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Abstract—The workflow technology is the de facto standard
for managing business processes. Today, workflows are even
used for automating interactions and collaborations between
business partners, e.g., for enabling just-in-time production.
Every workflow that is part of such a collaboration needs to
be highly available. Otherwise, the business operations, e.g., the
production, might be hindered or even stopped. Since today’s
business partners are scattered across the globe, the work-
flows are executed in a highly distributed and heterogeneous
environment. Those environments are, however, failure-prone
and, thus, providing availability is not trivial. In this work, we
improve availability by replicating workflow executions, while
ensuring that the outcome is the same as in a non-replicated
execution. For making workflow replication easily usable with
current workflow technology, we derive the requirements for
modeling a workflow replication system. Then, we propose
the HAWKS system, which adheres to the previously specified
requirements and is compatible with current technology. We
implement a proof-of-concept in the open-source workflow
execution engine Apache ODE for demonstrating this com-
patibility. Finally, we extensively evaluate the impact of using
HAWKS in terms of performance and availability in the
presence of failures.

Keywords-SOA ; workflows; availability; replication; perfor-
mance;

I. INTRODUCTION

Workflows have gained enormous importance for today’s
businesses [1], [2]. Healthcare [3], logistic [4], manufactur-
ing, and urban mobility [5] are only few of many areas,
where workflows are being used. Especially with the advances
of choreographies [6], where complex interactions of many
workflows can be managed in an intuitive manner, workflows
are used by businesses on a global scale. On the downside,
this means that the delay or unavailability of one of the
workflow executions hinder the execution of all workflows
that participate in the choreography. As a result, highly
available workflow executions are fundamental for today’s
businesses. A single hour of unavailability implies a typical
cost of up to $6.48 million [7].

Today’s choreographies often comprise multiple business
partners scattered across the globe, implying that the partic-
ipating workflows are executed in a highly distributed and
heterogeneous environment. In such environments, failures

occur frequently making it challenging to ensure high
availability. Even wired networks, usually considered reliable,
are failure prone. For example, the IP Backbone experiences
failures on median every 3000s, where failures last for
2 —1000s [8], [9]. A Microsoft study found that even data
centers experience 40.8 network failures with end-user impact
per day [8], [10]. Cloud providers like Amazon and Google
confirm that network partitioning must be considered when
designing network related systems [8], [11].

Moreover, with the advent of mobile devices, businesses
are shifting to become more customer-centric. Customers are
given the possibility to influence business operations for en-
abling personalized products and customer-tailored services,
strengthening customer loyalty. In these cases, workflows
not only interact with each other but also with customers,
implying an even stronger need for high availability. Google
reported that delaying the reply to the user by only 500ms
led to 25% less usage of their services with long term
impact [12]. Thus, it is desirable to design highly available
systems providing reliable workflow executions.

Because of its high relevance, increasing availability and
failure tolerance of workflows has already been addressed
in the past. For enabling fault-tolerant workflows, failure
handling and recovery mechanisms are explicitly specified
in the workflow model [13]. For example, if an activity
fails or its effects need to be reversed, a compensation
handler specified for this activity is executed. Sometimes
it is not possible to compensate an activity in isolation.
Therefore, compensation scopes can encapsulate multiple
activities, where the compensation handler reverses the effects
of all the contained activities [14]. However, these approaches
cannot mask failures of the computing nodes on which
the workflows are executed. In case of a node failure, the
workflow execution only recovers and continues once the
underlying node has recovered. Thus, the workflow execution
does not progress until recovery, which renders the workflow
execution unavailable. Consequently, these approaches are
infeasible for ensuring high availability.

In distributed systems, redundancy is a commonly used
technique for increasing availability in the presence of failures
by replicating the same functionality on multiple computing
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nodes in the system [15]. Unfortunately, the replication
concept cannot be directly applied to workflows. Consider
that multiple computing nodes execute an instance of the
same workflow model. This ensures that even if some of
these computing nodes fail, the workflow is still executed.
However, if the workflow, for example, contains a payment
activity, the replicated execution will pay multiple times
— increasing the total cost — instead of paying just once
as intended by the workflow designer. Thus, the available
replication techniques are not suitable for workflows. For
using replication, we need to ensure that the outcome of a
replicated workflow execution is identical to a non-replicated
workflow execution [16].

In this paper, we combine the availability concepts of
workflow technology with the replication techniques of
distributed systems for ensuring that the outcome is identical
to a non-replicated workflow execution. First we provide a
formal model for workflows (Section II). We then discuss how
replication can be used to increase availability in workflow
systems (Section III). Based on this discussion we extract
the requirements that a workflow replication system needs
to fulfill to enable highly available workflow executions, and
subsequently, we present the HAWKS system adhering to
the defined requirements (Section IV). The HAWKS system
is compatible with existing workflow technology, which we
demonstrate by implementing a proof of concept HAWKS
prototype in the open-source industry-level workflow engine
Apache ODE (Section V). We extensively evaluate the
implementation with respect to the impact of using replication
on the performance in a cluster of engines (Section VI),
before discussing related work (Section VII), and concluding
with some future work (Section VIII).

II. WORKFLOW MODEL

For understanding the challenges arising with the repli-
cation of workflows, we first describe the workflow model.
A workflow model is defined by a directed acyclic graph
G = (A,L,Y), where A is the set of activities, L is the set
of links, and X the internal state containing the variables
needed during execution [14]. The activities a € A define
atomic pieces of work. The control logic is defined by the
links L. Each link / € L is specified by a tuple L: A XA X T,
where T is the set of transition conditions. Thus, the link
I = (astarts Gend,t) originates from agqy, points to deng, and is
only triggered if ag,+ Was already executed and the transition
condition ¢ is fulfilled. For simplicity, we will not consider
loops in this work.! The internal state ¥ contains the variables
of the workflow, which can be read and written by the
activities during execution.

For executing the workflow, the workflow engine creates
an instance g = (A’,L',0) of the workflow model G. The

"Loops can be supported through extending the replication protocol. We,
however, leave the discussion of such an extension for future work.

set A' = {(id,a,s)|id € ID,a € A,s € S} contains all activity
instances, where S = {Ready, Executing,Completed} speci-
fies the execution state of the activity instance. Each activity
instance a’ € A’ is an instance of a € A that is identified
by an id and has an execution state s. The set of links
L'={(l,c)|l € L,c € {true, false}} defines whether an link
is evaluated to frue or false. The internal state ¢ is a tuple
of the values of all variables. In other words, o is a snapshot
of the current internal state. Each activity @’ € A’ might have
read or write access to the variables of o depending on
the data flow. However, we omit discussing the data flow
because it does not impact the concepts of this work. Instead,
we assume that each activity can read or write all variables
of o and thereby can transfer the internal state ¢; into a
new internal state oy, which is denoted by 6; — i o). Also,
the activity execution might interact with services or other
processes by sending or receiving messages.

For reversing the effects of an activity execution, we
assume that each activity either has a defined compensation
handler or is embedded in a compensation scope that has a
defined compensation handler [14]. Since each activity can
interact with interaction partners, such as another workflow
or a service, the activity execution might have changed state
which is not in direct control of the workflow — called the
external state. Executing the compensation handler of an
activity includes (semantically) reversing the effects on the
external state. Note that this workflow and execution model
is compatible with the WS-BPEL standard® and generally
compatible to any graph-based workflow description language.
Thus, the techniques we present in the following are widely
applicable to current workflow technology.

IITI. HIGHLY AVAILABLE WORKFLOW EXECUTIONS

In order to achieve high availability, we can in principle
instantiate a workflow model on multiple computing nodes.
By executing these replicas of the workflow model in parallel,
we can mask failures because if one of the nodes is failed or
partitioned from the network, the other replicas continue the
execution. However, the replicated execution should affect
the external state as a non-replicated execution would have
affected the external state.

In specific, a non-replicated workflow execution gets input
by receiving messages (denoted as reads in Fig. 1) and
produces output by sending messages to interaction partners,
which write to external state (denoted as writes). Not all
interaction partners write to external state when they receive
a message (denoted as non-writes), e.g., stateless services.
Consequently, when a replicated execution receives the same
input (reads) as a non-replicated execution, it should produce
the same output (writes) as the non-replicated execution.
Then, we call the replicated execution consistent [16]. In the
following, we discuss how to achieve this consistency.

Zhttp://docs.oasis-open.org/wsbpel/2.0/
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Figure 1. Executions of activities, which synchronously interact with
services depicting the effects on internal and external state.
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Figure 2. Types of replication: a) Passive replication b) Active replication

In general, we use two replication mechanisms: passive and
active replication (cf. Fig. 2). With passive replication, only
one engine, called master, executes the activity and replicates
the produced internal state to all other replicas. Thereby, all
replicas have the same internal state, which means they
are synchronized. This synchronization, however, causes a
bandwidth overhead as well as a time delay for replicating the
state. With active replication, all engines execute the activity.
Hence, we save the overhead of synchronizing the replicas
because each replica produces the new internal state itself.
Unfortunately, active replication might violate the consistency
depending on how the executed activity modifies the internal
and external state. Therefore, we classify the activities based
on how they change the internal and external state.

The external state can by changed by an activity execution
if the activity sends a message to an interaction partner. For
example, when executing a payment activity, the activity
interacts with a payment service, which changes (i.e., writes
to) the account balance. All activities which potentially
change the external state are called write activities. Using
active replication for write activities causes inconsistencies
because the payment would be performed multiple times,
which would not happen for a non-replicated execution.
However, as discussed above, not every interaction partner is
writing to the external state. For example, reading the account
balance through using a banking service does not change
the external state. Moreover, an activity might not interact
at all or might only receive a message. Such activities are
obviously also not writing to the external state. Thus, we
summarize all these activities as non-write activities. Because
non-write activities do not write to the external state, non-
write activities can potentially be actively replicated.

However, there is a second classification criteria which

Algorithm 1: The basic protocol functionality, which is
running on each replica

1 a. < NextActivityToExecute();

2 if a..isDeterministic() and a..isNonWrite() then
3 ‘ o <+ execute(a., 0);

4 else if engine is master then

5 o < execute(a., 0);

6 L Synchronize(o);

has to be taken into account, which specifies how an activity
modifies the internal state. Consider an activity for booking a
bus seat calling a reservation service. Calling the service with
the same message multiple times might result in different
replies from the service because a bus has a limited number of
seats. Thus, when the replicas use the same internal state for
executing the activity, they might produce different internal
states. Such activities are considered to be non-deterministic.
Actively replicating non-deterministic activities can produce
diverging internal state on the replicas, e.g., by getting
different input from interaction partners. Then, each replica
that executes subsequent activities might affect the external
state differently. We, however, want to produce the same
writes on the external state as one non-replicated execution.
This means, we could only use one of the (diverged) replicas
further rendering the replication useless. In contrast, assume
calculating the sum of all expenses of an investment. When
this activity is executed multiple times with the same internal
state (the expenses), the sum will always be the same. Such
activities are called deterministic.

In conclusion, only deterministic non-write activities can be
actively replicated without violating consistency. As shown
in Alg. 1, all other activities are passively replicated. In
general, this strategy allows the replication protocol to avoid
inconsistencies. However, in case of passive replication, the
master might fail or might be partitioned from the network.
Then, the remaining replicas elect a new master for continuing
the execution after detecting the failure (cf. Fig. 3). Election
protocols are thoroughly researched and any election protocol
might be used, e.g., [17]. The old master might have failed
before synchronizing (i.e., before executing Alg.1 line 6).
Thus, the execution progress (and produced internal state) is
not known during the election. This means the corresponding
activity must be re-executed by the new master. To avoid
inconsistencies, the execution of the failed master needs to
be compensated after recovery. This is realized as follows:
1) the failed master recovers, finishes its execution, and tries
to replicate the produced state, 2) the other replicas will
reject the old activity execution because they already elected
a new master, which is re-executing the activity, 3) upon
receiving the rejection, the recovered master compensates its
execution. Then, consistency is ensured again.
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Figure 3. Replication protocol

Since the overhead of synchronizing the internal state
after each activity might be very high (cf. Alg.1 line
5-6), the proposed protocol allows to group consecutive
activities into a synchronization scope (cf. Fig.3). Then, the
whole synchronization scope is executed before the state is
synchronized (by adapting Alg. I line 5 accordingly). On the
downside, more execution progress is lost when the master
fails just before synchronizing. In this case, more activities
need to be re-executed increasing the failover time, i.e.,
the time to regain the execution progress it had before the
failure. Moreover, the failed master also has to compensate
all activities of the synchronization scope after recovering
increasing the compensation cost. By means of this approach,
however, we provide the flexibility of letting the workflow
designer decide whether more synchronization overhead or
more recovery overhead (i.e., failover time and compensation
cost) is desirable (cf. [16]).

In the following, we present an architecture for realizing
the protocol efficiently with existing workflow technology.

IV. THE HAWKS SYSTEM

In this section, we provide the architecture for realizing
highly available workflow executions with existing technol-
ogy. The architecture is kept generic and, thus, can be used
for adding the replication protocol to any existing workflow
engine that is based on a graph-based workflow language.
However, before we describe the architecture, we extract the
requirements that the architecture needs to fulfill.

A. System Requirements

The system should fulfill several requirements regarding
the generality of its applicability. The system especially
should be easily usable and, thus, work with as few manual
interventions by users as possible. In specific, we identified
the following requirements:

Automated deployment: The system must be able to au-
tomatically distribute a workflow model to several
workflow engines. The number of workflow engines
receiving the model has to be identical to the specified
replication degree.’

3We assume that the desired replication degree is specified in the execution
request. The replication degree might be specified by the workflow designer
or calculated by a probabilistic model taking QoS properties into account.
We can support any arbitrary method.

Automatic execution: The replicated execution of a work-
flow must be triggerable by sending a message to one
endpoint of the system. Linking and synchronizing the
workflow engines for the exchange of synchronization
messages must be done automatically.

Scalability: The system has to be scalable. Thus, it must
be possible to easily add and remove workflow engines,
which can participate in the replicated execution of
workflows.

Transparency: The replication must be transparent to any
interaction partner of the workflow instance. Thus, other
workflows participating in the choreography can use
different replication degrees, or might not be replicated
at all.

We realize these requirements in our Highly Available
WorKflow executionS (HAWKS) system, which we present
in the following.

B. Architecture of the HAWKS System

As depicted in Fig. 4, the HAWKS system is a middleware
solution consisting of the Synchronization Units, which
are attached to each Execution Engine, and the HAWKS
Controller. The Synchronization Unit is responsible for
controlling the workflow executions in the engines according
to the replication protocol. The HAWKS Controller is
responsible for starting replicated executions and routing
messages between the engines. In the following, we describe
each component in detail.

Execution Execution Execution
Engine Engine Engine

Message Broker

Event Deployment
[ Manager ] [ Manager EE Manager
EE Registry
Registry
HAWKS Controller

HAWKS System

Workflow
Designer

Figure 4.  Architecture of the HAWKS system

1) Synchronization Unit: The Synchronization Unit runs
the replication protocol and controls the execution in the
Execution Engine accordingly. More specifically, the Synchro-
nization Unit 1) suspends and resumes the execution, ii) tracks
changes of the internal state during execution, iii) sends
the changes to the other replicas (by sending them to the
Message Broker), iv) applies state changes it receives and
skips the corresponding activities, and v) manages elections
after failures. Thus, any existing workflow engine can be
extended by a Synchronization Unit, which enables the usage
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of our protocol. In conclusion, the Synchronization Unit
fulfills the automatic execution requirement.

2) Message Broker: The Message Broker is responsible
for routing the messages between the Execution Engines
such that the replicas of a workflow can interact. This is
necessary because the Execution Engines do not know the
other Execution Engines that participate in the replicated
execution. The Message Broker also correlates the messages
to the corresponding workflow instance (i.e., replica) of
the Execution Engine (since the Execution Engine can
execute multiple workflow instances in parallel). Additionally,
the Message Broker is handling the communication of the
replicas with the interaction partners. Thus, the replicas send
the messages to the Message Broker, which then sends it to
the interaction partner. Through this, the interaction partner
perceives the replicas as a single endpoint satisfying the
transparency requirement.

3) EE Manager and EE Registry: These components
are responsible for managing the Execution Engines that
can currently participate in a replicated workflow execution.
On start-up, each Execution Engine registers itself at the
HAWKS Controller. Therefore, the Synchronization Unit
sends a registration message to the Message Broker. The
Message Broker routes the message to the EE Manager. Then,
the EE Manager stores the Execution Engine together with
its endpoint reference in the EE Registry. The EE Manager is
also responsible for checking if Execution Engines become
unavailable. If an Execution Engine is unreachable, the EE
Manager will (eventually) remove the Execution Engine from
the EE Registry.

4) Deployment Manager: When a workflow, which was
modeled in a Workflow Designer, is to be executed, an
execution request containing the workflow model is sent
to the Message Broker. Then, the Deployment Manager
determines the Execution Engines that participate in the
replicated execution based on the workload of the engines.
More specifically, it selects the engines which have the
lowest workload ensuring workload balancing (e.g., by
monitoring the engines [18]). The Deployment Manager
sends the workflow model to these engines and sets up
the routing paths between the replicas in the Message Broker.
The Deployment Manager satisfies the automated deployment
requirement. Because the Deployment Manager selects the
Execution Engines using workload balancing and the EE

Overview of the prototypical implementation and used technology

Manager and EE Registry allow to easily add more Execution
Engines, the scalability requirement is fulfilled as well.

5) Event Manager and Registry: The Event Manager
tracks events and saves these in the Event Registry. The
tracking includes the start and end of a replicated execution.
Thereby, the HAWKS Controller can identify started and
not finished executions. Moreover, the tracking can be easily
extended for further monitoring of the HAWKS system.

V. PROOF OF CONCEPT

We show the applicability of the HAWKS system on
existing workflow technology by extending the open-source
workflow engine Apache ODE and the pluggable framework
for extended BPEL (ODE-PGF), which is able to orchestrate
workflows based on Web Service Business Process Execution
Language (WS-BPEL).* WS-BPEL is standardized by OASIS
and widely used in industry. The Apache ODE is itself
running in an Apache Tomcat servlet container.

For realizing the communication between the engines, we
use Apache ActiveMQ. Thus, the Synchronization Unit that
is attached to Apache ODE is reading from and writing to a
message queue for controlling the ODE such that the replicas
are synchronized. For routing the synchronization messages,
we use Apache Camel. We also use it for routing messages
sent from interaction partners to the replicas. The HAWKS
system’s realization is depicted in Fig. 5.

For reducing the synchronization overhead, we do not
include the complete internal state of the workflows in the
synchronization messages. Instead, we track which variables
are modified during activity executions and only send these
modifications to the other replicas. In turn, the replicas check
that they received and applied all preceding state updating
synchronization messages. They can easily check this using
the workflow model because each state update message
contains the activity that produced the state. We validate the
activity against the execution progress and do not apply the
update if a preceding update is missing. Our implementation
of HAWKS is open-source and available on GitHub.?

“http://ode.apache.org, http://camel.apache.org, http://activemq.apache.org,
http://tomcat.apache.org, http://docs.oasis-open.org/wsbpel/2.0/,
http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/

Shttps://github.com/TheRingbearer/HAWKS/
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Figure 6. Average workflow execution time in the presence of failures

VI. EVALUATIONS

We evaluate the HAWKS system by using up to 12 virtual
machines (4 vCPUs, 8 GB RAM) running in OpenStack®
for hosting the Apache ODE. The HAWKS Controller
is distributed to 10 additional VMs. In the following,
we evaluate the HAWKS system in terms of availability,
replication overhead, and scalability. For all measurements,
we used an exemplary workflow, which also can be found in
the HAWKS GitHub repository. Overall we measured over
50,000 workflow executions.

For evaluating the availability, we assume that a failed
engine can resume any started workflow execution after
recovering from the failure. If the engine would not provide
this recovery mechanism, any started workflow execution
would be lost when an engine fails. Then, replication would
obviously outperform a non-replicated execution. We instead
show that replication is beneficial even when all engines
provide this recovery mechanism.

For simulating failures, we fail one workflow engine of
the system with the probability f every second. Initially, f
is set to 0. Then the failure probability is increased by ﬁ
every 30s. For controlling the mean time to recovery of a

failed engine, we simulate failures by halting the engines.

Our mean time to recovery is set to 10s, which is short
since typical failures last up to multiple days [19]. However,
replication is obviously beneficial for long lived failures. In
contrast, we want to show that replication is also beneficial
in the presence of short lived failures. In this measurement,
we use a stable workload of one request every 10s, i.e., one
workflow execution starts every 10s.

In Fig. 6, the non-replicated execution (NR) has the lowest
average workflow execution times when the failure probability
f is low or zero. With this low f, increasing replication
degrees imply higher synchronization overhead because the
state has to be replicated on more replicas before continuing
the workflow execution. Thus, higher replication degrees
have higher average workflow execution times.

However, when the failure probability increases, NR shows
the trend of a linear increase because every failure delays
the execution by the mean time to recovery. The average

Shttps://www.openstack.org

workflow execution times are quickly higher than any of
the replicated workflow executions. This means that even
though NR has no synchronization overhead and, therefore,
can execute more workflows during the failure-free phases, it
still cannot compensate for the time it is failed. This shows
that replication keeps the average execution times low in
failure prone environments. Moreover, Fig. 6 also shows that
higher replication degrees can tolerate more failures. Until
400s of measurement progress (i.e., f < %) the execution
time of replication degree 3 (RD3) increases slowly. This
increase is due to the time needed for electing a new master
when a master fails. However, there is a sudden increase at
400s because f becomes so high (f = %) that a majority
of replicas fails concurrently, which prevents the election of
a new master. Thus, the workflow execution is halted until a
majority recovered. However, both the replication degree 5
(RD5) and 9 (RD9) do not show this sudden increase even
up to 900s, ie., f= %. In conclusion, higher replication
degrees can tolerate more concurrent failures providing high
availability in failure prone environments.

Above we have already seen that without failures the
increased synchronization overhead of higher replication
degrees increases the workflow execution time. The measure-
ment, however, was specific to the used workload. Now, we
will investigate the overhead further under different workloads
without injecting failures. In specific, we double the workload
every 300s. Initially, we start one workflow execution every
60s, then every 30s, and so on. In Fig. 7a, the non-replicated
workflow execution (NR) again has the lowest execution times
because it has no synchronization overhead. Accordingly,
the average workflow execution time increases with higher
replication degrees. Additionally, we can observe that RD3
becomes overloaded around 700s of measurement progress
(starting a workflow every 15s), RDS5 at 1000s (starting a
workflow every 7.5s), and RD9 at 12505 (starting a workflow
every 3.75s). At some point any system — also NR — becomes
overloaded when the workflows executions are started with
a higher rate than they can be executed by the engines.
However, the replicated executions become overloaded before
a non-replicated execution because of the synchronization
overhead. When comparing the replicated executions to each
other, higher replication degrees become overloaded later.
The reason is that the bottleneck of the replication protocol is
the master which executes the activities and synchronizes the
produced state when using passive replication. When using
more replicas the load of being master can be distributed to
more computing nodes.

Because HAWKS is designed to be scalable, we can
add more engines for handling higher workloads without
increasing the replication degree. For evaluating the scal-
ability, we first evaluate the replication degree 3 with 3
engines (RD3E3), i.e., all engines execute a replica of every
workflow. We also evaluate the setup of replication degree 3
with 6 engines (RD3E6) and with 12 engines (RD3E12). In
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Figure 7.

these cases, the workload can be distributed to the different
engines. Fig. 7b shows that adding more engines improves the
performance by delaying the point where the system becomes
overloaded. While RD3E3 becomes overloaded at 700s
(starting a workflow every 15s), RD3E6 becomes overloaded
at 1000s (starting a workflow every 7.5s) and RD3E12 delays

the point even to 1200s (starting a workflow every 3.75s).

To make the effects of delaying this point clearer, we show
the accumulated number of finished workflow executions
in Fig. 7c. RD3E3 is overloaded after executing around 70
workflows, whereas RD3E6 and RD3E12 can handle 150
and 340 workflow executions before being overloaded. This
clearly shows the scalability of HAWKS.

In conclusion, HAWKS ensures highly available workflow
executions, while implying only small overhead for low
replication degrees. Moreover, in a failure prone environment,
the replication overhead is negligible.

VII. RELATED WORK

Availability is an important property for any network
related system. Therefore, there has been a lot of research
targeting availability. One approach for providing availability
for workflow executions is the dynamic composition of web
services [20], where it is possible to use the availability
of the individual services as a QoS property for selecting
the services [21]. However, service composition approaches
require a description of the desired functionality in a
declarative language (e.g., [22]) and, thus, suffer from state
explosion [23]. Additionally, declarative languages are not
compatible with the imperative workflow languages, i.e.,
graph-based workflow languages, which are the predominant
way of modeling workflows.

Other approaches improve availability by providing the
functionality to switch from a used service that is failed
to an alternative service [24], [25]. Some approaches even
call multiple alternative services in parallel and use the
first reply they receive and cancel or compensate the other
executions [26], [27]. These approaches, however, only target
masking service failures. The approaches cannot handle
failures, where the computing node on which the engine
is running fails or is partitioned from the network. On the
other hand, HAWKS does not tackle service failures and, thus,
incorporating the mentioned strategies in HAWKS can further
improve the availability. Another solution would be to use
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The figures show the replication overhead (a) and scalability with respect to execution time (b) and the number of finished workflows (c).

HAWKS for executing the services (if these are modeled as
workflows) making the services themselves highly available.

Data replication techniques usually consider the trade-off
between consistency and availability [28], while workflow
replication techniques do not consider this trade-off. Instead,
some workflow replication techniques consider all activities to
be not writing to external state, e.g., [29]. These approaches
actively replicate activities and take the result of the first
finished activity execution for continuing the workflow
execution. Thereby, they completely avoid the need for
considering consistency problems. However, workflows in
general interact with services and other workflows implying
that they can change the external state. Thus, such techniques
can only be applied to few workflows. Other workflow
replication techniques solely rely on passive replication [30],
where the state is transferred to a backup system after each
activity execution. However, these techniques imply overhead
in terms of bandwidth for transferring the state after each
activity execution, as well as a delay until the transfer is
complete. Also, in case of a failure the triggered re-execution
does not consider consistency and transparency for interacting
with interaction partners. In this work, we explicitly specify
how to achieve a consistent replicated execution. During the
execution we allow temporal inconsistencies (when activities
are re-executed in case of failures), which are resolved
eventually. Thus, the achieved consistency is congruent to
eventual consistency [31].

VIII. CONCLUSION

We presented the HAWKS system which enables highly
available workflow executions by replicating the executions
on multiple computing nodes. Therefore, we identified
the requirements that the system needs to fulfill to be
usable with existing workflow technology without manual
interventions. We showed that the HAWKS system fulfills
these requirements. Moreover, we implemented a prototype
in the open-source workflow engine Apache ODE proving the
applicability to state-of-the-art workflow technology. Finally,
we evaluated the HAWKS system and showed that it induces
only a small overhead. We also showed that the performance
loss is outweighed by the gains in terms of availability in
the presence of failures. In future work, we will extend the
HAWKS system i) to support loops in the workflow model
and ii) consider activities that are bound to specific workflow



engines (e.g., because of privacy concerns). We also plan an
empirical study, where we will show the impact of replication
in different scenarios and use-cases.
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