
Addressing TCAM Limitations of Software-Defined Networks
for Content-Based Routing

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel
University of Stuttgart, Germany

{firstname.lastname}@ipvs.uni-stuttgart.de

ABSTRACT

In recent years, content-based publish/subscribe middleware has

harnessed the power of Software-Defined Networking (SDN) to

leverage performance gains in terms of throughput rates, end-to-

end latency, etc. To this end, content filters are directly installed

on the Ternary Content Addressable Memory (TCAM) of switches.

Such a middleware assumes unlimited TCAM space to deploy con-

tent filters. However, in reality, TCAM is a scarce resource and the

number of flow table entries available for publish/subscribe traffic

is severely limited. While such a limitation poses severe problems

for the deployment of publish/subscribe middleware in practice, it

is yet to be addressed in literature.

So, in this paper, we design a filter aggregation algorithm that

merges content filters on individual switches to respect TCAM

constraints while ensuring minimal increase in unnecessary net-

work traffic. Our algorithm uses the knowledge of advertisements,

subscriptions, and a global view of the network state to perform

bandwidth-efficient aggregation decisions on necessary switches.

We provide different flavors of this algorithm with varying degrees

of accuracy and complexity and thoroughly evaluate their per-

formances under realistic workload. Our evaluation results show

that our designed aggregation algorithm successfully meets TCAM

constraints on switches while also reducing unnecessary traffic

introduced in the network due to aggregation as compared to a

baseline approach by up to 99.9%.

CCS CONCEPTS

•Networks→ Network services; •Computer systems organi-

zation→ Distributed architectures;

KEYWORDS

SDN, Publish/Subscribe, Content-based Routing, TCAM Limita-

tions, Filter Aggregation

ACM Reference format:

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt

Rothermel. 2017. Addressing TCAM Limitations of Software-Defined Net-

works for Content-Based Routing. In Proceedings of Distributed and Event-

Based Systems, Barcelona, Spain, June 19-23, 2017 (DEBS ’17), 12 pages.

DOI: http://dx.doi.org/10.1145/3093742.3093924

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DEBS ’17, Barcelona, Spain

© 2017 ACM. 978-1-4503-5065-5/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3093742.3093924

1 INTRODUCTION

Content-based publish/subscribe (pub/sub) is a widely adopted

communication paradigm designed to enable loosely coupled pro-

ducers (publishers) and consumers (subscribers) of information to

interact in a bandwidth-efficient manner. More specifically, sub-

scribers express specific interests (subscriptions) that determine

content filters which are installed on content-based routers along

the paths between publishers and subscribers. These content filters

ensure the forwarding of only relevant content to each interested

subscriber, thus ensuring bandwidth efficiency in the pub/sub sys-

tem. Over the past decade, content-based pub/sub has primarily

been realized as an overlay network of software brokers. However,

such broker-based routing and content filtering in software results

in performance (e.g., end-to-end latency and throughput) that is

far behind the performance of network layer implementations of

communication protocols.

To mitigate the aforementioned problems and achieve line-

rate performance in content-based pub/sub systems, the power

of software-defined networking (SDN) has been harnessed in re-

cent times. SDN has enabled the realization of a content-based

pub/sub system [6, 29] that performs routing and filtering of con-

tent directly on the network layer, improving performancemanifold.

SDN makes this possible by offering standards like Openflow [14]

that can be used to allow software to flexibly define the network.

More specifically, SDN enables the extraction of all control logic

from hardware switches and its hosting on a logically centralized

server called controller, thus establishing a clear separation of the

control plane and the data/forwarding plane. The logically cen-

tralized controller (control plane) has a global view of the entire

network and can flexibly configure it in an optimal manner. Such

capabilities are easily exploited by content-based pub/sub which

uses the global network view at the controller to establish paths

between publishers and subscribers. To this end, content filters

are translated into forwarding rules or flows and installed on the

Ternary Content Addressable Memory (TCAM) of switches along

each path, thus enabling direct filtering of published content on

hardware switches.

Clearly, the efficient mapping of content filters to forwarding

rules or flows installed on TCAM is key to the expressiveness of

an SDN-based pub/sub middleware. More specifically, a content

filter is mapped to the match field (IP address, VLAN tag, etc.) of a

forwarding rule which enables header-based matching of packets

and subsequent forwarding based on the installed rule to interested

subscribers. So, the importance of these forwarding rules (content

filters) on TCAM is paramount as they directly impact the amount

of unnecessary traffic in the network. As a result, the objective

is to make these content filters as expressive as possible in order

to ensure the forwarding of relevant traffic only. However, this

bhowmisa
Text Box
© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in proceedings of 11th International Conference on Distributed Event-based Systems, Barcelona, Spain, June 19 -
June 23, 2017. http://dx.doi.org/10.1145/3093742.3093924

DEBS ’17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

objective faces a serious challenge due to an inherent hardware

limitation.

TCAM is an expensive, power-hungry resource and as a result

the number of flow table entries (forwarding rules) available for

content filtering is limited in hardware switches. Most switch

vendors design Openflow-enabled switches that typically support

up to a couple of thousands of flow entries per switch [16, 21], and

such a hardware limitation has already been the subject of much

research in the past [5, 16, 19, 21]. The main reason behind the

design of TCAM with such limited space is the inherent trade-off

between table size and other factors such as power and cost. In fact,

studies show that compared to conventional RAM, TCAM consumes

almost 100 times more power [28] and has almost 100 times more

cost [3]. As a result, applications should only rely on a limited

number of flow entries for their design. Moreover, considering

traffic from various applications being routed over the switches of

a network, the number of flow entries reserved for content-based

routing is merely a fraction of the entire capacity of TCAM on a

switch. To address such a limitation, Bhowmik et al., in [5], propose

the installing of a subset of filters on hardware and the remaining on

software by designing a hybrid pub/sub middleware where filtering

of content occurs both in the application layer and the network

layer. However, this implies higher end-to-end latency and reduced

throughput rates for the traffic that is filtered in software.

To ensure that all content filters are accommodated in the net-

work layer (ensuring line-rate performance), given the constraint

on available flow table entries, in this paper, we propose the deploy-

ment of aggregated filters (i.e., merged flows) on switches. However,

aggregation/merging of filters may compromise preciseness of the

filters w.r.t. the subscriber interest they represent, increasing un-

necessary traffic in the network. This may significantly impact

bandwidth efficiency in a content-based pub/sub system where

much of the benefit provided by content-based routing would be

rendered less effective due to the aggregation of filters. As a result,

this paper focuses on minimizing bandwidth usage by unneces-

sary traffic in the network despite the given constraint on available

TCAM for pub/sub traffic by judiciously making filter aggregation

decisions based on multiple factors. In particular, this paper designs

techniques that use the knowledge of advertisements, subscriptions,

and global network state to optimize the aggregation process such

that the overall amount of unnecessary traffic in the network can

be kept to a minimum. We realize and thoroughly evaluate, in both

emulated environments and a real SDN testbed, a filter aggregation

algorithm with different flavors having varying degrees of accu-

racy and complexity. Our evaluation results show that, in order

to respect TCAM constraints of individual switches, the designed

algorithm can perform efficient aggregation decisions that result in

almost negligible unnecessary traffic in the network under realistic

workload. In fact, it reduces unnecessary traffic introduced in the

network due to aggregation by a baseline approach by up to 99.9%.

2 SDN-BASED PUB/SUB MIDDLEWARE

In this section, we provide a brief overview of a content-based

pub/sub middleware using SDN, i.e., PLEROMA [6, 29], already ex-

isting in literature that provides an insight on how existing systems

realize SDN-based pub/sub.

S2P

Controller

Hardware Filtering using flow tables
Match Field Instruction

Dest IP Out Port

11

Mapping to IPv6 ff0e:c000:*

IP Prefix

01

10

11

00

Temperature (T)
0 100

100

Pr
es

su
re

 (P
)

Advertisements Subscriptions

sub1 = {T = [50, 100] P = [50, 100]}
sub2 = {T = [50, 100] P = [0, 50]}

sub2

S1

sub1

sub2
2

31
R

sub1
0 1

Temperature (T)
0 100

100

Pr
es

su
re

 (P
)

Flow table on R

fl1 11* 2
fl2 10* 3

sub1

sub2

sub3

MF IS

Figure 1: SDN-based Pub/Sub Middleware

The content-based pub/sub middleware designed on software-

defined networks, called PLEROMA, consists of mainly two

participants—the publisher and the subscriber. A publisher, the

producer of content, specifies the content it intends to publish by

sending advertisements to the SDN controller. Similarly, a sub-

scriber, the consumer of content, specifies content it is interested

in receiving by sending a subscription to the controller. With the

information of these advertisements and subscriptions, the logically

centralized controller installs content filters on the path between

each publisher and its interested subscriber. The widely adopted

Openflow standard is used to deploy content filters as match field

of flows in the TCAM of Openflow-enabled switches. For example,

in Figure 1, the publisher P and the subscriber S1 send an adver-

tisement and a subscription respectively to the controller which

installs content filters along the path between them. Now, when

a publisher publishes content (events), header-based matching of

the event packets against the installed flow entries is performed

and packets are forwarded as dictated by the flow on account of a

match at line-rate.

As impressed upon in the previous section, the effectiveness of a

content-based pub/sub middleware largely depends on the efficient

mechanism used to represent content expressively. For this pur-

pose, a content-based subscription model where published events

are represented as attribute-value pairs and advertisements and

subscriptions (i.e., content filters) are represented as conjunction

of filters on these attributes is used. Moreover, the content filters

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing DEBS ’17, June 19-23, 2017, Barcelona, Spain

need to be efficiently mapped to a match field of the flow table en-

tries. Similarly, the events need to be mapped to the corresponding

header field of the published packets. This is performed with the

help of a two-step process.

The first step involves mapping values and ranges of values (con-

tent filters) along attributes to binary strings in order to represent

them in flow table entries/packet headers. Various techniques may

be employed to perform this conversion of content to binary form,

which includes the use of bloom filters [8], spatial indexing [29],

etc. Since, in literature (e.g. PLEROMA), spatial indexing has been

primarily used for this purpose, in this paper too, we specifically

look at spatial indexing and its effects on TCAM space. However,

please note that the developed concepts in this paper also apply

to other flavors of SDN-based pub/sub using different mapping

techniques. In spatial indexing, the event-space (denoted by Ω) is
represented geometrically as a ω-dimensional space where each

dimension represents a content attribute. Recursive binary decom-

position of Ω generates regular subspaces that serve as enclosing

approximations for advertisements, subscriptions and events which

are represented by binary strings known as dzs. To illustrate spatial
indexing, let us take the example of Figure 1 where a subscriber

S1 has a subscription sub1 : {T = [50, 100] ∧ P = [50, 100]}. The

recursive decomposition of Ω to the closest possible approximation

of sub1 yields the dz {11}.
The dzs have characteristic properties based on the subspaces

they represent. For example, (i) the shorter a dz, the larger is the
corresponding subspace it represents. This is depicted in Figure 1

where the dz {1} clearly represents a subspace which is larger than

and contains the subspace {11}. So, more expressive a content filter

is, more fine granular is the recursive binary decomposition and

longer are the resulting dzs. The previous example also illustrates

another property of spatial indexing that (ii) the dz of a subspace
has a prefix equivalent to the dz of the subspace containing it. This

property ensures that an event (i.e., a point in Ω), represented by

a longer dz is considered a match for all subspaces containing it

simply through a prefix match. Finally, (iii) spatial indexing may

generate a set of dzs for the same subscription resulting in multiple

flows for the same subscription. This can be seen in Figure 1 where

the subscription sub3 (represented by the yellow subspace) will

need to be represented by at least two dzs, {01} and {11}, in the

2-bit representation of the subscription. In fact, further division of

Ω will yield longer and more precise representation consisting of

even more dzs for sub3. Where on one hand multiple dzs for the
same subscription adds to the expressiveness of filters, on the other

hand they occupy more space in the expensive TCAM.

After binary representation of content, the second step is to map

dzs representing content filters to the designated match field in

flow entries and dzs representing events to the corresponding field

in packet headers. To this end, a range of IP multicast addresses

(e.g. IPv6) is chosen as destination IP addresses in the match field of

flows as well as in the packet headers. Mapped dzs are appended to
a fixed prefix in the destination IP address, e.g., ff0e (representing

the IPv6 multicast address range available to pub/sub traffic). So,

a subscription (i.e., content filter) is represented by an IPv6 multi-

cast address which is used by the flow entries in the flow tables of

switches for event matching and forwarding. The prefix matching

of events against installed flows is enabled in IP addresses with the

help of Class-less Interdomain Routing (CIDR) style masking sup-

ported by Openflow-enabled switches where masks are represented

by the ’don’t care’ symbol (*). The entire process of converting con-

tent to match field of flows is illustrated in Figure 1, where, for

example, the subscription sub1 from S1 is first spatially indexed

into a dz {11}. Next, the dz is mapped to an IPv6 address which is

used as a destination IP match field on all switches along the path

between P and S1. Similarly, the subscription sub2 (i.e., {10}) from
S2 is converted to an IPv6 address and installed on all switches

between P and S2. The flow table of the switch R depicts the flow

entry fields, i.e., match field (MF) and instruction set (IS), relevant to

this middleware. For example, in f l1 the IPv6 multicast address rep-

resenting the dz {11*} constitutes the match field and the outgoing

port 2 constitutes the instruction set which dictates the forwarding

of an event packet through the specified port on account of a match.

So, an event where the destination IP address field in the packet

header represents the dz {110000101000} will be forwarded by R
through outgoing port 2 as this event will match f l1.

Just as there exists containment relations between dzs, similarly

flows on a switch are related. In the context of this pub/sub mid-

dleware, flow relations may be defined as follows [29]. A flow

f li covers (or contains) another flow f lj , denoted by f li � f lj , if
the following two conditions hold: (i) the dz associated with the

destination IP address in the match field of f lj is covered by the

dz of f li , and (ii) the out ports to which a packet matching f lj is
forwarded are subset of those specified in the IS of f li . Likewise,
a partial containment relation (�) can be defined between flows

of a switch. A flow f li partially covers (or contains) another flow

f lj , denoted by f li � f lj , if dz associated with the match field of

f li covers dz of f lj , but not all the out ports used for forwarding

packets matching f lj are listed in the IS of f li . Otherwise, two
flows are disjoint or unrelated. For example, in figure 1, the two

flows f l1 and f l2 on R are unrelated as the dzs associated with their
IP addresses in the match fields are unrelated. While installing a

flow f ln on a switch for a new advertisement or subscription, f ln
is installed only if there is no existing flow f le on that switch that

covers f ln . If f le � f ln , then f ln is redundant as the traffic for it is

already forwarded by f le . In the reverse case, i.e., if f ln � f le , f le
is removed and f ln installed for the same reason. A new flow is

only installed if it is unrelated or has a partial containment relation

with existing flows. This ensures that no redundant flows exist on

any switch as TCAM is a scarce resource.

3 IMPACT OF TCAM LIMITATIONS

From the above discussion on spatial indexing of content and its

subsequent conversion to flow entries, it is quite evident that more

expressive representation of subscriptions demands the installation

of multiple flows on a switch. In fact, as mentioned before, even a

single subscription may yield multiple dzs which results in multi-

ple flow entries. Also, typically, applications using content-based

pub/sub may have up to millions of subscribers which might re-

quire deployment of millions of filters. With such high demand of

TCAM resources, it is very natural to run out of TCAM space in

such applications. A limited number of available flow table entries

implies two paths of action—ignoring any subsequent subscription

DEBS ’17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

filters once TCAM capacity is reached, or aggregating flows to re-

duce occupied TCAM space. The former will lead to false negatives

(i.e., events that are not forwarded to interested subscribers), which

is of course not acceptable in the context of this pub/sub middle-

ware, and the latter may result in false positives (i.e., events that are

forwarded to uninterested subscribers) which means unnecessary

bandwidth usage. In this paper, we employ the latter, i.e., aggregate

or merge filters, while also striving for bandwidth efficiency.

Before we discuss the details of the filter aggregation problem,

it is important to understand the manner in which we can merge

flows and the impact of these merges. When a flow f li is merged

with a flow f lj , the match field of the resultant flow f lr has a dz
that covers both dzf li and dzf lj . In the context of spatial indexing,

this effectively means that the resultant dz is the longest common

prefix of the twodzs. For example, ifdzf li ={1101} anddzf lj ={1110},
then dzf lr ={11}. Also, the instruction set for f lr will be the union
of outgoing ports (i.e., oP) of f li and f lj . So, if oPf li ={1,2} and
oPf lj ={2,3}, then oPf lr ={1,2,3}. Note, according to the previously

defined flow containment relations, f lr � f li and f lr � f lj irre-
spective of the relation between f li and f lj . Here, we also define

two other operations ’+’ and ’-’ in the context ofdzs. The expression

dz1 + dz2 simply refers to the two subspaces representing the two

dzs being addressed together. The expression dz1 - dz2 refers to that
part of the subspace representing dz1 that does not overlap with

dz2. In this example, after the aggregation, f lr forwards all traffic

matching {11} through ports{1,2,3} which means that all traffic ly-

ing in the subspace {11-1101} are false positives forwarded by port

1, all traffic lying in the subspace {11-1110} are false positives for
port 3, and all traffic lying in the subspace {11-(1101+1101)} are false
positives for port 2. So, we see how even a single merge (merely

aggregating two flows) can result in forwarding of a significant

amount of false positives in the network.

4 FILTER AGGREGATION PROBLEM

It is clear from the above discussion that it is very important to

select the combination of flows that should be merged on a switch

as the decision directly impacts false positives in the system. As a

result, in this paper, we address the filter aggregation problem. More

specifically, we consider a given systemwhere switchesmay need to

install sets of flows that are more than the TCAM capacity available

to them and attempt to aggregate flows from the given set of original

flows to meet the capacity requirements of individual switches in a

bandwidth-efficient manner. Note that different switches may have

different TCAM capacity available to pub/sub traffic, depending on

other applications using these switches, as specified by the system

administrator.

More formally, let R be the set of all switches in the network and

FRi be the set of all flows that should be deployed for a given set of

advertisements and subscriptions on switch Ri where f l ∈ FRi . Let
capRi be the maximum TCAM capacity of switch Ri available for
pub/sub traffic. For each switch Ri , we need to determine a set of

flows SFRi belonging to and aggregated from FRi that is within the

given TCAM capacity. Let CRi be the aggregation cost, in terms of

unnecessary traffic forwarded due to aggregation of filters, ofRi . So,
our objective is to determine the set SFRi subject to |SFRi | ≤ capRi

S2

P1
S1 sub1

sub2

2
3

1 R3R1
2

1
R2

21

fl1 1 1101* 2
fl2 1 1110* 2

iP dz oP

fl1 1 1101* 2

fl2 1 1110* 2

iP dz oP

fl1 1 1101* 2
fl2 1 1110* 3

iP dz oP

1101

1110

S2

P1
S1 sub1

sub2

2
3

1 R3R1
2

1
R2

21

fl1 1 1101* 2
fl2 1 1110* 3

1101

1110

S2

P1
S1 sub1

sub2

2
3

1 R3R1
2

1
R2

21 1101

1110
flr 1 11* 2

fl1 1 1101* 2
fl2 1 1110* 2

flr 1 11* 2

flr 1 11* 2

flr 1 11* 2,3

adv1
11

(a)

(b)

(c)

Figure 2: Importance of upstream switch filters

for each Ri ∈ R such that
∑ |R |
i=1CRi , i.e., overall unnecessary traffic

in the network due to aggregation of filters, is minimum.

Problem Analysis : The defined problem specifies minimizing

the aggregation cost on each individual switch such that the overall

amount of unnecessary traffic in the network can be kept to a

minimum. The aggregation cost of a switch is nothing but the

sum of the aggregation cost of all the flow merges made on that

switch to meet the TCAM capacity of that switch. As a result, while

deciding on the filters to be aggregated on a switch, the aggregation

cost of each possible merge should be calculated. However, just

looking at the flow information local to a switch for a possible

local merge is not the optimal way to determine its cost as our

investigation into the defined problem shows that existing filters

on other switches in the network have a significant role to play on

the aggregation cost of a merge. In fact, the main challenge in the

filter aggregation problem is the determination of the aggregation

cost of each possible merge on a switch which depends largely on

the already installed filters on switches in the upstream paths of

the aggregated filter.

To understand the importance of filters on switches in the up-

stream paths of a filter being considered for a merge, we look at an

example depicted in Figure 2. Figure 2(a) shows a system with a

publisher and two subscribers and their respective advertisement

and subscriptions which result in the deployment of the depicted

flows on the three switches. Each flow is depicted by the flow name,

incoming port (iP), dz constituting the destination IP address, and

the outgoing ports (oP) in IS. Let us assume that R2 can only accom-

modate a single flow. As a result, f l1 and f l2 on R2 are merged, in

the manner explained in Section 3, to compose f lr as depicted in

Figure 2(b). f l1 and f l2 had the same incoming and outgoing ports

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing DEBS ’17, June 19-23, 2017, Barcelona, Spain

and as a result only the filter subspace in f lr gets expanded. Now,
R2 will forward all traffic matching {11*} instead of just {1101*} and
{1110*}. However, if we look upstream, we see that R1 will already
filter out any traffic that does not lie within the subspaces {1101}
and {1110} in Ω. As a result, the merge at R2 does not impact the

false positives in the system as R2 does not receive any additional

false positives from its upstream path and acts as only a forwarder

in Figure 2(b). However, the scenario is different in Figure 2(c)

where there is a need to merge the two flows on R1. In this case, not

only does R1 forward all traffic matching {11*}, but also these false

positives get forwarded by R2 due to the aggregation of its filter.

At R3 too, owing to a merge, these false positives from previous

switches do not get filtered out. In fact, as the resultant flow com-

bines the outgoing ports of the two original flows f l1 and f l2 on
R3, false positives are now forwarded along both downstream links

of R3. Port 2 forwards false positives lying within the subspace

{11 - 1101} and port 3 forwards those lying within {11 - 1110}. If
the upstream filters at R1 or R2 were precise, then f lr on R3 would
only forward false positives lying within {1110} through port 2

and {1101} through port 3 as the remaining would be filtered out

upstream. This example clearly indicates that even if filter expan-

sion occurs, false positives forwarded by a merged flow depends on

the filter aggregation on upstream switches. Also, even if no filter

aggregation occurs on the upstream path, an aggregation involving

merging of two or more flows whose outgoing ports are not subsets

of each other will result in traffic meant to be forwarded by one port

being forwarded by the remaining ones as well. This will always

result in false positives along all involved outgoing ports (cf. R3 in
Figure 2(c)).

Clearly, due to the importance of flows in the upstream paths, a

merge on a switch based on flow information local to that switch

is not the most optimal solution. As a result, while calculating the

cost of a possible merge on a switch, we propose to consider the

global view of the network state to avoid as much unnecessary

traffic as possible due to aggregation.

5 FILTER AGGREGATION ALGORITHM

While defining our filter aggregation problem, we specify that the

input to the problem is a set of flows which need to be aggregated

to meet the TCAM capacity of the switches and this set of flows

is maintained by the controller based on the current subscriptions

and advertisements in the system. Let us assume that ER ∈ R is

the set of switches in the network where one or more flows need

to be aggregated, i.e., ∀Ri ∈ ER, |FRi | > capRi . So, now, we need
to reduce the number of flows according to the given capacity on

each switch in ER.

Approach Overview: As discussed in the previous section, our

objective is to reduce the combined aggregation cost of all switches

in the network. So, it is important to reduce the aggregation cost

of each individual switch. While doing so, we try to aggregate

those flows that result in minimum aggregation cost for the switch

while staying within the maximum available TCAM capacity. As

a result, the main idea behind the filter aggregation algorithm is

to calculate the aggregation cost of each possible flow merge on a

switch R ∈ ER and then select a combination of those flow merges

that would result in minimum combined aggregation cost for the

*

0 1

mk

fl3

fl1 fl2

fli flj

1 : 0000101 : 2,3 1 : 00001111 : 3

flm1 = 1 : 00001 : 2,3

1 : 0001101 : 2

flm2 = 1 : 000 : 2,3
m2
000

m1
00001

Figure 3: Merge Point Tree for Incoming Port 1

switch below its designated capacity. As we saw in the previous

section, the aggregation cost of a possible merge depends on filters

installed on previous switches. In fact, the main challenge that

the filter aggregation algorithm faces is the determination of an

efficient cost function for a possible merge that captures various

factors of the aggregation cost, including dependencies on upstream

switch filters.

So, in the remaining part of this section, we introduce the details

of the mechanisms used to (i) identify the possible combinations of

flow merges on each switch, (ii) calculate the cost and benefit for

each of these flow merges, (iii) select the set of merges resulting in

minimum aggregation cost for the switch such that the resultant

number of flows is within the capacity threshold for the switch.

5.1 Selecting Flow Merges on a Switch

When a switch exceeds its flow limits, various combinations of

flows may be merged to reduce the flow count on that switch. We

denote every possible merge as a merge point. So, the objective is

to select an ideal set of merge points on a switch that has minimum

combined aggregation cost. In fact, to determine all possible merge

points on a switch, we create a prefix tree called the merge point

tree which contains all possible merge points. However, not all

flows can be merged to create a merge point. Two flows cannot

be merged if one of the outgoing ports of a flow is the incoming

port of the other. This will lead to cycles in the network and we call

these flows with such a conflicting relation as conflicting flows. So,

clearly, merge points are only possible for non-conflicting flows.

For the sake of simplicity, we create a separate merge point tree

for every incoming port of a switch, i.e, merge points in the tree

merge flows that have the same incoming port. This ensures the

absence of conflicting flows within each tree as this eliminates the

possibility of merging two flows where the incoming port of one is

among the outgoing ports of the other. Of course, while selecting

the ideal set of merge points for a switch, all merge points across

all trees are considered.

So, a merge point tree is a prefix tree where every non-leaf node

is a merge point and every leaf node is a flow. In the tree, a merge

point signifies the minimum filter expansion required to cover two

DEBS ’17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

or more unrelated filters. So, a flow is merged with another flow if

this results in minimum filter expansion for this flow as compared

to the filter expansion when merged with others. The first step

towards creating a merge point tree is to identify the flows ∈ F with

the longest common prefixes among all flows and perform their

respective merges to create merge points. So, within the tree these

identified flows with longest common prefixes form the lowest level

nodes and the newly created merge points form the nodes at the

immediate upper level of the tree. At the following upper levels,

merging according to longest common prefix continues, this time

with not only the remaining flows but also the merge points from

the lower levels until we finally arrive at the root of the merge point

tree which represents a filter covering the entire event space Ω. For
example, Figure 3 depicts a merge point tree aggregating all flows

with a specific incoming port 1. This merge point tree depicts merge

points and flows where flows have the format iP : dz : oP . In this

example, let us assume that f l1 and f l2 have the longest common

prefix, i.e., {00001}, among all flows and therefore reside on the

lowest level of the tree. So, when they are merged, their immediate

merge point ism1 with a dz of {00001}. So, the resultant flow atm1,

i.e., f lm1 , represents the filter with minimum expansion required

to forward the traffic for both f l1 and f l2. We continue building

the tree upwards, now, with not only remaining flows but also all

newly created merge points from the already existing levels. So, let

us assume, that a flow f l3 shares the longest common prefix with

m1. So, at the next upper level,m1 and f l3 are merged to create

m2. Please note that two merge points of a level may similarly be

merged based on their common prefixes. The entire merge point

tree is built once the root representing the entire space is reached.

A merge point tree contains all flows on the switch and all possible

merges signified by the merge points. Since a merge point merges

all flows belonging to its child nodes, clearly, a merge point in the

upper level of the tree merges more flows as compared to a merge

point at a relatively lower level. For example, aggregation atm1

reduces the flow count on the switch by 1 as f lm1 aggregates 2

flows. However, aggregation atm2 at an upper level reduces flow

count by 2 as f lm2 aggregates 3 flows f l1, f l2, and f l3. Even though
m2 reduces more flows, there is a possibility that it forwards more

false positives as the filter expansion for f l1 and f l2 is more atm2

than atm1.

Once all merge points are determined for the switch being pro-

cessed, the aggregation cost for each of them is calculated to de-

termine the final set of merges on the switch. We explain the cost

calculation at each merge point in details in the following sub-

section 5.2. Having calculated the aggregation cost (C) for every
possible merge point across all merge point trees of a switch, we

also determine the benefit (denoted by B) of each merge. The benefit

is, simply, the number of flows reduced on the switch due to the

merge (i.e., Bm = number of flows covered by merge pointm - 1).

Next, we calculate the cost per benefit of each merge point m, i.e.,

Cm/Bm and sort the merge points on a switch in the increasing

order of cost per benefit. For a switch, say Ri , we start selecting
merge points with minimum cost per benefit for the final set of

selected flows (SFRi) on Ri . We start with all original unaggregated

flows in SFRi . Once a merge pointm gets selected, (i) all original

flows covered bym are removed from SFRi , (ii) the flow f lm atm
is added to SFRi , (iii) the next step depends on one of the following

2
3

1 R3R1
3

1
R2

21

fl1 1 010* 3
fl2 1 001* 3

iP dz oP

fl3 1 010* 2
iP dz oP

fl5 1 0100* 2
fl6 1 0010* 3

iP dz oP

fl4 1 00* 2

flm 1 0* 2,3

010
0100

00

001

0100

0010

0100

0010

dzflm = 0

(b)(a)

0010

(c)

fpSpace
for oP=2

of flm

2

0010

0100

Figure 4: Cost Calculation

three scenarios—(a) if a merge pointmj is covered by the selected

merge point m (i.e., m � mj), then mj is removed from the set

of merge points as it is now redundant, (b) if a merge point mj

covers the selected merge point m (i.e.,mj � m), thenmj cannot

be removed but its cost and benefit get reduced as some of its cost

and benefit has already been considered when selectingm, and (c)

ifm has no relation with any other merge point then no action is

taken. After each selection, the set of merge points is re-sorted and

the next merge point with least cost per benefit is selected until

|SFRi | ≤ capRi , i.e., the number of flows on Ri is within the TCAM

capacity of the switch.

Once the final set of flows for every switch which exceeds TCAM

capacity is determined, the flow changes are pushed onto the phys-

ical network and all hardware switches in the network are updated

accordingly. This concludes the final step of the filter aggregation

algorithm.

5.2 Aggregation Cost at a Merge Point

As the final selection of merge points on a switch depends largely

on their cost per benefit value, determination of the cost (in terms

of false positives forwarded by the aggregated filter) for each merge

is an integral part of this algorithm. The aggregation cost of a

possible merge is nothing but the amount of additional network

false positives that the merge could introduce along its downstream

paths.

So, in order to calculate the cost of a merge point, say m, we

need to, firstly, identify the incoming traffic at the incoming port

of the merged flow f lm at m as only this traffic is relevant for

forwarding by f lm . With regards to incoming traffic, note, there

may be multiple incoming paths (iPaths) from multiple publishers

that forward traffic to the incoming port of f lm . The key factors

in determining the incoming traffic are the traffic load of each

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing DEBS ’17, June 19-23, 2017, Barcelona, Spain

publisher intended to be forwarded along iPaths and the upstream

switch filters which influence the filtering of this published traffic.

Secondly, we need to identify the false positives (f p) from this

incoming traffic that f lm forwards along its downstream paths.

While calculating downstream false positives forwarded by f lm for

a specific path, note that each outgoing port, op ∈ oP of f lm has its

own set of downstream paths to subscribers. Let the downstream

links of the downstream paths of an outgoing port be denoted

by dLinks . Also, each outgoing port forwards its own share of

false positives after the merge based on the traffic it was meant to

forward as per the original flows. For example, atm1 in Figure 3,

outgoing port 2 forwards false positives lying within the subspace

{00001-0000101} after the merge as this port originally forwarded

events matched only by f l1. On the contrary, all traffic lying within

{00001-(0000101 + 00001111)} are false positives for outgoing port
3 after the merge as this port originally forwarded events matched

by both f l1 and f l2.
So, with regards to the amount of false positives forwarded by

each outgoing port, op ∈ oP , of f lm , the key factors are, first and

foremost, the expansion in filter space due to the aggregation of the

original filter spaces, the incoming traffic along each path∈ iPaths ,
and the number of downstream links along the downstream paths

of op. So, broadly speaking, the aggregation cost of a merge point

is as follows :

C =
∑

p∈iPaths

∑

op∈oP
f p

p
op ∗ dLinksop (1)

In fact, the two flavors of cost calculation proposed in this paper—

load-based method and pattern-based method—differ only in the

manner of determining the false positive value, i.e, f p in Equation 1

as discussed later in this section. The load-based method estimates

resultant network false positives due to the merge by using the

knowledge of incoming traffic load, whereas the pattern-based

method collects and inspects published event packets to accurately

determine network false positives introduced due to the merge by

not only using the knowledge of traffic load but also traffic pattern

in Ω.
In the remaining part of this section, we introduce the details

of (i) determining the incoming traffic at a merge point and (ii)

determining false positives from this incoming traffic along the

downstream paths of the merge point. As explained above, these

two steps together determine the aggregation cost, C , of a merge

point. We take an example from Figure 4 to explain the steps of

cost calculation.

5.2.1 Incoming Traffic. Let us calculate the aggregation cost (C)
at a merge point of a switch Ri , saym, which aggregates a set of

flows denoted by Fm . As mentioned earlier, in order to calculate the

aggregation cost ofm, the first step is to determine the incoming

traffic at the incoming port of the newly aggregated flow f lm at

m. So, first, we identify all relevant publishers publishing events

that will arrive at this incoming port. So, if DZ (pub) is the set of
dzs representing an advertisement of publisher pub, then pub is a

relevant publisher even if one of the dzs ∈ DZ (pub) covers or is
covered by dzf lm and there is a path from pub to the incoming port

of f lm . So, by identifying all relevant publishers, we also identify

all paths, i.e., iPaths from these publishers to the incoming port of

f lm . Next, we proceed to determine the incoming traffic from each

path p ∈ iPaths so that we can eventually calculate the aggregation

cost for each path depending on the amount of traffic each upstream

path forwards to f lm and the amount of false positives among this

traffic that f lm forwards to its downstream paths.

As mentioned earlier, the amount of incoming traffic along a

path depends on the filters installed on the upstream paths of the

merge point. So, for a path p ∈ iPaths , first, we determine the set of

all upstream filters, i.e.,uFilters . This is, effectively, the set of filters

on all upstream switches on the current path that forward events to

f lm . As explained in Section 4, these upstream filters/flows are of

utmost importance in determining the aggregation cost. In fact, the

most fine-grained filters among this set dictate the incoming traffic

for f lm as these filters already filter out the bulk of unnecessary

traffic. So, it is imperative to only identify the set of most fine-

grained filters, i.e.,mf дFilters ∈ uFilters , as the traffic forwarded

by them is the only traffic that reaches f lm . We denote the set of

dzs representing the filter subspaces ofmf дFilters asmf дDzs . Let
us look at an example from Figure 4 where the aggregation cost ofm
needs to be calculated on switch R3 and Fm = {f l5, f l6}. The set of

relevant flows on upstream switches, i.e., uFilters , of a path p that

connects a publisher pub to f lm , consists of f l1, f l2, f l3, and f l4
as depicted in the figure. Figure 4(b) illustrates the event subspace

representation of each of the filter dzs of uFilters and Figure 4(a)

depicts that of f lm . From the figure, it is quite clear that {dzf l4 =
00} � {dzf l2 = 001}. This means that f l2 already filters out events

lying in the subspace { 00 - 001} depicted by the yellow subspace in

Figure 4(a). As a result, all events lying within the yellow subspace

do not reach the incoming port of f lm and so this subspace cannot

be considered as a false positive subspace in the aggregation cost

of f lm . So, in this example, mf дFilters = {f l1, f l2, f l3} and the

effective subspaces they represent, i.e., the most fine-grained dzs,
mf дDzs = {001, 010}. Also, only those subspaces inmf дDzs are
considered to contribute to the incoming traffic that lie within

the advertised subspace of the current publisher as the remaining

subspace cannot be accounted for any incoming traffic of f lm due

to the absence of published events lying within them. So, all traffic

lying withinmf дDzs can now be considered as the incoming traffic

at a merge pointm for a path p.

5.2.2 False Positives on Downstream Paths. Having identified

the subspaces that forward traffic to the incoming port of f lm
along a specific path, we proceed to calculate the false positives

lying within these subspaces that will be forwarded by the current

merged filter f lm along its downstream paths. However, before we

do so, please recall that if f lm aggregates original flows which have

different outgoing ports, then the false positives for one outgoing

port may be different from those of the others. As a result, we

calculate the amount of false positives that may be forwarded by

each outgoing port of f lm separately and compute the sum of the

individual costs of each outgoing port ∈ oP of f lm to obtain the total

aggregation cost of f lm for the specific path. So, for each outgoing

port, op ∈ oP , we identify the original flows, i.e. Fop ∈ Fm , that

should forward traffic through the current outgoing port op. With

the information of the dzs of the flows that are originally supposed

to forward events through the current port, it is easy to determine

the false positive subspace (f pSpace) for op. So, the effective false

DEBS ’17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

positive subspace (f pSpace) for each port of an aggregated filter

can be computed by subtracting the dzs of all flows belonging
to Fop from the subspace representing mf дDzs . Events lying in

f pSpace are the only unnecessary events that will be forwarded by

the current outgoing port of the aggregated flow f lm . For example

in Figure 4(c), the gray area is the effective f pSpace for outgoing
port 2 of f lm . All events, published by the publisher pub, that lie
in this subspace account for the aggregation cost of port 2 for the

specific path p.
Once we calculate f pSpace , we use this information to calculate

the actual number of false positives along all downstream links of

the outgoing port in consideration to determine the aggregation

cost at this port. Here, we differentiate between the two flavors of

cost calculation, i.e., load-based method and pattern-based method.

Load-based Method (FA-PB): The load-based method uses the

traffic load of the publisher along the current path in consideration

and the value of f pSpace to estimate the false positives of the

outgoing port. More specifically, it collects statistics related to

the total number of events (ptraf f ic) published by the current

publisher in the advertised subspaces (adSpace) and estimates the

false positives within f pSpace . To calculate this estimated number

of false positives, we quantify (q) subspaces as a fraction of the entire
event space Ω. So, in Figure 4, while calculating false positives

forwarded by port 2, the q value for the subspaces representing

mf дDzs is 1/4, that of the subspace representing the dz of Fop ,
i.e.,{0100}, is 1/16, and, therefore, that of f pSpace = 3/16. So, using

the quantified values for the subspaces, the estimated false positives

within f pSpace are (f pSpace/adSpace)*ptraf f ic .
As mentioned earlier, the aggregation costs of all outgoing ports

of f lm are summed up to calculate the aggregation cost of a path and

then the aggregation costs of all paths are summed up to calculate

the total aggregation cost of a merge point. So, we formally define

the aggregation cost of a merge point using load-based method by

extending Equation 1 as follows:

C =
∑

p∈iPaths

∑

op∈oP
(f pSpace

p
op/adSpace

p) ∗ pp
traf f ic

∗ dLinksop
(2)

Pattern-based Method (FA-PB): While the load-based cost cal-

culationmethod factors in all key aspects of aggregation to compute

the aggregation cost, it does not consider the actual distribution or

pattern of published events. The load-based method estimates false

positives by considering traffic published by each relevant publisher

to be uniformly distributed over the false positive space. However,

published events are not necessarily distributed uniformly within Ω.
As a result, we introduce another flavor of cost calculation which

determines the amount of false positives that could be forwarded

by the aggregated filter more accurately by looking at the content

of past events and determining the event distribution. Our evalua-

tion results show that even though the pattern-based method has

more overhead, it is more bandwidth-efficient than the load-based

method.

More specifically, in this method, we collect published events

from all publishers. For a given path p, the exact number of for-

warded false positives (pb f p
p
op) can be determined for eachop ∈ oP

of f lm depending on the calculated f pSpace and the events pub-

lished on that path by investigating the content of each event and

determining whether it lies within the f pSpace in question. So, we

define the aggregation cost of a merge point using pattern-based

method by again extending Equation 1 as follows:

C =
∑

p∈iPaths

∑

op∈oP
pb f p

p
op ∗ dLinksop (3)

Collecting events from all publishers, maintaining the set of all

events, and considering the content of every event comes with its

share of overhead. As a result, we introduce the sampling factor,

denoted by s f r , which determines the fraction of events to be

collected and considered for cost calculation from the set of all

published events. So, if s f r = n, only every 1/nth event from a

publisher is collected and considered for cost calculation. Of course,

here, a sampling factor of 1 implies the collection and consideration

of every event from all publishers. A smaller sampling factor may

reduce overhead significantly while a higher sampling factor may

provide much more accuracy.

5.3 Resolving Dependencies Between Switches

In our filter aggregation algorithm, we have considered that, while

calculating the aggregation cost at a merge point on a switch, all

upstream filters are already known. However, it may so happen that

one or more switches in the upstream paths of a merge point also

belong toER onwhich the final set of flows is yet to be decided. This

highlights the importance of having an order of processing switches

belonging to ER in this algorithm as each switch is dependent on

other switches in the network. As a result, we start processing

switches in ER from publishers to subscribers. However, depending

on the locations of publishers and subscribers in the network, it

may so happen that two or more switches have inter-dependencies,

i.e., switches in ER may belong to each others upstream paths. For

instance, switch R1 may be an upstream switch for one or more

flows on a switch R2 and vice versa. To this end, our algorithm

enforces a random processing order on such switches by selecting

one of the inter-dependent switches, sayR1, and calculating the cost
of merge points at R1 while assuming the worst case at R2 , i.e., R2
installs the coarsest filters. Once the order of processing switches in

ER has been decided, the main flow aggregation decision-making

process of the algorithm commences on each switch R ∈ ER in the

determined order.

5.4 Handling Dynamics

The filter aggregation algorithm discussed in this section is not ap-

plied to the system for every incoming subscription and advertise-

ment that results in the exceeding of capacity in network switches

as this would prove to be expensive. As a result, it runs periodically

in the system. In the meantime, when a subscription or advertise-

ment arrives and its arrival results in exceeding of capacity by just a

few flows in one or more switches, an immediate aggregation must

be done to avoid false negatives in the system. For this purpose, we

design the local aggregation approach just for the affected switches

to ensure dynamic behavior of the system till the filter aggregation

algorithm is again applied to the system.

So, when a subscription/advertisement arrives at the controller,

the usual flow installation is performed for each dz representing it.

While installing a flow for a particular dz, say dzsub , on a specific

switch, say R, the controller discovers that the capacity of that

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing DEBS ’17, June 19-23, 2017, Barcelona, Spain

switch is already full. As a result, to accommodate the new flow,

an aggregation of at least 2 flows must be performed on R and the

local aggregation approach is employed for this purpose. The main

idea behind the local aggregation approach is to simply merge two

flows without conflicting relations (cf. Section 5.1) on a switch with

exceeded capacity such that only the knowledge of the state local to

a switch is required for aggregation. We, again, use the merge point

trees local to the switch for this purpose. As only a single flow needs

to be reduced, only the merge points connected to the leaf nodes

(flows) in the lowest level of the tree are considered for aggregation.

Please recall that filter expansion of involved flows is the least in

the lowest level and increases as we go up the tree towards the root.

So, the local aggregation approach selects any one of these merge

points merging flows at the lowest tree level whenever a switch

exceeds its capacity on advent of a subscription or advertisement.

Such an approach portrays an aggregation technique with least

overhead.

6 PERFORMANCE EVALUATIONS

In this section, we evaluate and analyze the various aspects of

the presented filter aggregation algorithm. More specifically, we

conduct a series of experiments to measure and compare, primarily,

the impact on overall false positives in the network and the runtime

overhead of the two flavors of filter aggregation algorithm (FA), i.e.,

the load-based method (FA-LB) and the pattern-based method (FA-

PB), with the local aggregation approach (LA)—which we consider

to be a baseline approach—to show the potential of each of the

proposed methods.

Experimental Setup: We perform our performance evalua-

tions mainly under two test environments— the very prominent

tool, Mininet [22], for emulating a variety of networks and an

SDN-testbed consisting of a Whitebox Openflow-enabled EdgeCore

switch and commodity PC hardware. To show the applicability of

our algorithms in a real SDN environment, we create a hierarchical

fat-tree topology consisting of 10 switches and 8 end-hosts on the

SDN-testbed where the switches are created by partitioning the

hardware Whitebox switch running the network operating system

PicOS (version 2.6) [1, 2]. The 8 end-hosts reside on commodity

rack PCs and perform the role of publishers and subscribers. The

SDN controller is hosted on a 3.10 GHz machine with 40 cores.

However, to fully explore the various aspects of our system, we also

require very large and flexible topologies. We use Mininet for this

purpose which enables us to experiment with various topologies

and published traffic. In the emulated Mininet environment, the

SDN controller connected to the emulated network is hosted on

a 3.2 GHz machine with 4 cores. To show the impact of severe

TCAM limitations on the performance of the system and how the

designed aggregation ensures bandwidth efficiency despite severe

constraints, we constrain the TCAM capacity (i.e., cap) of each
switch to up to 600 flows. We experiment with up to 300 switches

and 4402 end-hosts on different topologies. In fact, to capture the

false positives along every link of the network and gather the overall

network false positives, we also implement our own analyzer.

We use both synthetic and real-world data for our experiments.

To generate synthetic data, we use a content-based schema that

uses up to 5 attributes, where the domain of each attribute varies

between the range [0,1023]. Our evaluations include up to 15,000

subscriptions and up to 100,000 events. We primarily use two mod-

els, predominantly used in literature [13, 26], for the distribution of

subscriptions and events. The uniform model generates subscrip-

tions and events independent of each other uniformly in the event

space, whereas, the interest popularity model selects up to 8 hotspot

regions around which it generates workload using the widely used

zipfian distribution. We also use real-world workload in the form

of stock quotes procured from Yahoo! Finance containing a stock’s

daily closing prices [12] to show the performance of our system in

a realistic environment.

Comparing Network False Positive Rate: We define the term

false positive rate as the percentage of total number of events for-

warded in the network that are unnecessary (i.e., network false

positives). The first set of experiments compares the network false

positive rate for the various aggregation methods with increasing

number of subscribers where the TCAM capacity of each switch

in the network is constrained. We compare the load-based method

(FA-LB), the pattern-based method (FA-PB) of our filter aggrega-

tion algorithm to the local aggregation approach (LA). Please note

that here we consider a sampling factor of 1 for the pattern-based

method which means that every published event is considered to

determine the event distribution for cost calculation of each merge

point.

Figure 5(a) and Figure 5(b) show the false positive rate when

each of the aggregation algorithms are applied to a network hav-

ing a regular tree topology for different workload distributions.

Figure 5(a) depicts a scenario where workload is generated using

uniform distribution whereas Figure 5(b) shows the behavior of the

algorithms when zipfian distribution is used. In both scenarios, the

local aggregation approach is heavily outperformed by the other

two as a result of performing aggregation based on local switch

state as compared to the two flavors of the filter aggregation al-

gorithm which consider a holistic view of the network for filter

aggregation for both distributions. The amount of false positives in

the network on using LA for aggregation clearly shows the impor-

tance of having a more refined algorithm for aggregation. In case

of uniform distribution in Figure 5(a), we see that the performances

of FA-LB and FA-PB are almost equivalent. The main difference

between FA-LB and FA-PB is that FA-PB analyses each of the event

packets to determine the amount of false positives along each path

whereas FA-LB determines the amount of traffic on each path and

then estimates the amount of false positives while considering the

traffic to be distributed uniformly over the advertised subspace for

that path. As a result, the two methods behave very similarly for

uniform distribution as the estimate of false positives is almost

identical to the actual false positives in the network. However,

for the same reason, the advantage of FA-PB over FA-LB is very

apparent in Figure 5(b) where FA-PB clearly outperforms FA-LB as

the decision-making process in FA-PB considers the exact nature

of published events that follow a zipfian distribution. In fact, when

using FA-PB, the false positive rate is reduced by up to 99.9% as

compared to LA and is almost non-existent even on aggregating

a large number of subscription filters in the system, highlighting

the effectiveness of the filter aggregation algorithm proposed in

this paper. This is mainly because, with zipfian distribution, FA-PB

can take efficient decisions to merge flows which do not experience

DEBS ’17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

 0

 5

 10

 15

 20

2k 3k 4k 5k 6k 7k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (a)

LA
FA-PB
FA-LB

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2k 3k 4k 5k 6k 7k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (b)

LA
FM-PB
FM-LB

 0

 5

 10

 15

 20

 15 20 25 30 35 40 45 50 55

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

% of merged Flows [%] - (c)

LA
FA-PB
FA-LB

 0

 5

 10

 15

 20

 25

 30

 35

 40

1k 5k 10k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (d)

LA
FM-PB
FM-LB

 0

 5

 10

 15

 20

 25

 30

 35

 40

1k 5k 10k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (e)

LA
FM-PB
FM-LB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20 30 40 50 60 70 80

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

% of merged Flows [%] - (f)

LA
FA-PB
FA-LB

 0

 5

 10

 15

 20

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

T
i
m
e

[
s
]

of Subscriptions - (g)

FM-PB
FM-LB

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

T
i
m
e

[
s
]

of Switches - (h)

FM-PB
FM-LB

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.2 0.4 0.6 0.8 1

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

Sampling Factor - (i)

FA-PB

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 0.2 0.4 0.6 0.8 1

T
i
m
e

[
s
]

Sampling Factor - (j)

FA-PB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 0.2 0.4 0.6 0.8 1

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

Sampling Factor - (k)

FA-PB: Real Data Set
FA-PB: SDN Testbed

 0

 5

 10

 15

 20

 25

 30

 35

3k 6k 9k 12k 15k

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

[
%
]

of Subscriptions - (l)

LA+FA-PB
LA

Figure 5: Performance Evaluations

too much traffic and therefore less false positives while preserv-

ing flows relevant to traffic hotspots. In fact, we depict the false

positive rate vs total percentage of merged flows in the network in

Figure 5(c) for zipfian distribution. This graph shows the impact of

flow aggregation on false positives. Of course, more the number of

merged flows (i.e., aggregation) in the network, more is the false

positive rate. The plots show that even when a large percentage

of flows are aggregated, it results in very low false positives for

FA-PB. In fact, even when over 50% of flows are merged, the false

positives in the network are negligible implying that the TCAM

constraint does not adversely impact the system if FA-PB is used

for aggregation. The performance of FA-PB is closely followed by

FA-LB which is followed by LA.

To show the effectiveness of the proposed algorithms irrespec-

tive of the type of topology, we also conducted experiments on a

random topology as depicted in Figure 5(d) and Figure 5(e). Here

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing DEBS ’17, June 19-23, 2017, Barcelona, Spain

too, we see the same behavior of the algorithms as in the tree topol-

ogy. As before, FA-PB and FA-LB perform similarly in the case

of uniform distribution as depicted in Figure 5(d). In the case of

zipfian distribution, again, on performing aggregation using FA-

PB, the false positives in the network are almost negligible despite

aggregating a large number of subscription filters as depicted in

Figure 5(e). We, also, show a graph to depict false positive rate

vs total percentage of merged flows in the network in Figure 5(f)

for the random topology when zipfian distribution is used. As can

be seen in the figures, the comparison of performance in terms of

false positive rate of the various algorithms is similar to that for the

other topology which implies that the behavior of the algorithms

is not specific to a type of topology.

Comparing Runtime Overhead: The effectiveness of the algo-

rithms w.r.t. bandwidth efficiency is clear from the above discussion.

However, where FA-PB outperforms the others in bandwidth effi-

ciency, the others come with lower overhead. The higher overhead

in FA-PB is not only due to the fact that published events need to

be collected from the publisher but also due to a higher runtime

overhead than the others. We confirm the same in our next set of

experiments depicted in Figure 5(g) where we compare the two

flavors of filter aggregation algorithm. We measure the runtime

overhead with increasing number of subscriptions. Again, note,

FA-PB has a sampling factor of 1 in this set of experiments. As

depicted in the figure, FA-PB has a higher runtime overhead than

FA-LB consistently as it additionally considers event traffic patterns

for cost calculation. Our evaluations also show that the average

runtime overhead for LA is merely 200 microseconds on a switch .

So, we see that there is a trade-off between accuracy and overhead

as the improvement in one adversely affects the other.

We also evaluate the runtime overhead of the two flavors of

filter aggregation algorithm with increasing topology size. In this

experiment we keep the number of publishers and subscribers fixed

and expand the topology in terms of number of switches. Of course,

more the number of switches more will be the overhead for both

FA-PB and FA-LB as the cost calculation has to be done over more

switches with each calculation considering longer paths (more

upstream filters). Such a behavior is visible in Figure 5(h) where

the overhead for both FA-PB and FA-LB increases with increasing

number of switches. Again, FA-PB has higher overhead than FA-LB

due to the aforementioned reasons.

Impact of Sampling Factor: To reduce the overhead of collect-

ing published events and cost calculation of FA-PB, we introduced

the sampling factor (i.e., s f r) in Section 5. In the next set of ex-

periments, we show the behavior of our system when subjected

to various sampling factors. Figure 5(i) plots the false positive rate

with increasing value of s f r for zipfian distribution. As expected,

more the value of s f r , fewer are the false positives as FA-PB is

more accurate in its cost calculation when it considers more past

events. However, higher the sampling factor of FA-PB, higher is

the overhead as depicted in Figure 5(j) where we plot the runtime

overhead for increasing values of s f r .
To ensure that our aggregation algorithm is effective in realistic

scenarios, we conducted experiments to show its behavior on real-

world stock data. Figure 5(k) plots the false positive rate with

increasing sampling factor for the real-world data set. The plot

clearly shows that, even for a sampling factor of just 0.4, the network

false positives due to aggregation are almost non-existent. These

evaluation results further highlight the applicability and efficiency

of the algorithm presented in this paper.

For our next set of experiments, we measure the false positives

at the subscribers when the aggregation algorithm is deployed

on a real SDN testbed described in the experimental setup of this

section. So, Figure 5(k) also plots the false positive rate when FA-

PB aggregates flows for increasing sampling factors for workload

generated using zipfian distribution. The graph shows that on the

real SDN testbed, the algorithm behaves as expected and the false

positive rate decreases rapidly with increasing sampling factor.

Dynamic Behavior: In our final set of experiments, we evalu-

ate the performance in terms of false positive rate of our system in

a dynamic environment. We progressively introduce subscriptions

in the system and apply our aggregation algorithm for handling

dynamics. So, in general, the local aggregation approach is applied

whenever switches exceed their capacity on introduction of a new

subscription as explained under handling dynamics in Section 5.

Additionally, FA-PB is employed after every 3000 subscriptions as

depicted in Figure 5(l). The figure shows that the false positive rate

gradually increases with more and more subscriptions when LA

is used till FA-PB is performed which makes the false positives in

the system almost negligible. Again, the false positive rate keeps

increasing on using LA till the next application of FA-PB. We, also,

plot the behavior of the system if only LA is employed. This clearly

shows the amount of false positives reduced in the system at every

step due to the intermittent application of FA-PB.

7 RELATEDWORK

In the past couple of decades, a significant amount of research has

been dedicated to broker-based middleware implementations of

content-based pub/sub [11, 18, 25] that focus on achieving scalabil-

ity. In this context, techniques for subscription summarization that

include subscription covering [11] and subscription merging [25]

are widely employed to realize scalable systems. Subscription sum-

maries not only help in filtering out of events from the parts of

the broker network without interested users but also ensure for-

warding of new subscriptions only to brokers which previously

do not receive subsuming (or covering) subscription summaries.

So, these systems, primarily, use subscription summarization to

reduce unnecessary message overhead in the broker network. Also,

much effort [10, 15, 18] has been devoted to reduce the overhead of

maintenance of these subscription summaries but from the context

of efficiently handling dynamically changing subscription requests

in the broker network. Implemented in the application layer, these

systems do not need to address the problems of limited hardware

space in the network layer to accommodate the subscription filters

and subscription summarization is primarily performed to achieve

bandwidth efficiency in broker networks.

However, in recent times, network layer implementations of

pub/sub middleware [6, 7, 17, 29] has gained considerable popular-

ity as they exploit the capabilities of SDN to achieve forwarding

of events at line-rate. For example, in PLEROMA [6, 29], content

filters are directly installed in TCAM of hardware switches enabling

line-rate performance. However, existing SDN-based implemen-

tations do not consider the constraints on TCAM space (no. of

DEBS ’17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

flow table entries) while deploying content filters on them in their

design [4, 7, 29]. Besides the methods used to map content filters to

flows on switches in PLEROMA, other methods to do the same could

also be employed. For example, P4 [9], the protocol-independent

programming abstraction provides complete flexibility to imple-

ment new protocols and headers such that packets can be processed

independent of the hardware target. However, the flexible mapping

of content filters to flows using P4 will still face the problems of

limited TCAM space as no matter how the mapping is performed,

all expressive content filters must be installed on TCAM to reap the

benefits of line-rate forwarding. Bhowmik et al. [5] propose a hy-

brid pub/sub middleware which may be used to offload some of the

content filters to the application layer resulting in filtering of events

in both software and hardware. However, such a middleware loses

some of the advantages of a pure network layer implementation.

In general, the problem of limited flow table entries in TCAM of

SDN-compliant switches is well-known and much researched [19,

21, 30]. For example, Katta et al. [21] in CacheFlow use rule de-

pendencies to cache the more popular flows on the limited TCAM

while the remaining traffic is left to rely on software. As in the

aforementioned hybrid pub/sub, here, too, the performance of the

traffic forwarded by the software switch will suffer. Significant

amount of work in literature deals with optimizing rule place-

ment in a software-defined network [19, 20, 27]. For example,

OneBigSwitch [19] uses endpoint policy and routing policy to ag-

gregate sets of rules in order to take decisions on distributing them

over network switches. However, it is incapable of handling scenar-

ios where the rule sets are larger than the aggregate table size. Also,

considerable amount of work has been done in the lines of compact-

ing the representation of flow rules for the purposes of reducing

TCAM space [23, 24]. Although, the aforementioned systems target

efficient network provisioning and compressing rules on a switch,

the proposed solutions are not applicable to our problem in the

context of content-based routing. Also, systems, such as Smart-

Time [30], use an adaptive timeout technique to pro-actively evict

flow rules while ensuring that there is minimum TCAM misses.

Since, we consider a system that does not allow false negatives

and filters can only be removed on account of an unsubscription

or unadvertisement, a timeout-based heuristic is not ideal for our

problem.

8 CONCLUSION

In this paper, we design techniques to mitigate the problems associ-

ated with limited TCAM space in an SDN-based publish/subscribe

middleware. We propose, implement, and thoroughly evaluate a

filter aggregation algorithm that not only respects TCAM space

limitations on individual switches but also successfully minimizes

false positives in the network, despite merging of flows. To this end,

we introduce two flavors of this algorithm and compare various

aspects of their performance. Our evaluations include experiments

on a real SDN testbed and with real workload. Evaluation results

show that the designed filter aggregation algorithm reduces the

false positives, introduced in the network when a baseline approach

is used for aggregation, by up to 99.9%.

REFERENCES
[1] Hardware Switch Edge-Core AS5712-54X. http://www.edge-core.com/.

[2] PicOS Version 2.6. http://www.pica8.com/documents/pica8-datasheet-picos.pdf.
[3] SDN system performance. http://www.pica8.com/pica8-deep-dive/

sdn-system-performance/.
[4] S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel. Bandwidth-efficient

content-based routing on software-defined networks. In Proc. of the 10th ACM
Int. Conf. on Distributed Event-Based Systems, DEBS 2016.

[5] S. Bhowmik, M. A. Tariq, L. Hegazy, and K. Rothermel. Hybrid content-based
routing using network and application layer filtering. In Proc. of 36th IEEE Int.
Conf. on Distributed Computing Systems, ICDCS ’16.

[6] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Dürr, T. Kohler, and K. Rothermel.
High performance publish/subscribe middleware in software-defined networks.
In IEEE/ACM Transactions on Networking, 2016.

[7] S. Bhowmik, M. A. Tariq, B. Koldehofe, A. Kutzleb, and K. Rothermel. Distributed
control plane for software-defined networks: A case study using event-based
middleware. In Proc. of the 9th ACM Int. Conf. on Distributed Event-Based Systems,
DEBS, 2015.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 1970.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.

[10] F. Cao and J. P. Singh. Efficient event routing in content-based publish-subscribe
service networks. In Proc. of 23rd IEEE INFOCOM, 2004.

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
2001.

[12] A. K. Y. Cheung and H. Jacobsen. Green resource allocation algorithms for
publish/subscribe systems. In Int. Conf. on Distributed Computing Systems, 2011.

[13] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spidercast: A scalable
interest-aware overlay for topic-based pub/sub communication. In Proc. of the
Int. Conf. on Distributed Event-based Systems, 2007.

[14] O. M. E. Committee. Software-defined Networking: The New Norm for Networks.
Open Networking Foundation, 2012.

[15] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the reconfiguration
overhead in content-based publish-subscribe. In Proc. of ACM Symp. on Applied
Computing (SAC), 2004.

[16] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee.
Devoflow: Scaling flow management for high-performance networks. In Proc. of
the ACM SIGCOMM 2011 Conference.

[17] A. Hakiri and A. S. Gokhale. Data-centric publish/subscribe routing middleware
for realizing proactive overlay software-defined networking. In Proc. of the 10th
ACM Int. Conf. on Distributed Event-Based Systems DEBS, 2016.

[18] K. R. Jayaram, C. Jayalath, and P. Eugster. Parametric subscriptions for content-
based publish/subscribe networks. In Proc. of 11th Int. Conf. on Middleware,
2010.

[19] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the ”one big switch”
abstraction in software-defined networks. In Proc. of the 9th ACM Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’13.

[20] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in software-defined
networks. In Proc. of the IEEE INFOCOM 2013.

[21] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Cacheflow: Dependency-
aware rule-caching for software-defined networks. In Proc. of the Symposium on
SDN Research, SOSR ’16.

[22] B. Lantz, B. Heller, and N. McKeown. A network on a laptop: Rapid prototyping
for software-defined networks. In Proc. of 9th ACM Workshop on Hot Topics in
Networks, 2010.

[23] A. X. Liu, C. R. Meiners, and E. Torng. TCAM razor: a systematic approach
towards minimizing packet classifiers in TCAMs. IEEE/ACM IEEE/ACM Transac-
tions on Networking, 2010.

[24] C. R. Meiners, A. X. Liu, and E. Torng. Bit Weaving: A non-prefix approach to
compressing packet classifiers in tcams. IEEE/ACM IEEE/ACM Transactions on
Networking, 2012.

[25] G. Mühl. Large-Scale Content-Based Publish-Subscribe Systems. PhD thesis, TU
Darmstadt, November 2002.

[26] V. Muthusamy and H.-A. Jacobsen. Infrastructure-free content-based pub-
lish/subscribe. IEEE/ACM IEEE/ACM Transactions on Networking, 2014.

[27] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti. Optimizing rules placement
in openflow networks: Trading routing for better efficiency. In Proc. of the 3rd
Workshop on HotSDN ’14.

[28] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using extended
TCAMs. In Proc. of the 11th IEEE ICNP Conference, 2003.

[29] M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel. PLEROMA: A SDN-
based high performance publish/subscribe middleware. In Proc. of 15th Int.
Middleware Conference, 2014.

[30] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya. Effective switch mem-
ory management in openflow networks. In Proc. of the 8th ACM Int. Conf. on
Distributed Event-Based Systems, DEBS ’14.

