costs by additional 20%. Our experi-
ments therefore indicate, that the awareness of traffic and net-
work heterogeneity improves partitioning quality significantly.

To learn about the overhead of migrating edges in terms
of additional communication costs, we have performed exper-
iments on both computing infrastructures, for different graph
algorithms and different real-world graphs (cf. Fig 6c-e). Our
findings are, that H-move consistently improves communica-
tion costs while keeping migration overhead extremely low.
For instance in Fig. 6c, we show total communication costs
and migration overhead of 700 iterations of PageRank on
GoogleWeb. While communication costs decreased by 33%
compared to PG, the costs for migration (investment costs, cf
Eq. 4) are very low compared to the saved costs (in fact, the
migration overhead can not be differentiated from the x-axis in
the figure). In Fig. 6d, we repeated this experiment for the hash
prepartitioned WikiVote graph. Here, communication costs
decrease by 60%, when migration is switched on. Additionally,



(a) PR on GoogleWeb. (b) CA on grid (105 vertices) (c) SI on Twitter. (d) SI on Facebook.

Fig. 7. (a) H-move reduces accumulated network traffic. (b)-(d) H-move reduces current network traffic.

(a) PR on WikiVote. (b) PR on GoogleWeb. (c) PR on GoogleWeb.

Fig. 8. (a) H-move reduces replication degree. (b) Latency remains relatively stable using H-move. (c) GrapH reduces total workload.

we tested H-move on the complex SI algorithm (Fig. 6e). We
have sequentially executed SI algorithms on Facebook, mainly
searching for relatively simple graph patterns such as triangles.
Here, H-move decreases communication costs of the PG pre-
partitioned graph by 30%, although subsequent executions will
benefit even more from the improved partitioning.

Finally, we evaluated communication costs improvement of
H-load compared with PowerGraph and Hashing for three dif-
ferent graphs: Gnutella, GoogleWeb, and TwitterLarge (Fig 6f).
We assume homogeneous vertex traffic and heterogeneous
network costs. H-load greatly reduces total graph processing
costs by 70-90% compared to Hash and by 25-38% compared
to PowerGraph partitioning.

Overall, graph processing using H-move reduces total com-
munication costs at runtime, independently from the con-
crete pre-partitioning. GrapH automatically decides, whether
migrating edges is worth the additional overhead, so that
migration overhead is kept minimal.

2) Network traffic: Often network costs are unknown or
relatively homogeneous. In this case, H-move dynamically
reduces the total amount of machine communication, i.e.,
network traffic. In the following, we show the extent of
this improvement for PR, SI, and CA. In Fig. 7a, we have
executed multiple PR algorithms on GoogleWeb. We plotted
the accumulated network traffic for PG pre-partitioned graph
with H-move switched off and on. As we can see, H-move
decreases total traffic by 12%. In order to learn about the
current network traffic, we have performed experiments for
CA and SI (cf. Fig. 7b-d). We show the current network
traffic (averaged over a sliding window of 10 iterations) for
these algorithms on ComputeC. Our migration strategy reduces
total network traffic by up to 50% compared to PowerGraph
partitioning.

3) Replication degree: A standard metric to measure the
partitioning quality of vertex-cut algorithms is the replication
degree, i.e., the number of vertex replicas in the system. In
Fig. 8a, we can see the improvement of the replication degree
using H-move during PR on WikiVote. For each iteration, we
plot the current replication degree divided by the replication
degree of a hash partitioned graph, as well as the current
migration overhead divided by the total migration overhead
(CDF). During the first 50 iterations, there is an improvement
of more than 50% in replication degree, followed by saturation.
Therefore, migration is switched off after saturation.

4) Latency: The partitioning problem is computationally
hard and solving it during execution can be extremely ex-
pensive. However, our heuristic performs well as can be
seen in Fig. 8b. We measured the average graph processing
latency for one PR iteration, with and without migration,
as well as the latency for pre-partitioning the graph using
Hash, PowerGraph, and H-load. We denote an execution as
Static, if dynamic migration is switched off. Due to huge
memory overhead, the hash-based approach leads to a much
higher latency in our setting (note that memory of our EC2
instances is relatively small). We can also see that H-move
induces relatively little latency overhead compared to migra-
tion switched off (0.01 − 0.13 times). Experiments for SI on
a PG partitioned graph show similar results of 0.04 times
increased latency compared to static partitioning. We believe
that the latency punishment of H-move can be reduced further
by automatically switching the migration on or off at runtime.

5) Load balancing: GrapH balances the summed vertex
traffic over all vertices on a machine (cf. Eq. 3). In Fig. 8c, we
show the average machine workload after one PR execution
(78 iterations) for PG and GrapH as well as the deviation
of the machines from this average workload. GrapH leads



(a) PR on Twitter. (b) SI on Twitter. (c) CA on grid (2,500 vertices).

Fig. 9. (a)-(c) Prediction methods influence migration efficiency.

to a slightly higher workload imbalance because we balance
for (more volatile) vertex traffic. In contrast, PG balances the
number of edges. However, GrapH’s most loaded machine still
has less workload than the least loaded machine in PG. Thus,
GrapH reduces total workload by more than 60%.

6) Prediction methods: We expected that choosing the right
prediction method for future vertex traffic is important for
overall performance of our system. Therefore, we compared
three methods (cf. Sec. III): last value (Last), moving average
(MA) with window sizes 5 and 10, and exponential averaging
(EA) with decay parameter α = 0.1, 0.3, 0.8, 1.0 in Fig. 7a-c.
We evaluated the reduction of total network traffic for PR,
SI, and CA, compared to Hash. The position of the bars
from left to right reflects the size of the considered history
for prediction in descending order. For example, since Last
considers only the last value, we plotted it on the right.
As it can be seen, all prediction methods meet the goal of
minimizing overall network traffic. However, no method leads
to consistently better results for all algorithms. We attribute
this to the different stability of vertex traffic patterns. For
example in PR, considering a longer history shows better
results, because vertex traffic patterns remain stable over time.
Nevertheless, considering a large history in SI actually harms
performance, because the subsequent short-lived queries lead
to diverse vertex traffic patterns. For CA, apparently, there is
no such clear trend. This is because of the sudden changes
of vertex traffic, when agents move to neighboring cells.
However, exponential averaging with parameter α = 0.3
showed good results for all three algorithms, so we use this
configuration as default. A thorough study in this direction is
left for future work.

V. RELATED WORK

Recently, many systems for distributed graph processing
have emerged that inspired our work. PowerGraph [6] suggests
the GAS programming model and uses a distributed vertex
computation strategy based on vertex-cut partitioning. They
provide a greedy streaming heuristic (Coordinated) for static
vertex-cut partitioning, which we used for comparison. Petroni
et al. (HDRF [21]) consider the vertex degree in order to find a
minimum vertex-cut in the streaming setting. They argue that
real-world graphs with skewed degree distribution have a high
clustering coefficient for low-degree vertices, and therefore
HDRF minimizes the cut size only for low-degree vertices. A

similar argumentation is used in degree-based hashing (DBH
[26]), where an edge is assigned to a partition based on
the hash value of the edge’s low-degree vertex (cf. [27]).
PowerLyra [28] extends PowerGraph with hybrid-cuts: cutting
vertices with high degree and edges of low-degree vertices
decreasing expensive replica communication overhead. These
strategies minimize the replication degree, but ignore diverse
and dynamic vertex traffic.

On the other hand, the graph systems Mizan [29] and
GPS [11] propose adaptive edge-cut partitioning using vertex
migration. Mizan considers the real traffic sent via each edge to
balance workload at runtime. Vaquero et al. [30] apply edge-
cut to changing graphs using a decentralized algorithm for
iterative vertex migration to avoid costly re-execution of static
partitioning algorithms. Shang et al. [31] nicely identified and
categorized three types of vertex activation patterns for graph
processing workload: always-active-, traversal-, and multi-
phase-style. They exploit these workload patterns to dynam-
ically adjust the partitioning during computation. Yang et al.
[32] (Sedge) improve localization of processing small-sized
queries by introducing a two-level complimentary partitioning
scheme using vertex replication. While these edge-cut systems
adapt to changing graphs or traffic behaviors, they do not
consider network topology and migration costs. Furthermore,
these approaches focus on edge-cut and optimal edge-cuts can
not be transformed into close-to-optimal vertex-cuts for graphs
with high-degree vertices (cf. [33]). For instance, a star graph
with |E| edges has an edge-cut size of Ω(|E|) but a vertex-cut
size of O(1). Since real-world graphs often resemble a star-like
degree distribution (e.g. President Obama in the Twitter social
network), vertex-cut strategies should not be based simply
on transformed edge-cuts, but be tailored specifically to the
vertex-cut problem.

Surfer [14] tailors graph processing to the cloud by con-
sidering bandwidth unevenness to map graph partitions with
a high number of inter-partition links to machines connected
via high-bandwidth networks. They provide a straightforward
method for measuring bandwidth heterogeneity that could be
applied to our system. However, they assume homogeneous
traffic via each edge. GraphIVE [15] strives for a minimal
unbalanced k-way vertex-cut for machines with heterogeneous
computation and communication capabilities, in order to put
more work to more powerful machines. Therefore, they search
the optimal number of edges for each machine. This approach



is orthogonal to our proposed heterogeneity-aware partitioning
algorithms. Xu et al. [20] consider network and vertex weights
to find a static edge-cut with minimal communication costs.
They do not consider adaptive vertex-cut partitioning, and
vertex weights reflect only the number of executions, but not
the real vertex traffic. Zheng et al. [34] propose an architecture-
aware graph repartitioning method that also considers the
amount of communication going over each edge and the costs
of migrating a vertex. Unfortunately, it can not be used for
vertex-cut partitioning and the GAS execution model.

General data processing in the geo-distributed setting is
addressed by Pu et al. [18] and Jayalath et al. [19]. They
argue that aggregating geographical distributed data into a
single data center can significantly hurt overall data processing
performance. Hence, while focusing on MapReduce-like com-
putations, they share our idea of saving overall costs in geo-
distributed data analytics on heterogeneous networks. LaCurts
et al. [9] point out that considering network heterogeneity for
an optimal task placement, improves overall end-to-end data
analytics performance, even in a single data center. Therefore,
they place communicating tasks in such a way that most
communication flows over fast network links. However, task
placement is orthogonal to graph partitioning and could be
used on top of our system.

VI. CONCLUSION

Modern graph processing systems use vertex-cut partition-
ing due to its superiority of partitioning real-world graphs.
These partitioning methods minimize the replication degree,
which is expected to be the dominant factor for communication
costs. However, the underlying assumptions of uniform vertex
traffic and network costs do not hold for many real-world ap-
plications. To this end, we proposed GrapH, a graph processing
system taking dynamic vertex traffic and diverse network costs
into account to adaptively minimize communication costs of
the vertex-cut at runtime. Our evaluation show, that GrapH
outperforms PowerGraph’s vertex-cut partitioning algorithm
by more than 60% w.r.t. communication costs.
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