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Abstract—Over the past few decades, content-based pub-
lish/subscribe has been primarily implemented as an overlay
network of software brokers. Even though such systems provide
the possibility of bandwidth efficient expressive filtering in
software, they cannot match up to the performance (in terms of
end-to-end latency and throughput) of communication protocols
implemented on the network layer. To exploit network layer per-
formance benefits, recently, content-based publish/subscribe was
realized using the capabilities of Software-defined Networking
(SDN). While SDN allows line-rate forwarding of events by con-
tent filters directly installed on switches, it suffers from inherent
hardware limitations (w.r.t. flow table size, limited availability
of bits in header fields) that adversely impact expressiveness of
these filters, resulting in unnecessary network traffic.

In this paper, we strike a balance between purely application-
layer-based and purely network-layer-based publish/subscribe
implementations by realizing the first hybrid content-based mid-
dleware that enables filtering of events in both layers. Moreover,
we provide different selection algorithms with varying degrees
of complexity to determine the events to be filtered at each
layer such that unnecessary network traffic can be minimized
while also considering delay requirements of the middleware. Our
hybrid middleware offers full flexibility to configure it according
to the performance requirements of the system. We provide
a detailed performance evaluation of the proposed selection
algorithms to determine their impact on the performance of the
designed hybrid middleware which we further compare to state-
of-the art solutions.

Index Terms—Content-based Routing, Publish/Subscribe,
Software-defined Networking, Network Virtualization, Hybrid
Routing

I. INTRODUCTION

Content-based publish/subscribe (pub/sub) has evolved as

a universal paradigm for bandwidth-efficient interactions be-

tween loosely coupled producers (publishers) and consumers

(subscribers) of content. Its main advantage is that it pro-

vides mechanisms to use disseminated content and subscriber

interests to take routing decisions. So, effectively, the paths

between publishers and subscribers are determined on the basis

of content filters (subscriber interests) installed on content-

based routers (brokers) that ensure bandwidth-efficient for-

warding to only interested subscribers.

Various middleware implementations (e.g., [11], [18], [32])

of the pub/sub paradigm have efficiently supported content-

based routing at overlay networks of software brokers. How-

ever, with routing realized at the overlay and filtering per-

formed in software, these broker-based implementations are

unable to exploit performance benefits (in terms of latency

and throughput) of communication protocols implemented on

the network layer. This has, recently, led to the realization

of content-based publish/subscribe that exploits the capabili-

ties of the very popular software-defined networking (SDN)

technology [24], [31].

With the help of standards like Openflow [13], SDN allows

software to flexibly configure the network. By extracting all

control logic from hardware switches and hosting it on a

logically centralized controller, SDN manages to establish a

clear separation of the control plane and the data (forwarding)

plane. The logically centralized controller has a global view

of the network and is capable of both reading as well as

modifying the state of the network (data plane). Content-based

pub/sub greatly benefits from this as it uses the controller

to establish optimal paths between publishers and subscribers

by installing forwarding rules (content filters) on the Ternary

Content Addressable Memory (TCAM) of SDN-compliant

switches. Published events get directly filtered against these

forwarding rules on the TCAM, resulting in line-rate forward-

ing and high throughput rates.

More specifically, the match fields of flows on TCAM are

used to express content filters and header-based matching

of packets dictates the forwarding of published events to

interested subscribers. Note that efficient mapping of content

to expressive filters that can be deployed as flows on switches

may prove to be very challenging. However, expressiveness is

an extremely important factor as the effectiveness of the filters

installed on TCAM impacts the amount of unnecessary traffic

in the network, directly impacting bandwidth efficiency.

Even though, in many cases, the matching operations

performed by TCAM are comparable in expressiveness to

filtering operations performed in software, it has some inherent

limitations. One of these limitations is the number of flow table

entries available for content-based filtering in the TCAM of

switches. Considering the criticality of the cost for TCAM in

the design of a switch, vendors offer only a limited number of

flow table entries, which is currently in the order of thousands

to hundreds of thousands flow table entries per switch [15].

Interestingly, the growth of routing table is a common problem

faced by most routers and switches today. For example, in

August 2014, Microsoft Cloud, Ebay, Lastpass along with

some others were hit by outages as a result of full BGP routing

tables [1]. The TCAM in affected Cisco routers had a default

limit of 512k entries for IPv4 routes which was exceeded,

causing a spillover effect. So, with a growing demand in

connectivity, the limited TCAM resources must be judiciously
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utilized. In fact, the number of available flow entries largely

depend on the match fields used. For example, in an Openflow-

enabled switch such as NEC PF5240, the TCAM size is

further reduced to a few thousands for IPv6 traffic. To abide

by the limit on number of available flow entries on TCAM,

expressiveness of content filters may need to be compromised

to allow for limited flows representing multiple aggregated

filters.

Along with the switch design limitation, the expressiveness

of a content filter is further impeded by the limited number of

bits available for filter representation at the match fields (e.g.

destination IPv6 address, VLAN tag) of flows. For example,

even an IPv6 address can offer only a maximum of 128 bits

for filter representation. Additionally, the entire range of these

IP addresses have to be shared among many applications, thus

reducing the available address range for content-based traffic.

Besides, it should be noted that IPv6 is yet to be fully deployed

at large. In fact, LIPSIN [22], implementing hardware-enabled

forwarding for pub/sub, suffers from up to 10% unnecessary

traffic in a moderately small topology despite using 248 bits

in packet headers for path encoding.

Where on one hand event forwarding in overlay networks

provides possibilities of accurate filtering but suffers in terms

of responsiveness to event delivery, on the other hand an

SDN-based middleware provides line-rate performance but

suffers in terms of bandwidth efficiency. So, while considering

these two state-of-the-art implementations independently, we

are tempted to ask the question : can we do any better?

Is it possible to make these two radically different filtering

approaches meet in the middle? And this is where we attempt

to combine the benefits of both application layer filtering and

network layer filtering in realizing a content-based pub/sub

middleware that provides hybrid filtering of events. Therefore,

in this paper, we focus on designing an SDN-based pub/sub

that not only aims at line-rate performance but also bandwidth

efficiency by providing a mechanism to filter events both

in software (application layer) and on hardware (network

layer). We provide selection mechanisms to determine the

layer in which each event gets filtered in order to minimize

unnecessary traffic in the network while also considering

delay requirements of the middleware. Our hybrid approach

offers complete flexibility to control the amount of filtering

to be performed at each of the layers where the two extreme

cases are pure software filtering and pure hardware filtering,

thereby providing a complete degree of freedom to select the

performance of the system in terms of latency and bandwidth

efficiency. In summary, the contributions of this paper are the

design, implementation, and detailed performance evaluation

of a hybrid SDN-based pub/sub middleware, the first of

its kind, that provides event selection techniques to enable

filtering of events both on the application layer as well as on

the network layer in a latency and bandwidth efficient manner.

II. PRELIMINARIES AND SYSTEM ARCHITECTURE

The content-based middleware implemented on SDN con-

sists of primarily two participants, i.e., publishers and sub-
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scribers. The publishers specify content they intend to publish

(i.e., advertisements) and subscribers specify content they are

interested in receiving (i.e., subscriptions) to the controller.

On receiving advertisements and subscriptions, the controller,

who has a global view of the network, establishes paths

between each publisher and its interested subscribers. This

is achieved by using the widely accepted Openflow standard

to install content filters embedded in the match fields of

flows on Openflow-enabled switches in the data plane. The

deployed flows enable header-based matching of packets from

publishers to subscribers at line-rate [31].

The primary requirement of content-based routing involves

an efficient mechanism to represent content in an expressive

manner and this may be achieved by following a content-

based subscription model where events are represented by

attribute-value pairs. So, a subscription/advertisement (content

filter) is represented as a conjunction of filters on these

attributes. Moreover, to ensure the aforementioned packet-

header-based filtering of events on the network layer, an

efficient mapping between a content filter and match fields

on flows of switches is crucial. There are many candidates

(e.g., MAC Address, IP Address, VLAN tags) in the match

fields of the flows that may be used as content filters. To

this end, we use a special range of IPv6 multicast addresses

for our middleware traffic. Since header-based matching of

packets involves matching of bit strings in the header fields of

a packet with the bit strings that constitute the IP addresses

on flows, content has to first and foremost be represented in

the form of binary strings. Also, these binary strings need



to possess certain characteristic properties depending upon

the subscription/advertisement/event they represent. So, two

identical content filters (subscription/advertisement) should

have identical binary representations. Also, containment re-

lation between two subscriptions should be reflected in their

respective binary representations. For example, if there are

two subscriptions, sub1 = stock value : [100 – 200] and sub2

= stock value : [150 – 200], where sub1 contains (�) sub2,

then the binary strings representing them should also reflect

this relation. This, in turn, ensures matching of events to

subscriptions as the binary string representing an event will

successfully reflect its containment within all binary strings

representing subscriptions interested in it. Mapping content to

binary strings can be performed using different approaches,

e.g., spatial indexing [32], bloom filters [8].

The concepts discussed in this paper are generic and can

be applied to any mapping strategy. However, in our mid-

dleware implementation, we use spatial indexing [31] which

successfully maps content to binary strings while preserving

the aforementioned containment relations. Spatial indexing

may generate a set of binary strings (denoted by BS where bsk
∈ BS) for the same subscription to attain the desired level of

expressiveness of content filters which would result in multiple

flows for the same subscription. We explain the introduction of

unnecessary traffic in the network due to the aforementioned

limitations with a simplified example illustrated in Figure 1.

Let us assume that a subscription, sub: {A=[25,75], B=[0,50]},

has to be represented as binary string using spatial indexing.

As depicted in Figure 1(a), for two attributes A and B,

two binary strings {001, 100} consisting of 3 bits each are

required to accurately represent this subscription. However,

let us assume that only 2 bits are available to represent this

filter. In such a case, the new filters will be {00, 10} and all

events matching the entire highlighted area in Figure 1(b) will

now be forwarded by these filters, resulting in unnecessary

traffic. Also, to reduce TCAM requirements, there may be a

restriction on the number of filters (i.e., binary strings) that are

allowed to represent a subscription. If only one filter is allowed

to represent the subscription in the example in Figure 1, then

we can see that only a filter forwarding all event traffic to

the subscriber can be used as, in this particular case, two

filters must be deployed to even achieve a minimum level

of expressiveness. Of course, the above scenario produces

a significant amount of unnecessary traffic. It should be

noted that, irrespective of the mapping scheme, the length

of the binary strings required to accurately represent content

(subscriptions/advertisements/events) will increase with the

increase in number of attributes in the system, which is a

problem considering the limitations on match field length.

Also, the number of binary strings needed to represent a

single subscription will increase with the increase in number

of attributes which can be of crucial importance considering

TCAM is a scarce resource. So, the aforementioned limitations

will adversely affect the expressiveness of the mapped binary

strings and subsequently the amount of unnecessary traffic in

the network. In the remaining part of this paper, we refer to

unnecessary traffic as false positives. More specifically, in the

context of our middleware, false positives on a link or at a

subscriber are those events which should have already been

filtered out but got forwarded due to the limited expressiveness

of the installed content filters on TCAM.

In this paper, we strike a balance between application and

network layer filtering while considering both their advantages

and disadvantages. Figure 2 illustrates a hybrid approach

to content-based filtering where events are filtered both on

the network as well as the application layer. We realize the

application layer in our middleware as a pub/sub cloud service

similar to BlueDove [26]. We perform multi-dimensional

subscription space partitioning and distribute them among

multiple servers (or matchers) that parallelize event filtering. In

Figure 2, the filters for subscriber S1 are completely installed

on the network layer, whereas the filter corresponding to the

subscription of S2 at R2 sends all events matching this filter

to the application layer which enables accurate filtering. Only

matched events are then injected back to the network at R7

and forwarded to S2, resulting in no false positives for this

subscriber and subsequently no false positives along the path

from R2 to S2 in the network. However, there may be false

positives along the path between P1 and S1 depending on the

expressiveness of the filters for S1 on the switches. Where on

one hand, application layer filtering has a distinct advantage

over network layer filtering, in terms of reduced false positives,

it loses out in matters of end-to-end latency/delay incurred

for the delivery of events. Forwarding of events to S1 occurs

at line-rate, whereas that to S2 is delayed due to filtering

in software. Thus, there is a trade-off between reduction in

false positives and end-to-end latency in the network as the

improvement in one adversely affects the other.

III. FILTER SELECTION PROBLEM

Due to the aforementioned trade-off between end-to-end

latency and bandwidth efficiency, the selection of filters that

forward events to the application layer is very crucial. In fact,

the main problem that we tackle in our hybrid approach to

filtering is the selection of filters in the network layer that

forward events to the application layer for more accurate

filtering in the attempt to reduce the overall false positives

in the network. However, we do so while ensuring that the

average end-to-end latency of events in the system stays within

the application-specified threshold. More formally, let F be

the set of all filters on all switches in the network where fi
∈ F . Also, let rfpi be the number of false positives reduced

in the system if filter fi is chosen to send matched events for

further filtering in the application layer. Let S be the set of all

subscribers in the system where Sk ∈ S. Again, let δk be the

average end-to-end latency at subscriber Sk. Finally, let Δ be

the average end-to-end latency threshold to be maintained in

the system.

Our objective is to determine the subset SF ∈ F that

forwards events to the application layer such that the combined

effect of the filters ∈ SF results in maximum reduction of false



positives in the network while staying within a given average

end-to-end latency threshold, i.e.,

Maximize
∑

i∈SF

rfpi

subject to (

|S|∑

k=1

δk)/|S| ≤ Δ

This is an optimization problem. Let there be a total of m
filters on n switches constituting the network, where m ranges

from 0 to
∑|S|

j=1 |BS|j . Then, to arrive at the optimal solution,

all combinations of filters, i.e., 2m possible subsets SF have

to be calculated and considered. Also, it should be noted that

the value of m can be in the order of hundreds of thousands,

making the optimal solution impractical and not scalable in a

realistically large network.

The above problem may look seemingly like the Knapsack

problem [23] where the value (i.e., benefit) of each item in

the Knapsack problem may be compared to the false positives

reduced by each filter and the weight (i.e., penalty) of each

item may be compared to the increase in average end-to-

end latency on selecting a filter. The goal in the Knapsack

problem is to maximize the total value of items selected for

the knapsack while the total weight of the knapsack remains

within a given threshold which is similar to our problem where

the goal is to maximize the total false positives reduced by

selected filters while the total delay penalty incurred by them

remains within a given threshold.

However, there is a major difference between the two

problems that sets them apart. If an item gets selected for

the knapsack, this selection has no influence on the values

and weights of the remaining items to be considered for

selection. This is where our optimization problem differs. In

our optimization problem, if a filter gets selected, this may

influence the false positives reduced by the remaining filters

and the increase in average end-to-end delay on selecting each

of these filters. Due to this significant difference, approaches

for solving the Knapsack problem cannot be directly employed

to our problem. As a result, in this paper, we propose two

selection algorithms with varying degrees of complexity and

benefits, in terms of bandwidth efficiency, to solve the filter

selection problem. Till now, we have made the assumption

that the false positives reduced and the increase in end-to-

end latency on selection of every individual filter is already

known. However, the process of determining these values is

not straightforward.

So, to arrive at a scalable solution to our optimization

problem, we have to tackle three subproblems – (i) detect false

positives due to each filter on each link of the network such

that rfpi for each filter fi, i.e., benefit, can be determined

(Section IV-A), (ii) determine the increase in the average end-

to-end latency of the system, i.e., penalty, on selecting each

filter (Section IV-B), and (iii) with the knowledge of these

calculated benefits and penalties for all filters in the network,

design efficient filter selection algorithms (Section V).
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IV. FILTER BENEFIT AND PENALTY CALCULATION

In this section, we provide the means of calculating benefit

and penalty associated with the selection of each filter. These

metrics form the basis of the filter selection algorithms.

A. Benefit

To determine the false positives reduced on selection of each

filter, it is imperative to first calculate false positives on each

link of the network due to each filter. To do so, each subscriber

needs to periodically send the false positives received by it

from all its associated publishers to the controller such that

the controller can determine false positives along each path

between publishers and subscribers. More specifically, the

controller calculates false positives on each link of the network

for each filter by backtracking on the paths from subscribers to

publishers while aggregating false positives on links. However,

containment relations between subscriptions, i.e., (i) disjoint,

(ii) complete overlap, and (iii) partial overlap, need to be

considered during aggregation.

In the scenario where false positives of two subscriptions

that are completely disjoint are disseminated over a link, the

aggregation over this link will be a sum of the false positives

of both subscribers.

However, if one of the subscriptions is contained by the

other or both are equal, then a simple sum will account for

more than the actual false positive count over the link. In this

case, false positives for the broader subscription (or one of the

subscriptions in case of equality) should only be considered

over the link as all other false positives are either already

accounted for in the broader subscription or are events that



should be forwarded along this link as they match the broader

subscription.

This can be understood with an example in Figure 3 where

subscribers S1 and S2 subscribe for sub1 and sub2 respectively

and sub1 � sub2. Let us start the backtracking process from S1

by aggregating the false positives along the paths to publishers

P1 and P2. This is straightforward, until we reach switch R5

as R5 also forwards false positives to S2 which might need

to be aggregated for the link between R4 and R5. However,

since sub1 � sub2, only the false positives of the broader

subscription sub1 will be considered for this link.

In the case of a partial overlap between two subscriptions,

we mainly identify 3 subspaces, i.e., the overlapping subspace

and the 2 disjoint subspaces. Now, if false positives for the

overlapping parts and the disjoint parts for each subscription

can be identified, then the aforementioned mechanisms can

be employed to detect false positives on network links. For

example, Figure 4 depicts two subscriptions sub1 and sub2
with a partial overlap. Now, if the two subscribers divide the

subscriptions into subspaces of finer granularity (as depicted in

the figure) and locally detect false positives corresponding to

each subspace, then the controller would have to only deal with

complete overlaps and disjoint relations. So, while calculating

false positives over a link delivering events to sub1 and sub2,

for the subspace {1001} (i.e., overlapping subspace), false

positives for only one subscription are counted. Again, the

false positives for the other disjoint subspaces can be simply

aggregated. Of course, here, there is a trade-off between the

accuracy of the false positive count and the granularity at

which detection occurs at the subscriber. Finer the granularity,

greater is the accuracy as well as the overhead of management

at both the subscriber and the controller. Analyzing this trade-

off has been the subject of previous research [19] and is not the

focus of this paper. Instead, we focus on the challenging issue

of performing efficient hybrid content-based filtering. With the

knowledge of the number of false positives on each link of the

network due to each filter, we can calculate the benefit of a

filter, i.e., the false positives reduced by it in the network,

by aggregating all false positives forwarded by it along its

downstream paths.

B. Penalty

The delay penalty incurred by a filter on its selection pri-

marily deals with the number of paths between publishers and

subscribers along which it forwards events. On its selection,

a filter, say fi, will forward events to the application layer

increasing the end-to-end latency for these events along all

paths that fi is associated to. This means that while calculating

the new average end-to-end latency for the system on selection

of fi, the specific network delays along each path that fi
affects have to be replaced with application delays. Naturally,

there is an increase in the average end-to-end latency and this

increase is the calculated penalty for fi.
For the sake of simplicity and without loss of generality, to

explain our selection algorithms, we represent delay penalty in

terms of the number of affected paths between publishers and
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subscribers as this number directly affects the average end-to-

end latency. Let us assume that the average end-to-end latency

of events in the network is Nd, average end-to-end latency of

events when the application layer is involved is Ad, and total

number of paths between publishers and subscribers in the

network is TP . Now, if x is the number of paths involving

application layer filtering, then the average end-to-end latency

in the network is [(x ∗Ad)+ ((TP −x) ∗Nd)]/TP . Also, the

calculation of Δ (i.e., average end-to-end latency threshold) in

terms of the maximum number of paths that can be allowed to

be affected by application layer filtering delay, APTh, follows

directly from the previous formulation, and can be calculated

as APTh = (TP ∗(Δ−Nd))/(Ad−Nd). Note that we calculate

penalty and the penalty threshold here w.r.t. average delays

and represent them as affected paths just for the sake of

better understandability of the following sections. However, in

reality, while calculating the penalty, our system can consider

the exact network delay incurred along each path between

publishers and subscribers and can calculate penalty as the

exact increase in average end-to-end latency of the system as

described earlier.

V. SELECTION ALGORITHMS

After determining the benefits and penalties for each in-

dividual filter in the network, we proceed to propose two

selection algorithms—the Switch Selection Algorithm and

the Cluster-based Selection Algorithm—that differ in time

complexity as well as in quality w.r.t. reduction in false

positives.

A. Switch Selection Algorithm

We can simplify our problem by selecting switches in place

of filters that forward events to the application layer. However,

even in this case, we must consider 2n possible subsets of

the entire set of n switches in the network for an optimal

solution w.r.t. switches. Can we do something better to reduce



this complexity? The main idea behind the Switch Selection

Algorithm (SSA) is to iteratively select switches, such that

the most beneficial switch gets selected in each iteration, till

the given delay threshold is reached and eventually obtain a

subset of switches SR ∈ R that forward incoming events to

the application layer.

SSA starts by considering the set R consisting of all

switches in the network and calculates the benefit and penalty

of each switch. The benefit and penalty of each switch is the

sum of the benefits and penalties of all filters on it. Next, all

switches whose penalty violates the average end-to-end latency

(or available path) threshold are removed from R. From the

remaining switches, the switch with the highest benefit within

the delay penalty threshold is selected and added to the subset

SR and removed from R. If the delay penalty threshold has

not been reached, then all remaining switches ∈ R are again

considered for the next cycle. Please recall that the selection of

a switch for application layer filtering may change the number

of false positives reduced and the additional delay incurred

by other switches due to the filters on the selected switch.

Assume, a switch Ri having a filter fi, is added to SR. Now,

for another switch Rj ∈ R having a filter fj , the benefit and

penalty additionally offered by fj need to be recalculated.

Otherwise, the same false positives already reduced by fi
will again be considered for fj . Also, the same path already

considered for application layer delay may again be counted

in the delay penalty for fj . So, after determining the benefit

and penalty for fi, all false positives for filters corresponding

to fi on subsequent switches along the downstream paths of fi
must be set to zero and the paths marked as already considered.

Now, while calculating the benefit and penalty of fj , none of

the false positives and paths already considered for fi will be

reconsidered. So, for each cycle, the benefits and penalties of

all filters on the remaining switches in R are recalculated based

on the filters on switches in SR. The cycles continue until the

delay penalty is reached or would be potentially exceeded with

any further selection or if R is empty.

To explain the algorithm, we use an example from Figure 5,

where the initially calculated benefits and penalties for each

switch ∈ R are depicted. Let us assume that the average la-

tency threshold Δ when mapped to the affected paths threshold

APTh (cf. Section III) has the value 3. Of all the switches

∈ R, R4 and R5 get removed as they violate the threshold.

Also, R3 can be removed as it has 0 benefit. According to

the algorithm, R1 gets selected as it has maximum benefit

within the given threshold. As a result, at the end of this cycle

R={R2, R6, R7, R8, R9} and SR={R1}. Since, APTh has not

been reached yet, another cycle will commence. Now, since R1

has already been selected, it will send all events received by it

to the application layer, resulting in no or lesser false positives

on its downstream paths. As a result, the benefits and penalties

of the remaining switches need to be recalculated. In this case,

the recalculated benefits and penalties for R2 are 0 and 0, R6

are 40 and 1, R7 are 30 and 1, R8 are 160 and 2, and R9 are 20

and 1 respectively. As per the algorithm, in this cycle, R8 gets

removed from further consideration as it violates the threshold,
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while R6 gets selected and added to SR. Finally, since the

delay threshold of 3 is reached, the algorithm terminates with

the final set of selected filters returned as SR={R1, R6}. The

switch selection algorithm has a complexity of O(n2).

B. Cluster-based Selection Algorithm

In SSA, we selected switches instead of filters as a solution

considering individual filters is impractical. However, a solu-

tion which is in the middle of these two, would be interesting

to analyze. As a result, in our next algorithm called Cluster-

based Selection Algorithm (CSA), we select filters rather than

switches but this time we consider a group of filters based on

the subscriptions they represent. More specifically, we first

cluster all binary filters (representing subscriptions on the

network layer) based on their similarity into spatially disjoint

groups. There are many subscription clustering techniques

proposed in literature and any one of them may be selected for

the clustering of filters [16], [30]. Since the filter clusters (i.e.,

C) are spatially disjoint, each cluster disseminates a disjoint

set of events in the network, thus giving the notion of separate

event dissemination trees embedded in the network for each

cluster. Therefore, in the following description, we consider

each cluster to have its own dissemination tree disjoint from

those of other clusters such that an event gets disseminated

along only a single cluster’s tree and can only affect the

false positive count along the links of this tree. For example,

Figure 6 illustrates a scenario where 4 subscribers S1, S2, S3,

and S4 subscribe for sub1, sub2, sub3, and sub4 respectively



where the containment relations between subscriptions and

consequently the filters they represent are depicted. Here, we

consider a very simple case with 3 clusters, c1, c2, and c3,

that are disjoint in space as can be seen in the figure. Also,

there are three dissemination trees embedded in the network

for each of these clusters.

After clustering of filters, in each cluster ∈ C, we identify

the switch with maximum benefit within the penalty threshold.

So, if a switch Ri gets selected in the cluster cj , we represent

this switch-filter cluster as Ri cj . This process of identifying

the most beneficial switch within each cluster is identical to

calculating the benefits and penalties of each switch in R and

selecting the most beneficial and feasible switch as discussed

in details in Section V-A. In this approach, all filters of a

switch do not get selected but only a filter set representing

a cluster on the switch gets selected for application layer

filtering. As a result, we get a total of |C| switches from all the

clusters and add them to a switch-filter cluster set RC. Let

R1, R4, and R1 be selected in c1, c2, and c3 respectively such

that RC = {R1 c1, R4 c2, R1 c3}. Note that even though the

same switch R1 gets selected for two clusters, the switch-

filter cluster makes each pair unique. Now, we try to find the

subset SRC ∈ RC that maximizes the combined reduction

of false positives in the network due to all selected switch-

filter cluster pairs ∈ SRC while ensuring the average end-to-

end latency of the system within Δ.

If all combinations of switch-filter clusters are considered

for the solution, then the complexity is O(2|C|). It should

be noted that unlike our original optimization problem, se-

lection of a particular switch-filter cluster pair for forwarding

events to the application layer does not affect the reduction

in false positive count and the delay penalty of the other

switch-filter cluster pairs as the clusters are disjoint. So, no

recalculation of benefit and penalty need to be done at the

switches. This problem can now be solved by directly mapping

it to the Knapsack problem.

The aforementioned steps produce the subset SRC that

maximizes reduction in false positives while staying within

Δ. However, if the threshold has not yet been reached, then

the entire cycle has to be repeated. In the next cycle, again the

benefits and penalties of switches have to be recalculated for

clusters that are part of SRC. This is because the selection of

a switch from a cluster will affect the benefits and penalties

of switches within the same cluster. Based on the new values,

again, |C| switch-filter clusters are selected from all the clus-

ters and the cycle progresses as before with a new set RC.

The cycles continue till the threshold is reached. As a result,

CSA has a complexity of O(n2 + n ∗ 2|C|).
C. Network Updates

Once the filters for forwarding events to the application

layer are selected, the controller makes the necessary changes

to the network by modifying the action field of each flow

representing the selected filters. As a result, all events that

match these filters get forwarded to the application layer as

dictated by the action field of the flows. Clearly, the event

distribution and the current subscriptions in the system might

change over time degrading the performance of our deployed

solution to forward events to the application layer. So, in order

to adapt to changes, the controller periodically collects infor-

mation about the false positives (in the recent time window)

from the subscribers, recalculates the most beneficial set of

filters, and deploys the changes in the network.

VI. FURTHER OPTIMIZATIONS

The complexity of both the proposed algorithms depend

on the number of switches in the network, i.e., n. So, these

algorithms may be further optimized if we reduce the search

space, i.e., reduce the number of switches on which they

operate. In fact, we identify those switches that would add

value to the solution and will be candidates for the desired

solution while neglecting all other switches. A switch is

selected as a candidate if no other switch in the network

reduces more false positives than this one for the same set

of paths that this switch affects. In doing so, we identify 3

types of switches as candidates for selection—a leaf switch

connected directly to a publisher, a switch with two or more

ingress ports, a switch connected directly to a switch with

two or more egress ports. All other switches in the network

may be ignored. The reason why these switches are the only

ones that make a difference to the solution is because, due

to their ingress ports, they are the starting points of new

combinations of paths and therefore will always reduce the

most false positives on these path combinations. This can be

understood in the following example depicted in Figure 5.

Figure 5 shows false positives on each link of the network

when two subscribers S1 and S2 subscribe and two publishers

P1 and P2 publish events. Let us focus on switch R1 which

is directly connected to P1. If R1 is selected to forward

events for further filtering, the number of false positives it

will decrease in the network is 340. Also, selection of R1

introduces application filtering delay along two paths, i.e.,

between P1—S1 and P1—S2. For the same two paths, we

need to check if any other switch reduces more false positives.

In fact, R2 reduces 300 false positives while incurring a delay

penalty of 2 for the same two paths. As R1 is the starting

point of the path combination consisting of these two paths,

it will always reduce more false positives than R2 for the

same penalty. As a result, R1 gets selected as a candidate

while switches like R2, which are guaranteed to have less

benefit for the same penalty, can safely be ignored for further

consideration as they will never be a part of the desired

solution. A switch like R4 with two or more ingress ports,

however, must be considered as it is a switch where multiple

paths join. As a result, for this new combination of paths (P1—

S1, P1—S2, P2—S1, and P2—S2), this switch will always

have the most benefit as it is the starting point of this path

combination in the switch network. So, a switch like R5, with

two or more egress ports makes no difference to the solution as

its benefit is less than R4 while it affects the same paths as R4.

Again, a switch like R6 that is directly connected to a switch

with two or more egress ports that splits paths, poses as the



source of a new combination of paths, i.e., P1—S1, and P2—

S1, and therefore must be considered for further processing.

The example shows how the aforementioned three types of

switches should only be considered for further processing

without adversely affecting quality of the solution. Pruning the

network has a complexity of O(n) and can reduce the runtime

of SSA and CSA without degrading their quality. Of course,

the effectiveness of this optimization depends largely on the

paths between publishers and subscribers.

VII. PERFORMANCE EVALUATIONS

This section is dedicated to an analysis of the proposed

hybrid pub/sub middleware and its comparison to purely

network-based and purely application-based implementations.

In fact, we compare the hybrid middleware with two network-

based implementations. The first implements pure in-network

filtering of events while its variant implements R-Tree-based

clustering along with in-network filtering. A series of ex-

periments are conducted to understand the effects of the

design on performance metrics such as end-to-end latency for

event dissemination and bandwidth efficiency in terms of false

positives disseminated in the network. We further compare the

performances of the two proposed selection approaches, SSA

and CSA, in terms of benefit and complexity.

A. Experimental setup

The following experiments have been evaluated under two

test environments—1) an SDN-testbed (SDN-t) comprising a

hardware whitebox Openflow-enabled switch from Edge-Core

and commodity PC hardware, and 2) an emulated network

running on a single machine using Mininet (SDN-m). The

latency-related experiments were conducted on SDN-t where

we created a hierarchical fat-tree topology consisting of 10

switches and 8 end-hosts. The 10 switches are hosted on

the hardware whitebox switch from Edge-Core running the

network operating system PicOS (version 2.6) [2], [3]. The

8 end-hosts are hosted on commodity rack PCs and perform

the role of publishers and subscribers. The SDN controller

and application layer reside on a 3.10 GHz machine with 40

cores. All end-hosts are synchronized using the IEEE 1588

Precision Time Protocol (PTP). We used a separate network

infrastructure for PTP traffic using a second NIC on each host

dedicated to PTP synchronization to counter the possibility of

inaccuracies in clock-synchronization.

Besides the testbed, experiments have been conducted on

SDN-m consisting of a prominent tool for emulating software-

defined networks, namely, Mininet [25]. Based on the concept

of OS-level lightweight virtualization for network emulation,

Mininet enables users to experiment with various topologies

and application traffic. We use Mininet to experiment with up

to 337 switches and 729 end-hosts on different topologies.

We use a content-based schema that contains up to 6 at-

tributes, where the domain of each attribute varies in the range

[0,1023]. We use both real-world workload as well as synthetic

workload to conduct our experiments. For synthetic data we

use two different models for the distributions of subscriptions

and events. The uniform model generates subscriptions and

events independent of each other. Meanwhile, the interest

popularity model chooses up to 8 hotspot regions around

which subscriptions/events are generated using the widely used

zipfian distribution. For real-world workload, we use data

in the form of stock quotes procured from Yahoo! Finance

containing a stocks daily closing prices [12]. Such real world

data further highlights the performance and importance of the

hybrid approach under realistic scenarios.

B. Comparing with State-of-the-Art

The first set of experiments, compares the performances

of the hybrid middleware (HYB-M), a purely network-based

middleware (PLEROMA), and a purely application-based mid-

dleware (APP-M). PLEROMA [31], as mentioned earlier,

implements SDN-based in-network filtering. Moreover, we

implemented the purely application-based middleware as a

parallelized matching pub/sub service. We divided the event-

space into 16 partitions and assigned them to 16 matchers

running on 16 cores to enable one-hop forwarding of events

as performed in Bluedove [26]. All measurements in the

application layer have been performed corresponding to this

configuration. We used multiple event rates and datasets to

benchmark the performance of the implemented application

layer. Please recall that the performance of the hybrid mid-

dleware can be regulated by adjusting the value of Δ. In

the following experiments we represent this threshold value

in terms of a factor of the application layer filtering delay,

such that a factor of 0 implies pure network filtering and a

factor of 1 implies pure application layer filtering. Also, HYB-

M uses SSA for switch selection such that we can compare

the performance of a pessimistic hybrid approach with state-

of-the-art solutions rather than CSA which outperforms SSA

w.r.t. reduction in false positives as can be seen later in this

section.

Figure 7(a) depicts the performance of HYB-M and

PLEROMA w.r.t. total false positives in the network, i.e., the

sum of all false positives on all links, with increasing number

of subscriptions when 10,000 events are disseminated. Since

APP-M performs accurate filtering of events in software, we

do not plot its performance in this graph. For a threshold factor

of 0.6, the figure shows that the false positives for HYB-M

are much less in every case than those for pure in-network fil-

tering. Even though the hybrid middleware performs better as

compared with PLEROMA in terms of bandwidth efficiency,

it comes with a price. Figure 7(b) depicts the plots for average

end-to-end latency with increasing subscriptions for all 3

systems. The figure shows that pure network-layer filtering has

minimum latency in the order of a few microseconds. Also,

the increase in number of subscriptions has no influence on

latency. On the other hand, APP-M has the worst performance

with latency in the order of milliseconds which increases with

increasing number of subscriptions because, in software, more

the number of subscriptions, more will be the time needed to

match events. The figure shows that hybrid filtering results

in latency less than that of APP-M but greater than that of
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Fig. 7: Performance Evaluations

PLEROMA as a certain percentage of events are now affected

by application layer filtering delay. However, both bandwidth

efficiency and latency of the hybrid approach may be regulated

by adjusting the threshold factor, i.e., Δ, which is clearly

visible in the following set of experiments.

Figure 7(c) and Figure 7(d) show the effects on bandwidth

efficiency and latency in a system with 8000 subscriptions

when the threshold factor is increased from 0 to 1. In Fig-

ure 7(c), the term benefit signifies the % of false positives

reduced by HYB-M w.r.t. the false positives occurring in

PLEROMA. With the threshold factor set to 0, HYB-M has no

benefit as it is comparable to pure in-network filtering. With

increasing threshold factor, the benefit gradually increases.

However, this also implies increase in average end-to-end

latency as depicted in Figure 7(d). It should be noted that

a factor of 1 is comparable to APP-M w.r.t. latency. However,

even in this case the benefit will not be 100% as the false

positives on the links between the publishers and the switches

they are directly connected to will remain in the system.

In literature, we often encounter the technique of clus-

tering of subscriptions to enhance bandwidth efficiency of

pub/sub [12], [33]. As a result, we compare bandwidth ef-

ficiency of our hybrid system to a variant of PLEROMA

called PLEROMA-v that implements R-tree-based clustering

along with in-network filtering. More specifically, PLEROMA-

v, first, clusters all subscriptions in the system using the very

popular R-Tree [16] clustering approach into multiple clusters.

Each cluster has a Minimum Bounding Rectangle (MBR) that

represents its ranges along each attribute and consequently the

subspace it covers in the entire event space. If we assume that

the total number of bits available for filter representation is

100, then, in PLEROMA, spatial indexing will be employed

on the entire range for each attribute and the resulting binary

strings will be truncated to 100. However, in PLEROMA-

v, for each cluster, spatial indexing will be employed only

within the ranges of the MBR. So, if there are 8 clusters

in the system, the first 3 bits of the filter will represent

the cluster id and the remaining 97 bits will be available



for spatial indexing within the cluster subspace. Clustering is

popular at overlays but in this paper we evaluate PLEROMA-

v implemented on SDN. So, our next set of experiments

compares the performance of PLEROMA-v with 6 clusters

with that of HYB-M when Zipfian distribution is used to

generate subscriptions and events with 5 dimensions around

8 hotspots. Figure 7(e) shows that even with the threshold

factor set to just 0.4, HYB-M has a higher benefit than

PLEROMA-v with increasing number of subscriptions. This

is because, no matter how good the clustering technique,

PLEROMA-v will always be limited to a specific number

of bits, whereas this limitation can be mitigated in HYB-

M by involving filtering in software. Our experiments also

showed that when subscriptions were generated using uniform

distribution, PLEROMA-v performed worse than PLEROMA.

In this case, the MBRs of each cluster covered almost the

entire range for each attribute making spatial indexing in

PLEROMA-v comparable to that in PLEROMA. Moreover,

PLEROMA-v lost additional bits to represent the cluster ids.

Note that PLEROMA-v will have an advantage over HYB-M

w.r.t. end-to-end latency as it performs in-network filtering.

C. SSA vs CSA

The next set of experiments evaluates and compares the

performance, in terms of benefit and complexity, of the two

proposed selection algorithms – SSA and CSA. Figure 7(f)

depicts the benefit of SSA and CSA with increasing number

of subscriptions. For these experiments, we used 16 clusters

for CSA. The figure shows that, in each case, CSA has higher

benefit than SSA. This is because CSA has higher flexibility

w.r.t. selection of filters as it chooses groups of filters within

a switch rather than all filters on it as is the case in SSA.

We also conducted experiments to see the behavior of both

methods when the threshold factor is gradually increased in a

system with 2000 subscriptions. Figure 7(g) shows that with

increasing threshold, the benefit increases in both approaches

and CSA performs consistently better than SSA. Please note

that the performance of CSA largely depends on the number of

clusters used by it and as a result our next set of experiments

is conducted to analyze the effect of increasing clusters on

CSA. Figure 7(h) clearly depicts that, with increasing number

of clusters, the performance of CSA improves further as its

flexibility of filter selection increases manifold. Of course,

when a single cluster is used, CSA is essentially reduced to

SSA. We conducted the above experiments using real-world

workload which clearly highlights the bandwidth efficiency

achievable by the hybrid middleware under realistic scenarios

even for a threshold factor of just 0.4.

Even though CSA offers higher benefit than SSA, it loses

out to SSA in terms of time complexity. We conducted

experiments to compare the runtime of both algorithms. Fig-

ure 7(i) shows that with increasing number of subscriptions,

the runtime of both approaches increases. This is because,

higher the number of subscribers in the system, higher will be

the number of paths and filters on switches to be considered,

thus increasing the runtime. Also, the runtime of CSA is con-

sistently higher than that of SSA, as in each iteration of CSA,

not only does the most beneficial switch get determined in each

partition, but also all combinations of switch-filter clusters

are considered to achieve a high quality solution. So, while

choosing between SSA and CSA, one needs to consider the

trade-off between quality and complexity.

VIII. RELATED WORK

Content-based pub/sub is a much researched area enriched

by various contributions to literature [4], [9], [10], [14], [18],

[20], [21], [27]–[29], [33], [34]. However, even though these

systems can be highly expressive, w.r.t. content representation,

most of them are implemented on an overlay network of

software brokers and are unable to provide performance, in

terms of throughput and end-to-end latency, similar to network

layer implementations of communication protocols.

The importance of a scalable and elastic pub/sub providing

high throughput and low end-to-end latency has always been

impressed upon. In recent times, significant contributions in

this respect have been made possible with the emergence

of cloud computing which has driven the idea of realizing

pub/sub middleware as a cloud service. Li et al. present

BlueDove [26], an attribute-based pub/sub service, that tar-

gets parallelism of the event filtering process by organizing

multiple servers into a scalable overlay as candidates for

one-hop forwarding of events. Based on a multi-dimensional

subscription space partitioning technique for the distribution

of subscriptions between servers, BlueDove exploits skewness

in data distribution for performance-aware event filtering at

the least loaded servers. In fact, we use similar techniques

to implement our application layer. Similarly, Barazzutti et

al. also focus on parallelizing the event filtering process by

designing StreamHub [5], a scalable pub/sub service based

on a tiered architecture. StreamHub comprises a set of inde-

pendent operators that take advantage of multiple cores on

multiple servers to perform pub/sub operations which include

subscription partitioning, event filtering, and event dispatching.

Scalability of StreamHub is further supported with elasticity

in e-StreamHub [6], which is capable of scaling in and scaling

out depending on load observations of the system to improve

system throughput. Although the performance of these services

is ahead of traditional broker-based overlay implementations,

they are curbed by the limitations of filtering in software.

In the recent past, networking technologies, such as SDN

and NetFPGA, have attracted much attention of the research

community, resulting in efforts towards realizing a pub/sub

middleware that performs event filtering and routing within the

network. LIPSIN [22] proposed an efficient multicast strategy

to route events on the network layer using bloom filters.

LIPSIN performs routing similar to source-routing where the

set of links to be traversed by the packet is encoded in the

packet header. This encoding is restricted by the available bits

in the packet header, resulting in the generation of fixed length

Bloom filters. The use of fixed length Bloom filters to encode

links implies the presence of false positives in the network



impeding bandwidth efficiency of the system. Likewise, mid-

dleware such as DDSFlex [17] and PLEROMA [31] exploit

the capabilities of SDN to realize routing and filtering of

events on the network layer. However, even though, Bhowmik

et al. in [7] address the concerns of the control plane in an

SDN-based publish/subscribe middleware, the concerns of the

data plane w.r.t. the inherent limitations of hardware switches

remain. These data plane limitations result in false positives

in the network further highlighting the cost that network layer

implementations need to bear in order to achieve line-rate

performance. Thus, the need to combine filtering at both

layers to strike a balance between their performances is quite

apparent.

IX. CONCLUSION

In this paper, we propose, implement and thoroughly eval-

uate the performance of a hybrid content-based pub/sub mid-

dleware. To the best of our knowledge, we are the first to

combine filtering of events in application and network layers

in the context of content-based pub/sub. We provide algorithms

with various associated complexities and benefits to determine

the layer in which each event gets filtered such that the overall

false positives in the system can be minimized while staying

within an average end-to-end latency threshold. The evaluation

results show that our hybrid middleware can be configured by

an application to various settings ranging from pure network

layer filtering to pure application layer filtering by adjusting

the average end-to-end latency threshold in order to achieve

desired performance.
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[9] C. Cañas, E. Pacheco, B. Kemme, J. Kienzle, and H.-A. Jacobsen. Graps:
A graph publish/subscribe middleware. In Proc. of the 16th Annual
Middleware Conference, 2015.

[10] F. Cao and J. P. Singh. Efficient event routing in content-based publish-
subscribe service networks. In Proc. of 23rd IEEE INFOCOM, 2004.

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evalu-
ation of a wide-area event notification service. ACM Transactions on
Computer Systems, 19(3):332–383, 2001.

[12] A. K. Y. Cheung and H. Jacobsen. Green resource allocation algorithms
for publish/subscribe systems. In 2011 International Conference on
Distributed Computing Systems, ICDCS, 2011.

[13] O. M. E. Committee. Software-defined Networking: The New Norm for
Networks. Open Networking Foundation, 2012.

[14] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the
reconfiguration overhead in content-based publish-subscribe. In Proc.
of ACM Symp. on Applied Computing (SAC), 2004.
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