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Abstract—The workflow technology is the de facto standard
for managing business processes. Today, workflows are even
used for automating interactions and collaborations between
business partners, e.g., for enabling just-in-time production.
Every workflow that is part of such a collaboration needs to
be highly available. Otherwise, the business operations, e.g., the
production, might be hindered or even stopped. Since today’s
business partners are scattered across the globe, the work-
flows are executed in a highly distributed and heterogeneous
environment. Those environments are, however, failure-prone
and, thus, providing availability is not trivial. In this work, we
improve availability by replicating workflow executions, while
ensuring that the outcome is the same as in a non-replicated
execution. For making workflow replication easily usable with
current workflow technology, we derive the requirements for
modeling a workflow replication system. Then, we propose
the HAWKS system, which adheres to the previously specified
requirements and is compatible with current technology. We
implement a proof-of-concept in the open-source workflow
execution engine Apache ODE for demonstrating this com-
patibility. Finally, we extensively evaluate the impact of using
HAWKS in terms of performance and availability in the
presence of failures.

Keywords-SOA; workflows; availability; replication; perfor-
mance;

I. INTRODUCTION

Workflows have gained enormous importance for today’s

businesses [1], [2]. Healthcare [3], logistic [4], manufactur-

ing, and urban mobility [5] are only few of many areas,

where workflows are being used. Especially with the advances

of choreographies [6], where complex interactions of many

workflows can be managed in an intuitive manner, workflows

are used by businesses on a global scale. On the downside,

this means that the delay or unavailability of one of the

workflow executions hinder the execution of all workflows

that participate in the choreography. As a result, highly

available workflow executions are fundamental for today’s

businesses. A single hour of unavailability implies a typical

cost of up to $6.48 million [7].

Today’s choreographies often comprise multiple business

partners scattered across the globe, implying that the partic-

ipating workflows are executed in a highly distributed and

heterogeneous environment. In such environments, failures

occur frequently making it challenging to ensure high

availability. Even wired networks, usually considered reliable,

are failure prone. For example, the IP Backbone experiences

failures on median every 3000s, where failures last for

2−1000s [8], [9]. A Microsoft study found that even data

centers experience 40.8 network failures with end-user impact

per day [8], [10]. Cloud providers like Amazon and Google

confirm that network partitioning must be considered when

designing network related systems [8], [11].

Moreover, with the advent of mobile devices, businesses

are shifting to become more customer-centric. Customers are

given the possibility to influence business operations for en-

abling personalized products and customer-tailored services,

strengthening customer loyalty. In these cases, workflows

not only interact with each other but also with customers,

implying an even stronger need for high availability. Google

reported that delaying the reply to the user by only 500ms

led to 25% less usage of their services with long term

impact [12]. Thus, it is desirable to design highly available

systems providing reliable workflow executions.

Because of its high relevance, increasing availability and

failure tolerance of workflows has already been addressed

in the past. For enabling fault-tolerant workflows, failure

handling and recovery mechanisms are explicitly specified

in the workflow model [13]. For example, if an activity

fails or its effects need to be reversed, a compensation

handler specified for this activity is executed. Sometimes

it is not possible to compensate an activity in isolation.

Therefore, compensation scopes can encapsulate multiple

activities, where the compensation handler reverses the effects

of all the contained activities [14]. However, these approaches

cannot mask failures of the computing nodes on which

the workflows are executed. In case of a node failure, the

workflow execution only recovers and continues once the

underlying node has recovered. Thus, the workflow execution

does not progress until recovery, which renders the workflow

execution unavailable. Consequently, these approaches are

infeasible for ensuring high availability.

In distributed systems, redundancy is a commonly used

technique for increasing availability in the presence of failures

by replicating the same functionality on multiple computing
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nodes in the system [15]. Unfortunately, the replication

concept cannot be directly applied to workflows. Consider

that multiple computing nodes execute an instance of the

same workflow model. This ensures that even if some of

these computing nodes fail, the workflow is still executed.

However, if the workflow, for example, contains a payment

activity, the replicated execution will pay multiple times

– increasing the total cost – instead of paying just once

as intended by the workflow designer. Thus, the available

replication techniques are not suitable for workflows. For

using replication, we need to ensure that the outcome of a

replicated workflow execution is identical to a non-replicated

workflow execution [16].

In this paper, we combine the availability concepts of

workflow technology with the replication techniques of

distributed systems for ensuring that the outcome is identical

to a non-replicated workflow execution. First we provide a

formal model for workflows (Section II). We then discuss how

replication can be used to increase availability in workflow

systems (Section III). Based on this discussion we extract

the requirements that a workflow replication system needs

to fulfill to enable highly available workflow executions, and

subsequently, we present the HAWKS system adhering to

the defined requirements (Section IV). The HAWKS system

is compatible with existing workflow technology, which we

demonstrate by implementing a proof of concept HAWKS

prototype in the open-source industry-level workflow engine

Apache ODE (Section V). We extensively evaluate the

implementation with respect to the impact of using replication

on the performance in a cluster of engines (Section VI),

before discussing related work (Section VII), and concluding

with some future work (Section VIII).

II. WORKFLOW MODEL

For understanding the challenges arising with the repli-

cation of workflows, we first describe the workflow model.

A workflow model is defined by a directed acyclic graph

G = (A,L,Σ), where A is the set of activities, L is the set

of links, and Σ the internal state containing the variables

needed during execution [14]. The activities a ∈ A define

atomic pieces of work. The control logic is defined by the

links L. Each link l ∈ L is specified by a tuple L : A×A×T ,

where T is the set of transition conditions. Thus, the link

l = (astart ,aend , t) originates from astart , points to aend , and is

only triggered if astart was already executed and the transition

condition t is fulfilled. For simplicity, we will not consider

loops in this work.1 The internal state Σ contains the variables

of the workflow, which can be read and written by the

activities during execution.

For executing the workflow, the workflow engine creates

an instance g = (Ai,Li,σ) of the workflow model G. The

1Loops can be supported through extending the replication protocol. We,
however, leave the discussion of such an extension for future work.

set Ai = {(id,a,s)|id ∈ ID,a ∈ A,s ∈ S} contains all activity

instances, where S = {Ready,Executing,Completed} speci-

fies the execution state of the activity instance. Each activity

instance ai ∈ Ai is an instance of a ∈ A that is identified

by an id and has an execution state s. The set of links

Li = {(l,c)|l ∈ L,c ∈ {true, f alse}} defines whether an link

is evaluated to true or f alse. The internal state σ is a tuple

of the values of all variables. In other words, σ is a snapshot

of the current internal state. Each activity ai ∈ Ai might have

read or write access to the variables of σ depending on

the data flow. However, we omit discussing the data flow

because it does not impact the concepts of this work. Instead,

we assume that each activity can read or write all variables

of σ and thereby can transfer the internal state σ j into a

new internal state σk, which is denoted by σ j →ai σk. Also,

the activity execution might interact with services or other

processes by sending or receiving messages.

For reversing the effects of an activity execution, we

assume that each activity either has a defined compensation

handler or is embedded in a compensation scope that has a

defined compensation handler [14]. Since each activity can

interact with interaction partners, such as another workflow

or a service, the activity execution might have changed state

which is not in direct control of the workflow – called the

external state. Executing the compensation handler of an

activity includes (semantically) reversing the effects on the

external state. Note that this workflow and execution model

is compatible with the WS-BPEL standard2 and generally

compatible to any graph-based workflow description language.

Thus, the techniques we present in the following are widely

applicable to current workflow technology.

III. HIGHLY AVAILABLE WORKFLOW EXECUTIONS

In order to achieve high availability, we can in principle

instantiate a workflow model on multiple computing nodes.

By executing these replicas of the workflow model in parallel,

we can mask failures because if one of the nodes is failed or

partitioned from the network, the other replicas continue the

execution. However, the replicated execution should affect

the external state as a non-replicated execution would have

affected the external state.

In specific, a non-replicated workflow execution gets input

by receiving messages (denoted as reads in Fig. 1) and

produces output by sending messages to interaction partners,

which write to external state (denoted as writes). Not all

interaction partners write to external state when they receive

a message (denoted as non-writes), e.g., stateless services.

Consequently, when a replicated execution receives the same

input (reads) as a non-replicated execution, it should produce

the same output (writes) as the non-replicated execution.

Then, we call the replicated execution consistent [16]. In the

following, we discuss how to achieve this consistency.

2http://docs.oasis-open.org/wsbpel/2.0/
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Figure 1. Executions of activities, which synchronously interact with
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Figure 2. Types of replication: a) Passive replication b) Active replication

In general, we use two replication mechanisms: passive and

active replication (cf. Fig. 2). With passive replication, only

one engine, called master, executes the activity and replicates

the produced internal state to all other replicas. Thereby, all

replicas have the same internal state, which means they

are synchronized. This synchronization, however, causes a

bandwidth overhead as well as a time delay for replicating the

state. With active replication, all engines execute the activity.

Hence, we save the overhead of synchronizing the replicas

because each replica produces the new internal state itself.

Unfortunately, active replication might violate the consistency

depending on how the executed activity modifies the internal

and external state. Therefore, we classify the activities based

on how they change the internal and external state.

The external state can by changed by an activity execution

if the activity sends a message to an interaction partner. For

example, when executing a payment activity, the activity

interacts with a payment service, which changes (i.e., writes

to) the account balance. All activities which potentially

change the external state are called write activities. Using

active replication for write activities causes inconsistencies

because the payment would be performed multiple times,

which would not happen for a non-replicated execution.

However, as discussed above, not every interaction partner is

writing to the external state. For example, reading the account

balance through using a banking service does not change

the external state. Moreover, an activity might not interact

at all or might only receive a message. Such activities are

obviously also not writing to the external state. Thus, we

summarize all these activities as non-write activities. Because

non-write activities do not write to the external state, non-

write activities can potentially be actively replicated.

However, there is a second classification criteria which

Algorithm 1: The basic protocol functionality, which is

running on each replica

1 ac ← NextActivityToExecute();

2 if ac.isDeterministic() and ac.isNonWrite() then
3 σ ← execute(ac, σ );

4 else if engine is master then
5 σ ← execute(ac, σ );

6 Synchronize(σ );

has to be taken into account, which specifies how an activity

modifies the internal state. Consider an activity for booking a

bus seat calling a reservation service. Calling the service with

the same message multiple times might result in different

replies from the service because a bus has a limited number of

seats. Thus, when the replicas use the same internal state for

executing the activity, they might produce different internal

states. Such activities are considered to be non-deterministic.

Actively replicating non-deterministic activities can produce

diverging internal state on the replicas, e.g., by getting

different input from interaction partners. Then, each replica

that executes subsequent activities might affect the external

state differently. We, however, want to produce the same

writes on the external state as one non-replicated execution.

This means, we could only use one of the (diverged) replicas

further rendering the replication useless. In contrast, assume

calculating the sum of all expenses of an investment. When

this activity is executed multiple times with the same internal

state (the expenses), the sum will always be the same. Such

activities are called deterministic.

In conclusion, only deterministic non-write activities can be

actively replicated without violating consistency. As shown

in Alg. 1, all other activities are passively replicated. In

general, this strategy allows the replication protocol to avoid

inconsistencies. However, in case of passive replication, the

master might fail or might be partitioned from the network.

Then, the remaining replicas elect a new master for continuing

the execution after detecting the failure (cf. Fig. 3). Election

protocols are thoroughly researched and any election protocol

might be used, e.g., [17]. The old master might have failed

before synchronizing (i.e., before executing Alg. 1 line 6).

Thus, the execution progress (and produced internal state) is

not known during the election. This means the corresponding

activity must be re-executed by the new master. To avoid

inconsistencies, the execution of the failed master needs to

be compensated after recovery. This is realized as follows:

1) the failed master recovers, finishes its execution, and tries

to replicate the produced state, 2) the other replicas will

reject the old activity execution because they already elected

a new master, which is re-executing the activity, 3) upon

receiving the rejection, the recovered master compensates its

execution. Then, consistency is ensured again.
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Since the overhead of synchronizing the internal state

after each activity might be very high (cf. Alg. 1 line

5-6), the proposed protocol allows to group consecutive

activities into a synchronization scope (cf. Fig. 3). Then, the

whole synchronization scope is executed before the state is

synchronized (by adapting Alg. 1 line 5 accordingly). On the

downside, more execution progress is lost when the master

fails just before synchronizing. In this case, more activities

need to be re-executed increasing the failover time, i.e.,

the time to regain the execution progress it had before the

failure. Moreover, the failed master also has to compensate

all activities of the synchronization scope after recovering

increasing the compensation cost. By means of this approach,

however, we provide the flexibility of letting the workflow

designer decide whether more synchronization overhead or

more recovery overhead (i.e., failover time and compensation

cost) is desirable (cf. [16]).
In the following, we present an architecture for realizing

the protocol efficiently with existing workflow technology.

IV. THE HAWKS SYSTEM

In this section, we provide the architecture for realizing

highly available workflow executions with existing technol-

ogy. The architecture is kept generic and, thus, can be used

for adding the replication protocol to any existing workflow

engine that is based on a graph-based workflow language.

However, before we describe the architecture, we extract the

requirements that the architecture needs to fulfill.

A. System Requirements
The system should fulfill several requirements regarding

the generality of its applicability. The system especially

should be easily usable and, thus, work with as few manual

interventions by users as possible. In specific, we identified

the following requirements:

Automated deployment: The system must be able to au-

tomatically distribute a workflow model to several

workflow engines. The number of workflow engines

receiving the model has to be identical to the specified

replication degree.3

3We assume that the desired replication degree is specified in the execution
request. The replication degree might be specified by the workflow designer
or calculated by a probabilistic model taking QoS properties into account.
We can support any arbitrary method.

Automatic execution: The replicated execution of a work-

flow must be triggerable by sending a message to one

endpoint of the system. Linking and synchronizing the

workflow engines for the exchange of synchronization

messages must be done automatically.

Scalability: The system has to be scalable. Thus, it must

be possible to easily add and remove workflow engines,

which can participate in the replicated execution of

workflows.

Transparency: The replication must be transparent to any

interaction partner of the workflow instance. Thus, other

workflows participating in the choreography can use

different replication degrees, or might not be replicated

at all.

We realize these requirements in our Highly Available

WorKflow executionS (HAWKS) system, which we present

in the following.

B. Architecture of the HAWKS System

As depicted in Fig. 4, the HAWKS system is a middleware

solution consisting of the Synchronization Units, which

are attached to each Execution Engine, and the HAWKS
Controller. The Synchronization Unit is responsible for

controlling the workflow executions in the engines according

to the replication protocol. The HAWKS Controller is

responsible for starting replicated executions and routing

messages between the engines. In the following, we describe

each component in detail.

Message Broker
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Deployment 
Manager EE Manager

Event 
Registry EE Registry

HAWKS Controller

Execution 
Engine

Sync. Unit

HAWKS System

Workflow 
Designer

Execution 
Engine
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Execution 
Engine

Sync. Unit

Figure 4. Architecture of the HAWKS system

1) Synchronization Unit: The Synchronization Unit runs

the replication protocol and controls the execution in the

Execution Engine accordingly. More specifically, the Synchro-

nization Unit i) suspends and resumes the execution, ii) tracks

changes of the internal state during execution, iii) sends

the changes to the other replicas (by sending them to the

Message Broker), iv) applies state changes it receives and

skips the corresponding activities, and v) manages elections

after failures. Thus, any existing workflow engine can be

extended by a Synchronization Unit, which enables the usage
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of our protocol. In conclusion, the Synchronization Unit

fulfills the automatic execution requirement.
2) Message Broker: The Message Broker is responsible

for routing the messages between the Execution Engines

such that the replicas of a workflow can interact. This is

necessary because the Execution Engines do not know the

other Execution Engines that participate in the replicated

execution. The Message Broker also correlates the messages

to the corresponding workflow instance (i.e., replica) of

the Execution Engine (since the Execution Engine can

execute multiple workflow instances in parallel). Additionally,

the Message Broker is handling the communication of the

replicas with the interaction partners. Thus, the replicas send

the messages to the Message Broker, which then sends it to

the interaction partner. Through this, the interaction partner

perceives the replicas as a single endpoint satisfying the

transparency requirement.
3) EE Manager and EE Registry: These components

are responsible for managing the Execution Engines that

can currently participate in a replicated workflow execution.

On start-up, each Execution Engine registers itself at the

HAWKS Controller. Therefore, the Synchronization Unit

sends a registration message to the Message Broker. The

Message Broker routes the message to the EE Manager. Then,

the EE Manager stores the Execution Engine together with

its endpoint reference in the EE Registry. The EE Manager is

also responsible for checking if Execution Engines become

unavailable. If an Execution Engine is unreachable, the EE

Manager will (eventually) remove the Execution Engine from

the EE Registry.
4) Deployment Manager: When a workflow, which was

modeled in a Workflow Designer, is to be executed, an

execution request containing the workflow model is sent

to the Message Broker. Then, the Deployment Manager

determines the Execution Engines that participate in the

replicated execution based on the workload of the engines.

More specifically, it selects the engines which have the

lowest workload ensuring workload balancing (e.g., by

monitoring the engines [18]). The Deployment Manager

sends the workflow model to these engines and sets up

the routing paths between the replicas in the Message Broker.

The Deployment Manager satisfies the automated deployment

requirement. Because the Deployment Manager selects the

Execution Engines using workload balancing and the EE

Manager and EE Registry allow to easily add more Execution

Engines, the scalability requirement is fulfilled as well.

5) Event Manager and Registry: The Event Manager

tracks events and saves these in the Event Registry. The

tracking includes the start and end of a replicated execution.

Thereby, the HAWKS Controller can identify started and

not finished executions. Moreover, the tracking can be easily

extended for further monitoring of the HAWKS system.

V. PROOF OF CONCEPT

We show the applicability of the HAWKS system on

existing workflow technology by extending the open-source

workflow engine Apache ODE and the pluggable framework

for extended BPEL (ODE-PGF), which is able to orchestrate

workflows based on Web Service Business Process Execution

Language (WS-BPEL).4 WS-BPEL is standardized by OASIS

and widely used in industry. The Apache ODE is itself

running in an Apache Tomcat servlet container.

For realizing the communication between the engines, we

use Apache ActiveMQ. Thus, the Synchronization Unit that

is attached to Apache ODE is reading from and writing to a

message queue for controlling the ODE such that the replicas

are synchronized. For routing the synchronization messages,

we use Apache Camel. We also use it for routing messages

sent from interaction partners to the replicas. The HAWKS

system’s realization is depicted in Fig. 5.

For reducing the synchronization overhead, we do not

include the complete internal state of the workflows in the

synchronization messages. Instead, we track which variables

are modified during activity executions and only send these

modifications to the other replicas. In turn, the replicas check

that they received and applied all preceding state updating

synchronization messages. They can easily check this using

the workflow model because each state update message

contains the activity that produced the state. We validate the

activity against the execution progress and do not apply the

update if a preceding update is missing. Our implementation

of HAWKS is open-source and available on GitHub.5

4http://ode.apache.org, http://camel.apache.org, http://activemq.apache.org,
http://tomcat.apache.org, http://docs.oasis-open.org/wsbpel/2.0/,
http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/

5https://github.com/TheRingbearer/HAWKS/
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Figure 6. Average workflow execution time in the presence of failures

VI. EVALUATIONS

We evaluate the HAWKS system by using up to 12 virtual

machines (4 vCPUs, 8 GB RAM) running in OpenStack6

for hosting the Apache ODE. The HAWKS Controller

is distributed to 10 additional VMs. In the following,

we evaluate the HAWKS system in terms of availability,

replication overhead, and scalability. For all measurements,

we used an exemplary workflow, which also can be found in

the HAWKS GitHub repository. Overall we measured over

50,000 workflow executions.

For evaluating the availability, we assume that a failed

engine can resume any started workflow execution after

recovering from the failure. If the engine would not provide

this recovery mechanism, any started workflow execution

would be lost when an engine fails. Then, replication would

obviously outperform a non-replicated execution. We instead

show that replication is beneficial even when all engines

provide this recovery mechanism.

For simulating failures, we fail one workflow engine of

the system with the probability f every second. Initially, f
is set to 0. Then the failure probability is increased by 1

120
every 30s. For controlling the mean time to recovery of a

failed engine, we simulate failures by halting the engines.

Our mean time to recovery is set to 10s, which is short

since typical failures last up to multiple days [19]. However,

replication is obviously beneficial for long lived failures. In

contrast, we want to show that replication is also beneficial

in the presence of short lived failures. In this measurement,

we use a stable workload of one request every 10s, i.e., one

workflow execution starts every 10s.

In Fig. 6, the non-replicated execution (NR) has the lowest

average workflow execution times when the failure probability

f is low or zero. With this low f , increasing replication

degrees imply higher synchronization overhead because the

state has to be replicated on more replicas before continuing

the workflow execution. Thus, higher replication degrees

have higher average workflow execution times.

However, when the failure probability increases, NR shows

the trend of a linear increase because every failure delays

the execution by the mean time to recovery. The average

6https://www.openstack.org

workflow execution times are quickly higher than any of

the replicated workflow executions. This means that even

though NR has no synchronization overhead and, therefore,

can execute more workflows during the failure-free phases, it

still cannot compensate for the time it is failed. This shows

that replication keeps the average execution times low in

failure prone environments. Moreover, Fig. 6 also shows that

higher replication degrees can tolerate more failures. Until

400s of measurement progress (i.e., f < 13
120 ) the execution

time of replication degree 3 (RD3) increases slowly. This

increase is due to the time needed for electing a new master

when a master fails. However, there is a sudden increase at

400s because f becomes so high ( f = 13
120 ) that a majority

of replicas fails concurrently, which prevents the election of

a new master. Thus, the workflow execution is halted until a

majority recovered. However, both the replication degree 5

(RD5) and 9 (RD9) do not show this sudden increase even

up to 900s, i.e., f = 1
4 . In conclusion, higher replication

degrees can tolerate more concurrent failures providing high

availability in failure prone environments.

Above we have already seen that without failures the

increased synchronization overhead of higher replication

degrees increases the workflow execution time. The measure-

ment, however, was specific to the used workload. Now, we

will investigate the overhead further under different workloads

without injecting failures. In specific, we double the workload

every 300s. Initially, we start one workflow execution every

60s, then every 30s, and so on. In Fig. 7a, the non-replicated

workflow execution (NR) again has the lowest execution times

because it has no synchronization overhead. Accordingly,

the average workflow execution time increases with higher

replication degrees. Additionally, we can observe that RD3

becomes overloaded around 700s of measurement progress

(starting a workflow every 15s), RD5 at 1000s (starting a

workflow every 7.5s), and RD9 at 1250s (starting a workflow

every 3.75s). At some point any system – also NR – becomes

overloaded when the workflows executions are started with

a higher rate than they can be executed by the engines.

However, the replicated executions become overloaded before

a non-replicated execution because of the synchronization

overhead. When comparing the replicated executions to each

other, higher replication degrees become overloaded later.

The reason is that the bottleneck of the replication protocol is

the master which executes the activities and synchronizes the

produced state when using passive replication. When using

more replicas the load of being master can be distributed to

more computing nodes.

Because HAWKS is designed to be scalable, we can

add more engines for handling higher workloads without

increasing the replication degree. For evaluating the scal-

ability, we first evaluate the replication degree 3 with 3

engines (RD3E3), i.e., all engines execute a replica of every

workflow. We also evaluate the setup of replication degree 3

with 6 engines (RD3E6) and with 12 engines (RD3E12). In
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Figure 7. The figures show the replication overhead (a) and scalability with respect to execution time (b) and the number of finished workflows (c).

these cases, the workload can be distributed to the different

engines. Fig. 7b shows that adding more engines improves the

performance by delaying the point where the system becomes

overloaded. While RD3E3 becomes overloaded at 700s

(starting a workflow every 15s), RD3E6 becomes overloaded

at 1000s (starting a workflow every 7.5s) and RD3E12 delays

the point even to 1200s (starting a workflow every 3.75s).

To make the effects of delaying this point clearer, we show

the accumulated number of finished workflow executions

in Fig. 7c. RD3E3 is overloaded after executing around 70

workflows, whereas RD3E6 and RD3E12 can handle 150

and 340 workflow executions before being overloaded. This

clearly shows the scalability of HAWKS.

In conclusion, HAWKS ensures highly available workflow

executions, while implying only small overhead for low

replication degrees. Moreover, in a failure prone environment,

the replication overhead is negligible.

VII. RELATED WORK

Availability is an important property for any network

related system. Therefore, there has been a lot of research

targeting availability. One approach for providing availability

for workflow executions is the dynamic composition of web

services [20], where it is possible to use the availability

of the individual services as a QoS property for selecting

the services [21]. However, service composition approaches

require a description of the desired functionality in a

declarative language (e.g., [22]) and, thus, suffer from state

explosion [23]. Additionally, declarative languages are not

compatible with the imperative workflow languages, i.e.,

graph-based workflow languages, which are the predominant

way of modeling workflows.

Other approaches improve availability by providing the

functionality to switch from a used service that is failed

to an alternative service [24], [25]. Some approaches even

call multiple alternative services in parallel and use the

first reply they receive and cancel or compensate the other

executions [26], [27]. These approaches, however, only target

masking service failures. The approaches cannot handle

failures, where the computing node on which the engine

is running fails or is partitioned from the network. On the

other hand, HAWKS does not tackle service failures and, thus,

incorporating the mentioned strategies in HAWKS can further

improve the availability. Another solution would be to use

HAWKS for executing the services (if these are modeled as

workflows) making the services themselves highly available.

Data replication techniques usually consider the trade-off

between consistency and availability [28], while workflow

replication techniques do not consider this trade-off. Instead,

some workflow replication techniques consider all activities to

be not writing to external state, e.g., [29]. These approaches

actively replicate activities and take the result of the first

finished activity execution for continuing the workflow

execution. Thereby, they completely avoid the need for

considering consistency problems. However, workflows in

general interact with services and other workflows implying

that they can change the external state. Thus, such techniques

can only be applied to few workflows. Other workflow

replication techniques solely rely on passive replication [30],

where the state is transferred to a backup system after each

activity execution. However, these techniques imply overhead

in terms of bandwidth for transferring the state after each

activity execution, as well as a delay until the transfer is

complete. Also, in case of a failure the triggered re-execution

does not consider consistency and transparency for interacting

with interaction partners. In this work, we explicitly specify

how to achieve a consistent replicated execution. During the

execution we allow temporal inconsistencies (when activities

are re-executed in case of failures), which are resolved

eventually. Thus, the achieved consistency is congruent to

eventual consistency [31].

VIII. CONCLUSION

We presented the HAWKS system which enables highly

available workflow executions by replicating the executions

on multiple computing nodes. Therefore, we identified

the requirements that the system needs to fulfill to be

usable with existing workflow technology without manual

interventions. We showed that the HAWKS system fulfills

these requirements. Moreover, we implemented a prototype

in the open-source workflow engine Apache ODE proving the

applicability to state-of-the-art workflow technology. Finally,

we evaluated the HAWKS system and showed that it induces

only a small overhead. We also showed that the performance

loss is outweighed by the gains in terms of availability in

the presence of failures. In future work, we will extend the

HAWKS system i) to support loops in the workflow model

and ii) consider activities that are bound to specific workflow



engines (e.g., because of privacy concerns). We also plan an

empirical study, where we will show the impact of replication

in different scenarios and use-cases.
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