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ABSTRACT

With the vision of Internet of Things gaining popularity
at a global level, efficient publish/subscribe middleware for
communication within and across datacenters is extremely
desirable. In this respect, the very popular Software-defined
Networking (SDN), which enables publish/subscribe middle-
ware to perform line-rate filtering of events directly on hard-
ware, can prove to be very useful. While deploying content
filters directly on switches of a software-defined network al-
lows optimized paths, high throughput rates, and low end-
to-end latency, it suffers from certain inherent limitations
w.r.t. no. of bits available on hardware switches to repre-
sent these filters. Such a limitation affects expressiveness of
filters, resulting in unnecessary traffic in the network.

In this paper, we explore various techniques to represent
content filters expressively while being limited by hardware.
We implement and evaluate techniques that i) use workload,
in terms of events and subscriptions, to represent content,
and ii) efficiently select attributes to reduce redundancy in
content. Moreover, these techniques complement each other
and can be combined together to further enhance perfor-
mance. Our detailed performance evaluations show the po-
tential of these techniques in reducing unnecessary traffic
when subjected to different workloads.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Distributed
networks; C.2.4 [Distributed Systems|: Distributed ap-
plications

Keywords
SDN, Publish/Subscribe, Content-based Routing

1. INTRODUCTION

The Internet of Things (IoT) has brought with it a global
wave that envisions a future which can seamlessly connect
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digital and physical objects with the use of suitable technolo-
gies. This vision is being aptly complemented with the fast
progress in sensors, actuators, cloud computing, and tech-
nologies for efficient and transparent communication. For
suitable communication in IoT, global cloud providers al-
ready offer the very popular publish/subscribe (pub/sub)
communication pattern. Pub/sub, especially content-based
pub/sub, allows loosely coupled producers of content (i.e.,
publishers) and consumers of published content (i.e., sub-
scribers) to interact transparently in a bandwidth-efficient
manner. Subscribers express specific interests which are
then used to install filters on content-based routers between
publishers and subscribers, ensuring the dissemination of
only relevant content to each subscriber. Pub/sub forms
the backbone of datacenters powering the IoT vision ahead.
For example, Google uses Cloud Pub/Sub to ’connect any-
thing to everything’ in an IoT environment. Also, Microsoft
uses Azure Event Hubs, a highly scalable pub/sub service
to connect devices and applications across [oT platforms.
In recent times, the foundation of cloud computing has
been influenced by Software Defined Networking (SDN). In
fact, for almost a decade, Google has been exploiting the
benefits of SDN to power Google’s datacenter (DC) WAN,
B4 [10]. Microsoft, too, has been using SDN to flexibly
and reliably operate Microsoft Azure [2]. The advantage
of a network architecture like SDN is that it enables soft-
ware to flexibly configure the network. SDN allows the
extraction of all control logic from hardware switches and
hosts them on a logically centralized controller, thus es-
tablishing a clear separation between the control plane and
the data (forwarding) plane. The controller has an inte-
grated view of the network and can flexibly configure it in
a resource-efficient manner with the help of popular stan-
dards like Openflow [7]. While SDN has been extensively
considered for dynamic resource sharing, WAN VPN, etc.,
across datacenters, the potential of SDN to realize content-
based pub/sub, the backbone of datacenter communication,
has also been explored in literature [17, 13]. The SDN-based
pub/sub middleware PLEROMA [17] uses the power of SDN
to enable in-network filtering of published events directly on
SDN-compliant switches, resulting in line-rate performance.
Even though the dissemination of content between pub-
lishers and subscribers in a software-defined network proves
to be resource-efficient, nevertheless, content-based pub/sub
using SDN suffers from certain inherent limitations that re-
sult in bandwidth wastage. It should be noted that the
effectiveness of content-based routing relies heavily on the
expressiveness of content filters which are responsible for fil-
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tering out unnecessary traffic to ensure bandwidth-efficient
communication. In an SDN-based pub/sub, these content
filters are represented by the match fields of flows in the
Ternary Content Addressable Memory (TCAM) of switches.
This implies that content filters are limited by the bits avail-
able for filter representation at the selected match field (e.g.,
IPv6 address, VLAN tag). For instance, the choice of the
destination IPv6 address to represent content filters allows a
maximum of 128 bits which in reality would further reduce as
the entire range of IP addresses may be shared among multi-
ple applications. Moreover, IPv6 is not widely deployed and
the use of IPv4 addresses instead can further impede the
expressiveness of filters. Jokela et al., in LIPSIN [12], also
target filtering on hardware in the context of topic-based
pub/sub by encoding forwarding paths in packet headers.
However, for a considerably small topology, even the use of
a staggering 248 bits in the packet header does not suffice
to prevent unnecessary traffic in the system (~10%).

The above limitations may significantly impact bandwidth
usage—something that is truly critical in a cloud environ-
ment, where the network can pose to be a significant bottle-
neck [14]. As a result, this paper focuses on exploring tech-
niques that address concerns with bandwidth efficiency in
the context of content-based filtering on hardware switches.
First, we propose a technique—workload-based indexing—
that considers workload in the system, in terms of subscrip-
tions, to expressively map content to match fields of flows on
hardware switches. Then, we present algorithms with vary-
ing complexities to efficiently identify and neglect redundant
attributes or dimensions in the content-space such that more
bits are available to express more meaningful attributes in
content filters. Moreover, these techniques complement each
other and may be combined for enhanced effectiveness. Our
evaluations show that a significant amount of unnecessary
traffic can be avoided by employing each of these techniques
while benefiting from the advantages of SDN in terms of
reduced end-to-end latency, high throughput, etc.

2. PRELIMINARIES AND LIMITATIONS

In this section, we provide an overview of PLEROMA [17],
a content-based pub/sub middleware realized on SDN, fol-
lowed by a discussion on the limitations it faces.

An SDN-based Pub/Sub Middleware: A content-
based in-network filtering solution using SDN, such as
PLEROMA, follows the same principles of the pub/sub
paradigm which consists of two participants—publisher and
subscriber. In PLEROMA, a publisher sends an advertise-
ment to the controller of the software-defined network to
specify the content it intends to publish. Similarly, a sub-
scriber specifies the content it is interested in receiving by
sending a subscription to the controller. Based on these ad-
vertisements and subscriptions, along with the global view
of the physical network, the controller installs content fil-
ters represented by flow table entries on TCAM of switches
along optimized paths between publishers and their inter-
ested subscribers. For example, in Figure 1, the publisher
P and the subscriber S send an advertisement and a sub-
scription respectively to the controller which installs content
filters along the path between them. This enables header-
based matching of packets directly on TCAM of hardware
switches, resulting in line-rate performance.

Content representation follows a content-based subscrip-
tion model where published events are attribute-value pairs
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Figure 1: SDN-based Pub/Sub Middleware

and advertisements and subscriptions (i.e., content filters)
are conjunction of filters on these attributes. The mapping
of content filters to the flow table entries is an integral part
of the system and primarily consists of two steps.

In order to represent values and ranges of values (filters)
along attributes in flow table entries, the first step is to con-
vert content into binary form. This can be achieved using
various techniques such as bloom filters [6], spatial index-
ing [17], etc. In this paper, we specifically look at spatial
indexing where an event-space (denoted by ) is modeled
as a w-dimensional space where each dimension represents
a content attribute. Recursive binary decomposition of €2
generates regular subspaces that serve as enclosing approxi-
mations for advertisements, subscriptions and events which
are represented by binary strings known as dzs.

These dzs have certain characteristic properties based on
the subspaces they represent. For example, the shorter a dz,
the larger is the subspace it represents. This is visible in Fig-
ure 1 where the dz {00} represents a subspace smaller than
and contained by the subspace {0}. So, more expressive a
content filter, more fine granular is the recursive binary de-
composition and longer are the resulting dzs. The previous
example also points out another property of spatial indexing
that the dz of a subspace has a prefix equivalent to the dz
of the subspace containing it. This property ensures that a
longer dz representing an event (i.e., a point in ) is consid-
ered a match for all subspaces (filters) containing it simply
through a prefix match. Note that an increase in the number
of attributes (i.e., dimensions) in the system increases the
length of the dz required to accurately represent content.

After converting content to binary strings, the next step is
to map dzs representing content filters to the selected match
field in flow entries of TCAM and dzs representing events
to the same field in packet headers to enable header-based
matching. For this purpose, we choose a range of IP multi-
cast addresses (e.g., [Pv6) to use as destination IP addresses
in the match field of flows as well as in the packet headers.
The dzs are simply appended to a fixed prefix, e.g., ffOe
(representing the IPv6 multicast address range available to



pub/sub traffic), in the destination IP address. The prefix-
based filtering operation is guaranteed in IP addresses with
the help of Class-less Interdomain Routing (CIDR) style
masking supported by SDN-compliant switches where mask-
ing operations are represented by the ’don’t care’ symbol (*).

We further explain the two-step mechanism of content rep-
resentation with an example from Figure 1. Let us assume
that subscriber S has a subscription sub; : {T = [50, 100] A
P =[50, 100]}. Spatial indexing yields the dz {11} to repre-
sent it as illustrated in the 2-bit representation in the figure.
This dz is then converted into an IPv6 address (ff0e:c000:*)
and installed as a destination IP in the match field of flows
on the switches, enabling hardware filtering of events along
the path between publisher P and subscriber S.

Limaitations of Content Representation: From the
above description, we see that expressiveness or granularity
at which spatial indexing can be performed is limited by the
number of bits that can be appended to the destination IP
address. Let us assume that instead of 2 bits only 1 bit can
be accommodated in the IP address reserved for pub/sub
traffic. In such a scenario, subscription sub; will be repre-
sented by the dz {1} as depicted in the 1-bit representation
in Figure 1. This implies that all events matching the entire
subspace of {1} in the figure will be received by subscriber
S. So, the path between P and S will be subjected to a
lot of unnecessary traffic which we will henceforth refer to
as false positives. More specifically, we define false positives
as those events which should be filtered out by the network
but, nevertheless, are received by uninterested subscribers
due to limitations of content filters on switches. Here, we
also define the term false positive rate as the percentage of
total number of events received at the subscribers that are
unnecessary (i.e., false positives). Note, the length of dzs,
required to accurately represent content, increases with the
increase in the number of dimensions in the system.

As a result, the remaining part of this paper is dedicated
to the design of various techniques that would improve ex-
pressiveness of content filters installed on hardware switches,
despite their limitations, and render content-based pub/sub
realized on software-defined networks bandwidth-efficient.
The presented techniques are workload dependent and are
implemented by the controller. The controller already has a
knowledge of all the subscriptions in the system and has to
additionally collect statistics of events periodically and mod-
ify flows on switches accordingly. In the context of pub/sub,
the control plane may be scaled up/out to distribute this
additional overhead among multiple controllers while guar-
anteeing the notion of a logically centralized controller as
achieved in [4].

Note that, although we focus on spatial indexing, other in-
dexing techniques (e.g., Bloom filters, hashes) will encounter
the same problems and the proposed techniques in this pa-
per are applicable in general to all indexing mechanisms.

3. WORKLOAD-BASED INDEXING

The effectiveness of encoding content into binary form has
primarily depended on two parameters—the size of event-
space and the number of available bits. In-network filtering
may result in significant number of false positives depend-
ing on the size of €2, i.e., number of dimensions and range of
values along each dimension. This is mainly due to the fact
that with a fixed number of bits available for a dz, larger
the size of 2, less fine granular is the indexing. However, it
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Figure 2: Workload-based Indexing

should be noted that regular spatial indexing partitions the
entire space into subspaces, even those subspaces that are
of no interest to any subscriber. What if the entire event-
space ) does not get indexed? What if empty subspaces
w.r.t. subscription distribution in  are left out and the
bit strings earlier assigned to these empty spaces used for
more fine-granular indexing of the populated subspaces? So,
to this end, we introduce the workload-based indexing ap-
proach (WI) where the main idea is to identify meaningful
subspaces w.r.t. subscriptions in 2 and only index those
subspaces instead of indexing the entire event-space.

The first step in WI is to select subspaces in €2 popu-
lated with subscriptions while identifying the empty spaces
to be neglected. To identify meaningful subspaces, we bene-
fit from the widely used mechanism of similarity-based sub-
scription clustering [16, 5]. Once subscriptions are clustered
into groups, we generate polyspace rectangles which serve as
the closest enclosing approximation of each of these clusters.
These polyspace rectangles are termed minimum bounding
rectangles or MBRs. The set of generated MBRs encloses
all subscriptions in the system and attempts to leave out as
much empty space as possible. Figure 2 illustrates the con-
cept of MBR. Here, the subscriptions are distributed in 2,
as illustrated in Figure 2(a). Figure 2(b) shows two MBRs
covering all subscriptions in the system clustered together
in two groups on the basis of similarity. Note that, even
though two MBRs may partially overlap, as in Figure 2(b),
a subscription strictly belongs to a single MBR.

Having identified the MBRs, the next phase is the actual
mapping of subscriptions to dzs. We again employ spatial
indexing for the binary conversion of content but, of course,
now, with a difference. Spatial indexing is not employed on
the entire range of values along each dimension to arrive at
the dz of a subscription. Instead, it is performed only on
the range of values along each dimension of the MBR (i.e.,
subspace in €2) which contains the subscription in question.
This means that two subscriptions belonging to two differ-
ent MBRs may end up with the exact same dz as they oc-
cupy the same relative position in their respective MBRs.
However, this would be incorrect as the two subscriptions
occupy different positions relative to the actual event-space.
This problem is mitigated by assigning unique IDs to MBRs.
First, each MBR is assigned an MBR ID which is in binary
form and which depends on the total number of MBRs in
the system. So, if M is the set of MBRs in the system, then
the total bits required to uniquely identify each MBR is
log2|M|. Next, the dz representing a subscription generated
by the recursive decomposition of the MBR is appended to
the MBR ID that the subscription belongs to. The unique
ID prefix makes a dz different from that of another MBR.

This approach allows for more fine granular spatial in-
dexing as it can avoid assigning bits to the subspaces in 2
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that are not part of any subscription in the system, thus
allowing the use of more bits to represent more meaningful
subspaces. Of course, for header-based matching of packets
to work, events will also need to be mapped to the selected
packet header field using the workload-based indexing ap-
proach. For this purpose, publishers need to have informa-
tion about the MBRs and their respective bounding values.
As a result, the controller sends this information to each
publisher whenever there is a change in MBR values. The
mapping of events to the selected header field works similar
to the mapping of subscriptions to match fields. However,
it should be noted that MBRs may overlap. For example, in
Figure 2(b), mbry and mbrz overlap. In such a scenario, an
event that lies in the overlapping subspace must be indexed
w.r.t. both MBRs as it can match subscriptions from both.

4. DIMENSION SELECTION

As discussed before, more the number of dimensions in a
system, longer are the dzs. However, what if there was no
need to index every dimension? What if the available bits
could be used to perform fine granular spatial indexing only
on a subset of dimensions that prove to be more promising
w.r.t. bandwidth efficiency? While this notion was briefly
introduced in [17], it was not thoroughly explored and left
open questions. In this paper, we use this notion to pro-
pose and thoroughly evaluate a set of algorithms that select
dimensions that are beneficial for reducing false positives
and discuss their applicability, complexity, and performance
w.r.t. realistic workload distributions.

4.1 Event Variance

The distribution of events in €2 plays a major role in deter-
mining the importance of each dimension for filtering in the
system. To this end, the spread of events along a dimension
is an important metric to determine the importance of that
dimension. More spread would require more fine granular
indexing to avoid false positives, rendering the dimension
worthy of being considered for selection. More specifically,
we use variance of events to measure this spread. If E? de-
notes the set of all events in €2, then event variance along
a dimension d is measured as (3 (z¢ — 2)?)/|Et| where z:¢
represents the value of the i*" event along dimension d. We
illustrate this with a very simple example in Figure 3 w.r.t.

a single subscription sub;, where the variance of events along
dimension P is far greater than that along dimension T. Let
us assume that only 2 bits are available for spatial indexing.
Figure 3(a) shows spatial indexing along both dimensions
according to which sub; is represented by the subspace {10}
which means that sub; receives all events lying in this sub-
space. Now, if only dimension P, with a high variance value
for events, is selected for indexing, then sub; gets represented
by the subspace {00} and receives all events lying within it
as shown in Figure 3(b). In Figure 3(a) sub; suffers from far
more false positives as compared to the false positives re-
ceived when only P is selected for indexing. This is because,
the latter can take advantage of the fact that dimension P
has a significantly high variance value for events as compared
to dimension T and thus has the liberty of more fine-granular
indexing along P. As a result, most events that are irrele-
vant for sub; can be partitioned out into other subspaces.
Since event variance is low along dimension T, ignoring it
does not cost sub; much. However, if the dimension with
low variance value for events, i.e., dimension T is selected
for indexing, Figure 3(c) clearly shows that sub; would be
subjected to more false positives as compared to not only
indexing along dimension P but also indexing along both
dimensions. This example clearly indicates the importance
of event distribution within €2 in dimension selection.

So, the very first dimension selection algorithm that we
present is Event Variance-based Selection (EVS). EVS cal-
culates the variance of events along each dimension. Let D
be the set of w dimensions in  and E* be the set of 1 events
that are being considered for the algorithm in the current
time window ¢. Let S be a subset of n dimensions of D, i.e.,
SD C D and [SD| = n. We assign, to each dimension d € D,
a selectivity factor denoted as o, which determines the im-
portance of the dimension in terms of reduction of false pos-
itives if chosen for spatial indexing. Higher the value of ¢,
higher is the importance (selectivity) of d w.r.t. the ability
to reduce false positives. For EVS, the selectivity factor o¢
of a dimension d is given by the variance of events along
that dimension. EVS selects dimensions for SD by select-
ing n dimensions in D with the highest variance/selectivity
factor values. Spatial indexing commences now on SD.

The main advantage of this approach lies in its low compu-
tation overhead with a complexity of O(w=1). However, the
consideration of only event distribution may not be enough
in every scenario. For example, in Figure 4(a), since event
variance along dimension P is high, the subscription subi,
when indexed along P, is represented by the subspaces {01},
{10}, and {11} and will receive all events lying within these
subspaces. However, if indexed along dimension T, with
lower event variance, sub; is represented by the subspace
{10} and receives events lying within it as depicted in Fig-
ure 4(b). Here, false positives are lesser in the latter case.
This clearly indicates that both events as well as subscrip-
tions play a major role in the selection process.

4.2 Subscription Matching

It would be interesting to investigate the role played by
subscriptions in the process of dimension selection. In fact,
in doing so, we identified the importance of subscription
overlaps. Dimensions where subscriptions have a lot of
overlaps are less important for filtering because if an event
matches a subscription along this dimension, then it matches
majority of the subscriptions along this dimension, thus re-
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ducing its importance w.r.t. the ability to reduce false pos-
itives. For example, Figure 5(a) shows a scenario where
there is a significant overlap of subscriptions along dimen-
sion P (the gray lines indicate overlaps). According to the
figure, selection of dimension T would reduce more false pos-
itives than if P is selected. If indexing is performed along
T, events are matched by interested subscriptions as most
events are matched by disjoint subscriptions. On the con-
trary, if indexing is performed along P, then false positives
will be high as most events match multiple overlapping sub-
scriptions on this dimension but not along T. Note that an
event is matched by a subscription if and only if it is matched
on all dimensions. However, again, the selection decision
cannot be taken based on subscription overlaps alone. The
reason why the selectivity of T is higher is because of not
only lesser overlaps but also the distribution of events. For
example, in Figure 5(b), we have the same subscription over-
laps as before, however, due to the distribution of events, in
this case, the selectivity of T is not too high.

Therefore, it is necessary to consider the combination of
both subscriptions and events to determine selectivity of
dimensions. As a result, we introduce another algorithm
known as Event Match Count-based Selection (EMCS) which
has higher computational complexity than Event-based Se-
lection but considers both events and subscriptions to take
the selection decision, rendering it more generic w.r.t. the
distribution of events and subscriptions in 2.

The main idea of EMCS is to deem dimensions where
event traffic matches most subscriptions as less important
for dimension selection. Considering S to be the total set
of s subscriptions in the system, this algorithm determines
the set of subscriptions that each event e € E* matches, i.e.,
S9. along each dimension d and calculates the number of
matches in each case, i.e., |SZ|. Now, for each d € D, the
selectivity factor is calculated as g = 1—( 3 [SZ)/(|F*|

ecEt
|S|) where the sum of all the matches of all events match-
ing subscriptions is calculated and represented as a fraction
of the maximum value possible for matches, i.e., |[E*| * |S|.
Having calculated ¢? for each d, a value between 0.0 and
1.0, n dimensions with highest values of selectivity factor
are added to SD. This algorithm is more generic than the
previous one but has a higher time complexity of O(w*¥*s).

4.3 Correlation

Most application domains handle a large amount of data
with numerous attributes. Quite often, such data has re-
dundancy among its attributes. Redundancy in data may
occur in a system due to underlying relations (i.e., correla-
tions) between the attributes (i.e., dimensions) of the system
such that the change in values in one dimension is positively
or inversely correlated to the change in values in another di-
mension. Quite often, subscriptions and the events matching

them have dimensions that are correlated or inversely corre-
lated rendering the selection of these dimensions redundant
because if an event matches a subscription in one dimension,
it would also do so in the others. Such correlation between
attributes exists across most applications. For instance, in
IoT, most sensors detect and measure changes in various
physical phenomena (i.e., dimensions) where correlations ex-
ist. For example, the sensor data set provided by the Intel
Research Berkeley Lab [1] that has a 54 node sensor network
measuring values for temperature, humidity, and light shows
positive correlation among all the 3 attributes [8]. However,
because of the sheer amount, data is often fuzzy making it
difficult to identify such redundancy.

As a result, our next algorithm, Correlation-based Selec-
tion (CS) tries to take advantage of any redundancy in data,
in the form of correlation, that may exist between dimen-
sions while also considering the previous two factors, i.e.,
event variances and subscriptions across dimensions. In the
previous two algorithms, the selectivity factor ¢ was inde-
pendently calculated for each dimension d. However, in or-
der to consider correlation as well, we construct a covariance
matrix, C, which captures relations between dimensions as
well as within them w.r.t selectivity.

The main steps of the algorithm are outlined as follows.
The basis of this approach is the calculation of the covari-
ance matrix C. A covariance matrix holds covariances repre-
senting relations between two random variables, in this case,
dimensions. As before, considering w to be the number of di-
mensions, C is an (w*w) matrix where an element at position
(i, ) represents covariance of the i*" and the j'* dimensions.
C captures two types of information—the relation between
dimensions w.r.t. selectivity as well as the amount of vari-
ance within each dimension. The diagonal of C captures the
latter. For dimension selection, both of these information
are crucial as the former highlights correlated dimensions
and the latter highlights selectivity of each independent di-
mension. Quite naturally, it is crucial to identify the metric
representing the covariances, i.e., ¢;; € C, depending on
the type of relation between dimensions that needs to be
captured. In the context of this algorithm, we define covari-
ances between dimension pairs w.r.t. events consumed by
subscriptions along each dimension. While calculating the
covariance ¢;,; between a pair of dimensions d; and dj, first,
for each event e;, € E*, we calculate a factor called the sim-
ilarity factor which calculates the set of subscriptions that
an event matches along both dimensions of the dimension
pair. More formally, the similarity factor (sf) is calculated
as sfid = (|S% N Sg,i|)/|S\ As before, here, SZi represents
the set of subscriptions matched by event e, along dimen-
sion d;. The similarity factors of all events are aggregated for
the dimension pair and the inverse effect of the summed up
value is considered to measure the dissimilarity between the
two dimensions in order to calculate the covariance between
them. So, finally, ¢; ; is calculated as 1.0 - Y sfi7/|E'.

e EEL
This value indicates the covariance between a dimension pair
in terms of number of events matching subscriptions along
dimension pairs. Along the diagonal of C, the variance of
this same match of events with subscriptions within each
dimension gets captured in the process.

Once C is calculated, the technique of principal compo-
nent analysis (PCA) is applied. C is subjected to spectral
analysis through the process of eigendecomposition. Eigen-



decomposition projects the original dimensions in €2 onto an
orthogonal basis of vectors called eigenvectors. This trans-
formation makes the highest variance by any projection of
the dimensions to lie on the very first axis (i.e., first principal
component) followed by the other variances in decreasing or-
der lying on the following axes. The required n dimensions
in SD can be selected by choosing the dimensions from D
that correspond to the first n principal components. CS
efficiently chooses dimensions based on the idea of reduc-
ing redundancy in data while maximizing variance of events
matched by subscriptions. The time-complexity of the cal-
culation of the covariance matrix itself is O(w? * ¢ * s), ren-
dering the algorithm more complex than the previous two.
Moreover, PCA has a time-complexity of O(w?).

4.4 Evaluation-based Techniques

The previous algorithms, though effective in their own
ways, do not give an indication of an ideal value of n. By
defining a threshold for the amount of variability of data to
be retained, CS does attempt to arrive at an estimate for n
(cf. [15] : Step 3). However, the threshold has to be pro-
vided by the system administrator and the method is merely
a heuristic with not much direct impact on false positives.
So, in this subsection, we introduce two algorithms which
not only significantly reduce false positives in the system,
but also provide the most suitable value for n. Since the
controller has knowledge of both S and Ef, we can imple-
ment evaluation-based techniques to simulate false positives
in the system for various combinations of dimensions and
choose the most beneficial one, thus obtaining even a suit-
able value for n. The performances of these techniques are
more optimal as compared to the previous three algorithms
but have relatively higher computational complexities.

Ideally, in order to obtain an optimal set SD, a brute force
technique must be employed which calculates the false pos-
itives for all combinations of dimensions and finally selects
the one producing least false positives. In order to do so, a
complete simulation of the entire filtering process must be
performed at the logically centralized controller given a fixed
value of the number of available bits for filter representation.
With the information of the actual subscription and event
values, their corresponding mappings to binary strings, the
false positive rate can be determined for each combination
of dimensions. However, running such a simulation has ex-
ponential computation overhead of O(2% * w * s * 1).

We reduce the complexity of the brute force algorithm
by using a greedy strategy which is also based on simula-
tion but does not evaluate every combination of dimensions.
Initially, the combination with all w dimensions in D is con-
sidered and the resulting false positive rate noted. Then, all
combinations with w-1 dimensions are evaluated, i.e., each
combination has w-1 dimensions but in each combination a
different dimension is removed. The combination with the
lowest false positive rate is selected and in the process one
dimension gets removed. The next cycle uses this selected
combination with w-1 dimensions as input and evaluates all
combinations with w-2 dimensions to arrive at the most ben-
eficial combination for w-2 dimensions. The process contin-
ues till the number of dimensions being considered for the
combinations is reduced to 1 by incrementally removing one
dimension in every step. So, we have a total of w combina-
tions where the first combination consists of w dimensions,
the second consists of w-1, and so on till the last (w'™) com-

bination contains 1 dimension. Quite often, with decreasing
number of dimensions, the false positive rate decreases till
the redundancies in data are removed, after which the rate
increases again due to loss of important information with
further reduction in dimension count. As a result, differ-
ent combinations with different dimension counts can be ex-
pected to reduce different number of false positives. So, of all
the aforementioned w combinations, the one producing least
false positives is chosen for SD. By employing such a tech-
nique, we essentially also obtain the most suitable value of n.
The greedy strategy has a time complexity of O(o.;3 *x 1 xs).
Note, the event distribution and the current subscriptions
in the system may change over time, degrading the effec-
tiveness of the proposed techniques. So, the controller must
periodically collect workload information, execute proposed
techniques, and deploy necessary changes in the network.

5. PERFORMANCE EVALUATIONS

This section is dedicated to evaluating and analyzing the
performances of each of the presented techniques. We con-
duct a series of experiments to measure and compare the
overall false positive rate of an SDN-based pub/sub system
for all the techniques. We, especially, show the impact of dif-
ferent types of workload on the performance of each of the
techniques in order to highlight their applicability in various
scenarios. Our evaluations include up to 10,000 subscribers
and up to 100,000 events. In order to generate workload, a
content-based schema containing up to 8 attributes is used
where the domain of each attribute varies between the range
[0,4095]. We primarily use two models for the distribution
of subscriptions and events to generate data. The uniform
model generates subscriptions and events independent of
each other, whereas, the interest popularity model chooses
up to 8 hotspot regions around which it generates subscrip-
tions and events using the widely used zipfian distribution.
In the following evaluations, we show the effectiveness of our
techniques even when the number of available bits for spa-
tial indexing is restricted to just 23 bits as available in [Pv4
multicast addresses.

The first set of experiments evaluates the behavior of the
workload-based indexing (WI) approach when subjected to
zipfian data. Figure 6(a) plots the false positive rate with
increasing number of subscriptions for both workload-based
indexing as well as regular indexing (RI) when zipfian data
is used. These plots show that indexing within MBRs has
significant benefits over regular indexing. The benefit of in-
dexing within MBRs is quite significant as, due to the sim-
ilarity of subscriptions concentrated around hotspots in the
case of zipfian distribution, precise MBRs can be generated.

We conducted a series of experiments to evaluate the be-
havior of all presented dimension selection algorithms when
subjected to various types of workload. In the following
experiments, we primarily calculate the false positive rate
when the number of selected dimensions are gradually re-
duced for a specific workload. We also evaluate the runtime
of each algorithm to compare their complexities. While gen-
erating workload (i.e., subscriptions and events), we mainly
specify two factors. The first is the variance factor which can
be either random or uniform. In random variance factor, the
variance of events in certain dimensions may be high whereas
they may be low in others and this is decided at random.
Uniform variance factor signifies similar variance of events
across all dimensions. The second factor that we define is
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Figure 6: Performance Evaluations

the correlation factor. Here, a high correlation factor implies
high correlation between multiple dimensions while very few
dimensions are independent whereas a low correlation factor
signifies low correlation between very few dimensions while
most dimensions are completely independent.

The first set of experiments is dedicated to evaluating the
performance of the least complex algorithm, Event Variance-
based Selection (EVS). These experiments not only highlight
the benefits of dimension selection on reduction of false pos-
itives but also show that even a simple approach like EVS
performs better than a random dimension selection (RS)
approach. Figure 6(b) plots false positive rate when EVS
and random selection approaches are employed on multiple
datasets having 8 dimensions with a random variance factor.
The figure shows that, when EVS is used, reducing dimen-
sions up to a point reduces false positives, but, after that
false positives rise again. This is because, for example, in
the case of Figure 6(b), EVS benefits by removing 3 less se-
lective dimensions and assigning the additional bits to the 5
more selective dimensions. However, ignoring one or more
of these 5 dimensions implies major information loss which
again increases the false positive rate. EVS performs better
than a random selection approach as it takes advantage of
the random variance factor which allows certain dimensions
to have higher selectivity than the others.

We evaluated the next set of experiments, however, with
uniform variance factor instead of a random variance fac-
tor as before. We, again, plot the performance of EVS and
as expected, due to uniform event variance in all dimen-
sions, it does not succeed in reducing false positives as can
be seen in Figure 6(c). In fact, its performance can be com-
pared to random selection. However, in such a scenario, the
Event Match Count-based Selection (EMCS) approach per-
forms much better than EVS, providing a significant benefit
in terms of reduction of the false positive rate (cf. Fig-
ure 6(c)). When event distribution alone cannot differenti-
ate between selectivity of dimensions, then it is necessary to
look at both events and subscriptions to determine selectiv-
ity and that is why EMCS performs much better in this case.
EMCS works very well in the previous scenario. However,
in the following experiments we compare its performance to
Correlation-based Selection (CS) when the correlation fac-

tor is both high and low. Figure 6(d) plots false positive
rate when selected dimensions are gradually reduced for data
with high correlation factor. The figure clearly shows that
CS gains significantly over EMCS in the presence of high
correlation. When the correlation factor is low, quite under-
standably EMCS and CS perform similarly as depicted in
6(e). However, please note that even with low correlation
CS does not perform worse than EMCS.

The next set of experiments compares the performance of
the greedy selection (GS) algorithm with CS when a high
correlation factor is used while data generation. Figure 6(f)
shows that GS outperforms CS even in the very best case
for CS, i.e., high correlation. Since GS is an evaluation-
based technique, it performs in most cases better than the
other techniques and is very close to the performance of
ideal selection, i.e., Brute-Force Selection (BRS), as can be
seen in Figure 6(g). BRS produces the most optimal set of
dimensions but, as can be seen from the evaluation results,
the performance of GS is almost equivalent to this optimal.

The dimension selection evaluation results show the per-
formance of the selection algorithms in increasing order of
effectiveness, i.e., EVS, EMCS, CS, GS, and BRS. However,
better the performance, higher is the time complexity of the
selection algorithm. This is visible in the next set of experi-
ments that we conducted. The experiments show the impact
of increasing the number of events on the time required to
select a set of 4 dimensions from a set of 8 dimensions when
the number of subscriptions is fixed to 1000. Figure 6(h)
clearly shows that EVS and EMCS require least computa-
tion time(in the order of milliseconds), whereas CS takes
significantly more time than them with GS requiring most.
Similarly, our experiments also showed that with increasing
number of subscriptions or original dimensions, again, EVS
performs fastest, followed by EMCS, CS, GS, and finally
BRS. In fact, with increasing number of original dimensions,
runtime for BRS grows exponentially.

6. RELATED WORK

The past decade has seen a significant amount of effort
being devoted to the realization of scalable and efficient
pub/sub systems [5, 9, 11, 18]. The primary focus of most
of these systems has been efficient communication that not



only ensures scalability, but also preserves expressiveness of
content in order to avoid unnecessary traffic in the system.
A very widely used technique employed to reduce false posi-
tives in overlay networks is subscription clustering [18] where
events are flooded within clusters. Riabov et al. [16] perform
clustering for content-based pub/sub systems by grouping
subscribers into multicast channels and performing IP mul-
ticast thereafter. However, this approach largely depends on
the similarity of subscriptions within generated clusters and
may fail to ensure minimal false positives as multicasting is
employed eventually within a cluster.

While attempting efficient content-based routing, consid-
erable work has been dedicated to subscription summa-
rization techniques that compact subscription information.
With regards to this, various data structures and match-
ing algorithms have been developed. For example, Jerzak
et al. [11] use Bloom filters [6] to encode subscriptions and
events. While this expedites content-based routing, it suf-
fers from the inherent limitations of a Bloom filter w.r.t.
presence of false positives in the system. Again, the sys-
tem MICS [9] uses Hilbert space filling curve to generate a
one-dimensional representation of events and subscriptions.
However, MICS too suffers from false positives.

The above systems primarily work on overlay networks.
However, the recent past has seen the use of networking
technologies such as NetFPGA and SDN to realize filtering
of events on the network layer. For example, LIPSIN [12]
uses Bloom filters to encode the routing path of an event in
its packet header. This enables a packet to be routed di-
rectly on the network layer. However, since a packet header
is limited in size, LIPSIN uses a limited fixed length Bloom
filter for encoding, which results in false positives. Similarly,
systems such as PLEROMA [17], that exploit the capabil-
ities of SDN to achieve line-rate forwarding of events, also
suffer from the limitations of hardware and are subjected to
unnecessary traffic. A hybrid approach to filtering has also
been realized in literature where some events are filtered
at the application layer while the remaining at the network
layer [3]. However, even though such an approach reduces
false positives, it has to compromise on line rate performance
for paths involved with application layer filtering.

7. CONCLUSION

In this paper, we attempt to mitigate the limitations of an
SDN-based pub/sub middleware w.r.t. bandwidth efficiency.
The proposed workload-based indexing technique and di-
mension selection algorithms complement each other and
considerably impact unnecessary traffic in the middleware.
These techniques preserve the benefits of using SDN for
pub/sub by ensuring line-rate forwarding of events directly
on switches while also preserving the benefits of content-
based routing by focusing on bandwidth-efficient commu-
nication. Our evaluation results show that each of these
techniques can significantly reduce false positive rate in the
system when subjected to various kinds of workload.

8. REFERENCES
[1] Intel Research Berkeley Lab Sensor Data Set.

http://www.cs.cmu.edu/~guestrin/Research/Data/.
[2] Report from Open Networking Summit: Achieving

Hyper-Scale with Software Defined Networking, 2015.
[3] S. Bhowmik, M. A. Tariq, L. Hegazy, and

K. Rothermel. Hybrid content-based routing using

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

network and application layer filtering. In Proc. of the
36th IEEE Int. Conf. on Distributed Computing
Systems, 2016.

S. Bhowmik, M. A. Tariq, B. Koldehofe, A. Kutzleb,
and K. Rothermel. Distributed control plane for
software-defined networks: A case study using
event-based middleware. In Proc of the 9th ACM Int.
Conf. on Distributed Event-Based Systems, 2015.

S. Bianchi, P. Felber, and M. Gradinariu.
Content-based publish/subscribe using distributed
R-trees. In Proc. of 13th Int. Euro-Par Conf., 2007.
B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Comm. of the ACM, 1970.

O. M. E. Committee. Software-defined Networking:
The New Norm for Networks. Open Networking
Foundation, 2012.

C. Dong, Q. Xiuquan, J. Gelernter, L. Xiaofeng, and
M. Luoming. Mining data correlation from
multi-faceted sensor data in the internet of things. In
China Comm., 2011.

H. Jafarpour, S. Mehrotra, N. Venkatasubramanian,
and M. Montanari. MICS: An Efficient Content Space
Representation Model for Publish/Subscribe Systems.
In Proc. of the 3rd ACM Int. Conf. on Distributed
Event-Based Systems, DEBS ’09.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Holzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software defined
wan. In Proc. of the ACM SIGCOMM 2013 Con.

7. Jerzak and C. Fetzer. Bloom filter based routing for
content-based publish/subscribe. In Proc. of the 2nd
Int. Conf. on Distributed Fvent-based Systems, 2008.
P. Jokela, A. Zahemszky, C. Esteve Rothenberg,

S. Arianfar, and P. Nikander. LIPSIN: line speed
publish/subscribe inter-networking. ACM SIGCOMM
Computer Communication Review, 2009.

B. Koldehofe, F. Diirr, and M. A. Tariq. Tutorial:
Event-based systems meet software-defined
networking. In Proc. of the 7th ACM Int. Conf. on
Distributed Event-based Systems, DEBS ’13.

K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan.
Choreo: Network-aware task placement for cloud
applications. In Proc. of the 2013 Conf. on Internet
Measurement, IMC ’13.

Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian. Feature
selection using principal feature analysis. In Proc. of
the 15th ACM Int. Conf. on Multimedia, MM ’07.

A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang.
Clustering algorithms for content-based
publication-subscription systems. In Proc. of the 22nd
Int. Conf. on Distributed Computing Systems, 2002.
M. A. Tariq, B. Koldehofe, S. Bhowmik, and

K. Rothermel. PLEROMA: A SDN-based high
performance publish/subscribe middleware. In Proc.
of 15th Int. Middleware Conf., 2014.

M. A. Tariq, B. Koldehofe, G. G. Koch, and

K. Rothermel. Distributed spectral cluster
management: A method for building dynamic
publish/subscribe systems. In Proc. of the 6th ACM
Int. Conf. on Distributed Fvent-Based Systems, 2012.





