
Grand Challenge: GraphCEP - Real-time Data Analytics
Using Parallel Complex Event and Graph Processing

Ruben Mayer, Christian Mayer, Muhammad Adnan Tariq, Kurt Rothermel
IPVS, University of Stuttgart, Germany

{first name.last name}@ipvs.uni-stuttgart.de

ABSTRACT
In recent years, the proliferation of highly dynamic graph-
structured data streams fueled the demand for real-time
data analytics. For instance, detecting recent trends in so-
cial networks enables new applications in areas such as dis-
aster detection, business analytics or health-care. Parallel
Complex Event Processing has evolved as the paradigm of
choice to analyze data streams in a timely manner, where
the incoming data streams are split and processed indepen-
dently by parallel operator instances. However, the degree
of parallelism is limited by the feasibility of splitting the
data streams into independent parts such that correctness of
event processing is still ensured. In this paper, we overcome
this limitation for graph-structured data by further paral-
lelizing individual operator instances using modern graph
processing systems. These systems partition the graph data
and execute graph algorithms in a highly parallel fashion,
for instance using cloud resources. To this end, we pro-
pose a novel graph-based Complex Event Processing system
GraphCEP and evaluate its performance in the setting of
two case studies from the DEBS Grand Challenge 2016.

CCS Concepts
•Applied computing → Event-driven architectures;
•Computer systems organization → Cloud computing;

Keywords
Complex event processing; distributed graph processing

1. INTRODUCTION
An increasing amount of streaming data from various sour-

ces accrues in modern IT systems, stemming, e.g., from mo-
bile devices and connected sensors. These data streams of-
ten exhibit a graph structure, i.e., elements from the differ-
ent data streams are related to each other. For instance,
in an evolving social network, commments refer to existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’16 Irvine, California USA
c© 2016 ACM. ISBN 978-1-4503-4021-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2933267.2933509

posts and users, which themselves are connected via friend-
ship relations. As the available processing capabilites in-
crease by technological progress such as multi-core comput-
ers and Cloud Computing, the demand for processing the
data streams arises in order to enable new applications that
react on situations of interest in the surrounding world in
near real-time. Such situations can be, e.g., evolving trends
in social networks or the detection of strong communities
that are interested in a similar topic. They can be detected
from patterns occurring in the incoming data streams.

For detecting patterns in data streams, the paradigm of
parallel Complex Event Processing (CEP) has been estab-
lished in the past decade [17]. Parallel CEP systems are
nowadays widely used in many different application areas,
such as algorithmic trading and health care [1]. In doing
so, state-of-the-art CEP systems are able to detect multi-
ple instances of a queried pattern on the incoming streams
in parallel by splitting the streams into partitions that are
processed in parallel by an elastic number of operator in-
stances. To be able to detect all occurring patterns, oper-
ator instances need to receive and process complete parti-
tions, i.e., a partition can not be further divided, but has
to be processed completely by one operator instance. How-
ever, due to the ever-increasing data rates and complexity
of patterns, even detecting a single instance of a pattern al-
ready becomes a bottleneck in terms of CPU and memory
requirements. Partitions become larger, which results in an
accumulation of a large processing state in the operator in-
stances. This becomes especially evident in the context of
analytics on graph-structured data, where billions of edges
and millions of vertices may need to be analyzed in order to
detect a queried pattern. For instance, finding time-varying
communities of friends interested in similar topics requires to
execute graph-theoretical algorithms on friendship graphs.

On the other hand, in the recent past, graph processing
systems have seen an enormous boost (Pregel [14], GrapH
[15]). These systems are capable of performing data ana-
lytics on large graphs in parallel, which is exactly what is
lacking in parallel CEP systems. However, most of these sys-
tems work in a batch-like execution mode: they load graph
data from files, perform graph algorithms on it and store
the results on files. Hence, they lack support for efficiently
processing streaming data.

In this paper, we pose the question whether parallel CEP
and graph processing can be combined in order to solve the
challenges of streaming graph-structured data analysis. Our
answer is GraphCEP, an integrated system that combines
the strengths of parallel CEP systems with the strengths

© ACM, 2016. This is the author's version of the
work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The
definitive version is going to be published in
Proceedings of the 10th ACM International
Conference on Distributed Event-Based Systems.
http://dx.doi.org/10.1145/2933267.2933509

s1 s3 s2

c1 c2

1 2

3

Sources

Operators

Consumers

Figure 1: Complex Event Processing.

of parallel graph processing systems. Toward this end, we
make the following contributions: (1) We propose an ar-
chitecture combining parallel CEP and graph processing—
called GraphCEP—, and (2) we show the benefits of the
proposed architecture in the course of two case studies from
the DEBS Grand Challenge 2016.

2. CHALLENGES AND GOAL
Complex Event Processing (CEP) is a paradigm that is

nowadays widely used in order to detect situations of in-
terest in the sourrounding world in situation-aware appli-
cations. Those situations correspond to patterns in source
event streams (e.g., stemming from sensors or from other
applications such as social networking applications). In do-
ing so, the patterns are specified by domain experts in CEP
query languages such as TESLA [5] and Cordies [11].

According to the queries, the CEP system deploys a dis-
tributed operator graph G(Ω ∪ S ∪ C,L) interconnecting
sources in S, operators in Ω, and consumers, i.e., applica-
tions interested in queried patterns, in C in form of event
streams in L ⊂ (S ∪Ω)× (Ω∪C) (cf. Fig. 1) [12]. An oper-
ator ω ∈ Ω detects patterns on its incoming event streams
in so-called correlation steps. In each correlation step, ω
works on a selection σ which is a finite subset of events
from the incoming streams. A correlation function fω : σ →
(e1, . . . , em) specifies the mapping from the processed se-
lection to a set of complex events emitted by the opera-
tor, which resemble pattern matches on the incoming event
streams.

When single operators in a distributed CEP system are
exposed to a heavy workload, the processing capabilities
of a sequentially executed operator are often not sufficient.
Hence, parallelization of CEP operators has emerged as an
important research topic in the recent past. Generally, there
are two ways of parallelizing a CEP operator: Intra-operator
parallelization and data parallelization. In intra-operator
parallelization [1], also known as pipelining, internal pro-
cessing steps of an operator are derived from the query and
executed in parallel on different CPU cores or processing
nodes. This approach offers only a limited achievable par-
allelization degree, as the number of steps in detecting a
queried pattern is limited by the number of variables in the
query, and hence, is operator-specific. A more promising ap-
proach is data parallelization [17], where the incoming event
streams of an operator are split into partitions that can be
processed independently by a set of identical copies of the
operator, called operator instances, that run in parallel.

However, graph-structured streaming data poses a set of
challenges on data parallelization in CEP. In the following
section, we analyze and discuss the challenges that arise.

2.1 Challenges
Graph-structured streaming data poses several challenges

which current CEP parallelization frameworks do not prop-
erly address. The first challenge is centered around consis-
tent splitting of event streams, such that no false-negatives

and no false-positives are produced. The second challenge
deals with the granularity of parallelization of graph-based
data. The third challenge regards the streaming nature of
the graph-based data.

Consistent Splitting. The challenge in splitting the in-
coming data streams is to find partitions that contain ex-
actly those events needed in order to detect the queried
patterns in the operator instances. On the one hand, this
means that each operator instance receives exactly those
events that lead to the detection of patterns in the origi-
nal incoming data streams, such that all existing patterns
are actually detected (no false-negative detections). On the
other hand, the operator instances shall not detect patterns
that are not present in the original data streams (no false-
positives). Consistent splitting is reached when the parti-
tions contain exactly those events that are in the selections
of an operator w.r.t. its correlation function.

Both false-negatives and false-positives can occur when
the splitting function assigns events from one selection partly
to one operator instance and partly to another operator in-
stance. Then, none of the instances has the complete view of
an occurring pattern, and hence, the output is not consistent
with a sequential execution where the operator would have
the complete view. For instance, in a CEP operator that
detects a community of people who like the same comments
in a social network, all likes of the same comment have to
be assigned to the same operator instance. If this was not
the case, only parts of the community could be detected and
the result would be inconsistent.

Granularity of Parallelization. Apart from the chal-
lenge of splitting the incoming data streams, the concept of
data parallelization itself is limited to the parallelism inher-
ent to the data. That means, that an event selection has
to be processed completely by one operator instance. If the
selection contains a large graph, it cannot be split further
into independent parts. This limits the scalability of the sys-
tem, as large graphs are very common in graph-structured
data. For instance, in the aforementioned operator that de-
tects a community of people who like the same comments, a
comment with a large number of likes has to be completely
analyzed by one single operator instance.

Streaming Graph-Structured Data. In addition to
splitting the data streams and providing a high degree of
parallelization, the CEP system also has to efficiently exploit
the streaming nature of the graph structured data. This
implies that the graph structure is evolving in an incremental
fashion, for instance, when friendship relations are built or
destroyed in a social graph at different points in time. This
is in contrast to static graph-structured data sets, where
a graph does not evolve over time, but can be completely
imported into the system at startup and then is only queried.

2.2 Goal
Our goal is to devise a distributed, parallel CEP system

that is able to efficiently and scalably process streaming
graph data. To achieve this goal, the system has to be capa-
ble of finding consistent stream splitting functions, such that
no false-negative and no false-positive pattern detections are
produced. Further, it has to be able to parallelize the pro-
cessing of graph data beyond the capabilities of state-of-the-
art parallel CEP frameworks that only split the incoming
data streams. Finally, the system shall be able to handle
streaming graph data in an efficient manner, that is, in a

G1

input 1

Merger

output

Op. inst. 1

G2

Operator instance 2

Gn

Operator instance n

…

…

Subgraph 1 Subgraph 2 Subgraph p

Synch
Graph Processing System G1 (GAS API)

Splitter

…
input k

Figure 2: Architecture GraphCEP

stream-aware processing model in contrast to a batch-like
processing model.

We believe, that in order to devise such a system, it is nec-
essary to unify research and developments from two areas,
Complex Event Processing and Graph Processing. In the
following, we describe our unified framework GraphCEP.

3. GraphCEP
We propose GraphCEP, a framework that combines state-

of-the-art stream partitioning technology in the splitter with
distributed graph processing in the operator instances.

GraphCEP consists of a split–process–merge architecture
(cf. Fig. 2). The splitter is in charge of finding consistent
splitting points in the incoming event streams, such that
operator instances do not miss detecting any occurring pat-
tern instances (no false-negatives), but also not erroneously
detect pattern instances that are not in the incoming event
streams (no false-positives). The operator instances run in
parallel and use an interface to a full-fledged distributed
graph processing system, such that the processing of graph-
structured data in single operator instances can be further
parallelized. Finally, a merger reorders the concurrently de-
tected events from the operator instance into a deterministic
order. In the following, we describe the single components
in more detail.

Splitter. Event streams are split into partitions by two
logical predicates, Ps : e → BOOL and Pc : (partition, e) →
BOOL. Ps evaluates to true when an event opens a new par-
tition, whereas Pc evaluates to true when an event closes an
open partition. The predicates are programmed by a do-
main expert. Using the predicates, GraphCEP is able to
split incoming event streams for all different kinds of opera-
tors, such as operators working on time-based or tuple-based
sliding windows, sequence operators, OR operators, AND
operators, and aperiodic and periodic operators (cf. [17]).

Additionally to the predicate-based splitting, GraphCEP
can also be deployed with a key-based stream partitioning
mode. In this mode, events are assigned to operator in-
stances according to a key value they contain. This can be,
for instance, a user id, a location, a stock symbol, etc. In do-
ing so, specific value ranges are assigned to specific operator
instances. In the key-based partitioning mode, the domain
expert needs to specify the assignment of value ranges to
operator instances, e.g., which user ids, locations or stock
symbols are assigned to which operator instance.

Operator Instance. Operator Instances detect patterns
on the incoming event streams and emit events to the merger.
They are programmed by domain experts according to the

patterns to be detected. The specialty of GraphCEP is that
the domain expert has access to a fully-fledged distributed
graph processing engine. This access is given via two in-
terface functions: manipulate graph() and execute(). The
former interface function manipulate graph() is for adding
and remove vertices and edges from the graph model in the
graph processing engine. The operator instance decides,
based on the queried patterns, which events lead to such
a graph manipulation. For instance, it can decide that a
like of a comment leads to adding a node for the like and an
edge from that like to the liked comment. Another example
is that the timeout of a comment leads to the removal of
nodes and edges. The latter interface function execute()
triggers the execution of a graph-theoretic algorithm—such
as, e.g., Max_Clique—which is then performed on the exist-
ing graph model in a highly-parallel, distributed fashion.

The graph processing algorithms in the graph process-
ing engine are programmed using the well-known Gather–
Apply–Scatter (GAS) paradigm [8]. Here, the graph algo-
rithm programmer specifies a vertex function to be executed
by each vertex in the graph. For instance, vertex v collects
data from its neighbors in the gather phase, changes its own
vertex data in the apply phase using the gathered neighbor-
ing data, and initiates execution of vertex functions on its
neighbors, if v’s data has changed.
The proposed architecture allows for a separation of con-

cerns between the CEP and the graph processing domain:
The CEP domain expert does not have to care about par-
allelization of graph processing, but can just execute the
graph-theoretic algorithms available in the graph process-
ing engine via the execute() function. On the other hand,
the graph processing domain expert does not have to deal
with pattern matching in CEP, but can focus on efficient
parallel graph processing algorithms. This way, GraphCEP
combines the best of both worlds: CEP pattern matching
functionality and graph processing efficiency and scalability.

Merger. The merger component brings the emitted events
from the operator instance into a deterministic order. This
order can be, for instance, based on timestamps of events in
a pattern. A domain expert can specify the ordering con-
ditions, and further specify combination functions, e.g., to
emit top-k-lists.

4. CASE STUDIES
In this section, we show how to apply GraphCEP to real-

world data analytics using two case studies in the context of
evolving social network graphs, posed by the DEBS Grand
Challenge 2016. The first case study is identification of the
posts that currently trigger the most activity in the social
network. The second case study deals with the identification
of large communities that are currently involved in a topic.
A detailed description of the case studies is given in [9].

4.1 Case Study 1: Posting Activity Detection
The first case study deals with detecting posts that cur-

rently trigger the most activity in a social network. The
goal of the query in this scenario is to compute the emerg-
ing top-k list of most active posts.

The activity of a post is measured by means of a point
system. At creation, a post gets a point score of 10. Fur-
ther, for each comment to a post, the commented post gets
additional 10 points. However, as time passes, the points
time out: each 24 hours since its creation, a post loses 1

point and each 24 hours since creation of a comment to a
post, the commented post loses 1 point. As soon as a post
has reached a score of 0 points, it is considered inactive and
is not taken into account for further analysis, even if at a
later point in time, it receives additional comments. Now,
the goal of the operator is to continuously compute the top-
k posts with the highest score count, while the scores of
the active posts dynamically change by the arrival of posts,
comments and the passing of time.

The challenges in this query are splitting the event streams,
handling time-outs and computing the top-k posts. In the
following, we describe how we solved them in GraphCEP.

4.1.1 GraphCEP Solution
Splitter: Stream Splitting. To split the incoming

posts and comments streams, a key-based partitioning is
applied. Posts are assigned to operator instances according
to their post id. Each comment is assigned to the operator
instance which the commented post has been assigned to.
The value range of post ids, v(Oi), of an operator instance
Oi is determined by the residue class of the post id id di-
vided by the number of operator instances n:
id ∈ v(Oi) ⇐⇒ id mod n = i.
Operator Instance: Timeouts and Score Updates.

One challenge that necessitates extensions of the existing
framework is that events—comments and posts—time out,
i.e., they lose score every 24 hours. A naive solution would
be to generate time-out events for posts and comments and
process them as an additional time-out event stream. How-
ever, this would yield a lot of additional event load. Our
solution, instead, builds on an internal timetable data struc-
ture that allows for a more efficient computation of time-
outs.

The timetable structure is a linked list that sorts posts and
comments according to the time-of-day of their timestamp,
i.e., timestamp mod 24 hours. Each operator instance keeps
such a separate timetable. Entries of the timetable contain
the following information: (1) An id of the timetable en-
try, (2) the time-of-day of creation of the post or comment
(timestamp mod 24 hours), (3) the post id of the post (if the
entry stems from a post) or of the commented post (if the
entry stems from a comment), and (4) a time-to-live (TTL)
counter which is decremented every 24 hours until it is 0 and
the entry is removed.

As events are processed, the list is manipulated and tra-
versed by the operator instance. To this end, the opera-
tor instance keeps a timestamp, called the simulation time,
which corresponds to the timestamp of the last processed
event. The simulation time is updated each time an event
is processed. Between the old simulation time and the up-
dated simulation time, a certain time span has passed. The
operator instance uses the timetable in order to determine
whether in that time span, any time-outs have happened.
This is done by traversing the timetable from the time-of-day
of the old simulation time until the time-of-day of the new
simulation time; each 24 hours, the timetable is completely
traversed once. Each entry that is visited has experienced a
time-out and the score of the post that is corresponding to
the entry is decremented by 1. Further, the TTL of the en-
try is also decremented by 1. If the new TTL is 0, the entry
is removed. Finally, a new timetable entry corresponding to
the newly arrived event is added to the timeable, with an

comment 0
post id 0
day 2, 15 h

post 1
post id 1
day 1, 9 h

post 0
post id 0
day 1, 2 h

event
stream

entry 0
time: 2 h
post id 0
TTL 9

entry 1
time: 9 h
post_id 1
TTL 9

entry 2
time: 15 h
post_id 0
TTL 10

simulation time:
day 2, 15 h

Figure 3: Query 1: Timetable.

initial TTL of 10. All post score updates are sent to the
merger, which continuously updates the top-k posts.

Fig. 3 depicts an example. In the beginning, the time-
table is empty. A post with post id 0 arrives; the simulation
time is set to day 1, 2h, an entry with TTL 10 is added to
the timetable, and the operator instance emits an update
of post 0 having new post score 10 to the merger. Then, a
post with post id 1 arrives; the simulation time jumps from
day 1, 2h, to day 1, 9h, an entry with TTL 10 is added
to the timetable, and an update of post 1 having new post
score 10 is emitted to the merger. Finally, a comment to
post 0 arrives more than 1 day later. The simulation time
jumps from day 1, 9h, to day 2, 15h. In that time span,
the timetable entries with id 0 and 1 are both visited: Their
TTL is decremented to 9, and the post scores of post 0 and
post 1 are both decremented by 1. Further, a new entry is
added to the timetable with TTL 10 and the score of post
0 is incremented by 10. Finally, the updated post scores are
emitted to the merger: post 0 has a new post score of 19
(decremented by 1 and incremented by 10), and post 1 has
a new post score of 9 (decremented by 1).

Merger: Top-k Computation. The merger has to con-
tinuously determine the top-k scored posts, while updates of
post scores are streamed by the operator instances.

Keeping all n active posts sorted by their score all the
time would be relatively expensive (O(log n) for processing
each score update). Keeping active posts in a simple list
is much cheaper (O(1) for processing each score update).
On the other hand, (re-)computing the top-k in a sorted
datastructure is easy (O(k)), whereas it is expensive in a
non-sorted datastructure (O(n log k)). Instead of deciding
for one extreme – keeping all posts sorted or keeping none
of the posts sorted – we developed a more efficient strategy
based on an observation we made on the updates.

We observe that the updates of post scores are incremen-
tal; a post gains or loses a number of points over time. De-
pending on its score and the scores of the top-k posts, a
post has a high or a low chance to be in the top-k. Based on
this observation, we maintain a sorted data-structure (sorted
tree) for posts with a high chance of being in the top-k, and
an unsorted data-structure for posts with a low chance of
being in the top-k. Posts can switch from one group to the
other one when their post score is updated based on whether
their score is above or below a threshold TH .
When the merger receives a score update from an operator

instance, it sorts the updated posts into the sorted or the
unsorted data-structure according to their new score. Then,
it determines the new top-k posts: the first k posts of the
sorted data-structure are the k posts with the highest score.
If, however, the sorted data-structure contains less than k

entries, the missing entries have to be searched in the un-
sorted data-structure. Finally, the merger emits a new top-k
list in case it has changed since the last update.

To avoid expensive “sorted-data-structure misses”, TH is
continuously adapted. The goal of adapting TH is to keep
the sorted data-structure as small as possible, but never
smaller than k entries. When TH is incremented, posts from
the sorted data structure are transferred to the unsorted
datastructure; in case TH is decremented, posts from the
unsorted data structure are transferred to the sorted data
structure. To limit the overhead of transferring posts be-
tween the two data-structures, the number of adaptations
of TH shall be kept low. This can be achieved by changing
TH in steps of higher granularity.

In the course of the case study, we found the following
thresholds to work well. If the k-th highest score, scorek , is
less than 20 points greater than TH , TH gets decremented
by 5. If scorek is more than 40 points greater than TH , TH
gets incremented by 5. With those thresholds, the sorted
data-strucure held always at least k entries.

4.2 Case Study 2: Community Detection
Finding strongly connected communities of users – whereby

each user has a relation (e.g., friendship) to every other user
in the community – currently interested in a similar topic is
of major importance to social network providers and applica-
tions. In this context, our case study addresses the problem
of detecting top-k comments that are liked by the largest
communities of friends. More precisely, given streams of
i) comments, ii) likes, i.e., users that like those comments,
and iii) friendships, i.e., relations between users defining the
dynamically changing friendship graph, our goal is to de-
termine at any time t the top-k comments that are liked
by the largest cliques of friends (i.e., subsets of users in
the friendship graph such that the induced subgraphs are
complete). Fig. 4 (top-left) shows a snapshot of the afore-
mentioned community graph with two comments C1 and C2,
friendship relations between users u1, ..., u8, and user likes
for comments (i.e., {u1, ..., u4} for C1 and {u4, ..., u8} for
C2). The comment that is liked by the largest community
is C2 (with a clique size of four).

A major challenge in addressing the above mentioned query
is to continuously analyse the dynamically changing com-
munities under the consideration of multiple streams that
reflect updates to the communities. For instance, each new
like or friendship event can change the size of a commu-
nity associated with a certain comment and therefore, can
lead to a change in the top-k comments. Hence, the pro-
posed approach, on the one hand, should be able to detect
communities for multiple comments in parallel and, on the
other hand, incrementally process incoming events from the
streams and update the top-k list accordingly.

4.2.1 GraphCEP Solution
We used our scalable GraphCEP architecture to paral-

lelize computation across multiple operator instances. Since
a separate computation of the friendship clique is required
for each comment, we parallelize this computation by assign-
ing each comment to an operator instance. In particular, we
define our implementation of the GraphCEP modules in the
following.

Splitter. On receiving a comment event, the splitter cre-
ates a new operator instance that is exclusively responsible

friendships
Merger

Top-k
comments

Op. inst.

Op. inst.

Splitter

likes

comments

Replicated user
likes both comments

New friendship

New like

Graph proc.
: clique = 3

Graph proc.
: clique = 4

: clique = 4

Comment

User

Friendship relation

Graph Divide comments

Graph
Store Read

Figure 4: Community detection

for the new comment. Initially, a comment has zero likes.
A like event is forwarded only to the operator instance that
is responsible for the liked comment. A friendship event is
forwarded to all operator instances as the new link between
two users can be the missing piece for detecting a clique of
a larger size for a certain comment.

Operator instance. Each operator instance O is respon-
sible for calculating the largest clique of a certain comment
C. It receives and processes like and friendship events from
the splitter. Although O receives all friendship events, it
discards the friendships where not both users have liked C
(because the largest clique of C will not be changed by these
friendships). The remaining friendship events and each like
event trigger recomputation of the largest clique of C. This
computation is performed using the incremental clique al-
gorithm described below (cf. Sec. 4.2.2). If the clique has
changed as a result of the incoming event(s), an event with
the new clique size is sent to the merger.

Note that the problem of finding the largest clique of
a graph (i.e., maximum clique problem) is NP-complete.
Moreover, the number of likes can be extremely large (e.g.
popular comments can be liked by millions of users) making
it computationally infeasible for a single operator instance
to detect the largest clique of friends in a timely manner.
Unfortunately, operator instances can not be parallelized
further by dividing the likes for C across multiple opera-
tor instances as the correctness of results will be affected.
Therefore, we parallelize the operator instance by making
use of a distributed graph processing system as computa-
tional module in the operator.

In Fig. 4, we give an example. Operator instances O1 and
O2 are responsible for comments C1 and C2 respectively.
We show the operator state that is currently maintained by
both operator instances. As user u4 has liked both com-
ments, both operator instances maintain vertex u4 for their
friendship graph. Now, a friendship event {u2, u3} is re-
ceived by both operator instances. Only O1 maintains local
vertices u2 and u3, because both vertices only liked C1. O1

initiates a new clique computation and sends the clique size
3 to the merger. In the meantime, O2 receives a like u8. It
needs to learn about all previous friendships between u8 and
any other user that has liked C2. For this purpose, a graph
store is maintained that can be contacted by all operator in-
stances, e.g., O2, (read-only) and is updated by the splitter
(write). The triggered graph computation on O2 leads to a
largest clique size of 4 that is sent to the merger.

Merger. The merger receives events from all operator
instances that have detected a changed clique size. It main-

tains a data structure for logarithmic sorted insertion of
changed comments (w.r.t. clique size), e.g., a binary tree. If
the top-k comments have changed because of these events,
the merger issues an output event with the new top-k com-
ments. In the case of equal community sizes, the lexico-
graphical order of the comment text is used as tiebreaker.

4.2.2 Incremental Clique Computation
In this section, we present our algorithm for incremental

clique computation on a graph G = (V,E) with vertex set V
and undirected edges E. We observed that new like and new
friendship events can only increase the community and if the
community (i.e., clique) is increased, the new clique contains
a) the user that has liked the comment (in the case of a like
event) or b) one of the users in the friendship relation (in the
case of a friendship event). Therefore, we have to search for
larger cliques only in the neighborhood of these users (i.e.,
graph vertices) reducing the search space significantly. In
the following, we denote this vertex that was affected by the
like or the friendship event as vertex x.

Algorithm 1 Incremental clique computation (sequential).

1: function maxClique(C, S, θ)
2: S = S \ {u ∈ S|degree(u) < θ − 1}
3: if |C|+ |S| < θ then
4: return -1
5: Λ = |C|
6: for all s ∈ S do
7: if ∀c ∈ C : {c, s} ∈ E then
8: C′ = C ∪ {s}
9: S′ = S \ {s}
10: tmp = maxClique(C′, S′,max(θ,Λ))
11: Λ = max(tmp,Λ)

12: return Λ

In Alg. 1, we give our recursive backtracking algorithm,
that traverses the potentially very large search space of pos-
sible cliques. However, our early pruning strategies greatly
reduces the search space in practice, leading to fast algo-
rithm executions. The algorithm takes as input a current
clique C, a candidate set S of possible clique vertices, and a
minimal required clique size θ. Initially, the current clique
contains only the changed vertex x, the set of candidate
vertices S is the set of all neighbors of x, and the minimal
required clique size θ is the size of the previous largest clique.
In order to check, whether vertex x is part of a clique larger
than θ, we call MaxClique({x}, {u|{u, x} ∈ E}, θ).

First, the algorithm prunes the candidates S to contain
only those vertices with a degree (i.e., the number of ad-
jacent vertices) of at least θ − 1 (line 2), because a clique
of size at least θ can only consist of vertices with degree at
least θ− 1 (otherwise a vertex could not be connected to all
clique vertices). Then, the size of the maximal clique that
can be detected is the sum of the pruned candidate set and
the current clique. If this size is smaller than the minimal
required clique θ, clique computation is aborted, because the
minimal required clique size can never be achieved in this
recursive branch (line 4).

The next step of the algorithm is to determine the max-
imal clique recursively for all vertices in the candidate set,
when adding the candidate vertex to the clique. Of course,
if the candidate vertex does not have a friendship relation
to all vertices in the clique, this vertex is skipped (line 7).
The algorithm keeps track of the maximal clique found so
far (line 11) to enable early pruning of subsequent recursion

calls (lines 4 and 10). It returns the size of the maximal
found clique Λ.

The above sequential algorithm is suitable for smaller
graphs that can be processed on a single machine. How-
ever, as we have seen, the graph can become too large and
the complexity too high for a single operator instance. Ad-
ditional resources can be made available to an operator in-
stance using a distributed graph processing system.

Algorithm 2 Incremental clique (parallel GAS).

1: function Gather(u, v)
2: return Dv

3: function Sum(S1, S2)
4: return S1 ∪ S2

5: function Apply(Du, S)
6: D′

u = Du
7: for all c ∈ S do
8: if ∀v ∈ c ∃{v, u} ∈ E then
9: c′ = c ∪ {u}
10: if x ∈ c′ then
11: Du = Du ∪ c′

12: function Scatter(Du, D′
u)

13: if D′
u �= Du then

14: return neighbors(u)

In the following, we give vertex-centric (GAS) functions
for incremental clique computation (Alg. 2). These functions
can be executed in parallel on each graph vertex u enabling
parallelization of graph computation. As above, our goal is
to find all cliques containing the newly arrived vertex x. Let
vertex data Du be the set of all found cliques containing
both, vertex x and vertex u. The gather function collects
data from all neighbors of u. It takes as input vertex u and
neighboring vertex v and returns vertex v’s vertex data, i.e.,
all the found cliques of neighboring vertex v (line 2). The
sum function specifies how to combine gathered data. For
our clique computation, the sum operation is just the union
of all neighboring vertex data (line 4). In the apply function,
vertex u tries to match (i.e., there is an edge between all
members of the clique and u) all neighboring vertices cliques
(line 8). If it can match all clique vertices, a new clique can
be constructed containing vertex u (line 9). The new clique
is added to the vertex data of vertex u (line 11), if it contains
the goal vertex x. In the scatter function, we define the set of
vertices that have to be scheduled. In case, the vertex data
has changed, i.e., a new clique with vertex x is detected, all
neighbors of v are scheduled for execution (line 14).

As a result, each vertex u iteratively computes all cliques,
where vertices u and x participate, based on all cliques of
vertex u’s neighboring vertices.

5. EXPERIMENTS
In this section, we present our evaluations for the DEBS

Grand Challenge 2016 using GraphCEP, and show the ad-
ditional scalability of the operator by integrating modern
graph processing systems.

5.1 DEBS Grand Challenge
In order to test competitiveness of GraphCEP, we par-

ticipated on the DEBS 2016 Grand Challenge. Each team
submitted its solution to an automated evaluation platform,
a single virtual machine instance with 4 cores and 8GB of
RAM. Solutions were ranked according to event latency and
throughput. Event latency measures the delay of an event e

(a) Event latency of query 1. (b) Event latency of query 2. (c) Scalability GrapH.

Figure 5: Evaluations.

Ev./s 1 2 3 4 5
Q1 209, 821 156, 017 187, 439 184, 675 178, 867
Q2 278, 310 218, 665 273, 065 281, 942 243, 000

Table 1: Event throughput of query 1 (Q1) and
query2 (Q2) in events per second.

that initiated a new complex output event eout, i.e., the time
between reading e from the input stream and writing eout
to the output stream. Event throughput is the total number
of events that are processed per second.

We implemented our solution in JAVA with 7,200 lines of
code. Because there are only 2 CPU cores for each query,
a parallel approach will induce too much overhead com-
pared to a sequential approach in terms of thread synchro-
nization and context switches. In fact, we observed signif-
icant performance penalty, when parallelizing the queries
using up to four threads per query. Therefore, we executed
both queries in a single-threaded environment, enabling each
query thread to run exclusively on a CPU core. This leads to
extremely efficient usage of two cores without inter-thread
communication, context switching and multi-threading. The
other cores are used by the garbage collector and the oper-
ating system.

In Tab. 1, we give the event throughput results for dif-
ferent experimental runs that ranked GraphCEP among the
top approaches. As input streams, we used the provided
social network data with 63, 409 friendship events, 435, 125
post events, 742, 178 comment events, and 425, 936 like events.
As we can see, throughput is very high for both queries
(more than 150, 000 events per second for query 1 and 218, 000
events per second for query 2). For comparison, the aver-
age number of tweets per second issued by Twitter users is
about 6, 0001. Hence, our highly optimized solution is ca-
pable of detecting complex social network patterns with a
throughput that is 36× the reported Twitter workload.

In Fig. 5a and 5b, we show how event latency evolves
over time when executing queries 1 and 2. We used a large
data set with 1,241,382 friendship events, 8,585,497 posts,
24,485,315 comments, and 21,594,379 likes (in total more
than 55 million events). We plotted the running average
over 1000 output events (y-axis) during the total runtime
of the query (x-axis). As can be seen, the event latency
for query 1 is not increasing over time. On the other hand,
event latency for query 2 increases slightly, because of the
constantly growing friendship graph. However, timeliness
for both queries can be maintained, i.e., event buffers and

1http://www.internetlivestats.com/twitter-statistics/

operator instance state sizes do not fill up overwhelmingly,
even for very large-scale input data. In fact, queries 1 and
2 have an average event latency of 0.046 and 0.071 millisec-
onds respectively. Hence, GraphCEP detects complex social
network patterns in real-time.

5.2 Scalability of Graph Processing
The main idea in this paper is to increase scalability of

event processing in the operator instances by utilizing mod-
ern graph processing systems. One scenario similar to above
DEBS Grand Challenge 2016 is finding cliques of users who
liked the same content (e.g., millions of Youtube users lik-
ing a video). In Fig. 5c, we tested scalability of distributed
clique computation by executing the GAS algorithm given
in Alg. 2 on the GrapH system (see Sec. 6). We performed
evaluations on a shared memory machine with 32 cores (2.3
GHz AMD) and 280GB of RAM. The clique algorithm was
executed on the Wikipedia who-votes-whom network2 with
103, 689 edges and 7, 115 vertices. Our findings are that
increasing the number of cores (i.e., subgraphs) decreases
graph processing latency significantly. In fact, we observe
that doubling the number of cores decreases latency by more
than half. As Clique computation has super-linear time
complexity, decreasing the problem size by half, decreases
latency by more than half (note that this is only true, if
each machine can compute Clique relatively independently
on its local subgraph). This shows that utilizing modern
graph processing technology to further parallelize operator
instances can improve event latency significantly for graph
analytics.

6. RELATED WORK
Complex Event Processing (CEP) has a vivid history in

research and industry. Starting from centralized CEP sys-
tems [3], the research focus has recently shifted toward dis-
tributed CEP middleware [20, 12, 13] to reduce network
bandwidth by pushing the operators closer to the source [18,
19]. As the workloads for single operators are increasing due
to the proliferation of data sources, single operators became
a bottleneck and concepts for operator parallelization were
developed. Besides intra-operator parallelization [1], which
runs different detection steps in an operator instance in par-
allel, data parallelization [17, 16, 10] has been proven as the
most powerful parallelization approach.

In this regard, many systems have been proposed, which
split the incoming event streams of an operator in different
ways [17, 16, 10]. All of those systems stop the paralleliza-

2http://snap.stanford.edu/data/index.html

tion at the level of operator instances which sequentially
process the partitions assigned to them by the splitter com-
ponent. The processing states of single partitions are not
considered to be very large or even a potential bottleneck.
This is where GraphCEP provides an important extension
to data-parallel CEP, as it allows for massive paralleliza-
tion of single operator instances when they work on graph-
structured data.

In the last years, many systems for distributed graph
processing have emerged that can be used as graph pro-
cessing systems for GraphCEP [14, 8, 15]. A major chal-
lenge of these graph systems is to find a suitable graph
partitioning strategy. For instance, GrapH [15] performed
adaptive workload-aware vertex-cut graph partitioning. Re-
cently, some systems for dynamic graph processing have
been proposed [4, 6, 7, 21]. For instance, Kineograph [4]
adapts the graph according to incoming tweets and per-
forms graph analysis on graph snapshots. Fard et al. [7]
address reachability and subgraph matching queries over a
time-evolving graph, i.e., a series of graph snapshots. Wick-
ramaarachchi et al. [21] enable complex graph queries over
a time-evolving graph using a publish-subscribe approach
(e.g., [2]) to push notifications of pattern detections to in-
terested users. Unfortunately, all of these approaches as-
sume a single graph and restrict the incoming data streams
to contain only graph-structured data. In contrast, Graph-
CEP empowers users to utilize the great variety of complex
event detection capabilities combined with the expressive-
ness and efficiency of modern graph processing systems us-
ing the GAS programming model.

7. CONCLUSION
The goal of this paper is to combine the expressiveness and

timeliness of CEP with the efficiency and scalability of dis-
tributed graph processing systems. We propose GraphCEP,
a CEP system with two-level scaling capabilities. First,
we scale out event processing using state-of-the-art split-
ting techniques for independent processing on the operator
instances. Second, we scale out single operator instances us-
ing recent graph processing systems. We show that Graph-
CEP can efficiently handle social network analytics such as
activity and community detection that can not be expressed
by either CEP or graph systems alone.

8. REFERENCES
[1] C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul.

Rip: Run-based intra-query parallelism for scalable
complex event processing. In Proc. of ACM DEBS,
2013.

[2] S. Bhowmik, M. A. Tariq, L. Hegazy, and
K. Rothermel. Hybrid content-based routing using
network and application layer filtering. In Proc. of
IEEE ICDCS, 2016.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. Telegraphcq: Continuous dataflow processing.
In Proc. of ACM SIGMOD Conf., 2003.

[4] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.
Kineograph: taking the pulse of a fast-changing and
connected world. In Proc. of ACM EuroSys, 2012.

[5] G. Cugola and A. Margara. Tesla: a formally defined
event specification language. In Proc. of ACM DEBS,
2010.

[6] D. Ediger, R. McColl, J. Riedy, and D. A. Bader.
Stinger: High performance data structure for
streaming graphs. In IEEE Conf. on High
Performance Extreme Computing, 2012.

[7] A. Fard, A. Abdolrashidi, L. Ramaswamy, and J. A.
Miller. Towards efficient query processing on massive
time-evolving graphs. In Int. Conf. on Collaborative
Computing. IEEE, 2012.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

[9] V. Gulisano, Z. Jerzak, S. Voulgaris, and H. Ziekow.
The debs 2016 grand challenge. In Proc. of ACM
DEBS, 2016.

[10] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and
R. Grimm. A catalog of stream processing
optimizations. ACM Comput. Surv., 46, 2014.

[11] G. G. Koch, B. Koldehofe, and K. Rothermel. Cordies:
Expressive event correlation in distributed systems. In
Proc. of ACM DEBS, 2010.

[12] B. Koldehofe, R. Mayer, U. Ramachandran,
K. Rothermel, and M. Völz. Rollback-recovery
without checkpoints in distributed event processing
systems. In Proc. of ACM DEBS, 2013.

[13] B. Koldehofe, B. Ottenwälder, K. Rothermel, and
U. Ramachandran. Moving range queries in
distributed complex event processing. In Proc. of
ACM DEBS, 2012.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proc. of
ACM SIGMOD Conf., 2010.

[15] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel.
Graph: Heterogeneity-aware graph computation with
adaptive partitioning. In Proc. of IEEE ICDCS, 2016.

[16] R. Mayer, B. Koldehofe, and K. Rothermel. Meeting
predictable buffer limits in the parallel execution of
event processing operators. In IEEE Int. Conf. on Big
Data, 2014.

[17] R. Mayer, B. Koldehofe, and K. Rothermel.
Predictable low-latency event detection with parallel
complex event processing. IEEE Internet of Things
Journal, 2, 2015.

[18] B. Ottenwälder, B. Koldehofe, K. Rothermel, and
U. Ramachandran. Migcep: Operator migration for
mobility driven distributed complex event processing.
In Proc. of ACM DEBS, 2013.

[19] B. Ottenwälder, R. Mayer, and B. Koldehofe.
Distributed complex event processing for mobile
large-scale video applications. In Proc. of the Posters
& Demos Session, ACM Middleware conf., 2014.

[20] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch.
Distributed complex event processing with query
rewriting. In Proc. of ACM DEBS, 2009.

[21] C. Wickramaarachchi, M. Frincu, and V. Prasanna.
Enabling real-time pro-active analytics on streaming
graphs. algorithms, 15:18.

