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ABSTRACT

The IEEE Time-sensitive Networking (TSN) Task Group
has recently standardized enhancements for IEEE 802.3 net-
works for enabling it to transport time-triggered traffic (aka
scheduled traffic) providing them with stringent bounds on
network delay and jitter while also transporting best-effort
traffic. These enhancements primarily include dedicating
one queue per port of the switch for scheduled traffic along
with a programmable gating mechanism that dictates which
of the queues are to be considered for transmission. While
the IEEE 802.1Qbv standards define these mechanisms to
handle scheduled traffic, it stops short of specifying algo-
rithms to compute fine-grained link schedules for the streams
of scheduled traffic. Further, the mechanisms in TSN require
creation of so-called guard bands to isolate scheduled traffic
from the best-effort traffic. These guard bands may poten-
tially result in bandwidth wastage, and hence schedules with
lower number of guard bands are preferred. In this paper,
we introduce the No-wait Packet Scheduling Problem (NW-
PSP) for modelling the scheduling in IEEE Time-sensitive
Networks and map it to the No-wait Job-shop Scheduling
Problem (NW-JSP), a well-known problem from the field of
operational research. In particular, we present a Tabu search
algorithm for efficient computing of schedules and a sched-
ule compression technique to reduce number of guard bands
in schedule. Our evaluations show that our Tabu search al-
gorithm can compute near-optimal schedules for over 1500
flows and the subsequent schedule compression reduces the
number of guard bands on an average by 24 %.
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1. INTRODUCTION

One central property of the popular Industry 4.0 paradigm is
networked cyber-physical systems, where physical processes
are controlled by computers. Sensors capture the state of
the plant, transmit sensor values to controllers, which in
turn send commands to actuators to influence the state of
the plant and keep it close to the desired setpoint. Since sen-
sor and actuators are possibly distributed accross the plant,
a communication network is required to connect sensors, ac-
tuators, and controllers.

Since many physical processes such as the motion con-
trol of a set of cooperating robots are highly time-sensitive,
real-time communication networks are required to control
these systems. In order to guarantee a deterministic behav-
ior of the physical system under control, a real-time net-
work with deterministically bounded network delay and de-
lay variation (jitter) is required. Traditionally, field buses
have been used for this purpose. Later, with the great suc-
cess of the Ethernet technology, different real-time Ethernet
technologies have been proposed such as SERCOS III [16],
PROFINET |[20], etc.

Although these Ethernet extensions provide deterministic
real-time properties with cycle-times down to 31.5 us and
the possibility to transmit both, real-time and non-real-time
traffic, over the same medium, they are incompatible with
each other. Hence, different technologies cannot be oper-
ated on the same physical medium without losing real-time
guarantees.

Realizing the need for real-time Ethernet technologies in
many application domains and the problem of incompat-
ibilities within existing real-time Ethernet extensions, the
Institute of Electrical and Electronics Engineers (IEEE)
has started to standardize enhancements for determin-
istic real-time IEEE 802 networks. In particular, the
IEEE 802.1Qbv [4] defines enhancements for the so-called
scheduled traffic. The basic concept is to utilize the precise
clock synchronisation of switches and end systems (up to
nanosecond precision) as achieved by the IEEE 1588 (Pre-
cision Time Protocol (PTP)) [3] or IEEE 802.1AS [2] to
schedule the forwarding of frames in the switched network.
Frames are injected into the network by the source network
interface controller (NIC) at precisely defined points in time
according to a schedule. Moreover, switches along the path
schedule access to the medium for scheduled and best-effort
traffic using their synchronized clocks such that packets be-
longing to scheduled traffic are guaranteed timely access to
the medium. When exactly queues for scheduled traffic and
best-effort traffic get access to the medium is determined by
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the so-called gates. The gates of a switch are regulated by
a gate driver program which precisely defines when they are
opened or closed.

Although the IEEE 802.1Qbv defines the basic schedul-
ing mechanisms (time-triggered gates), how to configure
the schedules to achieve bounded end-to-end network de-
lay is beyond the scope of the standard. Therefore, we
consider the problem of calculating optimized TSN sched-
ules for NICs and switch gate drivers in this paper. Specifi-
cally, we consider the offline calculation of schedules for pe-
riodic time-triggered traffic. To this end, we show how the
well-known No-wait Job-shop Scheduling Problem [14] can
be adapted to a No-wait Packet Scheduling Problem (NW-
PSP) for calculating TSN schedules yielding minimum net-
work delay for real-time flows and compact schedules as a
first contribution. We show that instances of NW-PSP can
be formulated as Integer Linear Programs (ILP) for calcu-
lating exact solutions. However, since NW-PSP is NP-hard,
ILPs are not scalable beyond very small problem instances.
Therefore, as a second contribution, we propose a heuris-
tic optimization algorithm based on the Tabu search meta-
heuristic that allows for efficient schedule calculation. As a
third contribution, we show how to further optimize calcu-
lated schedules through schedule compression to further re-
duce the number of gate-driver entries and to reduce wasted
bandwidth due to guard-bands between scheduled and best-
effort traffic. Thus, overall, the calculated schedules guar-
antee minimum network delay for time-sensitive flows, are
compact, and can be calculated efficiently. Our evaluations
show that using this heuristic near-optimal schedules can be
calculated for large networks with over 1500 time-sensitive
flows in less than three hours with an average reduction of
24 % in the number of gate-driver entries.

The remainder of this paper is structured as follows. We
introduce our system model and problem statement in Sec. 2
and 3, respectively. In Sec. 4, we describe the NW-PSP
based on No-wait Job-shop Scheduling and its ILP formu-
lation. In Sec. 5, we present the efficient Tabu search al-
gorithm for NW-PSP along with our approach to compress
schedules, before presenting the evaluation results in Sec. 6.
Finally, we discuss related work in Sec. 7 and conclude the
paper in Sec. 8.

2. SYSTEM MODEL

Time-sensitive networks comprise network elements
(switches) compliant with the IEEE 802.1Qbv standards
along with a network controller for programming them, for
instance, using the Simple Network Manangement Protocol
(SNMP). As shown in Fig. 1, these TSN switches are
designed with additional enhancements for carrying sched-
uled traffic along with best-effort traffic [4]. The switches
dedicate one predefined queue (say queue corresponding to
traffic class 7) per port to handle scheduled traffic. Each
queue in a TSN switch is equipped with a gate regulated
by a programmable gate-driver. Packets in a queue are
considered for transmission only if the corresponding gate
is in “Open” state. Typically, the gate-driver program is
a sequence of two-tuple entries representing gate events,
where the first part of each entry is a timestamp relative
to the start of the program, while the second part is a
bitmask that determines the opened gates subsequent to
lapse of the mentioned time. For instance, in Fig. 1, after
time T, all gates are closed, while after time T3 only the
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Figure 1: Architecture of a single port in an TSN switch
(compliant with IEEE 802.1Qbv) [12].

gate for scheduled traffic is open. Additionally, after a
pre-programmed time, Tcycie, the program terminates and
restarts, thus providing a cyclic schedule of length T¢ycie for
regulating gates. Typically, all the gate drivers in a given
network are programmed with the same value of T,ycie.

The network controller computes the gate-driver schedules
by exploiting its knowledge of the network topology (gath-
ered using Link Layer Discovery Protocol (LLDP)) along
with the specifications of scheduled traffic in the network.
Each time-sensitive flow (stream of scheduled traffic) is spec-
ified by its source host, destination host, and the amount of
data sent each cycle. In this paper, we restrict flows to
have cycle times equalling Tcycie. The network controller
programs the gate-drivers in the switches based on the com-
puted schedules, and also provides the source hosts of the
time-sensitive flows with a timestamp relative to the start of
the program for injecting packets of scheduling traffic into
the network. The source host of the time-sensitive flows
adheres with the assigned schedule and tags the packets of
scheduled traffic with a IEEE 802.1Q) header with the Pri-
ority Code Point (PCP) field corresponding to the queue
dedicated for scheduled traffic (7 as per Fig. 1).

Further, the clocks of all TSN switches and hosts in the
network are synchronised using IEEE 802.1AS or IEEE 1588
protocol which provides sub-microsecond precision. This
also enables the TSN switches to synchronize the start of
cycles, and to atomically update schedules across the net-
work, in case of incremental future updates. It must also be
noted that as IEEE Time-sensitive Networks are targeted
towards local area networks, we assume for the scheduling
problem that the diameter of the network is bounded to 8
hops, in accordance to the IEEE 802.1D standard.

3. PROBLEM STATEMENT

The computation of fine-grained link schedules for sched-
uled traffic in time-sensitive networks, in general, is equiv-
alent to a bin-packing and is thus NP-Hard [17]. Given a
set of time-sensitive flows along with their routes, schedules
resulting in minimal network delays for packets belonging to
time-sensitive flows are preferred. However, other important
considerations also exist.

Typically, the TSN switches isolate scheduled traffic from
best-effort traffic by means of so-called “guard bands” us-
ing the gating mechanism. The width of guard bands, tg,
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Figure 3: Port output on using Approach 2 to computing
gate schedules in TSN

is the time required for serializing an MTU-sized packet on
the port of the switch. The guard bands are created by clos-
ing the gates for best-effort traffic time ¢, in advance before
opening the gate for scheduled traffic. For instance, in Fig. 2,
the gates for best-effort traffic are closed at time 75, though
the gate for scheduled traffic opens only at time T5. This
approach requires explicit computation of guard bands by
the network controller during schedule generation to appro-
priately program the gate-drivers. Guard bands potentially
lead to wastage of bandwidth for best-effort traffic. An al-
ternative approach specified in the IEEE standards for TSN
switches is to transmit a best-effort packet only if its trans-
mission would finish before the corresponding gate closes
and the gate for scheduled traffic opens, as shown in Fig. 3.
While this approach does not need explicit computation of
guard bands, they are implicitly created, as shown in Fig. 3.
Thus, either ways, bandwidth wastage due to presence of
guard bands is unavoidable.

Guard bands stem from the events in which the gate for
scheduled traffic is opened. Increased number of such events
in a schedule impacts the available bandwidth for best-effort
traffic, and it is hence imperative to reduce the number of
these events. This also results in compaction of gate driver
programs. Note that these events cannot be completely
eliminated, they can only be reduced by means of scheduling
such that each gate opening event leads to transmission of
several packets belonging to the scheduled traffic. To this
end, we compute TSN schedules with minimal duration (also
known as make-span) for time-sensitive networks, as reduced
makespan also imply fewer gate opening events. Further, we
compress the schedules using a procedure designed to explic-
itly reduce the number of gate opening events.

4. NO-WAIT PACKET SCHEDULING FOR
TSN

The basic idea of this paper is to map the problem of cal-
culating TSN transmission schedules to the well-known No-
wait Job Shop Scheduling Problem. In this section we show
how the original No-wait Job Shop Scheduling Problem has
to be adapted to model packet scheduling in TSN by the

corresponding No-wait Packet Scheduling Problem, and how
this problem can be expressed as Integer Linear Program.

4.1 Background: Job Shop Scheduling

To define the TSN packet scheduling problem, we first briefly
introduce the original Job Shop Scheduling Problem (JSP).
JSP is a well known scheduling problem from operational re-
search. Informally, JSP can be described as follows. Given
is a set of machines and set of jobs, each consisting of a se-
quence of operations like milling, drilling, etc. that have to
be executed on the machines in the given sequence. Each
operation can be executed on exactly one machine of the set
of machines, e.g., a drilling operation on a drilling machine,
and operations take a defined time duration. Moreover, each
machine can only process one operation at a time. The JSP
is a constrained optimization problem that tries to sched-
ule each operation on the corresponding machine such that
no more than one operation is processed at the same time
on any machine (constraint). The schedule is expressed by
the starting time of each operation of each job. Moreover,
JSP tries to minimize the so-called makespan' of process-
ing, where makespan is defined as the maximum of finishing
times of the last operations for all jobs, i.e., we try to finish
the set of jobs as fast as possible (objective).

The No-wait Job Shop Scheduling Problem (NW-JSP)
adds an additional constraint: after a job is started, it can-
not be interrupted, i.e., it must run to completion without
time gaps between the processing of the operations of the
job. With this constraint, the schedule can be defined by
the starting time of each job alone. The no-wait property is
important in many manufacturing scenarios. For instance,
an iron has to be forged immediately after heating it up, and
as we see later also has a meaning for packet scheduling.

It is worth to note that JSP is NP-complete and known
as one of the most difficult combinatorial optimization prob-
lems [6], and NW-JSP is also NP-hard [13].

4.2 The No-wait Packet Scheduling Problem
(NW-PSP) for TSN

We can now investigate how to adapt NW-JSP to calculate
packet schedules for TSN. We call the corresponding prob-
lem the No-wait Packet Scheduling Problem (NW-PSP). The
overall goal is to define the times when packets are injected
into the network by NICs at the source, and the times to
open and close the gates for scheduled packets at switches.

The basic idea of mapping NW-JSP to NW-PSP is to map
switches to machines performing forwarding operations on
packets. A time-sensitive flow then corresponds to a se-
quence of forwarding operations, one for each switch along
the given path of the flow. Packets should be forwarded
immediately without delay, which intuitively corresponds to
the no-wait property of NW-JSP.

In order to come up with a formal formulation of NW-
PSP, we need to refine this basic idea further. In particular,
the mapping “one switch, one machine” is too coarse-grained
since typically a switch can forward several packets in par-
allel. So we need to ask the question: Which operations can
(not) be performed in parallel during forwarding?

Moreover, network delay is more complex than the pro-
cessing time of NW-JSP job operations. Network delay can

1Other objectives can be defined such as minimum tardiness,
which are not useful for the packet scheduling problem.



be broken down into several types of delays, namely the
propagation delay of signals along the link, the processing
delay for deciding on which port to forward an incoming
packet, the queueing delay of a packet in the queue of an
outgoing port, and the transmission delay to serialize the
packet on the wire. Note that the time intervals for propa-
gation, processing, queuing, and transmission of each packet
are ordered strictly sequentially and do not overlap since
we assume a store-and-forward behavior for switches rather
than cut-through forwarding. Before a packet can be pro-
cessed, it must be received completely and put into an inter-
nal buffer. Packet processing then inspects the header fields
and decides into which outgoing queue should the packet be
enqueued. When processing is finished, the packet can be
transmitted on the outgoing link as soon as it is at the head
of the queue.

Due to physical restrictions, two packets cannot be trans-
mitted over the same outgoing port at the same time since
otherwise their electrical signals would interfere. Therefore,
the transmission intervals of two packets using the same out-
going port must not overlap as shown for Flow 2 and Flow 3,
both forwarded over port 5 of the same switch, in Figure 4.
However, a switch can process several packets received in
parallel from different incoming ports at the same time as
shown for Flow 1 and Flow 2 in Figure 4. On similar lines,
a network interface controller (NIC) cannot transmit two
packets at the same time.

Based on this observation, switch ports and NICs now cor-
respond to machines of NW-JSP. The set of all switch ports
and NICs in the network is denoted as P = {P1,..., Pn}.
Time-sensitive flows correspond to jobs, and we denote the
set of flows as F = {Fi,..., F}. Each flow F; consists of a
sequence of transmission operations O; = (O;1,...,0in,;),
with one transmission operation for each outgoing port along
the given path of the flow. Relation R : O — P maps each
transmission operation to an outgoing switch port, i.e., re-
lation R corresponds the mapping of job operations to ma-
chines in NW-JSP. Sequence O; together with relation R are
parameters of NW-PSP defining the route of a flow through
the network.

Similar to machines processing operations of a job, switch
ports perform the transmission of packets of a flow. Note
that according to this model, an operation only includes the
transmission. Packet processing and propagation is not part
of the operation! The processing time of a job then corre-
sponds to the transmission delay of a packet, which is defined
by the given packet size and data rate of the switch. Param-
eter di"/""* defines the transmission delay for each transmis-
sion operation O; ; of flow Fj;.

In addition to the transmission delay, we also have to con-
sider propagation and processing delays. We assume the
same processing delay dP"°¢ and propagation delay dP"°? for
all switches and links in the network. This simplifying as-
sumption could be easily relaxed by defining individual pro-
cessing and propagation delays based on individual switch
and link properties, respectively. Due to the no-wait prop-
erty, the queueing delay is per-definition zero.

In constrast to adjacent operations of a NW-JSP job, ad-
jacent transmission operations on neighboring switches of a
flow cannot be processed “back-to-back” without time gap.
After one switch port has completed the transmission of the
last bit of the packet, this bit first has to propagate to the
neighboring switch, and then the packet needs to be pro-

cessed before the transmission on the next outgoing port
can start. Therefore, we need to consider the propagation
and processing delays preceding each transmission interval.
Let D; ; define the cumulative network delay (processing,
propagation, and transmission delay) up to and including
transmission operation O; ; of flow Fj:

Di,j — (] _ 1)(dprop + dpr(m) + Z dET/?nS (1)

k=1,....j

Then the essential constraint that two conflicting trans-
mission operations O; and O;,; using the same outgoing
port must not overlap in time can be defined as follows:

tj—ti > Dig— (Dji—1+d""P+d"°) or (2)
ti—t; > Dji— (Dig—1+d"" +d") 3)

Here, t; and t; denote the start of the packet transmission
on the source hosts for flows F; and F}, respectively. Infor-
mally, these constraints ensure that before the first bit of a
packet from flow F; is transmitted over a switch port, the
last bit of the packet from flow F; must have been trans-
mitted over this port, or vice versa. Dj;—1 + dP"? + dP"°¢
defines the time when the packet is enqueued in the queue
of the outgoing port after having transmitted this packet
over the previous port, propagating the packet to the next
switch, and processing the packet there. Note that packets
are transmitted immediately after processing without wait-
ing in the outgoing queue of the port (no-wait forwarding
property of NW-PSP). Thus, packets travel through the net-
work “non-stop” with minimum possible network delay! An-
other inherent advantage of no-wait forwarding is that the
queue size of real-time flows is minimal, and switches can
dedicate this memory to best-effort traffic.

The set of all flow start times T = {t1,...,tn}, ie., the
time of injecting packet at source NIC, are the variables
of NW-PSP. Given the start times, we can calculate packet
schedules for transmitting packets on switches (gate opening
times). A transmission operation O; ; needs to be scheduled
at time t;x = t; + D;; — d:"®™* on port R(O; ). This
schedule is repeated in each cycle, i.e., t = Os defines the
start of a cycle.

Note that simply repeating the schedule in each cycle only
works because we assumed that all flows have the same cycle
period. If flows have different cycle periods, this might lead
to “collisions” A collision does not necessarily mean that the
packet is dropped, however, they are queued since another
packet is still in transmission over the same outgoing port.
Obviously, this violates our goal of no-wait packet schedul-
ing. This problem can be solved by calculating schedules
for a hyper-cycle of length LCM (p1,...,pn), where LCM
denotes the least common multiple of all flow cycle periods
pi. For space restrictions, we do not further describe this
common principle known from scheduling here.

The objective of NW-PSP is to minimize the flowspan
Cimaz, which we define as the equivalent to the NW-JSP
makespan:

DEFINITION 1. Let Cs = t; + (n; + 1)(dP™°P + dP"°°) +
D k=1, s di’¢"™ be the finishing time of flow F;. Then the

flowspan Chae = max{Cji|i € {1,...,n}} is the finishing
time of the flow finishing last.

Minimizing the flowspan results in compact schedules
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Figure 4: Timeline of forwarding three packets of three different flows over one switch. No queueing delay is shown since
packets are forwarded immediately with no-wait packet scheduling.

where real-time flows are not distributed across the whole
cycle, but are pressed to the start of the cycle. On the
one hand, this increases the chance that packets from dif-
ferent real-time flows are scheduled back-to-back, such that
the number of entries of gate-drivers can be minimized by
merging gate opening times as shown later in Sec. 5.3. This
results in reduced bandwidth wastage on account of guard
bands. On the other hand, this gives best-effort flows larger
continuous space within a cycle, where best-effort packets
can be transmitted without interruption.

4.3 Integer Linear Program for NW-PSP

Similar to the orginal NW-JSP, also NW-PSP can be for-
mulated as Integer Linear Program (ILP):

min Crhaz (4)

subject to

V{Oix, O} € K :
tj—ti—Digp+Dji1+d"" +d"° < cxipja (5)
V{0, O} € K :
ti—tj — Dji+ Dijg—1 +d”" +d7°°

IN

C (1 — ZC@k,j,l)
(6)

The constraints of Equation 5 and 6 correspond to the
constraints of Equation 2 and 3, respectively, after trans-
lating the disjunctive form to a conjunctive form as re-
quired by ILPs. To this end, we introduce binary vari-
ables x; ;1 € {0,1} for each pair of conflicting forward-
ing operations {O; ;0;,;} with the same outgoing port. Set
K = {{0:£0;,} | R(Os,x) = R(0j,1) A Oi . # Oj,1} defines
all such pairs of conflicting forwarding operations. c is a
large constant (virtually infinity). Depending on the value
of x, either the first or second constraint is effective with
a right-hand side value of zero. The ineffective constraint
is then evaluating to true since “infinity” is greater than
anything, ensuring the correct semantic of the conjunctive
form.

5. HEURISTICS FOR NW-PSP

As already mentioned, the NW-PSP is an NP-hard problem.
Therefore, as also our evaluations later show, we cannot ex-
pect to find exact solutions efficiently for larger scenarios
with many flows using the ILP formulation from the previous
section (these exact solutions can still serve as a reference).
In order to improve scalability, we next present heuristics for
efficiently solving the NW-PSP based on the Tabu search al-
gorithm for NW-JSP in [13]. For an easier description, we
make a few changes to the mapping between NW-PSP and

NW-JSP. We now model switch ports by two machines—one
for processing of incoming packets on the port (to model the
processing delays and the propagation delays incurred by the
packet), and one for transmitting the packets going out on
the port as explained in Sec 4.2, i.e., we now use additional
machines to account for processing and propagation delays
of packets. Thus, a flow, now, consists of a sequence of op-
erations (transmission and processing) executed by different
machines. After a machine transmits a packet on a link,
another machine responsible for the port on the next switch
in its path processes it. While this mapping makes it easier
to apply Tabu search for flowspan optimization of NW-PSP,
this model also has the inherent shortcoming that processing
of incoming packets cannot be achieved in parallel as in the
unmodified problem formulation. However, such situations
would not arise in most switches where transmission delays
dominate processing delays.

With the no-wait constraints also applicable for NW-PSP,
the overall schedule can be specified by the start times for
each of the flows. The schedule for all the constituent oper-
ations of a flow can be calculated from its start time. The
resulting schedule is then subjected to a specifically designed
procedure to reduce the number of gate-opening events for
scheduled traffic, thus reducing the number of guard bands
and conserving bandwidth for best-effort traffic.

Based on the approach in [13], we split the NW-PSP into a
time-tabling problem and a sequencing problem. The time-
tabling problem deals with computation of start times for
all flows belonging to a totally ordered set of flows. The
sequencing problem, on the other hand, deals with totally
ordering the set of flows being scheduled such that the given
time-tabling algorithm results in a schedule with minimal
flowspan. In the following, we describe the used time-tabling
algorithm (based on a greedy approach) and the sequencing
algorithm (based on Tabu search).

5.1 Time-tabling Problem

For timetabling, we use a greedy approach to compute start-
times for the flows. Consider a totally ordered set of flows,
F = {F\,F,...,Fo|F; — F;;Vi < j}. The time-tabling
algorithm, presented in Algorithm 1, allocates the earliest
possible starting time (Line 4) for each flow in set F' based on
their order, one at a time, subject to the constraints imposed
by the starting times of the preceding flows, i.e., no machine
can process or transmit packets belonging to more than one
flow at the same time. The algorithm sets initial start time
of the flow being scheduled as 0, and increases it in steps (size
based on set of conflicting operations of preceding flows) till
all the operations of the current flow are scheduled without
any conflicts with the preceding flows. Based on the start



times of the flows and its cumulative times for executing its
operations, the flowspan is computed (Line 6).

While earliest possible starting time of flows as a heuris-
tic do not always yield optimal solutions, they approximate
schedules with minimal flowspan [13]. It may be noted that
the worst-case time complexity of this time-tabling algo-
rithm is O(n®*N?), where n is the number of flows and N is
the maximum number of constituent operations (transmis-
sion as well as processing) in any flows. For an NW-PSP
instance corresponding to a local area network, the maxi-
mum number of constituent operations is bounded. This
is because the length of path over a flow may be routed is
bounded. Thus, the worst-case time complexity of the used
time-tabling algorithm is O(n?).

Algorithm 1 Time-tabling Algorithm

1: function TIMETABLER(SetOfFlows(F))

2: Schedule + { }, Span + 0

3 for each flow in F' do

4: FTime < Earliest possible start time
5: Schedule[flow] < StartTime
6.
7

Span < max(Span, FTime + flow.totalTime)
return (Span, Schedule)

An important property of this presented time-tabling al-
gorithm is that the starting time of flows is influenced only
by the flows preceding it in the totally ordered set. The ones
succeeding it play no role in determining its starting time.
We can exploit this property for incremental expansion of
schedules. For this, the flows yet to be scheduled can be ap-
pended to the current ordering of flows and the time-tabling
algorithm can be re-executed. While the new sequence may
not be an optimal one (in terms of the schedule flowspan),
the schedules for existing flows will never be altered, an in-
dispensable guarantee required to support incremental flow
scheduling in time-sensitive networks.

5.2 Sequencing Problem

The sequencing algorithm creates a total ordering of flows
in the set of flows, F', to minimize the resulting makespan of
the schedule computed by the time-tabling algorithm. The
search space for the sequencing problem consists of n! pos-
sibilities, where n is the number of flows in the NW-PSP
instance. A brute force approach to compute the optimal
solution would involve each of the possible sequences to be
executed with the presented time-tabling algorithm (com-
plexity of O(n?)), and would therefore not scale to large
problem sizes. Hence, we use Tabu search for a guided ex-
ploration of the solution space.

Tabu search is a well defined method for exploration of
solution space in optimization problems [10]. Tabu search
mainly generates an initial solution (based on a heuristic)
and iteratively processes it by selecting the best possible
solution in the neighbourhood that does not violate certain
criterion (being on the tabu-list) for the next iteration. After
a pre-defined number of iterations, the best-ever solution
encountered over these iterations is selected. We adapt the
Tabu search developed for solving a NW-JSP (from [13])
to solve an instance of NW-PSP modelling the scheduling
problem in time-sensitive networks. The existing algorithms
for NW-JSP have been primarily designed and evaluated
for problem with 30-50 jobs. For NW-PSP, we aim for a

Algorithm 2 Sequencing Algorithm

1: function SEQUENCER(FlowOrdering(fs))

2: currentSoln < GeneratelnitialSolution(heuristic)
3 bestOrder < currentSoln

4 while Termination criteria not satisifed do

5 nhd < GenerateNeighbourhood(currentSoln)
6: for each soln in nhd do

7 computeMkSpn(soln)

8 SolutionSelection ()

9: currentSoln < selectedSoln

10: if selectedSoln better than bestOrder then
11: bestOrder < selectedSoln

12: return bestOrder

solution that scales up to 1000+ flows. In the following,
we describe the steps involved in our Tabu search method,
summarized in Algorithm 2.

5.2.1 Initial Solutions

In Tabu search, initial solutions are typically generated us-
ing heuristics. Of the many popular heuristics available
for NW-JSP, we chose two for generating initial solutions
for NW-PSP, viz., the sum of processing times for all the
constituent operations of a flow and processing time of the
longest operation of a flow. The flows may be ordered using
these heuristics in ascending or descending order to create
an initial solution. As mentioned in [13], we also used ran-
dom ordering for obtaining an initial solution. Overall, we
execute five runs of the Tabu search algorithm, each start-
ing with a different initial solution—four generated from the
two heuristics in ascending and descending order, one based
on a random ordering—and choose the best solution from
all these runs.

5.2.2  Neighbourhood Generation

After the generation of the initial solution, it is iteratively
processed. During each iteration the neighbourhood of the
current solution is generated based on its “critical flow”.
Critical flow of an ordering is that flow which finishes the last
as per the schedule generated by the time-tabling algorithm,
thus, responsible for the current flowspan. In presence of
several critical flows, one of them is randomly selected. The
principle behind such a neighbourhood function is to turn
critical flows of the current solution into non-critical flows,
and thus, result in flowspan reduction.

We mainly use two unary operators—Insertion and Swap-
ping—that operate on a flow for neighbourhood generation
of the current solution. The Insertion operator removes
the critical flow from the ordering and inserts it before the
operand flow. While the Swapping operator swaps the crit-
ical flow with the operand flow. The neighbourhood of the
current solution is the set of all possible orderings obtained
by execution of the Insertion and Swapping operators on
all flows preceding the critical flow in the current ordering.
Thus, the neighbourhood contains, at the most, 2(n — 1)
possible solutions.

5.2.3  Solution Selection

After the neighbourhood generation, we select a new solu-
tion for the next iteration. To this end, all orderings from
the neighbourhood are evaluated using the time-tabling al-
gorithm to determine their flowspan. The ordering with the



lowest possible flowspan in the neighbourhood which does
not violate the tabu list, or satisfies the aspiration criterion
is selected for subsequent iterations. The tabu list contains
a list of flows that were identified as critical flows in pre-
vious z iterations. Solutions in the neighbourhood whose
critical flow(s) lies in the tabu list are rejected even if they
have a low makespan, unless they satisfy the aspiration cri-
terion, i.e., we ignore the tabu list and accept an ordering,
if the flowspan of the solution is lower than that of the best
ordering encountered so far.

We terminate our execution runs when previous y iter-
ations of the algorithm do not yield an improvement on
the best flowspan encountered till the moment. The perfor-
mance of our algorithm can be tuned with different values
of x and .

5.3 Schedule compression

This procedure of schedule compression is specifically aimed
to reduce the number of gate opening events in the TSN
schedules. In the NW-PSP, this maps to ensuring that ma-
chines (involved with transmission) work in fewer but longer
sprints instead of several shorter bursts, i.e., with a gate-
open event several packets of scheduled traffic are transmit-
ted. Our idea of schedule compression is based on the prin-
ciple that start times for certain operations may be delayed
such that they end just before the succeeding operations be-
gin on the corresponding machines. In terms of the sched-
ules, it means that the transmission of a scheduled packet
may be delayed to a time such that it is finished just before
the next scheduled packet for transmission on the same port
is available. Overall, this relaxes the no-wait constraint but
our algorithm ensures that the flowspan from the original
schedule remains unaffected. We explain our approach with
a simplified example on a small topology.

Consider the example topology shown in Fig. 5. The ma-
chines (switch ports and NICs) of interest are marked as
p1,...,ps. Fig. 6 represents schedules with minimal flows-
pan for three flows (F; : A; — B;) in the example topology.
We focus mainly on machines responsible for transmission.
The schedule shows starting times for all the operations of
the flows—transmission delays on switch ports and NICs
(marked as p;,s where p; is the machine operating on the
flow) and processing delays (represented as hatched boxes)
on the corresponding links. The schedule of the machine
responsible for transmission on link p4 is of interest with re-
spect to the compression algorithm. As can be seen in Fig. 7,
there are two gate opening events on machine p4 s—the first
handles flow F} while the second handles flow F5 and F3. As
shown in Fig. 6 and Fig. 7, the schedule can be modified to
delay the transmission of packet belonging to flow F; such
that a single gate open event can service packets from flows
F1, F> and F3, in quick succession.

It must be noted that this method may not always result
in a single gate open event per link like in the presented
example. Delaying the transmission of a packet of a flow
impacts the starting times of the subsequent operations for
the flow. It may so happen that they cannot be delayed,
for instance due to impact on the schedule flowspan. Fur-
ther, while delaying transmission of any packet belonging to
a flow, it must be ensured that the order in which the switch
processes/transmits it must not be altered. For instance, in
Fig. 7, the transmission of packet of flow F; on link l4 cannot
be delayed such that packet belonging to flow F5 is trans-

Figure 5: Example topology—=6 hosts and 7 links

Flows
A
Pss Prs |
F3: A3 > B3
Pis Pos |
Fy: Ay > By

»
'

Figure 6: Schedule for 3 flows on example topology. Arrow
represents a possibility to compress schedule.

mitted before it. This would violate the First-In First-Out
semantics of queues in switches. Given these constraints,
compression of schedules is not a trivial problem.

In the following, we present an efficient algorithm for com-
pressing the schedules to reduce the number of gate opening
events in the entire schedule. This algorithm can also be
used on schedules that are computed using methods other
than the presented Tabu search algorithm, for instance the
ILP formulations presented in Sec. 4.2. Basically, the scope
for schedule compression stems from the existence of “slack”
in start times of the operations, as shown in Fig 7. Slack
for a given operation is the amount of time by which its
start may be delayed on a machine such that it is finished
before the next operation is due to start on the machine.
For instance, consider a machine that processes operations
01,02, 03 (belonging to different flows), each needing three
time units, between times 1-3, 6-8, 9—11 respectively. Slack
for the operations 01 and o2 is 2 and 0, respectively, i.e., the
start of operation 01 can be delayed by up to 2 time-units
and must start at time ¢ = 3 to be finished before o2 is due
to start, while start of o2 cannot be postponed.

Note that delaying an operation impacts the start times
for subsequent operations. Thus, amount of time by which
each operation can be delayed clearly depends on the slack
of all the subsequent operations of the job. Based on the
slack for each operation, the amount of time by which they
can be delayed is computable. For a flow with N op-

erations, {O1,0z2,...,0n}, and corresponding slack times
Machine py
Rl R | R
“Sack” .
Schedule ™

Figure 7: Machine schedule for pss. Arrow represents a
possibility to compress schedule.



{51, S2,...Sn}, an operation O; is delayed by time ¢;, where
t; = min(si, Sit1,-..,8n). Our algorithm, summarized in
Algorithm 3, computes slack for all operations of all jobs
and then delays their start times correspondingly. It does
so iteratively till no further operations can be delayed. The
modified schedules have reduced number of gate opening
events compared to the original schedule

Algorithm 3 Compression Algorithm

1: function COMPRESSOR(Schedule(sched))
2: compress < True

3 while compress do

4 compress < False

5: for each flow do

6: for each oper do

T computeSlack(sched, flow, oper)
8 for each flow do

9: for each oper do

10: computeDelays(slack)

11: if delaying possible then

12: applyDelays(flow, oper, sched, delay)
13: compress < True

14: return sched

The time required for each iteration of the compression
algorithm is directly proportional to the number of jobs (n)
and the number constituent operations (N). During each
iteration of the algorithm, the start times (after including
delays from previous iterations) of at least one operation is
finalized. Thus, in the worst case, the algorithm may need
up to N xn iterations. Overall, the worst-case time complex-
ity of our algorithm is O(n?N?). Given that N is bounded,
the time complexity reduces to O(n?). Thus, our approach
provides a solution with polynomial worst-case time com-
plexity for scheduling in time-sensitive networks.

6. EVALUATION

We present the evaluations of our scheduling approach for
time-sensitive networks in this section. We evaluated our
solutions in various scenarios (randomized topologies with a
set of time-sensitive flows randomly generated) to determine
the quality of flow schedules they compute (in terms of flows-
pan), their scalability and the number of gate-opening events
they result in. It must be noted that, as described in Sec-
tion 5, the performance and the worst-case execution times
for our approaches do not depend on the type or size of the
topologies but rather on the number of flows being sched-
uled. Nonetheless, we used various models of randomized
graphs (Erdés-Rényi (ER) model [9], random regular graphs
(RRG) model, and the Barabési-Albert (BA) model [5]) to
ascertain this.

6.1 Qualitative Evaluations

In our evaluations, we determine how closely do the sched-
ules computed using the presented approach approximate
the optimal schedule in terms of the flowspan. For this we
compared the schedules computed using our approach to the
ones generated by an ILP solver which solves the ILP for-
mulation of the corresponding problem (cf. Sec. 4.2).

The NW-PSP, an NP-hard problem, however cannot be
optimally solved in a reasonable time frame by an ILP solver
if the problem instance is large. Our initial attempts to

solve small instances with up to 50 flows using CPLEX [1],
a state-of-the-art commercial ILP solver from IBM, required
over three days to compute optimal solution. However, we
observed that the solver quickly generates a feasible solution
and improves it subsequently. Further, CPLEX provides
primitives to terminate the optimization problem early and
obtain the best solution that has been computed till that
moment along with the optimality bounds for the solutions,
i.e., how does this solution potentially compare with the
optimal solution. For our evaluations, we set time-bounds
on CPLEX to terminate after a reasonable amount of time
and provide the best solution obtained till the moment. We
compared this solution with the schedule computed using
our approach, in terms of the flowspan.

We executed our evaluations in 30 scenarios on topologies
of various sizes (24-100 hosts, 520 switches generated using
ER, RRG and BA models) with varying number of flows (30—
1500). We configured CPLEX with an upper time-bound of
300 min. for solving the ILP formulation for each instance
of NW-PSP. Correspondingly, we also computed schedules
using our approach for the same instance. For each scenario,
we calculated the relative flowspan, i.e, the ratio of flowspan
of the schedule calculated by our approach to the flowspan
of the schedule computed by the ILP formulations. Fig. 8a
shows a cumulative distribution of the computed relative
flowspans. Overall, in over 70 % of our scenarios, our ap-
proach computes schedules with flowspan equal to or lower
than the ones computed by a state-of-the-art ILP solver (re-
stricted to run for 300 min. or less). In about 1/37 of the
scenarios, the solutions computed by our approach had a
flowspan slightly higher than the ones computed using the
ILP. However, in these cases, the difference in the flowspan
of these schedules was less than 5%. Overall, the average
relative flowspan for the set of scenarios we evaluated was
~ 97%. Thus, our approach computes solution which, on
an average, have lower flowspan than the ones computed by
an ILP solver with a restriction on execution time.

6.2 Scalability Evaluations

To evaluate the scalability of our approach, we measured the
execution times of our algorithm (Tabu Search as well as
schedule compression) while computing schedules for vary-
ing number (10-1500) of flows. We executed our evaluations
on a multi-processor machine (Intel(R) Xeon(R) CPU E3-
1245 V2 @ 3.40GHz) with 2x4 cores and 16 GB of memory.

Our evaluations are summarized in Fig. 8b. Up to 50
flows, the scheduling using our approach takes less than
10secs., while beyond that the execution times increase
polynomially, as expected, with the number of flows. Over-
all, our approach can compute schedules for about 1500 flows
in about 3.2 hrs. Moreover, our evaluations suggest that the
execution times for our approach are mainly a polynomial
function of the number of flows being scheduled. They do
not depend on the size of the underlying topology or the
model on which the topology is based.

6.3 Impact of Schedule Compression

Compression of flow schedules, as we presented them, is an
important aspect of scheduling in time-sensitive networks.
To evaluate the effectiveness of our approach, we measured
the percentage reduction of gate opening events in the sched-
ules after compression.

For this evaluation, we computed flow schedules in over
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Figure 8: Evaluations Results

75 scenarios (varying sizes and models of topologies, varying
number of flows etc.). The computed schedules were sub-
jected to our compression algorithm for reducing the num-
ber of gate opening events. We not only used the presented
Tabu search algorithm but also ILP solvers for computing
the initial schedules to show that our schedule compression
algorithm is equally effective on schedules computed using
different methods. The cumulative distribution function for
the reduction in number of gate opening events is shown in
Fig. 8c.

Our evaluations show that the schedule compression al-
gorithm, reduces the number of gate-opening events by at
least 12 %. In certain scenarios, the achieved reduction goes
up to 42%. Overall, on an average, we observed a reduc-
tion of 24 % for gate-opening events in compressed schedules
compared to the original schedules.

6.4 Evaluation Summary

In total, our evaluations show:

1. The presented Tabu search algorithm calculates near-
optimal solutions for NW-PSP with respect to mini-
mizing the flowspan.

2. The execution times for the presented Tabu search al-
gorithm depends on the number of flows being sched-
uled. Overall, our approach scales to scheduling over
1500 time-sensitive flows.

3. The presented algorithm for schedule compression re-
sults on an average reduction of 24 % for gate-opening
events/guard bands.

7. RELATED WORK

The relevance of our work is highlighted by the fact that
two major standardization bodies, IEEE and IETF, are
working on standardizing enhancements for enabling the
IEEE 802.3 networks to handle scheduled traffic. While
the IEEE Time-sensitive Networking (TSN) Task Group
is targeting enhancements for scheduled traffic in bridges
and bridged networks, the Internet Engineering Task Force
(IETF) is targeting deterministic data paths with bounds on
packet latency, loss, and jitter over Layer 3 routed networks
with the IETF DetNets Working Group. Their work has so
far resulted in the IEEFE 802.1Qbv standard which specifies
mechanisms for the network elements to implement a given

schedule. However, the algorithms for computing schedules
using these mechanisms is not in the scope of the standard.
Computing schedules for time-sensitive traffic in real-
time networks, like TT-Ethernet, ProfiNET, etc., is rea-
sonably addressed in the literature. In our previous work,
we computed transmission schedules by combinedly solv-
ing the routing and scheduling problem in a Time-sensitive
Software-defined Network [15]. However, we mainly com-
puted coarse-grained schedules for end systems compared
to fine-grained link schedules in the current paper. Steiner
used Satisfiability Modulo Theories (SMT) to compute
a (any) feasible schedule for time-sensitive flows in TT-
Ethernet [17]. Extensions of this approach also computes
transmission schedules along with task schedules for the
tasks executing on the end systems [8][7]. While a feasi-
ble solution suffices to deploy a time-sensitive network, in
absence of makespan optimization for the schedule, spare
bandwidth for best-effort traffic and incremental sched-
ule extensions is affected. Hanzalek et. al. modelled
the scheduling problem in ProfiNET as a Resource Con-
strained Project Scheduling (RCPS) problem to minimize
the makespan of the computed schedule [11]. However, this
approach is specifically directed towards ProfiNET and does
not deal with the problems like guard bands prevalent in
time-sensitive networks based on IEEFE 802.1Qbv standard
by means of schedule compression techniques like the one
presented in this paper. Further, our Tabu search algorithm
is adapted to compute schedules for comparatively larger
topologies with an increased number of time-sensitive flows.
We also present related work for accommodating best-
effort traffic in real-time networks. In [18], Steiner proposed
creation of porous schedules for reserving enough bandwidth
of other traffic classes, thus, resulting in networks for sup-
porting systems with mixed criticality. Further, [19] pro-
poses a Tabu search algorithm for adapting schedules of
time-triggered traffic such that deadlines for different traffic
classes can be satisfied. In contrast, our work focuses only
on the schedules for time-triggered traffic, inline with the
IEEE standard. We adapt our schedules specifically to re-
duce number of “gate-open” events for scheduled traffic so
that increased capacity is available for other traffic classes
by reducing the number of guard bands in the schedules.

8. CONCLUSION

In this paper, we presented the problem of scheduling time-



triggered traffic in time-sensitive networks based on the re-
cently standardized IEEE 802.1Qbv standard. We mod-
elled this problem as the No-wait Packet Scheduling Problem
(NW-PSP) which can be mapped onto a No-wait Job-shop
Scheduling Problem (NW-JSP), a well-known problem from
the field of operational research. Our contributions include
an efficient meta-heuristic in the form of a Tabu search al-
gorithm to compute schedules by solving the corresponding
NW-PSP instance. To further reduce the wastage of band-
width due to guard bands, we presented a specialised com-
pression algorithm that compresses the schedules to reduce
the instances of guard band in schedules. In our future work,
we are going to extend our scheduling approach to also ac-
count for the transmission period of the time-sensitive flows
using the concept of hyper-cycles.
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