Institute of Architecture of Application Systems

ChorSystem: A Message-based System for the
Life Cycle Management of Choreographies

Andreas WeiB?!, Vasilios Andrikopoulos!, Santiago Gémez Saez!,
Michael Hahn!, Dimka KarastoyanovaZ

1Institute of Architecture of Application Systems,
University of Stuttgart, Germany
{andreas.weiss, vasilios.andrikopoulos, santiago.gomez-saez,
michael.hahn}@iaas.uni-stuttgart.de

2Kihne Logistics University, Hamburg, Germany
Dimka.Karastoyanova@the-klu.org

BIBTRX:
@inproceedings{INPROC-2016-38,
author = {Andreas Wei{\ss} and Vasilios Andrikopoulos and Michael
Hahn and Dimka Karastoyanova},
title = {{ChorSystem: A Message-based System for the Life Cycle
Management of Choreographies}},
booktitle = {On the Move to Meaningful Internet Systems: OTM 2016
Conferences: Confederated International Conferences: CoopIS,
C{\&}TC, and ODBASE 2016, Rhodes, Greece, October 24-28, 2016,
Proceedings},
year = {2016},
pages = {503--521},
series = {Lecture Notes in Computer Science (LNCS)},
publisher = {Springer-Verlag}
}

© 2016 Springer-Verlag.
The original publication is available at www.springerlink.com
See also LNCS-Homepage: http://www.springeronline.com/Incs

s University of Stuttgart
“weerd* Germany

ChorSystem: A Message-based System for the
Life Cycle Management of Choreographies

Andreas Wei8!, Vasilios Andrikopoulos', Santiago Gémez Sdez!,
Michael Hahn'!, and Dimka Karastoyanova?

nstitute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany
{andreas.weiss,vasilios.andrikopoulos, santiago.gomez-saez,
michael.hahn}@iaas.uni-stuttgart.de
2Kithne Logistics University, Hamburg, Germany
Dimka.Karastoyanova@the-klu.org

Abstract. Service choreographies are commonly used as the means for
enabling inter-organizational collaboration by providing a global view on
the message exchange between involved participants. Choreographies are
ideal for a number of application domains that are classified under the
Collaborative, Dynamic & Complex (CDC) systems area. System users
in these application domains require facilities to control the execution
of a choreography instance such as suspending, resuming or terminating,
and thus actively control its life cycle. We support this requirement by
introducing the ChorSystem, a system capable of managing the complete
life cycle of choreographies from choreography modeling, through deploy-
ment, to execution and monitoring. The performance evaluation of the
life cycle operations shows that the ChorSystem introduces an acceptable
performance overhead compared to purely script-based scenarios, while
gaining the abilities to control the choreography life cycle.

Keywords: Collaborative Dynamic Complex (CDC) Systems, Choreog-
raphy Life Cycle Management, Flexible Choreographies

1 Introduction

The notion of Collaborative, Dynamic & Complex (CDC) systems [4] aims to unify
the concepts and tools of several application domains which exhibit overlapping
requirements but use diverging solutions to address them. Examples of these
domains include eScience, i.e. scientific workflows, pervasive adaptive systems, and
service networks. CDC systems’ operation is best described by a three-phase life
cycle consisting of the phases of Modeling, Provisioning, and Execution. In order
to model the communication behavior between different applications and services
in CDC systems, we rely on the concept of choreographies [9]. Choreographies,
also known as inter-organizational workflows, are used in the business domain to
enable the collaboration of independent organizations toward a common goal. A
choreography model provides a global view on the message exchange between the

involved parties denoted by choreography participants. Choreographies do not
have a centralized party coordinating the message exchange, but rather act in a
distributed peer-to-peer-like manner. Since choreography models are typically
not directly executable, the choreography participants are transformed into an
executable workflow representation and refined by adding additional business
logic [8]. During execution (or run time) the instances of the refined workflows
form an overall choreography instance, which can be (re-)constructed by reading
the choreography related execution events of each workflow engine [22].

In literature, various aspects of the choreography life cycle are discussed, from
modeling [1,9] through design time compliance checking [13], to execution and
monitoring in order to check the run time validity of choreography instances to
their models [17,25]. However, these concepts only cover some parts of the CDC
system life cycle. While there is detailed work for the CDC Provisioning phase that
allows to provision workflow middleware and its underlying infrastructure [20],
to the best of our knowledge only [11] briefly discusses the deployment of service
choreographies, however, without elaborating on its realization. Furthermore,
there are only a few works on controlling the collective execution of a set of
workflow instances forming a choreography instance [14,17]. One reason for this
is the assumption that the constituent workflow models are kept private by
their owning organizations and that no (logically) centralized party has access
to them [1]. Instead, the refined workflow models constituting a choreography
are to be deployed by each responsible party. Furthermore, no collaborating
party might have the authority to influence the execution of the choreography
instance. In our view, this is a valid assumption in general and especially in
traditional inter-organizational settings. However, the application domains under
the CDC umbrella, such as Collective Adaptive Systems [3] or eScience [24]
demand facilities that go beyond only triggering and monitoring the execution of
a set of workflows forming a choreography. What is needed are operations that
enable the users to actively influence and control the execution of these workflow
instances as a part of the management of the overall choreography life cycle.

We would like to illustrate this with the help of Fig. 1 depicting a choreography
example from the eScience application domain. The figure shows the high level
workflow steps of a material science simulation studying the thermal aging of
iron-copper alloys by coupling two distinct simulation methods [15]. Thermal
aging occurs when steel is subject to high pressures and temperatures altering
the steel’s physical properties and leading, for example, to crack formations.
Simulating thermal aging allows better predictions about material behavior. The
first method in the example is a Kinetic Monte Carlo (KMC) Simulation, which
simulates the formation of copper precipitates in an atom lattice and stores the
intermediate results in snapshots at particular time steps. The generated snapshots
are analyzed and sent to a Molecular Dynamics (MD) simulation workflow if the
atom clusters have an appropriate size. The MD simulation workflow and the
services implementing the activities apply forces on each snapshot to test material
behavior after thermal aging. Each received snapshot triggers the creation of a
new workflow instance. The results are sent back to the KMC simulation workflow

v

® L]
‘ Analyse Select N
Snapshot Snapshot »
(] Recei %
eceive
Result Create Plot

KMC Simulation

& " % Run
. Configure KMC
Simulation " N
Simulation

MD Simulation

necessary?

Completed Executing
Activity Activity

Fig. 1: Scientific choreography example. Adapted from [22]

Compilation }

to generate an overall graphical plot for each simulation snapshot. Together, the
two simulation workflows form a choreography.

In order to provide flexibility in coupled scenarios as the one described above
and to support the explorative nature of scientific discovery [6], we introduced
the notion of Model-as-you-go for Choreographies [24]. It allows users to adapt
choreographies after the execution of the implementing workflows has already
been started. We described the underlying approach by a choreography life cycle
where the user can seamlessly switch between modeling and execution phases [23].
Furthermore, we discussed how choreography logic can be reset to a previous
execution state for error handling or to repeat parts of the execution in [22]. For
example, a scientist might have started the coupled simulation workflows and let
their execution proceed to the depicted state in Fig. 1. The scientist discovers
that the visualization does not show a plausible graph and wishes to re-run parts
of the overall simulation. This could be a change of the criteria that are used
to select an appropriate KMC simulation snapshot (Select Snapshot activity),
the re-sending of snapshots, and the re-run of the MD simulation. Repeating
the execution instead of discarding all intermediate results saves a lot of time
especially in case of the typically long running scientific experiments.

However, in all our previous works, we only mentioned very briefly that users
need the ability to deploy and control a choreography as a prerequisite, but did
not present any details how this can be achieved. In order to be able to apply
any changes to a running choreography, as discussed in the context of Fig. 1, the
following challenges have to be addressed:

(i) How can all artifacts implementing a choreography model be collectively
deployed onto a distributed execution environment by non-IT experts such

as scientists? In our example, the artifacts would be the two workflow models
as well as associated interface descriptions.

(ii) How can users start, monitor, and control the execution of a choreography?
In our example, scientists must be able to recognize any undesired results,
pause the execution of all workflow instances collectively before applying any
changes (see [22] for details on this) as well as resume the workflow instances
afterwards. This type of control must be provided to the user in an easy
and intuitive manner, preferably via graphical tools hiding the underlying
complexity.

Our paper addresses these open challenges by focusing on the question on what
kind of instrumentation is required so that the Provisioning and Execution phase
of CDC systems can be supported. More specifically, we discuss the automatic
and transparent deployment of the workflows, which implement choreography
participants, to a set of workflow engines, and the subsequent instantiation of a
choreography model. Furthermore, we argue that choreography life cycle man-
agement entails more than just triggering the execution of individual workflow
instances, but also needs a logical representation of the choreography instance
state upon which life cycle operations can be enacted. Toward this goal, we first
discuss in further detail the phases of the choreography life cycle, and identify
a set of corresponding requirements for a choreography life cycle management
middleware (Section 2). Section 3 introduces the ChorSystem, our novel choreog-
raphy life cycle management system, which relies on the well-known Enterprise
Integration Patterns (EIP) [12] for its realization. We then detail our approach
for automating the deployment of choreographies and for controlling choreog-
raphy instances. Additionally, we give some insights about the ChorSystem’s
prototypical implementation. Section 4 describes the performance evaluation we
conducted for the middleware part of the ChorSystem using a realistic case study
and illustrate how the life cycle operations are triggered by the system’s users.
We position our work with regard to related work in Section 5 and conclude with
a summary and outlook to future work in Section 6.

2 Choreography Life Cycle Management

We identify the following operations for life cycle management of choreographies:
model, transform, refine, deploy, start, suspend, resume, terminate, and undeploy.
Modeling a choreography, transforming it into as set of workflow models, and
refining them with additional logic is discussed further in our previous work,
see for example [24]. The operations deploy, start, and undeploy are enacted
on a choreography model and its related artifacts required for its instantiation.
Suspend, resume, and terminate are enacted upon choreography instances.

The deployment of a choreography and all related artifacts such as the
implementing workflow models is a prerequisite for all other life cycle management
operations. It enables the creation of a logical representation of the choreography
and monitoring its global state, based on which all other life cycle operations can

be enacted. Furthermore, automated deployment of the refined workflow models
reduces time and effort, especially in distributed execution across multiple nodes
scenarios. However, to address privacy requirements, we see the deployment of
choreographies as a two-stage operation:

(i) registering each choreography participant and the interfaces it offers in
a logically centralized, but physically distributed middleware such as an
Enterprise Service Bus [7]

(ii) the actual deployment of all participant related artifacts onto one or more
workflow engines

If privacy is an issue, only step (i) can be conducted for the affected participant;
the actual deployment is then triggered by the responsible party and only its
outcome must be conveyed to the middleware in form of an event message.

Automation of the deployment could potentially be achieved by means of
scripts invoking whatever deployment interface a workflow engine provides. How-
ever, if the global state of the choreography has to be captured in order to let
other scripts act on this state information in order to control the choreography
instance, one basically ends up emulating some kind of middleware layer. More-
over, the choreography users often are non-IT experts as in the CDC application
domain of eScience. Therefore, appropriate abstractions are needed for deploy-
ment and life cycle management, ideally in a graphical manner and integrated
with the modeling environment. This also favors a middleware-centric approach
over the use of scripts. Another argument for introducing a middleware layer, and
especially when using asynchronous, message-based concepts, is that it provides
processing reliability [12]. The following requirements can be identified for a
choreography life cycle management middleware based on the above:

R1. Transparent deployment/undeployment: The deployment of the re-
fined workflow models implementing choreographies should be automated if
privacy requirements do not forbid it. Ideally, users should not worry about
placing their refined workflows manually onto the workflow engines. Depend-
ing on the privacy requirements of the users, the workflow models should
be either placed on private workflow engines which they have registered at
the system, or on a set of generally available workflow engines known to the
system. The same degree of transparency should apply for undeployment.

R2. Choreography instantiation: The system should provide functionality
to instantiate a choreography model. This includes the convenient entry of
initial parameters for the choreography.

R3. Monitoring capabilities: The system should offer facilities to monitor the
choreography instance on different levels of detail. This includes, on the one
hand, monitoring on the level of the collaboratively defined choreography
model and on the other hand, on the level of the refined workflow models a
particular user has access to.

R4. Choreography control: The system should enable users to actively control
the execution of a choreography instance (i.e. support the suspend, resume,
and terminate operations).

R5. Model-as-you-go for Choreographies support: The notion of Model-
as-you-go for Choreographies allows users to flexibly model and execute
choreographies, e.g. by rewinding already executed choreography logic and
running it again [22]. The system should support these concepts.

R6. Transparent message routing: The workflow engines participating in a
choreography instance should not be required to keep track of other workflow
engines. The message routing between the clients/users and engines should
be handled transparently by the system.

R7. Modeling tool integration The required facilities of the requirements R1-
R5 should be integrated with the graphical modeling tool the user employs
in order to conveniently interact with the system and hide its complexities
especially for non-IT experts.

3 The ChorSystem

In this section, we first provide an overview of the ChorSystem architecture that
fulfills the requirements we identified in the previous section. Subsequently, we
present the operations and components involved in the deployment and control
of choreographies and give details on the system’s implementation.

3.1 Architecture Overview

Figure 2 shows the architecture of the ChorSystem. It consists of the Modeling and
Monitoring Environment, the ChorSystem Middleware components, an Enterprise
Service Bus (ESB) as its messaging backbone, and a set of workflow engines.

ChorSystem Modeling and Monitoring Environment: The ChorSystem
Modeling and Monitoring Environment comprises three components. The ChorDe-
signer is the graphical tool for modeling choreographies and serves also as the
control panel for the deployment of choreographies (see Section 3.2) as well
as for starting and controlling a new choreography instance (see Section 3.3).
Choreography models are transformed into a set of executable workflow models
by the Transformer component. The workflow models can then be refined with
the workflow modeling tool, the ProcessDesigner. One of the major goals of our
work is to integrate modeling with execution and monitoring and thus support
requirements R3 (monitoring capabilities) and R7 (modeling tool integration).
These requirements have been successfully fulfilled in our previous work for
individual workflows by publishing execution events to a message topic which
the ProcessDesigner can subscribe to [19]. The received events are then corre-
lated with elements of the workflow model which are colored according to their
state in their graphical representation in the modeling tool. This allows detailed
monitoring on the level of the workflow models. To enable the monitoring of
choreography instances, we use again this concept: the ChorDesigner subscribes
to a particular topic in the ChorSystem Middleware where all involved workflow
engines publish their choreography model related execution events. The events of

ChorSystem Modeling and Monitoring Environment

ChorDesignerH TransformerH Pro.cess
Designer
H

i
Enterprise Service Bus (ESB) J——>
i
ChorSystem Middleware
[Access Control Layer J
Deployment Event Instance Workflow

Manager Manager Manager Engine
Service . Management

Registry Srent ReglstryJ Registry

Fig. 2: Architecture of the ChorSystem

a choreography instance identified by a globally unique identifier are correlated
with the elements of the corresponding choreography model and then colored for
monitoring purposes.

Enterprise Service Bus: An Enterprise Service Bus provides the messaging
backbone for the ChorSystem and connects the ChorSystem Modeling and
Monitoring Environment with the workflow engines. It is used as platform where
the ChorSystem Middleware components can be plugged in [7] and provided
as a service. Although the ESB appears to be only one component in Fig. 2,
the ESB concept as described by Chappell [7] allows the physical distribution
and clustering of the ESB while still appearing as one logically centralized
component. We adopt this notion for our approach. Moreover, we do not violate
against the decentralized choreography notion because the actual execution of
the choreography participants still happens on independent workflow engines.
The use of an ESB helps to satisfy requirement R6 (transparent message routing).
The goal of this requirement is to remove the burden from each workflow engine
participating in a choreography instance to know the location of other workflow
engines. We address this by using well-known functional service discovery and
selection concepts [16] and WS-Addressing® for asynchronous callbacks.

ChorSystem Middleware: The ChorSystem Middleware houses all compo-
nents that are necessary for registering and deploying choreographies as well as

! nttps://www.w3.org/TR/ws-addr-core/

instantiating and controlling choreography instances. The Registry components
act as data services for the Manager components. The Manager components are
realized by message routes that compose all functionality and are expressed using
the Enterprise Integration Patterns [12]. The Deployment Manager component is
responsible for registering logical representations of the choreography model and
the corresponding workflow models in the Fvent Registry. The Event Manager
is able to update their state during deployment and run time by listening to
the execution events published by the workflow engines, and calculating compos-
ite events standing for choreography instance state changes. The Deployment
Manager optionally distributes the process bundles among the workflow engines.
All interfaces offered by a workflow model are registered in the Service Registry.
This information is used during execution to enable message routing between
the workflow engines that have no knowledge of each other. The Access Control
Layer supervises the access of the users to the choreography and workflow model
representations as well as to the execution events.

One of the most important components is the Instance Manager. It is re-
sponsible for distributing the start messages for instantiating a choreography
instance to the workflow engines hosting the respective workflow models. It also
creates a corresponding choreography instance representation, which is stored
in the Event Registry. Furthermore, the Instance Manager distributes the life
cycle control messages among the workflow engines and performs the discovery
and selection of services. The Instance Manager is the component where all the
functionality for the rewinding and repetition of choreography logic [22] is located
and thus fulfills requirement R5 (Model-as-you-go for Choreographies support).
This includes the creation of a choreography instance graph by correlating the
choreography model with its execution events and the implementation of the
algorithm for determining the rewinding points. The Management Registry is
where information about the available workflow engines in the system and their
management endpoints are kept. The registration of workflow engines with the
middleware is done via an API, for either manual or automated registration.

3.2 Automated Choreography Deployment

In order to allow the automated deployment of refined workflows implementing
choreography participants onto a set of workflow engines — requirement R1
(transparent deployment/undeployment) — we introduce (i) the concept of a so-
called choreography bundle and (ii) define a choreography deployment message
route using the Enterprise Integration Patterns [12].

A choreography bundle is a package that physically contains all necessary
artifacts for registering a choreography with the ChorSystem Middleware and
deploying it onto a set of workflow engines if desired. All meta-data about a
choreography bundle and its artifacts are described by a choreography deployment
descriptor. The descriptor is generated during the transformation step from the
choreography model to the implementing workflow models and can be manually
enriched during workflow refinement. Figure 3 shows the choreography deployment
descriptor meta-model. A choreography bundle consists of a set of process bundles,

ChoreographyModel |1 1| ChoreographyBundle |1 1 Choreography
Deployment Descriptor

1

[i.

ProcessArtifacts 0.*

11 ProcessBundle 0.* Service
[P 1
1] 1 1
Process Interface . 0" 0.”
Description StartActivity 0.% Endpoint

Fig. 3: Meta-model of the choreography deployment descriptor

where each process bundle contains all artifacts necessary to register and deploy
one particular workflow model implementing a choreography participant. More
precisely, these artifacts are the service descriptions specifying the services the
workflow exposes (in the process interface description) and interacts with. If
privacy constraints do not prohibit disclosure, the process bundle also contains
the actual refined workflow model (possibly encrypted) and platform-specific
workflow deployment descriptors. Additionally, the choreography bundle contains
the choreography model and the choreography deployment descriptor itself. The
choreography deployment descriptor may also codify information about already
provisioned non-participant services that need to be registered in the context of
the choreography. This information relates to the corresponding service interfaces
and endpoints. Moreover, the choreography deployment descriptor may point to
the endpoints of already registered workflow engines in the system if the user
does not want a particular process bundle to be deployed on any arbitrary engine
but rather on one he/she controls. That implies that we offer the possibility to
register private workflow engines in the system. The information specified in the
choreography deployment descriptor is used to build a choreography deployment
message, which includes the process bundles and the specified artifacts. The
deployment message is processed in the ChorSystem Middleware to register and
(if permitted) distribute the process bundles to the registered workflow engines.

With respect to implementation of the deploy operation, the message route to
deploy a choreography bundle is presented in Fig. 4. The choreography deployment
is started from the ChorDesigner by packaging the choreography bundle inside a
deployment message and sending it to the ChorSystem Middleware, where it is
routed to the Deployment Manager using the Content-Based Router pattern. The
Deployment Managers’ functionality is coordinated by the message route. The first
step is to evaluate if there is already a representation of the choreography model
registered in the Event Registry using logic implemented in a custom message
processor in the route. If not, such a representation is generated. The same holds
for the workflow models for which the deployment status is also checked. Each
undeployed process bundle is marked accordingly in the deployment message,
which is routed to the next message processor implementing the Splitter pattern.

ChorDesigner

Workflow Engine

o}

Event Manager
Y
o]
J
. . . Management
Event Registry Service Registry Registry
Legend M
Event-Driven Custom Message essage - .
::n | Recipient List
E Consumer - Processor Translator P
-4/: Content—Based-_,g Splitter Message §-a| Ageresator
= Router 8 °p @ Endpoint ggreg
i Publish-Subscribe
-.=—‘ Channel I: Message Filter %
Channel

Fig. 4: Deployment Route described using the Enterprise Integration Patterns

Here, the deployment message is split into independent messages containing
the process bundles. The messages are subsequently filtered (using the Message
Filter pattern) and only the ones containing undeployed process bundles are
routed in parallel to a message processor. There, the service interfaces a particular
workflow model offers are registered in the Service Registry to use them for service
discovery and message routing during execution. Subsequently, using the Recipient
List pattern, the list of workflow engine deployment endpoints is retrieved
from the Management Registry. Depending on the information configured in
the choreography deployment descriptor either the given workflow engines or
automatically chosen ones are retrieved for this task. In the latter case, the
middleware layer might randomly chose appropriate workflow engines or consider
other factors such as load if available. If a particular process bundle has to be
deployed on different types of workflow engines, the process deployment message
is cloned accordingly and routed in parallel to a message processor implementing
the Message Translator pattern, transforming the deployment messages into
the format the deployment endpoint of the particular type of workflow engine
understands. Finally, the transformed deployment messages are fanned out in
parallel to the selected workflow engine endpoints using again a Recipient List.

Also visible in Fig. 4 is the event route which is part of the Event Manager. It
listens to a Publish-Subscribe Channel to which the deployment event messages
of the workflow engines are published and updates the workflow model represen-
tations in the Event Registry. The deployment event messages are aggregated

ChorDesigner

Workflow Engine Legend
Event-Driven
Consumer

—=] Content-Based
= Router

Channel
Custom Message

Processor

Recipient List

Management Message Translator
Registr
R @ Message Endpoint

Event Registry

Fig.5: Control Route described using the Enterprise Integration Patterns

(Aggregator pattern) and the ChorDesigner is notified with a corresponding aggre-
gated event message after all workflow models have been successfully deployed.

3.3 Choreography Control

Figure 5 shows the Control Route composing the functionality of the Instance
Manager. The Control Route distributes the control messages realizing the post-
deploy life cycle management operations to the workflow engines, hence supporting
requirement R4 (choreography control). First, a control message coming from the
ChorDesigner is routed to the Instance Manager via a Content-Based Router,
where the respective operation is triggered using the same pattern. Subsequently,
the representation of the choreography instance is retrieved from the Event
Registry using custom logic in the route. The Recipient List pattern is used
to route the control message to the Message Translator processors for each
involved workflow engine. The type of the workflow engine is retrieved from the
Management Registry in this step. After translating the messages to the format
expected by the target workflow engines, a second Recipient List is employed to
clone and send the translated control messages for each target workflow engine.

The choreography start message and the subsequent creation of a choreography
instance is a special case of choreography control. An empty start message
structure is generated by reading the start activity information located in the
choreography deployment descriptor (see Fig. 3). The message structures are filled
manually by the user or employed to generate appropriate GUI elements for the
Modeling and Monitoring Environment. We satisfy requirement R2 (choreography
instantiation) with this functionality. The creation of a choreography instance
can also be combined with the deployment by retrieving the input parameters
prior to deployment and directly instantiating a choreography instance after
having deployed all workflow models. This further simplifies the usage of the
system for non-IT experts by abstracting from the technical deployment phase.

During instantiation, a unique choreography instance identifier is generated
and sent with the initial application message to the workflow engines in a
corresponding header, as well as in the application messages between the workflow
engines. Additionally, all emitted execution events contain this identifier. This
enables the correlation of all events and messages to a particular choreography
instance and therefore also its monitoring. The loss of control messages between
the middleware and the workflow engines is detected when no corresponding
event messages are received after a certain timeout period. The messages can be
re-sent assuming idempotent behavior at the workflow engine side.

3.4 ChorSystem Implementation

We have implemented the architecture of the ChorSystem using open source
software and open standards. More specifically, we employ BPEL4Chor [9] as
the choreography language and BPEL? as the executable workflow language.
The ChorDesigner and the ProcessDesigner are based on Eclipse® technologies,
while for the ESB Apache ServiceMix? is employed. The workflow engines are
based on Apache ODE?, and the message routes to compose the middleware
functionality are realized with Apache Camel®. The interested reader can find
more information on the ChorSystem implementation online”. Additionally, the
ChorSystem Middleware source code has been published on GitHub?®.

4 Evaluation

In the following, we evaluate the performance of the ChorSystem Middleware
life cycle operations and illustrate how the operations are triggered from the
Modeling and Monitoring Environment. .

4.1 ChorSystem Middleware

The evaluation of our proposal is conducted in an on-premise private cloud
environment, on a virtual machine (VM) equipped with 32 GB RAM and 8 virtual
CPU cores @3.00 GHz running an Ubuntu 14.04.4 Server 64bit operating system.
In the VM, a Docker engine® manages a set of Docker containers which host the
workflow engines, as well as one container with the ChorSystem Middleware. In
order to get comparable results when scaling, the workflow engine containers have
an upper memory limit of 1024 MB of memory each, whereas the middleware

2 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
3 https://eclipse.org/modeling/

4 http://servicemix.apache.org/

® http://ode.apache.org/

S http://camel.apache.org/

" http://www.iaas.uni-stuttgart.de/chorsystem/

8 https://github.com/chorsystem/middleware

9 https://www.docker.com/products/docker-engine

I 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Time in ms

B deploy Mstart Msuspend Mresume Mterminate undeploy

Fig. 6: Processing time share of the life cycle operations for one workflow engine

container is restricted to 4096 MB of memory. Otherwise, the Docker engine
would distribute all available memory evenly between each created container. We
employ Apache JMeter!? as load driver and as the means to define, setup, and
conduct the evaluation scenarios. JMeter triggers the Docker engine using its
REST interface to spin up the necessary number of Docker container instances for
each scenario as well as deleting them after measurement to reset the evaluation
environment. The JMeter instance is located in a separate VM equipped with
4 GB RAM and 2 virtual CPU cores @3.00 GHz running an Ubuntu 14.04.4
64bit operating system. A choreography model from the ALLOW Ensembles
project!! describing the booking of a trip in a smart city scenario [3] is our
choreography model of choice for the evaluation of the life cycle operations. It
is more suitable for the evaluation than the motivating example introduced in
Fig. 1, because of its significantly larger size. The model is described with the
BPEL4Chor language, transformed to executable BPEL and refined thereafter.
It consists of 8 participants with a mean size of 24.5 activities each and a mean
nesting depth of 4.5 structured activities, for example, BPEL scope or forEach
activities.

When comparing the execution time of the different life cycle operations we
observed that the deployment operation in general is the most time consuming one.
As shown in Fig. 6, the deploy operation for the trip booking choreography model
on one workflow engine node constitutes 70% of the processing time of all life cycle
management operations when measured in the above setup. Therefore, in the
following we focus on evaluating the execution time of the deploy operation only.
The actual execution time of the workflow models implementing the choreography
model is excluded completely from this evaluation because their execution is
conducted on the workflow engines and is only dependent on the middleware
for service lookup, and therefore does not influence the performance of the
ChorSystem Middleware itself.

The evaluation is divided into three distinct scenarios. In each scenario, we
start with one workflow engine node on which all eight participants are deployed
and gradually increase the number of workflow engines first by four, and then in

10 http://jmeter.apache.org/
" http://www.allow-ensembles. eu/

100

90

80

70

60

50

Timeins

40
30
20

10

0 5 10 15 20 25
#Workflow Engines

-e-Sequential deployment Parallel deployment -e-Deployment via ChorSystem Middleware

Fig. 7: Choreography deployment execution time

steps of five nodes until we reach 25 nodes in total. The process model deployment
is done through the web service interface for life cycle management of the workflow
engine. In the first scenario, we evaluate the deployment processing time when all
eight participant workflow models are directly deployed by JMeter on all running
workflow engine nodes in a sequential order, without leveraging the capabilities
of the ChorSystem Middleware. In the second scenario, each process bundle is
sent by JMeter in parallel to the running workflow engine nodes. In the third
scenario, we employ our ChorSystem Middleware using the information of the
choreography deployment descriptor to build a choreography deployment message
which is used to distribute the eight choreography participants on the engines.
Figure 7 shows the results of the evaluation'?. Each data point represents
the average of 10 runs. As expected, the parallel scenario is the fastest, because
JMeter opens as many threads as workflow engines are available and sends the
deployment bundles in parallel. As shown in the figure, it scales linearly with the
number of deployment bundles and workflow engines. The sequential scenario also
scales linearly but is much slower than the parallel one. The use of the ChorSystem
Middleware exhibits a similar performance trend as the parallel scenario. This
is due to inherent parallelism (e.g. the implementation of the Recipient List
pattern) in the deployment route. The difference to the parallel scenario can
be attributed to the overhead induced by the middleware layer for registering
all artifacts in the respective registries, and amounts to a deterioration of 45%
on average when comparing the two scenarios. However, this overhead seems

12 The employed choreography model, the workflow models, and the mea-
surement data can be found online: https://github.com/chorsystem/
chorsystem-life-cycle-evaluation

negligible considering the abilities gained to control the complete choreography
life cycle by the ChorSystem.

4.2 ChorSystem Modeling and Monitoring Environment

Figure 8 shows a screenshot of our ChorSystem Modeling and Monitoring Environ-
ment. The screenshot depicts the choreography introduced in Fig. 1'3. The user
is able to start, pause, resume, and terminate the execution via the corresponding
control buttons. If not already conducted in a previous run, the deployment is
triggered transparently in the ChorSystem Middleware when pressing the start
button. The modeling and monitoring canvas can be used to model choreogra-
phy logic with the elements provided by the modeling palette. Users with the
corresponding access rights can also switch to a more detailed view allowing
the refinement of the implementing workflows. During execution time of the
workflows, the execution state of each model element present in the choreography
model is propagated to the canvas where it is colored accordingly. In Fig. §,
already executed activities are colored green, while currently executing ones are
yellow. Correlating instance state with the modeling elements in the depicted
manner achieves the desired integration of modeling and monitoring. Authorized
users can also switch here to a more detailed view showing the execution state
on the workflow level.

5 Related Work

In the following, we compare our work with related ones from literature. In [17],
the authors propose an architecture for monitoring cross-organizational execu-
tions of choreographies. While the involved organizations execute their workflows
autonomously, messages between them are sent through an Enterprise Service
Bus and logged reliably. The purpose of logging in this work is run time validation
of the choreography execution. Our ChorSystem also uses the benefits of an
ESB for message routing as well as logging execution events, however, we do
not aim for run time validation but instead want to provide an environment for
transparent deployment, user-driven choreography control, flexibility mechanisms
as well as integrated modeling and monitoring capabilities. Run time validation
is an orthogonal issue that seems promising for integration in future work. The
ChorSystem architecture also bears resemblance to the decentralized orchestra-
tion, hub-supported architecture style described in [18]. However, we go beyond
supporting only the execution of choreographed orchestrations by managing the
complete choreography life cycle.

Wang and Pazat [21] use a chemistry-based analogy of tuple spaces to execute
distributed participants of a choreography. However, their work does not mention
how the deployment of the participant services is handled or how they can be

13 More screenshots with higher resolutions can be found online: http://www.iaas.
uni-stuttgart.de/chorsystem/

ChorDisgraméditor SimTech SIMPL Window

Help
Segoetl b s -

l@lB g nl NG e @ [@EuE] 50 ariGrerise o

[project plor 5 %[o~ = O)(@ “opalimd.chor disgram 5 Control-buttons

4 KMCSimul

£ KMCSimulation

4 sendSnapshothessagelink

@] callbackFromMDSimulationService

& sendresit

|

4 FlowActvitylink

4 sendResultsMessagelink

Modeling
& creepiot
palette
Modeling and monitoring canvas
_ bt
= Fragments

(2 Markers [properties 23 4 servers| W8 Data Source Explorer| £ Snippets,
2 Process
teoe | rame [KMCSmultion
Appesrance targetNsmespace hitpy/assuni-tutgart/kme
Messagebxchanges

Corlaions Property view

Fig. 8: Screenshot of the Modeling and Monitoring Environment

actively monitored and controlled. Another nature-inspired approach is presented
in [2], where web service compositions are executed by a distributed framework,
which is capable of calculating the most suitable service for a task. In [25], an
approach for monitoring cross-organizational processes is introduced. The authors
utilize complex event processing techniques to achieve their goal. Baouab et al. [5]
introduce an approach for the distributed monitoring of choreographies in the
context of supply chains. The approach assumes the existence of a hierarchal
chain of invocations between the choreography participants and proposes to
distribute event messages according to the hierarchy. However, none of these
works address our requirements for automated deployment and choreography life
cycle management.

The CHOReOS middleware [11] enables the execution of large-scale IoT
service choreographies and the probabilistic discovery of services during run time.
While this work discusses choreography deployment on an architectural level, it
does not provide any details about how the deployment is actually performed.
Furthermore, it does not consider user-driven choreography control.

6 Conclusions and Future Work

In this paper, we introduced a system for the management of the complete life
cycle from modeling to execution and monitoring of Collaborative, Dynamic &

Complex (CDC) systems which are realized by service choreographies. A ChorSys-
tem was proposed for the management of life cycle operations for choreographies
with a message-based ChorSystem Middleware placed between the choreography
Modeling and Monitoring Environment and the independent workflow engines
executing the choreography participants. The middleware’s functionality for
choreography deployment/undeployment and control is described and imple-
mented using the Enterprise Integration Patterns. We also proposed the use of a
choreography bundle and a choreography deployment descriptor, which captures
all information necessary for the transparent deployment of a choreography. The
ChorSystem Middleware enables the enactment of life cycle operations based on
the globally observed state. We evaluated the performance deviation introduced
by the ChorSystem Middleware which shows a processing time in proximity
to script-based parallel processing. Thus, we concluded that the performance
overhead compared to the parallel scenario is acceptable when the benefits of
choreography life cycle management are considered.

Since the ChorSystem so far only considers the initial deployment of a
choreography and does not provide support for the addition of new participants
or the replacement of failed workflow engines during runtime, we will extend our
system to also provide functionality for these scenarios in future. Furthermore,
we plan to combine the ChorSystem with the TraDE approach for transparent
choreography data management and data flow optimization [10]. The approach
decouples choreography data flow from control flow while optimizing the former
by analyzing the actual data dependencies between choreography participants
and shipping data accordingly. Additionally, we will also integrate our approach
with the work presented in [20], where the execution infrastructure for individual
workflows is provisioned on demand in a cloud environment. This orthogonal
concept can be leveraged to not only deploy the workflow models on existing
workflow engines but also provision the workflow engines themselves on demand.

Acknowledgment

This work is funded by the projects FP7 EU-FET 600792 ALLOW Ensembles
and the German DFG within the Cluster of Excellence (EXC310/2) Simulation
Technology and the DFG Project SitOPT (610872).

References

1. van der Aalst, W., Weske, M.: The p2p approach to interorganizational workflows.
In: CAiSE’01, pp. 140-156. Springer (2001)

2. Ahmed, T., Mrissa, M., Srivastava, A.: MagEl: A Magneto-Electric Effect-Inspired
Approach for Web Service Composition. In: ICWS’14. pp. 455-462. IEEE (2014)

3. Andrikopoulos, V., Bucchiarone, A., Gémez Séez, S., Karastoyanova, D., Mezzina,
C.A.: Towards Modeling and Execution of Collective Adaptive Systems. In: Pro-
ceedings of WESOA’13. pp. 69-81. Springer (2013)

% N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Andrikopoulos, V., Gémez Saez, S., Karastoyanova, D., Weif}, A.: Collaborative,
Dynamic & Complex Systems: Modeling, Provision & Execution. In: CLOSER’14.
pp. 276-286. SciTePress (2014)

. Baouab, A., Fdhila, W., Perrin, O., Godart, C.: Towards Decentralized Monitoring

of Supply Chains. In: ICWS’12. pp. 600-607. IEEE (2012)

Barga, R., Gannon, D.: Scientific versus Business Workflows. In: Workflows for
e-Science, pp. 9-16. Springer (2007)

Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc. (2004)

Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies. Inf.
Technology 50(2), 122-127 (2008)

Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: from specifica-
tion to execution. Data & Knowledge Engineering 68(10), 946-972 (2009)

Hahn, M., Karastoyanova, D., Leymann, F.: Data-Aware Service Choreographies
through Transparent Data Exchange. In: ICWE’16. pp. 357-364. Springer (2016)
Hamida, A. B. et. al: Integrated CHOReOS middleware-Enabling large-scale, QoS-
aware adaptive choreographies (2013)

Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional (2004)

Knuplesch, D., Reichert, M., Pryss, R., Fdhila, W., Rinderle-Ma, S.: Ensuring
compliance of distributed and collaborative workflows. In: Collaboratecom’13. pp.
133-142. IEEE (2013)

Kopp, O., van Lessen, T., Nitzsche, J.: The Need for a Choreography-aware Service
Bus. In: YR-SOC 2008. pp. 28-34 (2008)

Molnar, D., Mukherjee, R., Choudhury, A., Mora, A., Binkele, P., Selzer, M., Nestler,
B., Schmauder, S.: Multiscale simulations on the coarsening of cu-rich precipitates
in a-fe using kinetic monte carlo, molecular dynamics and phase-field simulations.
Acta Materialia 60(20), 6961-6971 (2012)

Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: A research roadmap. Int. J. of Coop. Inf. Systems 17(02), 223-255 (2008)
von Riegen, M., Ritter, N.: Reliable Monitoring for Runtime Validation of Chore-
ographies. In: ICIW’09. pp. 310-315. IEEE (2009)

Schroth, C., Janner, T., Hoyer, V.: Strategies for Cross-Organizational Service
Composition. In: Int. MCETECH Conf. on e-Technologies. pp. 93-103 (2008)
Sonntag, M., Karastoyanova, D.: Model-as-you-go: An Approach for an Advanced
Infrastructure for Scientific Workflows. Grid Computing 11(3), 553-583 (2013)
Vukojevic-Haupt, K., Karastoyanova, D., Leymann, F.: On-demand Provisioning of
Infrastructure, Middleware and Services for Simulation Workflows. In: SOCA’13.
pp. 91-98. IEEE (2013)

Wang, C., Pazat, J.L.: A Chemistry-Inspired Middleware for Self-Adaptive Service
Orchestration and Choreography. In: CCGrid’13. pp. 426433 (2013)

WeiB, A., Andrikopoulos, V., Hahn, M., Karastoyanova, D.: Rewinding and Repeat-
ing Scientific Choreographies. In: OTM’15. pp. 337-347. Springer (2015)

WeiB}, A., Karastoyanova, D.: A Life Cycle for Coupled Multi-Scale, Multi-Field
Experiments Realized through Choreographies. In: EDOC’14. pp. 234-241. IEEE
(2014

VVeiB,)A.7 Karastoyanova, D.: Enabling coupled multi-scale, multi-field experiments
through choreographies of data-driven scientific simulations. Computing 98(4),
439-467 (2016)

Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F., Zwink, D.: Cross-
Organizational Process Monitoring based on Service Choreographies. In: SAC’10.
pp. 2485-2490. ACM (2010)

