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Abstract—Over the past few decades, content-based pub-
lish/subscribe has been primarily implemented as an overlay
network of software brokers. Even though such systems provide
the possibility of bandwidth efficient expressive filtering in
software, they cannot match up to the performance (in terms of
end-to-end latency and throughput) of communication protocols
implemented on the network layer. To exploit network layer per-
formance benefits, recently, content-based publish/subscribe was
realized using the capabilities of Software-defined Networking
(SDN). While SDN allows line-rate forwarding of events by con-
tent filters directly installed on switches, it suffers from inherent
hardware limitations (w.r.t. flow table size, limited availability
of bits in header fields) that adversely impact expressiveness of
these filters, resulting in unnecessary network traffic.

In this paper, we strike a balance between purely application-
layer-based and purely network-layer-based publish/subscribe
implementations by realizing the first hybrid content-based mid-
dleware that enables filtering of events in both layers. Moreover,
we provide different selection algorithms with varying degrees
of complexity to determine the events to be filtered at each
layer such that unnecessary network traffic can be minimized
while also considering delay requirements of the middleware. Our
hybrid middleware offers full flexibility to configure it according
to the performance requirements of the system. We provide
a detailed performance evaluation of the proposed selection
algorithms to determine their impact on the performance of the
designed hybrid middleware which we further compare to state-
of-the art solutions.

Index Terms—Content-based Routing, Publish/Subscribe,
Software-defined Networking, Network Virtualization, Hybrid
Routing

I. INTRODUCTION

Content-based publish/subscribe (pub/sub) has evolved as
a universal paradigm for bandwidth-efficient interactions be-
tween loosely coupled producers (publishers) and consumers
(subscribers) of content. Its main advantage is that it pro-
vides mechanisms to use disseminated content and subscriber
interests to take routing decisions. So, effectively, the paths
between publishers and subscribers are determined on the basis
of content filters (subscriber interests) installed on content-
based routers (brokers) that ensure bandwidth-efficient for-
warding to only interested subscribers.

Various middleware implementations (e.g., [11], [18], [32])
of the pub/sub paradigm have efficiently supported content-
based routing at overlay networks of software brokers. How-
ever, with routing realized at the overlay and filtering per-
formed in software, these broker-based implementations are
unable to exploit performance benefits (in terms of latency
and throughput) of communication protocols implemented on

the network layer. This has, recently, led to the realization
of content-based publish/subscribe that exploits the capabili-
ties of the very popular software-defined networking (SDN)
technology [24], [31].

With the help of standards like Openflow [13], SDN allows
software to flexibly configure the network. By extracting all
control logic from hardware switches and hosting it on a
logically centralized controller, SDN manages to establish a
clear separation of the control plane and the data (forwarding)
plane. The logically centralized controller has a global view
of the network and is capable of both reading as well as
modifying the state of the network (data plane). Content-based
pub/sub greatly benefits from this as it uses the controller
to establish optimal paths between publishers and subscribers
by installing forwarding rules (content filters) on the Ternary
Content Addressable Memory (TCAM) of SDN-compliant
switches. Published events get directly filtered against these
forwarding rules on the TCAM, resulting in line-rate forward-
ing and high throughput rates.

More specifically, the match fields of flows on TCAM are
used to express content filters and header-based matching
of packets dictates the forwarding of published events to
interested subscribers. Note that efficient mapping of content
to expressive filters that can be deployed as flows on switches
may prove to be very challenging. However, expressiveness is
an extremely important factor as the effectiveness of the filters
installed on TCAM impacts the amount of unnecessary traffic
in the network, directly impacting bandwidth efficiency.

Even though, in many cases, the matching operations
performed by TCAM are comparable in expressiveness to
filtering operations performed in software, it has some inherent
limitations. One of these limitations is the number of flow table
entries available for content-based filtering in the TCAM of
switches. Considering the criticality of the cost for TCAM in
the design of a switch, vendors offer only a limited number of
flow table entries, which is currently in the order of thousands
to hundreds of thousands flow table entries per switch [15].
Interestingly, the growth of routing table is a common problem
faced by most routers and switches today. For example, in
August 2014, Microsoft Cloud, Ebay, Lastpass along with
some others were hit by outages as a result of full BGP routing
tables [1]. The TCAM in affected Cisco routers had a default
limit of 512k entries for IPv4 routes which was exceeded,
causing a spillover effect. So, with a growing demand in
connectivity, the limited TCAM resources must be judiciously
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utilized. In fact, the number of available flow entries largely
depend on the match fields used. For example, in an Openflow-
enabled switch such as NEC PF5240, the TCAM size is
further reduced to a few thousands for IPv6 traffic. To abide
by the limit on number of available flow entries on TCAM,
expressiveness of content filters may need to be compromised
to allow for limited flows representing multiple aggregated
filters.

Along with the switch design limitation, the expressiveness
of a content filter is further impeded by the limited number of
bits available for filter representation at the match fields (e.g.
destination IPv6 address, VLAN tag) of flows. For example,
even an IPv6 address can offer only a maximum of 128 bits
for filter representation. Additionally, the entire range of these
IP addresses have to be shared among many applications, thus
reducing the available address range for content-based traffic.
Besides, it should be noted that IPv6 is yet to be fully deployed
at large. In fact, LIPSIN [22], implementing hardware-enabled
forwarding for pub/sub, suffers from up to 10% unnecessary
traffic in a moderately small topology despite using 248 bits
in packet headers for path encoding.

Where on one hand event forwarding in overlay networks
provides possibilities of accurate filtering but suffers in terms
of responsiveness to event delivery, on the other hand an
SDN-based middleware provides line-rate performance but
suffers in terms of bandwidth efficiency. So, while considering
these two state-of-the-art implementations independently, we
are tempted to ask the question : can we do any better?
Is it possible to make these two radically different filtering
approaches meet in the middle? And this is where we attempt
to combine the benefits of both application layer filtering and
network layer filtering in realizing a content-based pub/sub
middleware that provides hybrid filtering of events. Therefore,
in this paper, we focus on designing an SDN-based pub/sub
that not only aims at line-rate performance but also bandwidth
efficiency by providing a mechanism to filter events both
in software (application layer) and on hardware (network
layer). We provide selection mechanisms to determine the
layer in which each event gets filtered in order to minimize
unnecessary traffic in the network while also considering
delay requirements of the middleware. Our hybrid approach
offers complete flexibility to control the amount of filtering
to be performed at each of the layers where the two extreme
cases are pure software filtering and pure hardware filtering,
thereby providing a complete degree of freedom to select the
performance of the system in terms of latency and bandwidth
efficiency. In summary, the contributions of this paper are the
design, implementation, and detailed performance evaluation
of a hybrid SDN-based pub/sub middleware, the first of
its kind, that provides event selection techniques to enable
filtering of events both on the application layer as well as on
the network layer in a latency and bandwidth efficient manner.

II. PRELIMINARIES AND SYSTEM ARCHITECTURE

The content-based middleware implemented on SDN con-
sists of primarily two participants, i.e., publishers and sub-
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scribers. The publishers specify content they intend to publish
(i.e., advertisements) and subscribers specify content they are
interested in receiving (i.e., subscriptions) to the controller.
On receiving advertisements and subscriptions, the controller,
who has a global view of the network, establishes paths
between each publisher and its interested subscribers. This
is achieved by using the widely accepted Openflow standard
to install content filters embedded in the match fields of
flows on Openflow-enabled switches in the data plane. The
deployed flows enable header-based matching of packets from
publishers to subscribers at line-rate [31].

The primary requirement of content-based routing involves
an efficient mechanism to represent content in an expressive
manner and this may be achieved by following a content-
based subscription model where events are represented by
attribute-value pairs. So, a subscription/advertisement (content
filter) is represented as a conjunction of filters on these
attributes. Moreover, to ensure the aforementioned packet-
header-based filtering of events on the network layer, an
efficient mapping between a content filter and match fields
on flows of switches is crucial. There are many candidates
(e.g., MAC Address, IP Address, VLAN tags) in the match
fields of the flows that may be used as content filters. To
this end, we use a special range of IPv6 multicast addresses
for our middleware traffic. Since header-based matching of
packets involves matching of bit strings in the header fields of
a packet with the bit strings that constitute the IP addresses
on flows, content has to first and foremost be represented in
the form of binary strings. Also, these binary strings need



to possess certain characteristic properties depending upon
the subscription/advertisement/event they represent. So, two
identical content filters (subscription/advertisement) should
have identical binary representations. Also, containment re-
lation between two subscriptions should be reflected in their
respective binary representations. For example, if there are
two subscriptions, sub; = stock value : [100 — 200] and sub-
= stock value : [150 — 200], where sub; contains (>) subo,
then the binary strings representing them should also reflect
this relation. This, in turn, ensures matching of events to
subscriptions as the binary string representing an event will
successfully reflect its containment within all binary strings
representing subscriptions interested in it. Mapping content to
binary strings can be performed using different approaches,
e.g., spatial indexing [32], bloom filters [8].

The concepts discussed in this paper are generic and can
be applied to any mapping strategy. However, in our mid-
dleware implementation, we use spatial indexing [31] which
successfully maps content to binary strings while preserving
the aforementioned containment relations. Spatial indexing
may generate a set of binary strings (denoted by BS where bsy,
€ BS) for the same subscription to attain the desired level of
expressiveness of content filters which would result in multiple
flows for the same subscription. We explain the introduction of
unnecessary traffic in the network due to the aforementioned
limitations with a simplified example illustrated in Figure 1.
Let us assume that a subscription, sub: {A=[25,75], B=[0,50]},
has to be represented as binary string using spatial indexing.
As depicted in Figure 1(a), for two attributes A and B,
two binary strings {001, 100} consisting of 3 bits each are
required to accurately represent this subscription. However,
let us assume that only 2 bits are available to represent this
filter. In such a case, the new filters will be {00, 10} and all
events matching the entire highlighted area in Figure 1(b) will
now be forwarded by these filters, resulting in unnecessary
traffic. Also, to reduce TCAM requirements, there may be a
restriction on the number of filters (i.e., binary strings) that are
allowed to represent a subscription. If only one filter is allowed
to represent the subscription in the example in Figure 1, then
we can see that only a filter forwarding all event traffic to
the subscriber can be used as, in this particular case, two
filters must be deployed to even achieve a minimum level
of expressiveness. Of course, the above scenario produces
a significant amount of unnecessary traffic. It should be
noted that, irrespective of the mapping scheme, the length
of the binary strings required to accurately represent content
(subscriptions/advertisements/events) will increase with the
increase in number of attributes in the system, which is a
problem considering the limitations on match field length.
Also, the number of binary strings needed to represent a
single subscription will increase with the increase in number
of attributes which can be of crucial importance considering
TCAM is a scarce resource. So, the aforementioned limitations
will adversely affect the expressiveness of the mapped binary
strings and subsequently the amount of unnecessary traffic in
the network. In the remaining part of this paper, we refer to

unnecessary traffic as false positives. More specifically, in the
context of our middleware, false positives on a link or at a
subscriber are those events which should have already been
filtered out but got forwarded due to the limited expressiveness
of the installed content filters on TCAM.

In this paper, we strike a balance between application and
network layer filtering while considering both their advantages
and disadvantages. Figure 2 illustrates a hybrid approach
to content-based filtering where events are filtered both on
the network as well as the application layer. We realize the
application layer in our middleware as a pub/sub cloud service
similar to BlueDove [26]. We perform multi-dimensional
subscription space partitioning and distribute them among
multiple servers (or matchers) that parallelize event filtering. In
Figure 2, the filters for subscriber S are completely installed
on the network layer, whereas the filter corresponding to the
subscription of Sy at Ry sends all events matching this filter
to the application layer which enables accurate filtering. Only
matched events are then injected back to the network at R;
and forwarded to S, resulting in no false positives for this
subscriber and subsequently no false positives along the path
from Rs to Sy in the network. However, there may be false
positives along the path between P; and S; depending on the
expressiveness of the filters for S, on the switches. Where on
one hand, application layer filtering has a distinct advantage
over network layer filtering, in terms of reduced false positives,
it loses out in matters of end-to-end latency/delay incurred
for the delivery of events. Forwarding of events to S; occurs
at line-rate, whereas that to Sy is delayed due to filtering
in software. Thus, there is a trade-off between reduction in
false positives and end-to-end latency in the network as the
improvement in one adversely affects the other.

III. FILTER SELECTION PROBLEM

Due to the aforementioned trade-off between end-to-end
latency and bandwidth efficiency, the selection of filters that
forward events to the application layer is very crucial. In fact,
the main problem that we tackle in our hybrid approach to
filtering is the selection of filters in the network layer that
forward events to the application layer for more accurate
filtering in the attempt to reduce the overall false positives
in the network. However, we do so while ensuring that the
average end-to-end latency of events in the system stays within
the application-specified threshold. More formally, let F' be
the set of all filters on all switches in the network where f;
€ F. Also, let r fp; be the number of false positives reduced
in the system if filter f; is chosen to send matched events for
further filtering in the application layer. Let S be the set of all
subscribers in the system where Sj, € S. Again, let d;, be the
average end-to-end latency at subscriber Sj. Finally, let A be
the average end-to-end latency threshold to be maintained in
the system.

Our objective is to determine the subset SF € F' that
forwards events to the application layer such that the combined
effect of the filters € SF' results in maximum reduction of false



positives in the network while staying within a given average
end-to-end latency threshold, i.e.,

Mazimize E rfp;
i€SF

ISI
subject to (Z or)/IS| < A

k=1

This is an optimization problem. Let there be a total of m
filters on n switches constituting the network, where m ranges
from O to Z'fil |BS|;. Then, to arrive at the optimal solution,
all combinations of filters, i.e., 2™ possible subsets SF' have
to be calculated and considered. Also, it should be noted that
the value of m can be in the order of hundreds of thousands,
making the optimal solution impractical and not scalable in a
realistically large network.

The above problem may look seemingly like the Knapsack
problem [23] where the value (i.e., benefit) of each item in
the Knapsack problem may be compared to the false positives
reduced by each filter and the weight (i.e., penalty) of each
item may be compared to the increase in average end-to-
end latency on selecting a filter. The goal in the Knapsack
problem is to maximize the total value of items selected for
the knapsack while the total weight of the knapsack remains
within a given threshold which is similar to our problem where
the goal is to maximize the total false positives reduced by
selected filters while the total delay penalty incurred by them
remains within a given threshold.

However, there is a major difference between the two
problems that sets them apart. If an item gets selected for
the knapsack, this selection has no influence on the values
and weights of the remaining items to be considered for
selection. This is where our optimization problem differs. In
our optimization problem, if a filter gets selected, this may
influence the false positives reduced by the remaining filters
and the increase in average end-to-end delay on selecting each
of these filters. Due to this significant difference, approaches
for solving the Knapsack problem cannot be directly employed
to our problem. As a result, in this paper, we propose two
selection algorithms with varying degrees of complexity and
benefits, in terms of bandwidth efficiency, to solve the filter
selection problem. Till now, we have made the assumption
that the false positives reduced and the increase in end-to-
end latency on selection of every individual filter is already
known. However, the process of determining these values is
not straightforward.

So, to arrive at a scalable solution to our optimization
problem, we have to tackle three subproblems — (i) detect false
positives due to each filter on each link of the network such
that rfp; for each filter f;, i.e., benefit, can be determined
(Section IV-A), (ii) determine the increase in the average end-
to-end latency of the system, i.e., penalty, on selecting each
filter (Section IV-B), and (iii) with the knowledge of these
calculated benefits and penalties for all filters in the network,
design efficient filter selection algorithms (Section V).
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IV. FILTER BENEFIT AND PENALTY CALCULATION

In this section, we provide the means of calculating benefit
and penalty associated with the selection of each filter. These
metrics form the basis of the filter selection algorithms.

A. Benefit

To determine the false positives reduced on selection of each
filter, it is imperative to first calculate false positives on each
link of the network due to each filter. To do so, each subscriber
needs to periodically send the false positives received by it
from all its associated publishers to the controller such that
the controller can determine false positives along each path
between publishers and subscribers. More specifically, the
controller calculates false positives on each link of the network
for each filter by backtracking on the paths from subscribers to
publishers while aggregating false positives on links. However,
containment relations between subscriptions, i.e., (i) disjoint,
(i) complete overlap, and (iii) partial overlap, need to be
considered during aggregation.

In the scenario where false positives of two subscriptions
that are completely disjoint are disseminated over a link, the
aggregation over this link will be a sum of the false positives
of both subscribers.

However, if one of the subscriptions is contained by the
other or both are equal, then a simple sum will account for
more than the actual false positive count over the link. In this
case, false positives for the broader subscription (or one of the
subscriptions in case of equality) should only be considered
over the link as all other false positives are either already
accounted for in the broader subscription or are events that



should be forwarded along this link as they match the broader
subscription.

This can be understood with an example in Figure 3 where
subscribers 57 and S5 subscribe for sub; and subs respectively
and suby > subs. Let us start the backtracking process from Sy
by aggregating the false positives along the paths to publishers
Py and Ps. This is straightforward, until we reach switch Rs
as Rs also forwards false positives to S3 which might need
to be aggregated for the link between R4 and Rs;. However,
since subi > subs, only the false positives of the broader
subscription suby will be considered for this link.

In the case of a partial overlap between two subscriptions,
we mainly identify 3 subspaces, i.e., the overlapping subspace
and the 2 disjoint subspaces. Now, if false positives for the
overlapping parts and the disjoint parts for each subscription
can be identified, then the aforementioned mechanisms can
be employed to detect false positives on network links. For
example, Figure 4 depicts two subscriptions sub; and subs
with a partial overlap. Now, if the two subscribers divide the
subscriptions into subspaces of finer granularity (as depicted in
the figure) and locally detect false positives corresponding to
each subspace, then the controller would have to only deal with
complete overlaps and disjoint relations. So, while calculating
false positives over a link delivering events to sub; and subs,
for the subspace {1001} (i.e., overlapping subspace), false
positives for only one subscription are counted. Again, the
false positives for the other disjoint subspaces can be simply
aggregated. Of course, here, there is a trade-off between the
accuracy of the false positive count and the granularity at
which detection occurs at the subscriber. Finer the granularity,
greater is the accuracy as well as the overhead of management
at both the subscriber and the controller. Analyzing this trade-
off has been the subject of previous research [19] and is not the
focus of this paper. Instead, we focus on the challenging issue
of performing efficient hybrid content-based filtering. With the
knowledge of the number of false positives on each link of the
network due to each filter, we can calculate the benefit of a
filter, i.e., the false positives reduced by it in the network,
by aggregating all false positives forwarded by it along its
downstream paths.

B. Penalty

The delay penalty incurred by a filter on its selection pri-
marily deals with the number of paths between publishers and
subscribers along which it forwards events. On its selection,
a filter, say f;, will forward events to the application layer
increasing the end-to-end latency for these events along all
paths that f; is associated to. This means that while calculating
the new average end-to-end latency for the system on selection
of f;, the specific network delays along each path that f;
affects have to be replaced with application delays. Naturally,
there is an increase in the average end-to-end latency and this
increase is the calculated penalty for f;.

For the sake of simplicity and without loss of generality, to
explain our selection algorithms, we represent delay penalty in
terms of the number of affected paths between publishers and
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subscribers as this number directly affects the average end-to-
end latency. Let us assume that the average end-to-end latency
of events in the network is Ny, average end-to-end latency of
events when the application layer is involved is A,4, and total
number of paths between publishers and subscribers in the
network is T'P. Now, if x is the number of paths involving
application layer filtering, then the average end-to-end latency
in the network is [(x * Ag) + (TP —x) * Ng)]/TP. Also, the
calculation of A (i.e., average end-to-end latency threshold) in
terms of the maximum number of paths that can be allowed to
be affected by application layer filtering delay, APry, follows
directly from the previous formulation, and can be calculated
as APrp, = (TP*(A—Ny))/(A;— Ng). Note that we calculate
penalty and the penalty threshold here w.r.t. average delays
and represent them as affected paths just for the sake of
better understandability of the following sections. However, in
reality, while calculating the penalty, our system can consider
the exact network delay incurred along each path between
publishers and subscribers and can calculate penalty as the
exact increase in average end-to-end latency of the system as
described earlier.

V. SELECTION ALGORITHMS

After determining the benefits and penalties for each in-
dividual filter in the network, we proceed to propose two
selection algorithms—the Switch Selection Algorithm and
the Cluster-based Selection Algorithm—that differ in time
complexity as well as in quality w.r.t. reduction in false
positives.

A. Switch Selection Algorithm

We can simplify our problem by selecting switches in place
of filters that forward events to the application layer. However,
even in this case, we must consider 2" possible subsets of
the entire set of n switches in the network for an optimal
solution w.r.t. switches. Can we do something better to reduce



this complexity? The main idea behind the Switch Selection
Algorithm (SSA) is to iteratively select switches, such that
the most beneficial switch gets selected in each iteration, till
the given delay threshold is reached and eventually obtain a
subset of switches SR € R that forward incoming events to
the application layer.

SSA starts by considering the set R consisting of all
switches in the network and calculates the benefit and penalty
of each switch. The benefit and penalty of each switch is the
sum of the benefits and penalties of all filters on it. Next, all
switches whose penalty violates the average end-to-end latency
(or available path) threshold are removed from R. From the
remaining switches, the switch with the highest benefit within
the delay penalty threshold is selected and added to the subset
SR and removed from R. If the delay penalty threshold has
not been reached, then all remaining switches € R are again
considered for the next cycle. Please recall that the selection of
a switch for application layer filtering may change the number
of false positives reduced and the additional delay incurred
by other switches due to the filters on the selected switch.
Assume, a switch R; having a filter f;, is added to SR. Now,
for another switch R2; € R having a filter f;, the benefit and
penalty additionally offered by f; need to be recalculated.
Otherwise, the same false positives already reduced by f;
will again be considered for f;. Also, the same path already
considered for application layer delay may again be counted
in the delay penalty for f;. So, after determining the benefit
and penalty for f;, all false positives for filters corresponding
to f; on subsequent switches along the downstream paths of f;
must be set to zero and the paths marked as already considered.
Now, while calculating the benefit and penalty of f;, none of
the false positives and paths already considered for f; will be
reconsidered. So, for each cycle, the benefits and penalties of
all filters on the remaining switches in R are recalculated based
on the filters on switches in S R. The cycles continue until the
delay penalty is reached or would be potentially exceeded with
any further selection or if R is empty.

To explain the algorithm, we use an example from Figure 5,
where the initially calculated benefits and penalties for each
switch € R are depicted. Let us assume that the average la-
tency threshold A when mapped to the affected paths threshold
APry, (cf. Section IIT) has the value 3. Of all the switches
€ R, Ry and Rj get removed as they violate the threshold.
Also, R3 can be removed as it has 0 benefit. According to
the algorithm, R; gets selected as it has maximum benefit
within the given threshold. As a result, at the end of this cycle
R={Rs, R¢, R7, Rs, Ro} and SR={R;}. Since, APy}, has not
been reached yet, another cycle will commence. Now, since R;
has already been selected, it will send all events received by it
to the application layer, resulting in no or lesser false positives
on its downstream paths. As a result, the benefits and penalties
of the remaining switches need to be recalculated. In this case,
the recalculated benefits and penalties for Ry are 0 and 0, Rg
are 40 and 1, R7 are 30 and 1, Rg are 160 and 2, and Rg are 20
and 1 respectively. As per the algorithm, in this cycle, Rg gets
removed from further consideration as it violates the threshold,
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while Rg gets selected and added to SR. Finally, since the
delay threshold of 3 is reached, the algorithm terminates with
the final set of selected filters returned as SR={R;, Rg}. The
switch selection algorithm has a complexity of O(n?).

B. Cluster-based Selection Algorithm

In SSA, we selected switches instead of filters as a solution
considering individual filters is impractical. However, a solu-
tion which is in the middle of these two, would be interesting
to analyze. As a result, in our next algorithm called Cluster-
based Selection Algorithm (CSA), we select filters rather than
switches but this time we consider a group of filters based on
the subscriptions they represent. More specifically, we first
cluster all binary filters (representing subscriptions on the
network layer) based on their similarity into spatially disjoint
groups. There are many subscription clustering techniques
proposed in literature and any one of them may be selected for
the clustering of filters [16], [30]. Since the filter clusters (i.e.,
C) are spatially disjoint, each cluster disseminates a disjoint
set of events in the network, thus giving the notion of separate
event dissemination trees embedded in the network for each
cluster. Therefore, in the following description, we consider
each cluster to have its own dissemination tree disjoint from
those of other clusters such that an event gets disseminated
along only a single cluster’s tree and can only affect the
false positive count along the links of this tree. For example,
Figure 6 illustrates a scenario where 4 subscribers S7, So, S3,
and S, subscribe for suby, subs, subs, and sub, respectively



where the containment relations between subscriptions and
consequently the filters they represent are depicted. Here, we
consider a very simple case with 3 clusters, cj, co, and c3,
that are disjoint in space as can be seen in the figure. Also,
there are three dissemination trees embedded in the network
for each of these clusters.

After clustering of filters, in each cluster € C, we identify
the switch with maximum benefit within the penalty threshold.
So, if a switch R; gets selected in the cluster c;, we represent
this switch-filter_cluster as R;_c;. This process of identifying
the most beneficial switch within each cluster is identical to
calculating the benefits and penalties of each switch in R and
selecting the most beneficial and feasible switch as discussed
in details in Section V-A. In this approach, all filters of a
switch do not get selected but only a filter set representing
a cluster on the switch gets selected for application layer
filtering. As a result, we get a total of |C| switches from all the
clusters and add them to a switch-filter_cluster set RC'. Let
Ry, Ry, and R, be selected in ¢y, c2, and c3 respectively such
that RC' = {R;_c1, Ry_co, R1_c3}. Note that even though the
same switch R; gets selected for two clusters, the switch-
filter_cluster makes each pair unique. Now, we try to find the
subset SRC' € RC that maximizes the combined reduction
of false positives in the network due to all selected switch-
filter_cluster pairs € SRC while ensuring the average end-to-
end latency of the system within A.

If all combinations of switch-filter_clusters are considered
for the solution, then the complexity is O(2/°!). It should
be noted that unlike our original optimization problem, se-
lection of a particular switch-filter_cluster pair for forwarding
events to the application layer does not affect the reduction
in false positive count and the delay penalty of the other
switch-filter_cluster pairs as the clusters are disjoint. So, no
recalculation of benefit and penalty need to be done at the
switches. This problem can now be solved by directly mapping
it to the Knapsack problem.

The aforementioned steps produce the subset SRC' that
maximizes reduction in false positives while staying within
A. However, if the threshold has not yet been reached, then
the entire cycle has to be repeated. In the next cycle, again the
benefits and penalties of switches have to be recalculated for
clusters that are part of SRC. This is because the selection of
a switch from a cluster will affect the benefits and penalties
of switches within the same cluster. Based on the new values,
again, |C| switch-filter_clusters are selected from all the clus-
ters and the cycle progresses as before with a new set RC.
The cycles continue till the threshold is reached. As a result,
CSA has a complexity of O(n? + n x 2/¢l).

C. Network Updates

Once the filters for forwarding events to the application
layer are selected, the controller makes the necessary changes
to the network by modifying the action field of each flow
representing the selected filters. As a result, all events that
match these filters get forwarded to the application layer as
dictated by the action field of the flows. Clearly, the event

distribution and the current subscriptions in the system might
change over time degrading the performance of our deployed
solution to forward events to the application layer. So, in order
to adapt to changes, the controller periodically collects infor-
mation about the false positives (in the recent time window)
from the subscribers, recalculates the most beneficial set of
filters, and deploys the changes in the network.

VI. FURTHER OPTIMIZATIONS

The complexity of both the proposed algorithms depend
on the number of switches in the network, i.e., n. So, these
algorithms may be further optimized if we reduce the search
space, i.e., reduce the number of switches on which they
operate. In fact, we identify those switches that would add
value to the solution and will be candidates for the desired
solution while neglecting all other switches. A switch is
selected as a candidate if no other switch in the network
reduces more false positives than this one for the same set
of paths that this switch affects. In doing so, we identify 3
types of switches as candidates for selection—a leaf switch
connected directly to a publisher, a switch with two or more
ingress ports, a switch connected directly to a switch with
two or more egress ports. All other switches in the network
may be ignored. The reason why these switches are the only
ones that make a difference to the solution is because, due
to their ingress ports, they are the starting points of new
combinations of paths and therefore will always reduce the
most false positives on these path combinations. This can be
understood in the following example depicted in Figure 5.

Figure 5 shows false positives on each link of the network
when two subscribers S7 and S subscribe and two publishers
P, and P, publish events. Let us focus on switch R; which
is directly connected to P;. If R; is selected to forward
events for further filtering, the number of false positives it
will decrease in the network is 340. Also, selection of R;
introduces application filtering delay along two paths, i.e.,
between P;—S; and P;—S5. For the same two paths, we
need to check if any other switch reduces more false positives.
In fact, Rs reduces 300 false positives while incurring a delay
penalty of 2 for the same two paths. As R; is the starting
point of the path combination consisting of these two paths,
it will always reduce more false positives than Ry for the
same penalty. As a result, R; gets selected as a candidate
while switches like Ry, which are guaranteed to have less
benefit for the same penalty, can safely be ignored for further
consideration as they will never be a part of the desired
solution. A switch like R4 with two or more ingress ports,
however, must be considered as it is a switch where multiple
paths join. As a result, for this new combination of paths (P;—
S1, Pi—Ss, Po—S1, and P,—S5), this switch will always
have the most benefit as it is the starting point of this path
combination in the switch network. So, a switch like Rs, with
two or more egress ports makes no difference to the solution as
its benefit is less than R4 while it affects the same paths as Ry.
Again, a switch like Rg that is directly connected to a switch
with two or more egress ports that splits paths, poses as the



source of a new combination of paths, i.e., P,—S7, and Po—
S1, and therefore must be considered for further processing.
The example shows how the aforementioned three types of
switches should only be considered for further processing
without adversely affecting quality of the solution. Pruning the
network has a complexity of O(n) and can reduce the runtime
of SSA and CSA without degrading their quality. Of course,
the effectiveness of this optimization depends largely on the
paths between publishers and subscribers.

VII. PERFORMANCE EVALUATIONS

This section is dedicated to an analysis of the proposed
hybrid pub/sub middleware and its comparison to purely
network-based and purely application-based implementations.
In fact, we compare the hybrid middleware with two network-
based implementations. The first implements pure in-network
filtering of events while its variant implements R-Tree-based
clustering along with in-network filtering. A series of ex-
periments are conducted to understand the effects of the
design on performance metrics such as end-to-end latency for
event dissemination and bandwidth efficiency in terms of false
positives disseminated in the network. We further compare the
performances of the two proposed selection approaches, SSA
and CSA, in terms of benefit and complexity.

A. Experimental setup

The following experiments have been evaluated under two
test environments—1) an SDN-testbed (SDN-f) comprising a
hardware whitebox Openflow-enabled switch from Edge-Core
and commodity PC hardware, and 2) an emulated network
running on a single machine using Mininet (SDN-m). The
latency-related experiments were conducted on SDN-t where
we created a hierarchical fat-tree topology consisting of 10
switches and 8 end-hosts. The 10 switches are hosted on
the hardware whitebox switch from Edge-Core running the
network operating system PicOS (version 2.6) [2], [3]. The
8 end-hosts are hosted on commodity rack PCs and perform
the role of publishers and subscribers. The SDN controller
and application layer reside on a 3.10 GHz machine with 40
cores. All end-hosts are synchronized using the IEEE 1588
Precision Time Protocol (PTP). We used a separate network
infrastructure for PTP traffic using a second NIC on each host
dedicated to PTP synchronization to counter the possibility of
inaccuracies in clock-synchronization.

Besides the testbed, experiments have been conducted on
SDN-m consisting of a prominent tool for emulating software-
defined networks, namely, Mininet [25]. Based on the concept
of OS-level lightweight virtualization for network emulation,
Mininet enables users to experiment with various topologies
and application traffic. We use Mininet to experiment with up
to 337 switches and 729 end-hosts on different topologies.

We use a content-based schema that contains up to 6 at-
tributes, where the domain of each attribute varies in the range
[0,1023]. We use both real-world workload as well as synthetic
workload to conduct our experiments. For synthetic data we
use two different models for the distributions of subscriptions

and events. The uniform model generates subscriptions and
events independent of each other. Meanwhile, the interest
popularity model chooses up to 8 hotspot regions around
which subscriptions/events are generated using the widely used
zipfian distribution. For real-world workload, we use data
in the form of stock quotes procured from Yahoo! Finance
containing a stocks daily closing prices [12]. Such real world
data further highlights the performance and importance of the
hybrid approach under realistic scenarios.

B. Comparing with State-of-the-Art

The first set of experiments, compares the performances
of the hybrid middleware (HYB-M), a purely network-based
middleware (PLEROMA), and a purely application-based mid-
dleware (APP-M). PLEROMA [31], as mentioned earlier,
implements SDN-based in-network filtering. Moreover, we
implemented the purely application-based middleware as a
parallelized matching pub/sub service. We divided the event-
space into 16 partitions and assigned them to 16 matchers
running on 16 cores to enable one-hop forwarding of events
as performed in Bluedove [26]. All measurements in the
application layer have been performed corresponding to this
configuration. We used multiple event rates and datasets to
benchmark the performance of the implemented application
layer. Please recall that the performance of the hybrid mid-
dleware can be regulated by adjusting the value of A. In
the following experiments we represent this threshold value
in terms of a factor of the application layer filtering delay,
such that a factor of O implies pure network filtering and a
factor of 1 implies pure application layer filtering. Also, HYB-
M uses SSA for switch selection such that we can compare
the performance of a pessimistic hybrid approach with state-
of-the-art solutions rather than CSA which outperforms SSA
w.r.t. reduction in false positives as can be seen later in this
section.

Figure 7(a) depicts the performance of HYB-M and
PLEROMA w.r.t. total false positives in the network, i.e., the
sum of all false positives on all links, with increasing number
of subscriptions when 10,000 events are disseminated. Since
APP-M performs accurate filtering of events in software, we
do not plot its performance in this graph. For a threshold factor
of 0.6, the figure shows that the false positives for HYB-M
are much less in every case than those for pure in-network fil-
tering. Even though the hybrid middleware performs better as
compared with PLEROMA in terms of bandwidth efficiency,
it comes with a price. Figure 7(b) depicts the plots for average
end-to-end latency with increasing subscriptions for all 3
systems. The figure shows that pure network-layer filtering has
minimum latency in the order of a few microseconds. Also,
the increase in number of subscriptions has no influence on
latency. On the other hand, APP-M has the worst performance
with latency in the order of milliseconds which increases with
increasing number of subscriptions because, in software, more
the number of subscriptions, more will be the time needed to
match events. The figure shows that hybrid filtering results
in latency less than that of APP-M but greater than that of
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Fig. 7: Performance Evaluations

PLEROMA as a certain percentage of events are now affected
by application layer filtering delay. However, both bandwidth
efficiency and latency of the hybrid approach may be regulated
by adjusting the threshold factor, i.e., A, which is clearly
visible in the following set of experiments.

Figure 7(c) and Figure 7(d) show the effects on bandwidth
efficiency and latency in a system with 8000 subscriptions
when the threshold factor is increased from O to 1. In Fig-
ure 7(c), the term benefit signifies the % of false positives
reduced by HYB-M w.r.t. the false positives occurring in
PLEROMA. With the threshold factor set to O, HYB-M has no
benefit as it is comparable to pure in-network filtering. With
increasing threshold factor, the benefit gradually increases.
However, this also implies increase in average end-to-end
latency as depicted in Figure 7(d). It should be noted that
a factor of 1 is comparable to APP-M w.r.t. latency. However,
even in this case the benefit will not be 100% as the false
positives on the links between the publishers and the switches
they are directly connected to will remain in the system.

In literature, we often encounter the technique of clus-
tering of subscriptions to enhance bandwidth efficiency of
pub/sub [12], [33]. As a result, we compare bandwidth ef-
ficiency of our hybrid system to a variant of PLEROMA
called PLEROMA-v that implements R-tree-based clustering
along with in-network filtering. More specifically, PLEROMA-
v, first, clusters all subscriptions in the system using the very
popular R-Tree [16] clustering approach into multiple clusters.
Each cluster has a Minimum Bounding Rectangle (MBR) that
represents its ranges along each attribute and consequently the
subspace it covers in the entire event space. If we assume that
the total number of bits available for filter representation is
100, then, in PLEROMA, spatial indexing will be employed
on the entire range for each attribute and the resulting binary
strings will be truncated to 100. However, in PLEROMA-
v, for each cluster, spatial indexing will be employed only
within the ranges of the MBR. So, if there are 8 clusters
in the system, the first 3 bits of the filter will represent
the cluster id and the remaining 97 bits will be available



for spatial indexing within the cluster subspace. Clustering is
popular at overlays but in this paper we evaluate PLEROMA-
v implemented on SDN. So, our next set of experiments
compares the performance of PLEROMA-v with 6 clusters
with that of HYB-M when Zipfian distribution is used to
generate subscriptions and events with 5 dimensions around
8 hotspots. Figure 7(e) shows that even with the threshold
factor set to just 0.4, HYB-M has a higher benefit than
PLEROMA-v with increasing number of subscriptions. This
is because, no matter how good the clustering technique,
PLEROMA-v will always be limited to a specific number
of bits, whereas this limitation can be mitigated in HYB-
M by involving filtering in software. Our experiments also
showed that when subscriptions were generated using uniform
distribution, PLEROMA-v performed worse than PLEROMA.
In this case, the MBRs of each cluster covered almost the
entire range for each attribute making spatial indexing in
PLEROMA-v comparable to that in PLEROMA. Moreover,
PLEROMA-v lost additional bits to represent the cluster ids.
Note that PLEROMA-v will have an advantage over HYB-M
w.r.t. end-to-end latency as it performs in-network filtering.

C. SSA vs CSA

The next set of experiments evaluates and compares the
performance, in terms of benefit and complexity, of the two
proposed selection algorithms — SSA and CSA. Figure 7(f)
depicts the benefit of SSA and CSA with increasing number
of subscriptions. For these experiments, we used 16 clusters
for CSA. The figure shows that, in each case, CSA has higher
benefit than SSA. This is because CSA has higher flexibility
w.r.t. selection of filters as it chooses groups of filters within
a switch rather than all filters on it as is the case in SSA.
We also conducted experiments to see the behavior of both
methods when the threshold factor is gradually increased in a
system with 2000 subscriptions. Figure 7(g) shows that with
increasing threshold, the benefit increases in both approaches
and CSA performs consistently better than SSA. Please note
that the performance of CSA largely depends on the number of
clusters used by it and as a result our next set of experiments
is conducted to analyze the effect of increasing clusters on
CSA. Figure 7(h) clearly depicts that, with increasing number
of clusters, the performance of CSA improves further as its
flexibility of filter selection increases manifold. Of course,
when a single cluster is used, CSA is essentially reduced to
SSA. We conducted the above experiments using real-world
workload which clearly highlights the bandwidth efficiency
achievable by the hybrid middleware under realistic scenarios
even for a threshold factor of just 0.4.

Even though CSA offers higher benefit than SSA, it loses
out to SSA in terms of time complexity. We conducted
experiments to compare the runtime of both algorithms. Fig-
ure 7(i) shows that with increasing number of subscriptions,
the runtime of both approaches increases. This is because,
higher the number of subscribers in the system, higher will be
the number of paths and filters on switches to be considered,
thus increasing the runtime. Also, the runtime of CSA is con-

sistently higher than that of SSA, as in each iteration of CSA,
not only does the most beneficial switch get determined in each
partition, but also all combinations of switch-filter_clusters
are considered to achieve a high quality solution. So, while
choosing between SSA and CSA, one needs to consider the
trade-off between quality and complexity.

VIII. RELATED WORK

Content-based pub/sub is a much researched area enriched
by various contributions to literature [4], [9], [10], [14], [18],
[20], [21], [27]-[29], [33], [34]. However, even though these
systems can be highly expressive, w.r.t. content representation,
most of them are implemented on an overlay network of
software brokers and are unable to provide performance, in
terms of throughput and end-to-end latency, similar to network
layer implementations of communication protocols.

The importance of a scalable and elastic pub/sub providing
high throughput and low end-to-end latency has always been
impressed upon. In recent times, significant contributions in
this respect have been made possible with the emergence
of cloud computing which has driven the idea of realizing
pub/sub middleware as a cloud service. Li et al. present
BlueDove [26], an attribute-based pub/sub service, that tar-
gets parallelism of the event filtering process by organizing
multiple servers into a scalable overlay as candidates for
one-hop forwarding of events. Based on a multi-dimensional
subscription space partitioning technique for the distribution
of subscriptions between servers, BlueDove exploits skewness
in data distribution for performance-aware event filtering at
the least loaded servers. In fact, we use similar techniques
to implement our application layer. Similarly, Barazzutti et
al. also focus on parallelizing the event filtering process by
designing StreamHub [5], a scalable pub/sub service based
on a tiered architecture. StreamHub comprises a set of inde-
pendent operators that take advantage of multiple cores on
multiple servers to perform pub/sub operations which include
subscription partitioning, event filtering, and event dispatching.
Scalability of StreamHub is further supported with elasticity
in e-StreamHub [6], which is capable of scaling in and scaling
out depending on load observations of the system to improve
system throughput. Although the performance of these services
is ahead of traditional broker-based overlay implementations,
they are curbed by the limitations of filtering in software.

In the recent past, networking technologies, such as SDN
and NetFPGA, have attracted much attention of the research
community, resulting in efforts towards realizing a pub/sub
middleware that performs event filtering and routing within the
network. LIPSIN [22] proposed an efficient multicast strategy
to route events on the network layer using bloom filters.
LIPSIN performs routing similar to source-routing where the
set of links to be traversed by the packet is encoded in the
packet header. This encoding is restricted by the available bits
in the packet header, resulting in the generation of fixed length
Bloom filters. The use of fixed length Bloom filters to encode
links implies the presence of false positives in the network



impeding bandwidth efficiency of the system. Likewise, mid-
dleware such as DDSFlex [17] and PLEROMA [31] exploit
the capabilities of SDN to realize routing and filtering of
events on the network layer. However, even though, Bhowmik
et al. in [7] address the concerns of the control plane in an
SDN-based publish/subscribe middleware, the concerns of the
data plane w.r.t. the inherent limitations of hardware switches
remain. These data plane limitations result in false positives
in the network further highlighting the cost that network layer
implementations need to bear in order to achieve line-rate
performance. Thus, the need to combine filtering at both
layers to strike a balance between their performances is quite
apparent.

IX. CONCLUSION

In this paper, we propose, implement and thoroughly eval-
uate the performance of a hybrid content-based pub/sub mid-
dleware. To the best of our knowledge, we are the first to
combine filtering of events in application and network layers
in the context of content-based pub/sub. We provide algorithms
with various associated complexities and benefits to determine
the layer in which each event gets filtered such that the overall
false positives in the system can be minimized while staying
within an average end-to-end latency threshold. The evaluation
results show that our hybrid middleware can be configured by
an application to various settings ranging from pure network
layer filtering to pure application layer filtering by adjusting
the average end-to-end latency threshold in order to achieve
desired performance.
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