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ABSTRACT

Cyber-physical systems (CPS), like the ones used in indus-
trial automation systems, are highly time-sensitive appli-
cations demanding zero packet losses along with stringent
real-time guarantees like bounded latency and jitter from
the underlying network for communication. With the pro-
liferation of IEEE 802.3 and IP networks, there is a desire
to use these networks instead of the currently used field-
buses for time-sensitive applications. However, these net-
working technologies, which originally were designed to pro-
vide best effort communication services, lack mechanisms
for providing real-time guarantees. In this paper, we present
Time-Sensitive Software-Defined Networks (TSSDN), which
provide real-time guarantees for the time-triggered traf-
fic in time-sensitive systems while also transporting non-
time-sensitive traffic. TSSDN provides these guarantees
by bounding the non-deterministic queuing delays for time-
sensitive traffic. To this end, it exploits the logical central-
ization paradigm of software-defined networking to compute
a transmission schedule for time-sensitive traffic initiated by
the end systems based on a global view. In particular, we
present various Integer Linear Program (ILP) formulations
that solve the combined problem of routing and scheduling
time-triggered traffic. Moreover, we show that end systems
can comply with a given schedule with high precision us-
ing user-space packet processing frameworks. Our evalua-
tions show that TSSDN has deterministic end-to-end delays
(< 14 ps on our benchmark topology) with low and bounded
jitter (<7 ps).
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1. INTRODUCTION

Cyber-physical systems (CPS) controlling physical processes
through a set of distributed sensors, actuators, and CPS con-
trollers rely on computer networks to transport sensor data
and actuator commands to and from the CPS controllers,
respectively. Typically, such CPS are time-sensitive systems
where the network delay (including the delays from packet
loss) and jitter impacts the quality of control of the CPS.
For instance, machines in automotive shop floors might fail,
when two consecutive packets are lost [2]. Another example
from industrial automation are isochronous motion control
systems, which require extremely bounded jitter in the or-
der of microseconds for stability [16]. Many more examples
of time-sensitive CPS can be found in the area of Industry
4.0, tele-robotics, smart grid, etc.

Consequently, in order to ensure a deterministic behaviour
of CPS, deterministic real-time networks with bounded de-
lay and delay variance (jitter) are desirable. Tradition-
ally, such guarantees have been provided by dedicated
field-bus networks. However, with the proliferation and
steadily growing performance along with shrinking costs of
IEEE 802.3 and IP networks, there is a strong desire to
also utilize these technologies, initially designed to provide
best-effort communication services, also for implementing
time-sensitive CPS. Ideally, both, time-sensitive and non-
time-sensitive applications, should be able to communicate
over one converged IP-based IEEE 802.3 network. The re-
quirement to provide deterministic networks is also in the
focus of two major standards bodies in networking, namely
the IETF DetNets Working Group [3] and the IEEE 802.1
Time-Sensitive Networking (TSN) Task Group (TG) [13, 5].

Looking at the initial discussions of these groups, we can
identify the elimination of non-deterministic queuing delays
in network elements as an essential requirement to achieve
deterministic network delay and jitter for time-sensitive traf-
fic. This effectively also eliminates packet losses occur-
ring due to overflowing queues. One basic concept tar-
geting highly time-sensitive periodic communication—e.g.,
a constant bit-rate sensor data stream—in local area net-
works (LAN) is to schedule the transmission of packets at
the end systems using time-triggered communication. This
concept leverages the possibility to precisely synchronize
clocks of hosts using time synchronization protocols like
the IEEE 1588 Precision Time Protocol (PTP). Packets can
then be assigned to time-slots based on a global transmission
schedule such that in-network queuing is avoided. Addition-
ally, time-triggered traffic is assigned the highest priority in
the network to isolate it from non-time-sensitive traffic.
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Although the concept of scheduling in time-triggered com-
munication is well-known [18, 12], several challenges remain,
which we target in this paper. Firstly, the state-of-the-art
approaches to schedule time-triggered communication as-
sume a priori knowledge of routing information, thus over-
looking the possibility of influencing them while scheduling.
Secondly, they also rely on support from underlying net-
working elements to enforce these schedules, for instance the
enhancements for scheduled traffic based on IEEE 802.1Qbv
standards [5]. In contrast, with TSSDN we jointly address
scheduling along with routing of time-triggered traffic us-
ing commodity hardware with software-defined networking
features. For this, we present algorithms that assign time-
slots to the time-triggered flows and route them such that
in-network queuing is avoided (constraint) while maximizing
the number of such flows in the network (optimization ob-
jective). Thus, we solve a constrained optimization problem
for computing transmission schedules. We also ensure that
the end systems comply with the calculated schedules pre-
cisely enough to avoid queues on switches. Adverse effects
that need to be considered are the variable delays of the
network stack on the hosts, imperfect clock synchronization
and timers etc.

To facilitate the calculation of schedules, we utilize
software-defined networking (SDN), an emerging networking
paradigm that enables deploying network applications exe-
cuting centralized algorithms with a global view onto the
network. To this end, we introduce a network controller,
with a global view onto all time-triggered flows (we refer to
all packets belonging to a given stream as a flow) and the
network topology, to compute their routes and transmis-
sion schedules. This logically centralized architecture of our
Time-sensitive Software-defined Network (TSSDN) is also
consistent with the initial architecture of the IETF DetNet
WG, which considers logical centralization as one promising
option. Further, to ensure schedule adherence by the hosts,
we use user-space packet processing frameworks.

In detail, we make the following contributions:

e We introduce the scheduling problem in TSSDN (an
NP-hard problem) and propose various Integer Linear
Program (ILP) formulations to compute routes and
transmission schedules for time-triggered flows.

e We present a proof-of-concept implementation showing
that the source hosts of time-triggered flows can accu-
rately comply with the computed transmission sched-
ule using user-space packet processing frameworks.

e We show through evaluations that our ILP formula-
tions can generate transmission schedules for networks
of realistic sizes within seconds. Moreover, we show
that adherence to these schedules results in determinis-
tic network delays of < 14 us on our benchmark topol-
ogy with ultra-low jitter (< 7 us).

The remaining paper is structured as follows. We present
the related work in Section 2. In Section 3 and 4, we present
the system model of TSSDN and the scheduling problem
respectively. In Section 5, we present the ILP formulations
to compute transmission schedules. We present the usage
of packet processing frameworks for schedule adherence in
Section 6 and evaluate our work in Section 7 respectively.
Finally, we conclude in Section 8.
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Figure 1: TSSDN. Network controller routing flows Fi & F»
and allocating them slots T7 & Tb, respectively

2. RELATED WORK

There is a strong trend to make widely adopted IP-based
networks and IEEE 802 networks ready for real-time traffic.
These developments are driven, in particular, by the IEEE
802.1 Time-Sensitive Networking Task Group [13], which
aims for time-synchronized low latency streaming over layer
2 bridged networks, and the IETF DetNets Working Group
targeting deterministic data paths with bounds on packet
latency, loss, and jitter over Layer 3 routed networks [3].
We intentionally base our system on basic principles con-
forming with the initial proposals of these standards bodies
like synchronized end systems and logically centralized con-
figuration. This directly makes our contributions like the
scheduling algorithms—which have not been considered by
these groups so far—applicable to upcoming standards.
Scheduling transmissions at the hosts in time-triggered
networks to impart real-time properties is a well-researched
problem. Approaches using Satisfiability Modulo Theo-
ries (SMT) and Resource Constrained Project Scheduling
(RCPS) have been applied to compute schedules in multi-
hop Ethernet-like networks [18][12]. Further, approaches
to combinedly compute transmission schedules along with
task schedules have been proposed [9][8]. However, all these
approaches assume advance information of routes for the
time-triggered flows ignoring the possibility of influencing
them. This may result in accommodation of fewer time-
triggered flows in the network, for instance, when several
flows are routed over a single bottleneck link instead of
distributing them over redundant links. Further, these ap-
proaches typically perform fine-grained link scheduling, and
thus have to rely on specialized mechanisms in the under-
lying hardware to enforce the schedules. In contrast, we
address the combined problem of routing and scheduling of
time-triggered flows in TSSDN in this work by just per-
forming scheduling on the network-edge on end systems.
To the best of our knowledge, we are the first in using
commodity hardware with software-defined networking tech-
nologies to impart real-time properties for communication
over IEEE 802.3 networks while also transporting non-real-
time traffic. Our evaluation shows results with ultra-low
jitter for communication even with high transmission rates.

3. SYSTEM MODEL

Our TSSDN (cf. Fig. 1) is based on the principles of
software-defined networking (SDN). SDN is an emerging
networking paradigm based on the principle of control plane
and data plane separation. The data plane consists of net-
work elements (switches), which are responsible for packet




forwarding. The control plane is responsible for configuring
the data plane, e.g., by calculating routes and programming
the forwarding tables (also called flow tables) of switches.
With SDN, the control plane is moved from the network
elements to a network controller (not to be confused with
the CPS controller) hosted on standard servers that com-
municates with the switches through a so-called southbound
interface like the OpenFlow protocol [14]. The network con-
troller is logically centralized, i.e., it has a global view onto
the network elements, topology, traffic, etc., which facilitates
the implementation of network control logic, for e.g., rout-
ing and scheduling. Note that the logically centralized SDN
controller can be physically distributed to several servers to
increase scalability and availability. However, in this paper
we do not consider the problem of control plane distribution.

Besides the network controller and switches, our sys-
tem consists of end systems (hosts). End systems execute
userspace processes, which are the sources and destinations
for time-triggered flows. For instance, an end system can
be a sensor transmitting a stream of samples, an actuator
acting upon a stream of commands, or a CPS controller re-
sponsible for driving a physical process. We assume that
the sources of time-triggered flows unicast packets with a
constant bit-rate to the destination with time-periods that
are an integral multiple of a “base-period”, the minimum
transmission period that can be supported. A time-triggered
pattern is well suited for using sensors with fixed sampling
periods or actuators requiring inputs within given time in-
tervals. Only time-triggered traffic is transmitted in high
priority UDP packets, and, thus prioritized over other low
priority best-effort traffic. Mechanisms like IEEE 802.1Q
(VLAN) or Differentiated Services (DiffServ) can be used
for this. We assume that every application layer data unit
(e.g., sensor sample or actuator command) fits into a single
maximum transfer unit (MTU) sized UDP packet. Further,
we assume that all end systems have precisely synchronized
clocks using the Precision Time Protocol (PTP). In this pa-
per, we restrict our approach to local area networks, i.e.,
we limit the maximum network diameter to 8 hops between
any pair of hosts consistent with the IEEE 802.1D standard.
It may be noted that all time-triggered traffic has the same
priority, and, thus, an additional scheduling mechanism is
required to handle conflicting time-triggered traffic, which
is the basic focus of this paper.

4. PROBLEM STATEMENT

The goal of TSSDN is to achieve deterministic network be-
havior with bounds on network delay and jitter for time-
triggered traffic to support real-time communication. Net-
work delay comprises propagation delay, processing delay,
transmission delay, and queuing delay. Propagation de-
lay in TSSDN (a LAN with predefined maximum diame-
ter) is bounded, thus, deterministic, and very small (order
of nanoseconds). Moreover, our measurements with com-
modity Ethernet switches have shown that their processing
delays are in the range of microseconds or below and al-
most constant for a given set of matching tuples [10]. Thus,
processing delay can also be considered to be deterministic.
The transmission delay is also bounded and deterministic
for constant bit-rate traffic. Therefore, the challenge for
TSSDN is to bound the non-deterministic queuing delay for
time-triggered traffic.

Queuing occurs in switches when packets from multiple

input ports attempt to transmit over the same output port
simultaneously. It can be eliminated if no two inputs ports
contend for transmitting over the same output port, i.e.,
the source host initiates transmission only when the en-
tire network path over which the flow traverses is exclu-
sively reserved for it. For instance, in the topology shown in
Fig. 2, simultaneous transmissions of packets belonging to
flows F; : A; — By;i € [1...5] will result in queuing at the
output port of switch Si. In such cases, the network delay
for these packets would depend on the length of queues they
encounter, i.e., the flows are affected by jitter.

TSSDN bounds queuing delays by scheduling the trans-
mission of packets belonging to time-triggered flows on their
source hosts in addition to routing them such that they will
always find an empty queue (for high priority traffic) on
each switch along their path, i.e., it isolates time-triggered
flows either spatially or temporally. To this end, we imple-
ment a time-triggered time division multiple access (TDMA)
scheme, where every time-triggered flow has well-defined
time-slots allocated by the network controller during which
its source can transmit. The scheduling algorithm in TSSDN
uses its global knowledge of the network topology and the
time-triggered flows gathered using the southbound interface
to define a suitable transmission schedule and route for all
time-triggered flows. For instance, in the topology shown in
Fig. 2, each of the flows, Fj, is allocated a different time-slot
to sufficiently skew their transmissions and avoid queuing
on the bottleneck link (from switch S1 to S2).

In the following, we address two pressing problems with
respect to scheduling in TSSDN. Firstly, how to compute a
transmission schedule that maximizes the number of sched-
uled time-triggered flows? By maximizing the time-triggered
flows that can be carried over the network, a larger number
of real-time applications can be supported. This maximiza-
tion problem is NP-complete, reducible from the static light
path establishment problem [6] encountered during routing
and wavelength assignment in optical networks. In this pa-
per, we present scheduling algorithms in the form of ILP for-
mulations that compute transmission schedules for a static
set of time-triggered flows known a priori.

Secondly, how can the source hosts precisely comply with
a gwen transmission schedule? The communication prim-
itives offered by the operating systems, for instance the
socket APD’s; are inadequate for source hosts to comply with
a given transmission schedule with sufficient precision. They

Figure 2: Benchmark topology with 10 hosts (A1—As, Bi—
Bs) connected to 2 switches (S1 and S2) with 10 Gbps links
and 5 time-triggered flows (F; : A; — B; i € [1...5])



introduce non-deterministic delays in the network stack of
the end systems that render the computed schedule useless.
In Section 6, we present the usage of userspace packet pro-
cessing frameworks for precisely adhering to a given trans-
mission schedule.

5. SCHEDULING & ROUTING IN TSSDN

5.1 Overview

In TSSDN, we use coarse-grained schedules which determine
only the transmission time at the source host (network edge)
instead of computing fine-grained link schedules (through
the network core) to avoid having to rely on underlying hard-
ware to enforce such schedules. The transmission schedule
is modelled as a cyclic schedule of duration equalling the
base-period, as shown in Fig. 3. It is divided into smaller
time-slots, numbered from 0 to tyqz, each wide enough for
an MTU-sized packet to travel across the longest network
path. Note that the slot length is bounded, as the longest
path in TSSDN is restricted to 8 hops in a LAN. The net-
work controller can determine ¢,,,, based on the base-period
and slot length, both being system parameters. The sched-
uler disburses time-slots, T'= {0, 1. .., tmaz }, to the sources
of time-triggered flows while also routing them. To avoid
queuing, the scheduler is restrained from allocating the same
time-slot to multiple flows that have overlapping paths. The
sources then compute the exact transmission instants using
the base-period, the slot length, its transmission period, and
the allocated time-slot (cf. Section 6). Without a suitable
time-slot for a flow, the source cannot send packets as high
priority traffic.

While this approach results in fewer time-slots than what
is possible with fine-grained link schedules, this does not nec-
essarily reduce network utilization. The links can carry best-
effort traffic while waiting for high priority time-triggered
packets to arrive during a time-slot. On arrival of high pri-
ority packets, the best-effort frame being transmitted can
be preempted. Thus, overall, TSSDN requires switches
that have mechanisms to separate time-triggered traffic from
best-effort traffic (e.g. using priority queues) and optionally
frame preemption mechanisms like in IEEE 8021.Qbu [1], if
the jitter caused by best-effort traffic must be minimized.
Fewer time-slots also make our work highly relevant to effi-
ciently utilize the slots to accommodate more flows.

In the following, we present three ILP formulations with
varying degrees of constraints on routing for computing
transmission schedules for TSSDN. The first one, Scheduling
with Unconstrained Routing (S/UR), allows the ILP solver
to explore all possible paths for routing the time-triggered
flows. The subsequent formulations, Scheduling with Path-
sets Routing (S/PR) and Scheduling with Fized-path Rout-
ing (S/FR), restrict the possibilities for routing the flows,
thereby reducing the execution times, while compromising
on the quality of the schedules in terms of number of accom-
modated flows.

5.2 Scheduling with Unconstrained Routing
(S/UR)

In this approach, the scheduler is free to route the time-
triggered flows over any available path. The network topol-
ogy and the set of desired time-triggered flows are the inputs.
Variables are the time-slots and paths for the flows. The op-
timization objective is to maximize the number of flows that
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Figure 3: Transmission schedules in TSSDN

are allocated a time-slot.

For the ILP formulations, we denote the network topology
as a directed graph G = (V, E), where V is the set of nodes
and F ={(i,5)| 4,5 € V and 4, j are connected by a network
link}, is a set of tuples representing the network links. Fur-
ther, V = (SUH), where S and H are sets of switches and end
systems, respectively. The time-triggered flows are denoted
as a tuple, ts; = (si,d;), where s;,d; € H. Here, s; and
d; is the source and the destination of the flow, respectively.
The set of time-slots available for disbursement is denoted as
T ={0,1...,tmaz}. Additional functions needed to model
the topology and time-triggered flows are listed in Table 1.

5.2.1 ILP Inputs

The inputs required for the ILP formulation are as follows:
e Network Topology, G = (V, E).

e Set of time-triggered flows to be scheduled, TS.
TS = {tsi}; i € [1... NumFlows]
Here NumFlows represent the number of flows to be
scheduled.

5.2.2 ILP Variables

The decision variables used for formulating the ILP are as
follows:

e Mapping of flows to network links, SL.
SL = {fi,j} VieTsS, Vj ek
fi,; = 1, if the flow ¢ traverses over link j, else 0.

e Mapping of flows to time-slots, ST.
ST ={tix} Vi e TS,Vk e T
tir = 1, if the flow ¢ is allocated time-slot k, else 0.

e Helper variables, SLT. These enable the formulation of
the scheduling problem as an ILP.
SLT = {mjr} Vie TS,Vj € E,YkeT
m; j, = 1, if the flow i traverses over link j and is
allocated a time-slot k, else 0.

Helper Parameters Output
Function

in(n) {(u,v) € Elv =n}
out(n) nev {(u,v) € Elu=n}
src(ts) Flow ts, s

dst(ts) ts = (s,d) d

Table 1: Helper functions for modeling network topology
and time-triggered flows



5.2.3 Objective Function

The objective function is formulated so as to primarily max-
imize the number of flows that are allocated time-slots. In
some situations different solutions might exist with the same
number of scheduled flows but where some solutions contain
loops in their paths. Obviously, in such cases we would pre-
fer the solutions without loops. Therefore, we define a sec-
ondary objective for weeding out solutions that route flows
over paths with loops. This term in the objective keeps
the path length at a minimum, thus, eliminating paths with
loops, and is factored such that its total contribution to the
objective is less than one. This ensures that the ILP solver
gives priority to maximizing the number of flows that can
be scheduled rather than minimizing the length of the indi-
vidual paths allocated to them.
Maximize:

2. 2 bk (7T x |E|

Vie TS Vk € T

x D> fu

Vi e TS Vj € E

Primary Objective Secondary Objective

5.2.4 Constraints
The constraints for the ILP formulation are as follows:

e Every flow shall be allocated at most one time-slot
as they carry only one MTU-sized packet during their
corresponding period.

> tix<1

Ve e T

Vi € TS

e The path for a given flow, i, starts at its source host
and ends at its destination host, i.e., the source host
has only one outgoing link with no incoming links while
the destination host has one incoming link with no
outgoing links. For all the other network nodes, the
number of incoming links is equal to the number of
outgoing links.

Z fi,j =0 Z fi,j =1
Vj€in(src(i)) Vj€out(sre(i))
S =1 Y. fi=0

Vi€in(dst(i))

S fii=

Vj€in(n)

Vj€out(dst(i))

> fis YneV\ {sre(i), dst(i)}

Vj€out(n)
This constraint is valid for all flows, i.e., Vi € TS.

e Multiple flows cannot be routed over a given link dur-
ing any of the time-slots. This constraint ensures that

the entire path for each flow is reserved for the flow
exclusively during its allocated time-slot.

Z mi e <1

vVie TS

Vi€ EVkeT

e Finally, we need additional constraints to ensure that
the ILP solver provides consistent values for the vari-
ables, i.e., for a flow i, edge j and time-slot k, the
variable m; j can be 1, only if variables f; ; and ¢;
are both 1. Hence, the following constraint is required:

mi ik = fi,]’ X ik Vi e TS,Vj S E,Vk ceT

Although this constraint is non-linear, it can be trans-
formed into purely linear constraints as follows:

Mi gk < fij
Mi 5.k < ti7k Vi € TS, VJ S E, VkeT
Mgk > fig+tie—1

The ILP solver sets values for the variables SL and ST
corresponding to the computed schedule. The network con-
troller configures the flow-tables in the switches for routing
flows as per SL, and disburses the time-slots as per ST.

This ILP formulation results in an optimal schedule, i.e.,
maximum number of time-triggered flows are scheduled from
a given set of flows, if the transmission period all flows equal
the base-period. Presence of flows with higher periods might
result in sub-optimality, the extent of which depends on
the number of such flows and the difference between its in-
dividual periods and the base-period. Accounting for the
individual transmission periods of the flows increases the
complexity of the scheduling problem manifold along with
the execution times of the ILP solver. Most of the related
work [12] and state-of-the art field-bus architectures sched-
ule communication flows in industrial automation systems
assuming that they transmit either with base-period or pe-
riods very close to it. Accordingly, TSSDN also ignores the
actual transmission periods for the flows for scheduling.

The runtime for computing transmission schedules with
this ILP formulation is impractical (order of days), mainly
because of the two degrees of freedom it has, viz., the routes
for the flows and the corresponding time-slots. However,
with respect to paths it seems reasonable to prefer short
paths as it would result in fewer possibilities of slot colli-
sions along paths sharing the same links. This leads us to
other approaches that restrict the search space to explore
only the shortest paths to reduce the runtime. This may,
however, result in a lower number of flows being scheduled
in comparison to S/UR. With our subsequent approaches—
S/PR and S/FR—we strive to achieve results approximating
those generated by S/UR with lower execution costs.

5.3 Scheduling with Pathsets Routing (S/PR)

For Scheduling with Pathsets Routing, we extend the model
of time-triggered flows to additionally include a set of “can-
didate” paths that it may use. The ILP formulation is re-
stricted to route the flow through one of the paths in this
set instead of searching the complete solution space for ar-
bitrary paths. We use the set of all shortest paths between
the source and destination of a given flow as its candidate
paths. This approach has a lower runtime as the penalty to
calculate the set of shortest paths for each flow is amortized
by the savings in the execution time of the ILP solver.

5.3.1 ILP Inputs
The inputs for the ILP formulation are the set of flows to

be scheduled and the paths through which each of the flows
may be routed.

e Set of flows to be scheduled, TS.
TS ={ts;}; i € [1... NumFlows]
Here, NumFlows represent the number of flows to be
scheduled.

e Set of possible paths through which the flows may be
routed, P.



P ={p};l €[1... NumPaths]
This set contains all the shortest paths from the source
to the destination for each flow ts € TS.

e Mapping between flows and paths, SP.
SP = {spi,};Vie TS, Vle P
spi,y = 1, if flow ¢ can traverse over path [, else 0.
It must be noted that while a flow has multiple candi-
date paths over which it may be routed, a given path
can be used by only one flow, i.e., the path identifies
the flow.

e Mapping between paths and links, PL.
PL={pl;};Vle P,Vj€E
pli,; = 1, if path [ includes link j, else 0.
5.3.2 ILP Variables

In this formulation, we allocate time-slots to paths instead
of flows.

PT = {ptix};Vl€e P,Vk €T

pty . = 1, if path [ is allocated time-slot k, else 0.

5.3.3  Objective Function

The objective for this ILP formulation is to maximize the
number of paths with assigned time-slots.

Maximize Z Z Pk

VeEe T VvVleP

5.3.4 Constraints

The constraints for this ILP formulation are enumerated as
below:

e Fach path may be allocated at-most one time-slot.

Z plip <1

Ve e T

Vi € P

e Each flow can be allocated at-most one time-slot, i.e.,
for a given flow, only one of its candidate paths can be
allocated a time-slot.

Z Z Ptk X spig <1

Vk € T Vi€ P

Vi € TS

e To avoid collisions, no two paths with overlapping links
will be assigned the same time-slot.

Z plig X pli; <1
Vierp

Vk € T,Vj € E

The ILP solver sets values for PT based on which the
network controller can disburse the time-slots for the flows
and accordingly route them as well.

5.4 Scheduling with Fixed-path Routing
(S/FR)

Another approach further reducing the execution time for
computing transmission schedules is the Scheduling with
Fized-path Routing Approach. This approach extends the
idea of S/PR. Here, we take a radical approach by choos-
ing the path for a given flow randomly from the set of all
shortest paths between its source and destination similar to
Equal Cost Multi Path (ECMP) routing. Then, the ILP
formulation only deals with the time-slot allocation. While
this approach is faster than S/PR, the computed schedule
might be of even lower quality relative to S/UR.

5.4.1 ILP Inputs

The inputs for the ILP formulation is the set of flows to
be scheduled and the path through which each of the flow is
routed (selected at random from the set of all shortest paths
between the source and destination of the flow).

e Set of flows to be scheduled, TS.
TS = {ts;}; i € [1... NumFlows]

e Mapping of flows to links, SL, indicating the links that
belong to the path that a flow must traverse.
SL = {fi,j}; Vie TS, Vj e E:
fi,; = 1, if flow ¢ traverses over link j, else 0.

5.4.2 ILP Variables

Decision variables are required only for mapping a flow to
time-slots. ST indicates the time-slot that is allocated for a
flow.

ST = {tix}; Vie ST,Vk €T

tir = 1, if flow 7 is allocated time-slot k, else 0.

5.4.3 Objective Function

The objective function is formulated so as to maximize the
number of flows that are allocated time-slots.

Maximize Z Z tik

Vie TS VE €T

5.4.4 Constraints

The constraints for this ILP formulation are enumerated as
below:

e Each flow may be allocated at most one time-slot.

Z tig <1

VkeT

Vi € TS

e To avoid collisions, no two flows can be allocated the
same time-slot if they have overlapping paths.

Z tig X fi; <1

Vie TS

Vi € ENk € T

The ILP solver allocates time-slots to the flows through
T. Based on these values, the slots can be disbursed by the
network controller.

6. SCHEDULE ADHERENCE IN TSSDN

To reap the benefits of TSSDN—deterministic network de-
lay and jitter—sources of time-triggered flows must ad-
here to the computed schedule as precisely as possible. In
high-speed networks, with high bandwidth links (exceed-
ing 1 Gbps) and high performance cut-through switches, the
slot-length is in the order of microseconds. Deviation be-
yond 1-2 us will render the entire schedule useless. Further,
applications are typically affected by the end-to-end delays
which comprise network delay and the delay incurred in the
network stacks at the source and destination hosts. This im-
plies that the delays incurred by the packets in the network
stack must also be deterministic.

We evaluated the socket API’s in Linux (CentOS, kernel
version 3.10) to determine if they provide these properties
for communication. For our evaluations, we deployed two
userspace applications which act as source and destination



of time-triggered traffic on nodes A; and Bi, respectively, of
our benchmark topology (cf. Fig. 2). We measured the end-
to-end latency (between the applications) for 10,000 packets
(each of size 1500 bytes), one packet sent every 10 ms. The
results (cf. Fig. 4a) show the latency varying between 37—
117 ps, with an average latency of 63.58 us and a standard
deviation of 4.88 us, in absence of any cross traffic. Such
high jitter is attributed to the variable delays (10-100 yus)
that packets incur while traversing the network stack of the
operating system [7], i.e., invoking send() on a socket does
not place the packet on the network interface with deter-
ministic delay, nor does receive() return with bounded delay
after the network interface receives a packet. Thus, with
socket APT’s it is impossible to adhere to the transmission
schedules with high precision and provide tight bounds on
the delays incurred in the network stack of the end systems.

Userspace packet processing frameworks, like Intel’s Data
Plane Development Kit (DPDK) [4] or netmap [17], bypass
the network stack by using custom device drivers and hand
the complete control of communications to userspace appli-
cations. These may be used to get around the problem of
variable delays in the network stack of the end systems. To
evaluate the feasibility of using these frameworks, we de-
veloped two DPDK applications, one as the source and the
other as the destination of time-triggered traffic and mea-
sured the end-to-end latency between them, similar to our
evaluation of socket applications.

Algorithm 1 Source - Userspace DPDK application
1: function SrRc(basePeriod(bp), slotLength(sl), timeS-

lot(ts))

2 init NIC and sending queues

3 interval Alrm < flowPeriod

4 firstAlrm < now() + (bp — now() % bp) + sl x ts
5: firstAlrm <« first Alrm — pktCreationTime

6: timer_settime( first Alrm, interval Alrm)
7.

8

9

0

1

while True do
if alarm is triggered then
Create payload by executing required tasks
pkt < dpdk.createPkt()
dpdk.sendPkt(pkt)

—_ =

The destination application simply receives the packet
from the network interface bypassing the network stack and
parses the packet to decode the information sent by the
source. DPDK provides high performance packet process-
ing API’s for this purpose. The source application (pseudo-
code in Algorithm 1) plays an important role with respect
to TSSDN scheduling. It is responsible for configuring
timers suitably to trigger packet transmissions. For this we
used Linux interval timers (timer_settime()) that generate
an alarm at fixed intervals based on the base-period, slot
length, flow period, and the allocated time-slot (Lines 3—
5). The source can use the generated alarm for transmitting
the time-triggered packet prepared beforehand, or use it as
a trigger to also create the packet (generate the payload by
executing the sensing or CPS-control tasks). We use the
latter approach (Lines 9-10) and hence advance the interval
timer by pktCreationTime (profiled beforehand) to compen-
sate for the time required to generate the payload and create
the corresponding packet.

With DPDK APT’s, the latency varied between 7-10 us

with an average latency of 7.94 us and a standard deviation
of 0.4us (cf. Fig. 4a). The packets incur almost constant
delays in the network stack with the use of userspace packet
processing frameworks. The low end-to-end latency between
the source and destination applications indicate that packets
are placed on the network interface with minimal delay after
the corresponding API is invoked. Hence, we use DPDK for
precisely complying with the transmission schedules.

7. EVALUATIONS

We evaluated TSSDN on two fronts. Firstly, we measured
the end-to-end latency for time-triggered traffic on the data
plane of TSSDN under various scenarios to determine if it
provides the promised real-time guarantees. Secondly, we
evaluated the ILP formulations, executing on the control
plane, to compute transmission schedules for randomized
graphs created using various models to exhibit its correct-
ness and scalability.

7.1 Data Plane Evaluations for TSSDN

To evaluate the real-time properties provided by TSSDN on
the data plane, we implemented the benchmark topology,
shown in Fig. 2, using five commodity machines (Intel Xeon
E5-1650) each equipped with an Intel XL710 quad 10 GbE
network interface and an Edge-Core cut-through “bare-
metal” switch (AS5712-54X) running PicOS (ver 2.6.1). The
switch was partitioned into virtual switches to create the
topology, while each machine hosted two end systems, for
instance, Host A; and B; were placed on the same machine
but used different network interfaces. We used the Preci-
sion Time Protocol (PTP) for synchronizing clocks on all
machines. To this end, we used a separate network infras-
tructure using a third network interface on each machine
(two interfaces are used by the end systems hosted on the
machine) dedicated to PTP synchronization. This was basi-
cally necessary because of two reasons: First, our switch did
not support PTP. Thus, high priority time-triggered pack-
ets could potentially impact the accuracy of PTP latency
measurements. With a switch which can measure the port-
to-port residence time of PTP packets, the precision of clock
synchronization would not be affected. Secondly, DPDK ex-
clusively allocates a network interface to a process, so we
cannot easily run a PTP daemon over the same port. Shar-
ing a port between different processes is a common prob-
lem of current userspace packet processing frameworks and
a separate research problem.

7.1.1 In-network Prioritization

As mentioned in Section 6, the end systems in TSSDN use
userspace packet processing frameworks to adhere with the
computed schedules (cf. Figure 4a). However, this alone is
insufficient as TSSDN is also meant to additionally transport
best-effort traffic. In this section, we experimentally show
the importance of tagging time-triggered packets as prior-
ity traffic, while also motivating the need for transmission
scheduling in TSSDN.

To determine the impact of best-effort traffic, we loaded
the bottleneck link (link from switch S to S2) of our bench-
mark topology with random traffic (random packet sizes and
variable bitrate) initiated by end systems As>—As. It may be
noted that the link was never subscribed beyond 80 % of
its total capacity. With this cross traffic, we measured the
end-to-end latencies for 10,000 packets sent from A; — B;
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Figure 4: Evaluations Results

with a period of 10 ms. As shown in Fig. 4b, the end-to-end
latency fluctuates drastically between 7-66 us, if the pack-
ets are not marked as priority packets by the source de-
spite the spare capacity in the bottleneck link. End systems
may tag time-triggered packets as high priority packets so
that its delivery would be expedited by the data plane. We
used the IEEE 802.1Q priority scheme and marked time-
triggered packets with highest possible priority class (prior-
ity 7). With prioritization of time-triggered traffic, the end-
to-end latency with cross traffic varies in a narrower band
of 7-13 us. However, the standard deviation of end-to-end
latency has increased from sub-microsecond range (in ab-
sence of any interference from best-effort traffic) to 1.68 us.
This is because our switch does not support frame preemp-
tion (IEEE 802.1Qbu [1]), and hence time-triggered packets,
though higher in priority, must queue till the current packet
is transmitted. With support for frame preemption, higher
priority time-triggered packets will not be affected by the
lower priority cross-traffic.

The impact of prioritizing time-triggered packets is, how-
ever, nullified, if time-triggered flows are not temporally
or spatially isolated. In absence of scheduling, no guaran-
tees can be provided with respect to the bounds on end-to-
end delays and jitter, even if the time-triggered packets are
tagged as high priority packets.

7.1.2  Impact of Scheduling

To show the impact of scheduling, we deployed a varying
number of time-triggered flows on our benchmark topology.
We used a slot-length of 15 us, considering the end-to-end
delay in traversing the network diameter of our benchmark
topology. We assume a base-period of 1 ms and that all flows
use their slots completely, i.e., transmit one packet every
1ms. The flows are allocated adjacent slots to demonstrate
that schedules can be adhered precisely by the end systems.

# Flows || Avg. | Std. | Min | Max
1 Flow 7.99 | 0.62 7 13
2 Flows 8.09 | 0.57 7 14
3 Flows 8.04 | 0.49 7 14
4 Flows 8.07 | 0.48 7 14
5 Flows 8.06 | 0.54 7 14

Table 2: Latencies (in ps) for time-triggered flows when
scheduled in adjacent time-slots

It may be noted that we evaluate our system in the tough-
est scenario with adjacent slots occupied on a 10 Gbps link
as this would amplify any consequence of non-adherence to
schedules. We measured end-to-end latencies for 10° pack-
ets per flow and summarized the results in Table 2. As can
be seen, the end-to-end delays for the time-triggered flows
vary in a narrow band of < 7 pus, irrespective of the num-
ber of flows in the network. Further, the standard deviation
for the latencies experienced by the time-triggered flows is
also in sub-microsecond range indicating minimal communi-
cation jitter. In networks with lower bandwidth links, the
performance would be equally good or even better. Thus, we
show that suitable transmission schedules impart real-time
communication properties over the data plane of TSSDN.
Further, to emphasize the importance of transmission
scheduling, we measure the end-to-end latencies for a vary-
ing number of time-triggered flows when they are assigned
the same transmission slot. Our ILP formulations would
never allow these flows to interfere, however, in absence of
scheduling such a scenario cannot be ruled out. Hence, we
repeated the above experiment but allotted the same slot to
the flows instead of adjacent ones. The results summarized
in Table 3 show that end-to-end latency of time-triggered
flows are affected if more than one flow is assigned the same



# Flows || Avg. | Std. Min | Max
2 Flows 8.63 0.86 7 14
3 Flows 9.19 1.14 7 14
4 Flows 9.75 1.42 7 15
5 Flows 10.2 1.71 7 17

Table 3: Latencies (in us) for time-triggered flows when
scheduled in the same time-slot

slot. The average end-to-end delay and the standard devi-
ation steadily increases with the number of time-triggered
flows sharing the time-slot. Moreover, the jitter goes be-
yond 7 us when more than 3 time-triggered flows contend
for traversing a network link. This scenario also shows that
in absence of scheduling, the time-triggered traffic could end
up impeding each other in the network.

We observed that the jitter depends on the transmission
frequency of the DPDK application and size of the pack-
ets being transmitted. For instance, jitter of < 3 us was
observed at a frequency of 100 Hz for 64-byte sized pack-
ets, while it increased to < 7 us at a frequency of 10 kHz for
1500-byte sized packet. We infer that a part of this jitter (1-
2 us) originates from the interval timers in Linux, while the
rest is a result of process preemptions or delayed availabil-
ity of computing slice for the userspace applications (despite
executing them with highest priority, i.e., nice level —20 in
Linux) at source and destination hosts. In our future work,
we will explore using real time kernel patches to further re-
duce the residual jitter.

7.2 Control Plane Evaluations for TSSDN

In this section, we evaluate the various ILP formulations,
presented in Section 5, with respect to the quality of sched-
ules they compute and their scalability.

We use the commercial ILP solver CPLEX from IBM
to solve our ILP formulations which are specified using
PuLP [15], a Python-based tool-kit to specify ILPs. More-
over, we created different network topologies (different
sizes and different network models) using NetworkX [11],
a Python library for creating complex networks. In de-
tail, we used the Erdds-Rényi (ER) model (random graphs
where nodes have similar degree), random regular graphs
(RRG) (random graphs where nodes have same degree),
the Barabdsi-Albert (BA) model (scale-free networks where
few nodes have high degree and many have small degree),
and the Waxman model (geographic model favoring short-
distance links over long links). Together, these models for
randomized graphs comprehensively test the limits of our
ILP formulations. The sizes of these topologies and the num-
ber of time-slots and flows used as input are specified with
the concrete evaluations.

We used two machines for evaluating our ILPs. The first is
a high performance multi-processor machine with 2 x 8 cores
(Intel Xeon E5-2650) and 128 GB RAM, while the second is
a commodity machine with 2 cores and 8 GB RAM.

7.2.1 Qualitative Evaluations

To evaluate the quality of the schedules generated by the
ILP formulations S/PR and S/FR with respect to S/UR,
we computed the transmission schedules in 160 evaluation
scenarios using 8 different topologies (3 RRG, 2 ER, and
3 BA), each with 24 hosts and 6 switches. Note that we

had to choose a smaller topology to be able to compute the
schedule using S/UR as reference since it has an imprac-
tical runtime. Limiting the number of components in the
topology also limited the number of topologies we could ex-
amine. Each scenario consisted of 20-110 flows with random
source and destination hosts to be scheduled with 3-5 avail-
able time-slots in the network. We have deliberately chosen
a smaller number of slots to create challenging scenarios for
our ILP formulations even for smaller numbers of flows. As
performance metric, we calculate the relative quality of the
schedules computed by S/PR and S/FR, i.e., the ratio of the
number of flows scheduled by them to the number of flows
scheduled by S/UR.

Fig. 4c shows the cumulative distribution of the relative
quality achieved by S/PR and S/FR. This figure shows that
the quality of the solutions they generate closely approx-
imate the quality of the ones computed using S/UR. For
instance, for S/PR, 80 % of the scenarios have at least a rela-
tive quality of 98 % or better. In detail, S/PR and S/FR gen-
erated schedules with 100 % relative quality in about 67 %
and 38 % of the evaluation scenarios, respectively, with av-
erage qualities of 99 % and 97 %.

7.2.2  Scalability Evaluations

Knowing the quality of the different approaches, we next
evaluate their scalability, i.e., the time to calculate solutions
for different scenario sizes. Our evaluations show that the
runtime for computing the transmission schedule depends
mainly on three factors: the number of flows to schedule, the
number of available time-slots, and the size of the topology.
The model on which the topology is based has no influence
on the execution times of the scheduling algorithms.

First, we vary the number of flows for scheduling using
the ILP formulations. We use a small scenario, an ER topol-
ogy consisting of 24 hosts and 6 switches (38 network links)
with 5 time-slots for disbursement, to measure the runtime
for computing schedules using our various approaches. We
measure the runtime for computing the schedules with a
varying number (20-110) of flows on our high performance
machine. As shown in Fig. 4d, the runtime for computing
the schedules using S/PR and S/FR is at least an order of
magnitude lower than that for computing it using S/UR. As
per our evaluations, S/PR and S/FR could compute sched-
ules for over 100 flows in approximately 7s and 3s, respec-
tively, while computing the schedule using S/UR required
over 2m. This translates to an average scheduling time of
1.1s, 61 ms, and 24 ms, per flow for S/UR, S/PR, S/FR, re-
spectively. We observed similar or worse results with execu-
tion times running into hours/days for computing schedules
using S/UR on other topologies of comparable scale.

Next, we vary the number of available time-slots to eval-
uate its impact on the runtime of the ILP formulations. For
this and subsequent evaluations, we execute the ILP solver
on the commodity machine and do not use the S/UR ap-
proach as the scenarios are too large for computing a sched-
ule with it. Here, we use a topology with 200 hosts and 10
switches (256 network links) based on the Waxman model.
We scheduled 300 flows on this topology using the ILP for-
mulations and measured the average time to schedule a flow.
The number of time-slots were varied between 5-50. As
shown in Fig. 4e, the runtime increases rapidly for the S/PR
approach with increasing number of available time-slots in
contrast to the S/FR approach, which scales much better



(approximately linearly with number of time-slots). It may
be noted that a network with 1 Gbps links and a network
diameter of 8 hops provides only about 50 slots (considering
MTU as 1500 bytes) for a base-period of 1ms. Moreover,
assuming that a CPS comprise of two flows (one from sensor
to the CPS controller and other from the CPS controller to
the actuator), schedules for supporting up to 150 CPS can
be calculated by our ILPs. Thus, we can conclude that our
ILP formulations scale well for realistic scenarios.

Finally, we evaluated the impact of topology size (num-
ber of network links) on the runtime of the ILP formulations.
For this evaluation, we used different topologies (30-256 net-
work links) and scheduled over 100 flows on them with 50
time-slots for disbursement. Fig. 4f summarizes the mea-
sured runtimes for S/PR and S/FR. We observe that the
runtime of S/FR increases linearly with the size of the topol-
ogy and takes on an average less than 2s to schedule a flow
in a topology containing 256 links. For the S/PR approach,
the runtime is not directly related to the topology size. It,
rather, depends on the number of shortest paths between
the sources and the destinations of the flows, i.e., the path
diversity of the network. Nonetheless, the worst case aver-
age time to schedule a flow was just over 12s for this ILP
formulation.

In summary, our evaluations showed:

1. TSSDN provides virtually constant end-to-end latency
(std. dev. < 1 us) with worst case jitter < 7 us for the
time-triggered traffic on our benchmark topology.

2. The S/PR and S/FR approaches for computing trans-
mission schedules closely approximate the solution
computed by S/UR (which provides optimal solutions
in most practical cases), despite having runtimes that
is orders of magnitudes lower.

3. Our ILP formulations, S/PR and S/FR, scale well to
compute schedules for networks with over 200 network
links with a data-rate of 1Gbps (=50 time-slots as-
suming a base-period of 1 ms) with over 300 flows.

8. CONCLUSION & OUTLOOK

In this paper, we motivated the need for integrating mech-
anisms in IEEE 802.3 and IP networks to transport time-
triggered traffic with bounded end-to-end latency and jitter
along with best-effort traffic. For this, we presented Time-
sensitive Software Defined Networks, which provide real-
time guarantees for communication of time-triggered traffic
by means of transmission scheduling. As a first step, we pre-
sented a set of ILP formulations that compute transmission
schedules given a set of pre-defined time-triggered flows in a
network topology. Our evaluations showed that the ILPs ef-
ficiently calculate high quality schedules and the adherence
to these schedules result in deterministic network delays.

As a part of future work, we are going to develop schedul-
ing algorithms that can rapidly schedule time-triggered flows
incrementally. Another interesting open question which we
also left for future work is, how much jitter can be reduced
with hardware support (specialized NIC or NetFPGA) or
real-time operating systems.
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