Addressing TCAM Limitations of Software-Defined Networks
for Content-Based Routing

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel
University of Stuttgart, Germany
{firstname.lastname} @ipvs.uni-stuttgart.de

ABSTRACT

In recent years, content-based publish/subscribe middleware has
harnessed the power of Software-Defined Networking (SDN) to
leverage performance gains in terms of throughput rates, end-to-
end latency, etc. To this end, content filters are directly installed
on the Ternary Content Addressable Memory (TCAM) of switches.
Such a middleware assumes unlimited TCAM space to deploy con-
tent filters. However, in reality, TCAM is a scarce resource and the
number of flow table entries available for publish/subscribe traffic
is severely limited. While such a limitation poses severe problems
for the deployment of publish/subscribe middleware in practice, it
is yet to be addressed in literature.

So, in this paper, we design a filter aggregation algorithm that
merges content filters on individual switches to respect TCAM
constraints while ensuring minimal increase in unnecessary net-
work traffic. Our algorithm uses the knowledge of advertisements,
subscriptions, and a global view of the network state to perform
bandwidth-efficient aggregation decisions on necessary switches.
We provide different flavors of this algorithm with varying degrees
of accuracy and complexity and thoroughly evaluate their per-
formances under realistic workload. Our evaluation results show
that our designed aggregation algorithm successfully meets TCAM
constraints on switches while also reducing unnecessary traffic
introduced in the network due to aggregation as compared to a
baseline approach by up to 99.9%.

CCS CONCEPTS

«Networks — Network services; «Computer systems organi-
zation — Distributed architectures;

KEYWORDS

SDN, Publish/Subscribe, Content-based Routing, TCAM Limita-
tions, Filter Aggregation

ACM Reference format:

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt
Rothermel. 2017. Addressing TCAM Limitations of Software-Defined Net-
works for Content-Based Routing. In Proceedings of Distributed and Event-
Based Systems, Barcelona, Spain, June 19-23, 2017 (DEBS ’17), 12 pages.
DO hitp://dx.doi.org/10.1145/3093742.3093924

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DEBS ’17, Barcelona, Spain

© 2017 ACM. 978-1-4503-5065-5/17/06...$15.00

DOI http://dx.doi.org/10.1145/3093742.3093924

1 INTRODUCTION

Content-based publish/subscribe (pub/sub) is a widely adopted
communication paradigm designed to enable loosely coupled pro-
ducers (publishers) and consumers (subscribers) of information to
interact in a bandwidth-efficient manner. More specifically, sub-
scribers express specific interests (subscriptions) that determine
content filters which are installed on content-based routers along
the paths between publishers and subscribers. These content filters
ensure the forwarding of only relevant content to each interested
subscriber, thus ensuring bandwidth efficiency in the pub/sub sys-
tem. Over the past decade, content-based pub/sub has primarily
been realized as an overlay network of software brokers. However,
such broker-based routing and content filtering in software results
in performance (e.g., end-to-end latency and throughput) that is
far behind the performance of network layer implementations of
communication protocols.

To mitigate the aforementioned problems and achieve line-
rate performance in content-based pub/sub systems, the power
of software-defined networking (SDN) has been harnessed in re-
cent times. SDN has enabled the realization of a content-based
pub/sub system [6, 29] that performs routing and filtering of con-
tent directly on the network layer, improving performance manifold.
SDN makes this possible by offering standards like Openflow [14]
that can be used to allow software to flexibly define the network.
More specifically, SDN enables the extraction of all control logic
from hardware switches and its hosting on a logically centralized
server called controller, thus establishing a clear separation of the
control plane and the data/forwarding plane. The logically cen-
tralized controller (control plane) has a global view of the entire
network and can flexibly configure it in an optimal manner. Such
capabilities are easily exploited by content-based pub/sub which
uses the global network view at the controller to establish paths
between publishers and subscribers. To this end, content filters
are translated into forwarding rules or flows and installed on the
Ternary Content Addressable Memory (TCAM) of switches along
each path, thus enabling direct filtering of published content on
hardware switches.

Clearly, the efficient mapping of content filters to forwarding
rules or flows installed on TCAM is key to the expressiveness of
an SDN-based pub/sub middleware. More specifically, a content
filter is mapped to the match field (IP address, VLAN tag, etc.) of a
forwarding rule which enables header-based matching of packets
and subsequent forwarding based on the installed rule to interested
subscribers. So, the importance of these forwarding rules (content
filters) on TCAM is paramount as they directly impact the amount
of unnecessary traffic in the network. As a result, the objective
is to make these content filters as expressive as possible in order
to ensure the forwarding of relevant traffic only. However, this

© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in proceedings of 11th
International Conference on Distributed Event-based Systems, Barcelona, Spain, June 19 -

June 23, 2017. http://dx.doi.org/10.1145/3093742.3093924

bhowmisa
Text Box
© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in proceedings of 11th International Conference on Distributed Event-based Systems, Barcelona, Spain, June 19 -
June 23, 2017. http://dx.doi.org/10.1145/3093742.3093924

DEBS 17, June 19-23, 2017, Barcelona, Spain

objective faces a serious challenge due to an inherent hardware
limitation.

TCAM is an expensive, power-hungry resource and as a result
the number of flow table entries (forwarding rules) available for
content filtering is limited in hardware switches. Most switch
vendors design Openflow-enabled switches that typically support
up to a couple of thousands of flow entries per switch [16, 21], and
such a hardware limitation has already been the subject of much
research in the past [5, 16, 19, 21]. The main reason behind the
design of TCAM with such limited space is the inherent trade-off
between table size and other factors such as power and cost. In fact,
studies show that compared to conventional RAM, TCAM consumes
almost 100 times more power [28] and has almost 100 times more
cost [3]. As a result, applications should only rely on a limited
number of flow entries for their design. Moreover, considering
traffic from various applications being routed over the switches of
a network, the number of flow entries reserved for content-based
routing is merely a fraction of the entire capacity of TCAM on a
switch. To address such a limitation, Bhowmik et al., in [5], propose
the installing of a subset of filters on hardware and the remaining on
software by designing a hybrid pub/sub middleware where filtering
of content occurs both in the application layer and the network
layer. However, this implies higher end-to-end latency and reduced
throughput rates for the traffic that is filtered in software.

To ensure that all content filters are accommodated in the net-
work layer (ensuring line-rate performance), given the constraint
on available flow table entries, in this paper, we propose the deploy-
ment of aggregated filters (i.e., merged flows) on switches. However,
aggregation/merging of filters may compromise preciseness of the
filters w.r.t. the subscriber interest they represent, increasing un-
necessary traffic in the network. This may significantly impact
bandwidth efficiency in a content-based pub/sub system where
much of the benefit provided by content-based routing would be
rendered less effective due to the aggregation of filters. As a result,
this paper focuses on minimizing bandwidth usage by unneces-
sary traffic in the network despite the given constraint on available
TCAM for pub/sub traffic by judiciously making filter aggregation
decisions based on multiple factors. In particular, this paper designs
techniques that use the knowledge of advertisements, subscriptions,
and global network state to optimize the aggregation process such
that the overall amount of unnecessary traffic in the network can
be kept to a minimum. We realize and thoroughly evaluate, in both
emulated environments and a real SDN testbed, a filter aggregation
algorithm with different flavors having varying degrees of accu-
racy and complexity. Our evaluation results show that, in order
to respect TCAM constraints of individual switches, the designed
algorithm can perform efficient aggregation decisions that result in
almost negligible unnecessary traffic in the network under realistic
workload. In fact, it reduces unnecessary traffic introduced in the
network due to aggregation by a baseline approach by up to 99.9%.

2 SDN-BASED PUB/SUB MIDDLEWARE
In this section, we provide a brief overview of a content-based
pub/sub middleware using SDN, i.e., PLEROMA [6, 29], already ex-

isting in literature that provides an insight on how existing systems
realize SDN-based pub/sub.

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

i Controller
Subscriptions
-

Advertiserr? \
~ e
@ <

| <

Hardware Filtering using flow tables

Flow table on R Match Field| Instruction |
MF Is Dest IP Out Port |
A, | 1 IP Prefi
fl, 0 % refix
Mapping to IPv6 ffOe:c000:*
! 4

__100 : 100 1
e sub; | gmmsub, & | 01| 11 | g sub,
(0] (]
5 0 | 1 5
g 4w sub, g 00 | 10 | gmm sub,
& 0 100 &0 100

Temperature (T) Temperature (T)

sub, = {T =[50, 100] A P = [50, 100]}
sub, = {T =[50, 100] A P = [0, 50]}

Figure 1: SDN-based Pub/Sub Middleware

The content-based pub/sub middleware designed on software-
defined networks, called PLEROMA, consists of mainly two
participants—the publisher and the subscriber. A publisher, the
producer of content, specifies the content it intends to publish by
sending advertisements to the SDN controller. Similarly, a sub-
scriber, the consumer of content, specifies content it is interested
in receiving by sending a subscription to the controller. With the
information of these advertisements and subscriptions, the logically
centralized controller installs content filters on the path between
each publisher and its interested subscriber. The widely adopted
Openflow standard is used to deploy content filters as match field
of flows in the TCAM of Openflow-enabled switches. For example,
in Figure 1, the publisher P and the subscriber S; send an adver-
tisement and a subscription respectively to the controller which
installs content filters along the path between them. Now, when
a publisher publishes content (events), header-based matching of
the event packets against the installed flow entries is performed
and packets are forwarded as dictated by the flow on account of a
match at line-rate.

As impressed upon in the previous section, the effectiveness of a
content-based pub/sub middleware largely depends on the efficient
mechanism used to represent content expressively. For this pur-
pose, a content-based subscription model where published events
are represented as attribute-value pairs and advertisements and
subscriptions (i.e., content filters) are represented as conjunction
of filters on these attributes is used. Moreover, the content filters

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing

need to be efficiently mapped to a match field of the flow table en-
tries. Similarly, the events need to be mapped to the corresponding
header field of the published packets. This is performed with the
help of a two-step process.

The first step involves mapping values and ranges of values (con-
tent filters) along attributes to binary strings in order to represent
them in flow table entries/packet headers. Various techniques may
be employed to perform this conversion of content to binary form,
which includes the use of bloom filters [8], spatial indexing [29],
etc. Since, in literature (e.g. PLEROMA), spatial indexing has been
primarily used for this purpose, in this paper too, we specifically
look at spatial indexing and its effects on TCAM space. However,
please note that the developed concepts in this paper also apply
to other flavors of SDN-based pub/sub using different mapping
techniques. In spatial indexing, the event-space (denoted by Q) is
represented geometrically as a w-dimensional space where each
dimension represents a content attribute. Recursive binary decom-
position of Q generates regular subspaces that serve as enclosing
approximations for advertisements, subscriptions and events which
are represented by binary strings known as dzs. To illustrate spatial
indexing, let us take the example of Figure 1 where a subscriber
S1 has a subscription sub; : {T = [50, 100] A P = [50, 100]}. The
recursive decomposition of Q to the closest possible approximation
of sub; yields the dz {11}.

The dzs have characteristic properties based on the subspaces
they represent. For example, (i) the shorter a dz, the larger is the
corresponding subspace it represents. This is depicted in Figure 1
where the dz {1} clearly represents a subspace which is larger than
and contains the subspace {11}. So, more expressive a content filter
is, more fine granular is the recursive binary decomposition and
longer are the resulting dzs. The previous example also illustrates
another property of spatial indexing that (ii) the dz of a subspace
has a prefix equivalent to the dz of the subspace containing it. This
property ensures that an event (i.e., a point in Q), represented by
a longer dz is considered a match for all subspaces containing it
simply through a prefix match. Finally, (iii) spatial indexing may
generate a set of dzs for the same subscription resulting in multiple
flows for the same subscription. This can be seen in Figure 1 where
the subscription subs (represented by the yellow subspace) will
need to be represented by at least two dzs, {01} and {11}, in the
2-bit representation of the subscription. In fact, further division of
Q will yield longer and more precise representation consisting of
even more dzs for subs. Where on one hand multiple dzs for the
same subscription adds to the expressiveness of filters, on the other
hand they occupy more space in the expensive TCAM.

After binary representation of content, the second step is to map
dzs representing content filters to the designated match field in
flow entries and dzs representing events to the corresponding field
in packet headers. To this end, a range of IP multicast addresses
(e.g. IPv6) is chosen as destination IP addresses in the match field of
flows as well as in the packet headers. Mapped dzs are appended to
a fixed prefix in the destination IP address, e.g., ff0e (representing
the IPv6 multicast address range available to pub/sub traffic). So,
a subscription (i.e., content filter) is represented by an IPv6 multi-
cast address which is used by the flow entries in the flow tables of
switches for event matching and forwarding. The prefix matching
of events against installed flows is enabled in IP addresses with the

DEBS 17, June 19-23, 2017, Barcelona, Spain

help of Class-less Interdomain Routing (CIDR) style masking sup-
ported by Openflow-enabled switches where masks are represented
by the ’don’t care’ symbol (*). The entire process of converting con-
tent to match field of flows is illustrated in Figure 1, where, for
example, the subscription sub; from S; is first spatially indexed
into a dz {11}. Next, the dz is mapped to an IPv6 address which is
used as a destination IP match field on all switches along the path
between P and Sj. Similarly, the subscription sub; (i.e., {10}) from
So is converted to an IPv6 address and installed on all switches
between P and S,. The flow table of the switch R depicts the flow
entry fields, i.e., match field (MF) and instruction set (IS), relevant to
this middleware. For example, in f1; the IPv6 multicast address rep-
resenting the dz {11*} constitutes the match field and the outgoing
port 2 constitutes the instruction set which dictates the forwarding
of an event packet through the specified port on account of a match.
So, an event where the destination IP address field in the packet
header represents the dz {110000101000} will be forwarded by R
through outgoing port 2 as this event will match fI;.

Just as there exists containment relations between dzs, similarly
flows on a switch are related. In the context of this pub/sub mid-
dleware, flow relations may be defined as follows [29]. A flow
fli covers (or contains) another flow f1;, denoted by fI; > fI;, if
the following two conditions hold: (i) the dz associated with the
destination IP address in the match field of fI; is covered by the
dz of fl;, and (ii) the out ports to which a packet matching fI; is
forwarded are subset of those specified in the IS of fI;. Likewise,
a partial containment relation () can be defined between flows
of a switch. A flow fI; partially covers (or contains) another flow
f1j, denoted by f1; Z fl}, if dz associated with the match field of
fli covers dz of fI}, but not all the out ports used for forwarding
packets matching fI; are listed in the IS of f1;. Otherwise, two
flows are disjoint or unrelated. For example, in figure 1, the two
flows fI; and flz on R are unrelated as the dzs associated with their
IP addresses in the match fields are unrelated. While installing a
flow fI, on a switch for a new advertisement or subscription, f1,
is installed only if there is no existing flow fI, on that switch that
covers fl,. If flo > flp, then fl, is redundant as the traffic for it is
already forwarded by fl.. In the reverse case, i.e., if fl, > fle, fle
is removed and f1I, installed for the same reason. A new flow is
only installed if it is unrelated or has a partial containment relation
with existing flows. This ensures that no redundant flows exist on
any switch as TCAM is a scarce resource.

3 IMPACT OF TCAM LIMITATIONS

From the above discussion on spatial indexing of content and its
subsequent conversion to flow entries, it is quite evident that more
expressive representation of subscriptions demands the installation
of multiple flows on a switch. In fact, as mentioned before, even a
single subscription may yield multiple dzs which results in multi-
ple flow entries. Also, typically, applications using content-based
pub/sub may have up to millions of subscribers which might re-
quire deployment of millions of filters. With such high demand of
TCAM resources, it is very natural to run out of TCAM space in
such applications. A limited number of available flow table entries
implies two paths of action—ignoring any subsequent subscription

DEBS 17, June 19-23, 2017, Barcelona, Spain

filters once TCAM capacity is reached, or aggregating flows to re-
duce occupied TCAM space. The former will lead to false negatives
(i.e., events that are not forwarded to interested subscribers), which
is of course not acceptable in the context of this pub/sub middle-
ware, and the latter may result in false positives (i.e., events that are
forwarded to uninterested subscribers) which means unnecessary
bandwidth usage. In this paper, we employ the latter, i.e., aggregate
or merge filters, while also striving for bandwidth efficiency.

Before we discuss the details of the filter aggregation problem,
it is important to understand the manner in which we can merge
flows and the impact of these merges. When a flow fI; is merged
with a flow f;, the match field of the resultant flow fI. has a dz
that covers both dzy;; and dzg;. In the context of spatial indexing,
this effectively means that the resultant dz is the longest common
prefix of the two dzs. For example, if dz¢,={1101} and dzy;,={1110},
then dlfl, ={11}. Also, the instruction set for fI, will be the union
of outgoing ports (i.e., oP) of fI; and f1;. So, if oPr;,={1,2} and
onlj={2,3}, then OPflr ={1,2,3}. Note, according to the previously
defined flow containment relations, fI. > fl; and fI, > fI; irre-
spective of the relation between fI; and fI;. Here, we also define
two other operations '+ and ’-’ in the context of dzs. The expression
dz1 + dzp simply refers to the two subspaces representing the two
dzs being addressed together. The expression dz; - dz; refers to that
part of the subspace representing dz; that does not overlap with
dzy. In this example, after the aggregation, fI, forwards all traffic
matching {11} through ports{1,2,3} which means that all traffic ly-
ing in the subspace {11-1101} are false positives forwarded by port
1, all traffic lying in the subspace {11-1110} are false positives for
port 3, and all traffic lying in the subspace {11-(1101+1101)} are false
positives for port 2. So, we see how even a single merge (merely
aggregating two flows) can result in forwarding of a significant
amount of false positives in the network.

4 FILTER AGGREGATION PROBLEM

It is clear from the above discussion that it is very important to
select the combination of flows that should be merged on a switch
as the decision directly impacts false positives in the system. As a
result, in this paper, we address the filter aggregation problem. More
specifically, we consider a given system where switches may need to
install sets of flows that are more than the TCAM capacity available
to them and attempt to aggregate flows from the given set of original
flows to meet the capacity requirements of individual switches in a
bandwidth-efficient manner. Note that different switches may have
different TCAM capacity available to pub/sub traffic, depending on
other applications using these switches, as specified by the system
administrator.

More formally, let R be the set of all switches in the network and
FR, be the set of all flows that should be deployed for a given set of
advertisements and subscriptions on switch R; where f1 € Fg,. Let
capp, be the maximum TCAM capacity of switch R; available for
pub/sub traffic. For each switch R;, we need to determine a set of
flows SFg, belonging to and aggregated from Fg, that is within the
given TCAM capacity. Let Cg, be the aggregation cost, in terms of
unnecessary traffic forwarded due to aggregation of filters, of R;. So,
our objective is to determine the set SFg, subject to [SFg,| < capg,

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

fl, | 1]1101%| 2 fl, | 1]1101%| 2 1110
fl, | 1[1110%| 2 fl, | 1[1110%| 3

fl.l1 | 11* |2
1 2
& Ly
fl, | 1]1101%| 2 fl| 121007 2 \@subz
fl, | 1]1110%| 2 fl, | 1[1110%| 3 1110

(c)

Figure 2: Importance of upstream switch filters

for each R; € R such that Zl]ill CR; ., i-e., overall unnecessary traffic
in the network due to aggregation of filters, is minimum.

Problem Analysis : The defined problem specifies minimizing
the aggregation cost on each individual switch such that the overall
amount of unnecessary traffic in the network can be kept to a
minimum. The aggregation cost of a switch is nothing but the
sum of the aggregation cost of all the flow merges made on that
switch to meet the TCAM capacity of that switch. As a result, while
deciding on the filters to be aggregated on a switch, the aggregation
cost of each possible merge should be calculated. However, just
looking at the flow information local to a switch for a possible
local merge is not the optimal way to determine its cost as our
investigation into the defined problem shows that existing filters
on other switches in the network have a significant role to play on
the aggregation cost of a merge. In fact, the main challenge in the
filter aggregation problem is the determination of the aggregation
cost of each possible merge on a switch which depends largely on
the already installed filters on switches in the upstream paths of
the aggregated filter.

To understand the importance of filters on switches in the up-
stream paths of a filter being considered for a merge, we look at an
example depicted in Figure 2. Figure 2(a) shows a system with a
publisher and two subscribers and their respective advertisement
and subscriptions which result in the deployment of the depicted
flows on the three switches. Each flow is depicted by the flow name,
incoming port (iP), dz constituting the destination IP address, and
the outgoing ports (oP) in IS. Let us assume that Ry can only accom-
modate a single flow. As a result, fI; and fIy on Ry are merged, in
the manner explained in Section 3, to compose f1, as depicted in
Figure 2(b). f1; and fI, had the same incoming and outgoing ports

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing

and as a result only the filter subspace in fI, gets expanded. Now,
Ry will forward all traffic matching {11*} instead of just {1101*} and
{1110*}. However, if we look upstream, we see that R; will already
filter out any traffic that does not lie within the subspaces {1101}
and {1110} in Q. As a result, the merge at R does not impact the
false positives in the system as Ry does not receive any additional
false positives from its upstream path and acts as only a forwarder
in Figure 2(b). However, the scenario is different in Figure 2(c)
where there is a need to merge the two flows on R;. In this case, not
only does Ry forward all traffic matching {117}, but also these false
positives get forwarded by Ry due to the aggregation of its filter.
At R3 too, owing to a merge, these false positives from previous
switches do not get filtered out. In fact, as the resultant flow com-
bines the outgoing ports of the two original flows fI; and fI; on
Rs, false positives are now forwarded along both downstream links
of R3. Port 2 forwards false positives lying within the subspace
{11 - 1101} and port 3 forwards those lying within {11 - 1110}. If
the upstream filters at R; or Ry were precise, then f1, on R3 would
only forward false positives lying within {1110} through port 2
and {1101} through port 3 as the remaining would be filtered out
upstream. This example clearly indicates that even if filter expan-
sion occurs, false positives forwarded by a merged flow depends on
the filter aggregation on upstream switches. Also, even if no filter
aggregation occurs on the upstream path, an aggregation involving
merging of two or more flows whose outgoing ports are not subsets
of each other will result in traffic meant to be forwarded by one port
being forwarded by the remaining ones as well. This will always
result in false positives along all involved outgoing ports (cf. R3 in
Figure 2(c)).

Clearly, due to the importance of flows in the upstream paths, a
merge on a switch based on flow information local to that switch
is not the most optimal solution. As a result, while calculating the
cost of a possible merge on a switch, we propose to consider the
global view of the network state to avoid as much unnecessary
traffic as possible due to aggregation.

5 FILTER AGGREGATION ALGORITHM

While defining our filter aggregation problem, we specify that the
input to the problem is a set of flows which need to be aggregated
to meet the TCAM capacity of the switches and this set of flows
is maintained by the controller based on the current subscriptions
and advertisements in the system. Let us assume that ER € R is
the set of switches in the network where one or more flows need
to be aggregated, i.e., VR; € ER, |Fg,;| > capg,. So, now, we need
to reduce the number of flows according to the given capacity on
each switch in ER.

Approach Overview: As discussed in the previous section, our
objective is to reduce the combined aggregation cost of all switches
in the network. So, it is important to reduce the aggregation cost
of each individual switch. While doing so, we try to aggregate
those flows that result in minimum aggregation cost for the switch
while staying within the maximum available TCAM capacity. As
a result, the main idea behind the filter aggregation algorithm is
to calculate the aggregation cost of each possible flow merge on a
switch R € ER and then select a combination of those flow merges
that would result in minimum combined aggregation cost for the

DEBS 17, June 19-23, 2017, Barcelona, Spain

fl fl

lm, =1:00001:2,3

1:0001101:2

| 1:0000101:2,3

1:00001111:3 |

Figure 3: Merge Point Tree for Incoming Port 1

switch below its designated capacity. As we saw in the previous
section, the aggregation cost of a possible merge depends on filters
installed on previous switches. In fact, the main challenge that
the filter aggregation algorithm faces is the determination of an
efficient cost function for a possible merge that captures various
factors of the aggregation cost, including dependencies on upstream
switch filters.

So, in the remaining part of this section, we introduce the details
of the mechanisms used to (i) identify the possible combinations of
flow merges on each switch, (ii) calculate the cost and benefit for
each of these flow merges, (iii) select the set of merges resulting in
minimum aggregation cost for the switch such that the resultant
number of flows is within the capacity threshold for the switch.

5.1 Selecting Flow Merges on a Switch

When a switch exceeds its flow limits, various combinations of
flows may be merged to reduce the flow count on that switch. We
denote every possible merge as a merge point. So, the objective is
to select an ideal set of merge points on a switch that has minimum
combined aggregation cost. In fact, to determine all possible merge
points on a switch, we create a prefix tree called the merge point
tree which contains all possible merge points. However, not all
flows can be merged to create a merge point. Two flows cannot
be merged if one of the outgoing ports of a flow is the incoming
port of the other. This will lead to cycles in the network and we call
these flows with such a conflicting relation as conflicting flows. So,
clearly, merge points are only possible for non-conflicting flows.
For the sake of simplicity, we create a separate merge point tree
for every incoming port of a switch, i.e, merge points in the tree
merge flows that have the same incoming port. This ensures the
absence of conflicting flows within each tree as this eliminates the
possibility of merging two flows where the incoming port of one is
among the outgoing ports of the other. Of course, while selecting
the ideal set of merge points for a switch, all merge points across
all trees are considered.

So, a merge point tree is a prefix tree where every non-leaf node
is a merge point and every leaf node is a flow. In the tree, a merge
point signifies the minimum filter expansion required to cover two

DEBS 17, June 19-23, 2017, Barcelona, Spain

or more unrelated filters. So, a flow is merged with another flow if
this results in minimum filter expansion for this flow as compared
to the filter expansion when merged with others. The first step
towards creating a merge point tree is to identify the flows € F with
the longest common prefixes among all flows and perform their
respective merges to create merge points. So, within the tree these
identified flows with longest common prefixes form the lowest level
nodes and the newly created merge points form the nodes at the
immediate upper level of the tree. At the following upper levels,
merging according to longest common prefix continues, this time
with not only the remaining flows but also the merge points from
the lower levels until we finally arrive at the root of the merge point
tree which represents a filter covering the entire event space Q. For
example, Figure 3 depicts a merge point tree aggregating all flows
with a specific incoming port 1. This merge point tree depicts merge
points and flows where flows have the format iP : dz : oP. In this
example, let us assume that fI; and fI have the longest common
prefix, i.e., {00001}, among all flows and therefore reside on the
lowest level of the tree. So, when they are merged, their immediate
merge point is mq with a dz of {00001}. So, the resultant flow at m,
ie., flm,, represents the filter with minimum expansion required
to forward the traffic for both fl; and fl,. We continue building
the tree upwards, now, with not only remaining flows but also all
newly created merge points from the already existing levels. So, let
us assume, that a flow fI3 shares the longest common prefix with
m1. So, at the next upper level, m; and fl3 are merged to create
mgy. Please note that two merge points of a level may similarly be
merged based on their common prefixes. The entire merge point
tree is built once the root representing the entire space is reached.
A merge point tree contains all flows on the switch and all possible
merges signified by the merge points. Since a merge point merges
all flows belonging to its child nodes, clearly, a merge point in the
upper level of the tree merges more flows as compared to a merge
point at a relatively lower level. For example, aggregation at m;
reduces the flow count on the switch by 1 as fl,, aggregates 2
flows. However, aggregation at my at an upper level reduces flow
count by 2 as fl,, aggregates 3 flows fIj, fl, and fI3. Even though
mgy reduces more flows, there is a possibility that it forwards more
false positives as the filter expansion for fI; and fl is more at my
than at my.

Once all merge points are determined for the switch being pro-
cessed, the aggregation cost for each of them is calculated to de-
termine the final set of merges on the switch. We explain the cost
calculation at each merge point in details in the following sub-
section 5.2. Having calculated the aggregation cost (C) for every
possible merge point across all merge point trees of a switch, we
also determine the benefit (denoted by B) of each merge. The benefit
is, simply, the number of flows reduced on the switch due to the
merge (i.e., By, = number of flows covered by merge point m - 1).
Next, we calculate the cost per benefit of each merge point m, i.e.,
Cm/Bm and sort the merge points on a switch in the increasing
order of cost per benefit. For a switch, say R;, we start selecting
merge points with minimum cost per benefit for the final set of
selected flows (SFg,) on R;. We start with all original unaggregated
flows in SFg,. Once a merge point m gets selected, (i) all original
flows covered by m are removed from SFg,, (ii) the flow fly, at m
is added to SFg,, (iii) the next step depends on one of the following

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

iP| dz | op
fl,| 1| o10*| 2
fl,| 1] o00*| 2

iP| dz oP iP| dz oP
fl, | 1 |o10% | 3 fl. | 1[o100%] 2
fl, | 1]001* | 3 fly| 1|o010%| 3

[fl,] 1] o* [23]

Q Q foSpace ()
010 for oP=2
. off,
.::‘Zﬂm =0
001
‘ﬁ_,
(a) 00 (b) (c)

Figure 4: Cost Calculation

three scenarios—(a) if a merge point m; is covered by the selected
merge point m (i.e., m > m;), then m; is removed from the set
of merge points as it is now redundant, (b) if a merge point m;
covers the selected merge point m (i.e., mj > m), then m; cannot
be removed but its cost and benefit get reduced as some of its cost
and benefit has already been considered when selecting m, and (c)
if m has no relation with any other merge point then no action is
taken. After each selection, the set of merge points is re-sorted and
the next merge point with least cost per benefit is selected until
|SFR,| < capg,, i.e., the number of flows on R; is within the TCAM
capacity of the switch.

Once the final set of flows for every switch which exceeds TCAM
capacity is determined, the flow changes are pushed onto the phys-
ical network and all hardware switches in the network are updated
accordingly. This concludes the final step of the filter aggregation
algorithm.

5.2 Aggregation Cost at a Merge Point

As the final selection of merge points on a switch depends largely
on their cost per benefit value, determination of the cost (in terms
of false positives forwarded by the aggregated filter) for each merge
is an integral part of this algorithm. The aggregation cost of a
possible merge is nothing but the amount of additional network
false positives that the merge could introduce along its downstream
paths.

So, in order to calculate the cost of a merge point, say m, we
need to, firstly, identify the incoming traffic at the incoming port
of the merged flow fl,, at m as only this traffic is relevant for
forwarding by fI,;,. With regards to incoming traffic, note, there
may be multiple incoming paths (iPaths) from multiple publishers
that forward traffic to the incoming port of fl,. The key factors
in determining the incoming traffic are the traffic load of each

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing

publisher intended to be forwarded along iPaths and the upstream
switch filters which influence the filtering of this published traffic.

Secondly, we need to identify the false positives (fp) from this
incoming traffic that fI,, forwards along its downstream paths.
While calculating downstream false positives forwarded by f1,, for
a specific path, note that each outgoing port, op € oP of fI,, has its
own set of downstream paths to subscribers. Let the downstream
links of the downstream paths of an outgoing port be denoted
by dLinks. Also, each outgoing port forwards its own share of
false positives after the merge based on the traffic it was meant to
forward as per the original flows. For example, at m; in Figure 3,
outgoing port 2 forwards false positives lying within the subspace
{00001-0000101} after the merge as this port originally forwarded
events matched only by fI;. On the contrary, all traffic lying within
{00001-(0000101 + 00001111)} are false positives for outgoing port
3 after the merge as this port originally forwarded events matched
by both fI; and fl,.

So, with regards to the amount of false positives forwarded by
each outgoing port, op € oP, of flp,, the key factors are, first and
foremost, the expansion in filter space due to the aggregation of the
original filter spaces, the incoming traffic along each pathe iPaths,
and the number of downstream links along the downstream paths
of op. So, broadly speaking, the aggregation cost of a merge point

is as follows :
C= Z Z fp‘gp * dLinksop (1)

peiPaths opeoP

In fact, the two flavors of cost calculation proposed in this paper—
load-based method and pattern-based method—differ only in the
manner of determining the false positive value, i.e, fp in Equation 1
as discussed later in this section. The load-based method estimates
resultant network false positives due to the merge by using the
knowledge of incoming traffic load, whereas the pattern-based
method collects and inspects published event packets to accurately
determine network false positives introduced due to the merge by
not only using the knowledge of traffic load but also traffic pattern
in Q.

In the remaining part of this section, we introduce the details
of (i) determining the incoming traffic at a merge point and (ii)
determining false positives from this incoming traffic along the
downstream paths of the merge point. As explained above, these
two steps together determine the aggregation cost, C, of a merge
point. We take an example from Figure 4 to explain the steps of
cost calculation.

5.2.1 Incoming Traffic. Let us calculate the aggregation cost (C)
at a merge point of a switch R;, say m, which aggregates a set of
flows denoted by F,,. As mentioned earlier, in order to calculate the
aggregation cost of m, the first step is to determine the incoming
traffic at the incoming port of the newly aggregated flow fI,, at
m. So, first, we identify all relevant publishers publishing events
that will arrive at this incoming port. So, if DZ(pub) is the set of
dzs representing an advertisement of publisher pub, then pub is a
relevant publisher even if one of the dzs € DZ(pub) covers or is
covered by dz¢; and there is a path from pub to the incoming port
of fl,. So, by identifying all relevant publishers, we also identify
all paths, i.e., iPaths from these publishers to the incoming port of

DEBS 17, June 19-23, 2017, Barcelona, Spain

fIm. Next, we proceed to determine the incoming traffic from each
path p € iPaths so that we can eventually calculate the aggregation
cost for each path depending on the amount of traffic each upstream
path forwards to fl,, and the amount of false positives among this
traffic that f1,,, forwards to its downstream paths.

As mentioned earlier, the amount of incoming traffic along a
path depends on the filters installed on the upstream paths of the
merge point. So, for a path p € iPaths, first, we determine the set of
all upstream filters, i.e., uFilters. This is, effectively, the set of filters
on all upstream switches on the current path that forward events to
fIm. As explained in Section 4, these upstream filters/flows are of
utmost importance in determining the aggregation cost. In fact, the
most fine-grained filters among this set dictate the incoming traffic
for fl,, as these filters already filter out the bulk of unnecessary
traffic. So, it is imperative to only identify the set of most fine-
grained filters, i.e., mfgFilters € uFilters, as the traffic forwarded
by them is the only traffic that reaches f1I,,. We denote the set of
dzs representing the filter subspaces of mfgFilters as mfgDzs. Let
us look at an example from Figure 4 where the aggregation cost of m
needs to be calculated on switch R3 and Fy, = {fIs, fls}. The set of
relevant flows on upstream switches, i.e., uFilters, of a path p that
connects a publisher pub to flp,, consists of fli, fl, fl3, and fl4
as depicted in the figure. Figure 4(b) illustrates the event subspace
representation of each of the filter dzs of uFilters and Figure 4(a)
depicts that of fIp. From the figure, it is quite clear that {dz¢, =
00} > {dzfl2 = 001}. This means that fI, already filters out events
lying in the subspace { 00 - 001} depicted by the yellow subspace in
Figure 4(a). As a result, all events lying within the yellow subspace
do not reach the incoming port of f1,,, and so this subspace cannot
be considered as a false positive subspace in the aggregation cost
of flp. So, in this example, mfgFilters = {fl1, flz, fl3} and the
effective subspaces they represent, i.e., the most fine-grained dzs,
mfgDzs = {001,010}. Also, only those subspaces in mfgDzs are
considered to contribute to the incoming traffic that lie within
the advertised subspace of the current publisher as the remaining
subspace cannot be accounted for any incoming traffic of fl, due
to the absence of published events lying within them. So, all traffic
lying within m f gDzs can now be considered as the incoming traffic
at a merge point m for a path p.

5.2.2 False Positives on Downstream Paths. Having identified
the subspaces that forward traffic to the incoming port of fI,,
along a specific path, we proceed to calculate the false positives
lying within these subspaces that will be forwarded by the current
merged filter fI, along its downstream paths. However, before we
do so, please recall that if fI,,, aggregates original flows which have
different outgoing ports, then the false positives for one outgoing
port may be different from those of the others. As a result, we
calculate the amount of false positives that may be forwarded by
each outgoing port of fl,, separately and compute the sum of the
individual costs of each outgoing port € oP of f1, to obtain the total
aggregation cost of f1,, for the specific path. So, for each outgoing
port, op € oP, we identify the original flows, i.e. Fop € F, that
should forward traffic through the current outgoing port op. With
the information of the dzs of the flows that are originally supposed
to forward events through the current port, it is easy to determine
the false positive subspace (fpSpace) for op. So, the effective false

DEBS 17, June 19-23, 2017, Barcelona, Spain

positive subspace (fpSpace) for each port of an aggregated filter
can be computed by subtracting the dzs of all flows belonging
to Fop from the subspace representing mfgDzs. Events lying in
fpSpace are the only unnecessary events that will be forwarded by
the current outgoing port of the aggregated flow f1,,. For example
in Figure 4(c), the gray area is the effective fpSpace for outgoing
port 2 of fl,;,. All events, published by the publisher pub, that lie
in this subspace account for the aggregation cost of port 2 for the
specific path p.

Once we calculate fpSpace, we use this information to calculate
the actual number of false positives along all downstream links of
the outgoing port in consideration to determine the aggregation
cost at this port. Here, we differentiate between the two flavors of
cost calculation, i.e., load-based method and pattern-based method.

Load-based Method (FA-PB): The load-based method uses the
traffic load of the publisher along the current path in consideration
and the value of fpSpace to estimate the false positives of the
outgoing port. More specifically, it collects statistics related to
the total number of events (p;r4ffic) published by the current
publisher in the advertised subspaces (adSpace) and estimates the
false positives within fpSpace. To calculate this estimated number
of false positives, we quantify (q) subspaces as a fraction of the entire
event space Q. So, in Figure 4, while calculating false positives
forwarded by port 2, the ¢ value for the subspaces representing
mfgDzs is 1/4, that of the subspace representing the dz of Fyp,
i.e.,{0100}, is 1/16, and, therefore, that of fpSpace = 3/16. So, using
the quantified values for the subspaces, the estimated false positives
within fpSpace are (fpSpace/adSpace)p;raffic-

As mentioned earlier, the aggregation costs of all outgoing ports
of f1, are summed up to calculate the aggregation cost of a path and
then the aggregation costs of all paths are summed up to calculate
the total aggregation cost of a merge point. So, we formally define
the aggregation cost of a merge point using load-based method by
extending Equation 1 as follows:

C= Z Z (fpSpacegp/adSpaceP) *pl;raffic x dLinksop
peiPaths op€oP
)

Pattern-based Method (FA-PB): While the load-based cost cal-
culation method factors in all key aspects of aggregation to compute
the aggregation cost, it does not consider the actual distribution or
pattern of published events. The load-based method estimates false
positives by considering traffic published by each relevant publisher
to be uniformly distributed over the false positive space. However,
published events are not necessarily distributed uniformly within Q.
As a result, we introduce another flavor of cost calculation which
determines the amount of false positives that could be forwarded
by the aggregated filter more accurately by looking at the content
of past events and determining the event distribution. Our evalua-
tion results show that even though the pattern-based method has
more overhead, it is more bandwidth-efficient than the load-based
method.

More specifically, in this method, we collect published events
from all publishers. For a given path p, the exact number of for-
warded false positives (pb_f p‘g p) can be determined for each op € oP
of fI,, depending on the calculated fpSpace and the events pub-
lished on that path by investigating the content of each event and

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

determining whether it lies within the fpSpace in question. So, we
define the aggregation cost of a merge point using pattern-based
method by again extending Equation 1 as follows:

C= Z Z pb_fph, * dLinksop 3)

peiPaths op€oP

Collecting events from all publishers, maintaining the set of all
events, and considering the content of every event comes with its
share of overhead. As a result, we introduce the sampling factor,
denoted by sfr, which determines the fraction of events to be
collected and considered for cost calculation from the set of all
published events. So, if sfr = n, only every 1/nth event from a
publisher is collected and considered for cost calculation. Of course,
here, a sampling factor of 1 implies the collection and consideration
of every event from all publishers. A smaller sampling factor may
reduce overhead significantly while a higher sampling factor may
provide much more accuracy.

5.3 Resolving Dependencies Between Switches

In our filter aggregation algorithm, we have considered that, while
calculating the aggregation cost at a merge point on a switch, all
upstream filters are already known. However, it may so happen that
one or more switches in the upstream paths of a merge point also
belong to ER on which the final set of flows is yet to be decided. This
highlights the importance of having an order of processing switches
belonging to ER in this algorithm as each switch is dependent on
other switches in the network. As a result, we start processing
switches in ER from publishers to subscribers. However, depending
on the locations of publishers and subscribers in the network, it
may so happen that two or more switches have inter-dependencies,
i.e., switches in ER may belong to each others upstream paths. For
instance, switch Ry may be an upstream switch for one or more
flows on a switch Ry and vice versa. To this end, our algorithm
enforces a random processing order on such switches by selecting
one of the inter-dependent switches, say Ry, and calculating the cost
of merge points at R; while assuming the worst case at Ry , i.e., Ry
installs the coarsest filters. Once the order of processing switches in
ER has been decided, the main flow aggregation decision-making
process of the algorithm commences on each switch R € ER in the
determined order.

5.4 Handling Dynamics

The filter aggregation algorithm discussed in this section is not ap-
plied to the system for every incoming subscription and advertise-
ment that results in the exceeding of capacity in network switches
as this would prove to be expensive. As a result, it runs periodically
in the system. In the meantime, when a subscription or advertise-
ment arrives and its arrival results in exceeding of capacity by just a
few flows in one or more switches, an immediate aggregation must
be done to avoid false negatives in the system. For this purpose, we
design the local aggregation approach just for the affected switches
to ensure dynamic behavior of the system till the filter aggregation
algorithm is again applied to the system.

So, when a subscription/advertisement arrives at the controller,
the usual flow installation is performed for each dz representing it.
While installing a flow for a particular dz, say dz,p, on a specific
switch, say R, the controller discovers that the capacity of that

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing

switch is already full. As a result, to accommodate the new flow,
an aggregation of at least 2 flows must be performed on R and the
local aggregation approach is employed for this purpose. The main
idea behind the local aggregation approach is to simply merge two
flows without conflicting relations (cf. Section 5.1) on a switch with
exceeded capacity such that only the knowledge of the state local to
a switch is required for aggregation. We, again, use the merge point
trees local to the switch for this purpose. As only a single flow needs
to be reduced, only the merge points connected to the leaf nodes
(flows) in the lowest level of the tree are considered for aggregation.
Please recall that filter expansion of involved flows is the least in
the lowest level and increases as we go up the tree towards the root.
So, the local aggregation approach selects any one of these merge
points merging flows at the lowest tree level whenever a switch
exceeds its capacity on advent of a subscription or advertisement.
Such an approach portrays an aggregation technique with least
overhead.

6 PERFORMANCE EVALUATIONS

In this section, we evaluate and analyze the various aspects of
the presented filter aggregation algorithm. More specifically, we
conduct a series of experiments to measure and compare, primarily,
the impact on overall false positives in the network and the runtime
overhead of the two flavors of filter aggregation algorithm (FA), i.e.,
the load-based method (FA-LB) and the pattern-based method (FA-
PB), with the local aggregation approach (LA)—which we consider
to be a baseline approach—to show the potential of each of the
proposed methods.

Experimental Setup: We perform our performance evalua-
tions mainly under two test environments— the very prominent
tool, Mininet [22], for emulating a variety of networks and an
SDN-testbed consisting of a Whitebox Openflow-enabled EdgeCore
switch and commodity PC hardware. To show the applicability of
our algorithms in a real SDN environment, we create a hierarchical
fat-tree topology consisting of 10 switches and 8 end-hosts on the
SDN-testbed where the switches are created by partitioning the
hardware Whitebox switch running the network operating system
PicOS (version 2.6) [1, 2]. The 8 end-hosts reside on commodity
rack PCs and perform the role of publishers and subscribers. The
SDN controller is hosted on a 3.10 GHz machine with 40 cores.
However, to fully explore the various aspects of our system, we also
require very large and flexible topologies. We use Mininet for this
purpose which enables us to experiment with various topologies
and published traffic. In the emulated Mininet environment, the
SDN controller connected to the emulated network is hosted on
a 3.2 GHz machine with 4 cores. To show the impact of severe
TCAM limitations on the performance of the system and how the
designed aggregation ensures bandwidth efficiency despite severe
constraints, we constrain the TCAM capacity (i.e., cap) of each
switch to up to 600 flows. We experiment with up to 300 switches
and 4402 end-hosts on different topologies. In fact, to capture the
false positives along every link of the network and gather the overall
network false positives, we also implement our own analyzer.

We use both synthetic and real-world data for our experiments.
To generate synthetic data, we use a content-based schema that
uses up to 5 attributes, where the domain of each attribute varies

DEBS 17, June 19-23, 2017, Barcelona, Spain

between the range [0,1023]. Our evaluations include up to 15,000
subscriptions and up to 100,000 events. We primarily use two mod-
els, predominantly used in literature [13, 26], for the distribution of
subscriptions and events. The uniform model generates subscrip-
tions and events independent of each other uniformly in the event
space, whereas, the interest popularity model selects up to 8 hotspot
regions around which it generates workload using the widely used
zipfian distribution. We also use real-world workload in the form
of stock quotes procured from Yahoo! Finance containing a stock’s
daily closing prices [12] to show the performance of our system in
a realistic environment.

Comparing Network False Positive Rate: We define the term
false positive rate as the percentage of total number of events for-
warded in the network that are unnecessary (i.e., network false
positives). The first set of experiments compares the network false
positive rate for the various aggregation methods with increasing
number of subscribers where the TCAM capacity of each switch
in the network is constrained. We compare the load-based method
(FA-LB), the pattern-based method (FA-PB) of our filter aggrega-
tion algorithm to the local aggregation approach (LA). Please note
that here we consider a sampling factor of 1 for the pattern-based
method which means that every published event is considered to
determine the event distribution for cost calculation of each merge
point.

Figure 5(a) and Figure 5(b) show the false positive rate when
each of the aggregation algorithms are applied to a network hav-
ing a regular tree topology for different workload distributions.
Figure 5(a) depicts a scenario where workload is generated using
uniform distribution whereas Figure 5(b) shows the behavior of the
algorithms when zipfian distribution is used. In both scenarios, the
local aggregation approach is heavily outperformed by the other
two as a result of performing aggregation based on local switch
state as compared to the two flavors of the filter aggregation al-
gorithm which consider a holistic view of the network for filter
aggregation for both distributions. The amount of false positives in
the network on using LA for aggregation clearly shows the impor-
tance of having a more refined algorithm for aggregation. In case
of uniform distribution in Figure 5(a), we see that the performances
of FA-LB and FA-PB are almost equivalent. The main difference
between FA-LB and FA-PB is that FA-PB analyses each of the event
packets to determine the amount of false positives along each path
whereas FA-LB determines the amount of traffic on each path and
then estimates the amount of false positives while considering the
traffic to be distributed uniformly over the advertised subspace for
that path. As a result, the two methods behave very similarly for
uniform distribution as the estimate of false positives is almost
identical to the actual false positives in the network. However,
for the same reason, the advantage of FA-PB over FA-LB is very
apparent in Figure 5(b) where FA-PB clearly outperforms FA-LB as
the decision-making process in FA-PB considers the exact nature
of published events that follow a zipfian distribution. In fact, when
using FA-PB, the false positive rate is reduced by up to 99.9% as
compared to LA and is almost non-existent even on aggregating
a large number of subscription filters in the system, highlighting
the effectiveness of the filter aggregation algorithm proposed in
this paper. This is mainly because, with zipfian distribution, FA-PB
can take efficient decisions to merge flows which do not experience

DEBS 17, June 19-23, 2017, Barcelona, Spain Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

20 T 18 T 20 T T
= LA Q- — LA QO — 1A O
> FA-PB == | & 16 FM-PB =- 1 FA-PB A
FA-LB [l FM-LB [} FA-LB [l
B1st 4 514r 18 1st 1
22 PO {0 ZREEE P © ©
L (c} © 12 o [o 3 -
________________ oS
° - 210} -2 18 @ o
-~ 10 T A A 10 F 4
D D o) 4 %@
- - il o)
0] 0] 0 0] Oap
o o} 4 0 Do
ar | | = o~ &P 1
v ° P E
o & o B e B oy} e R
e 2 B T L
g g—a T - K ot
o ‘ ‘ ‘ ‘ 0 A A A o & AMAMA
2k 3k 4k 5k 6k 7k 2k 3k 4k 5k 6k 7k 15 20 25 30 35 40 45 50 55
of Subscriptions - (a) # of Subscriptions - (b) % of merged Flows [%] - (c)
40 T 40 T 45 T T T
— LA =@ — LA @ — 1A ©
* 35 L FM-PB == | 2% 551 FM-PB =l * 40 FA-PB A A
FM-LB b FM-LB & FA-LB O
530t od b 30f 535]
s Pcad 3 0009 & | ®
25 QO b 25 o b Q@b
o Q o Ro) o QP
s o > O > 25 | @ 9
A 20 F o 4 A 20 © A
i . D o i
e o — & il
w15 - {1 w15t o))
o o o o o
o o pom.} T o o
10 | B o
g 0© _E,g.-&@' & 6 o@ peaEf g
© ST o] 1 & °Ff a8 T
‘o ameasd ‘ R 8~ i NP N TS SR [/
1k 5k 10k 15k 1k 5k . .10k 15k 20 30 40 50 60 70 80
of Subscriptions - (d) # of Subscriptions - (e) % of merged Flows [%] - (f)
| "FM_pB —wheen 70 FM_DB - 2.4 F t FA-PB O |
20 FM-LB - o I FM-LB - o
P L 2.2@ 1
- o e g 5 3
_ 15t _ R 3 2 1
2 2 v
1.8 1
Q10 f 2 9: Q.
A Bl w 1.6 f @ 1
B
8 g 0.
K 1.4 1
5 B ¢ © (C] @,...e_,_'o
A" B ~
(il £ 20)
ol ‘ ‘ ‘ L L ‘ ‘ ‘
1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 0 50 100 150 200 250 300 0.2 0.4 0.6 0.8 1
of Subscriptions - (g) # of Switches - (h) Sampling Factor - (i)
90 T T T T 45 T T T T T T T T T 35 T T
FA-PB @ | — 4 FA-PB: Real Data Set @ —_ LA+FA-PB @
80 1 a0 F FA-PB: SDN Testbed —fs- o o w0l LA —%— |
70 | 1 % 35 19
]
_ 60 430k 1 =
n @Ooe 9))
= 50 0"'0"'0 1% 25 19
o - -
E 40 [0 14 20 145
a & 0 9]
E. ¢]]
30 8154 8
20 [1 0 10} 10 :
0] n B 2 :
10 | 1% 5hC 1'c ‘
m 6-“-[_\- Am Ao Am Acm Ao B i
0 L L L L L L L L L ol 2 DD D O OO OO 0 O D L &
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 3k 6k 9k 12k 15k
Sampling Factor - (3j) Sampling Factor - (k) # of Subscriptions - (1)
Figure 5: Performance Evaluations
too much traffic and therefore less false positives while preserv- FA-PB. In fact, even when over 50% of flows are merged, the false
ing flows relevant to traffic hotspots. In fact, we depict the false positives in the network are negligible implying that the TCAM
positive rate vs total percentage of merged flows in the network in constraint does not adversely impact the system if FA-PB is used
Figure 5(c) for zipfian distribution. This graph shows the impact of for aggregation. The performance of FA-PB is closely followed by
flow aggregation on false positives. Of course, more the number of FA-LB which is followed by LA.
merged flows (i.e., aggregation) in the network, more is the false To show the effectiveness of the proposed algorithms irrespec-
positive rate. The plots show that even when a large percentage tive of the type of topology, we also conducted experiments on a

of flows are aggregated, it results in very low false positives for random topology as depicted in Figure 5(d) and Figure 5(e). Here

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing

too, we see the same behavior of the algorithms as in the tree topol-
ogy. As before, FA-PB and FA-LB perform similarly in the case
of uniform distribution as depicted in Figure 5(d). In the case of
zipfian distribution, again, on performing aggregation using FA-
PB, the false positives in the network are almost negligible despite
aggregating a large number of subscription filters as depicted in
Figure 5(e). We, also, show a graph to depict false positive rate
vs total percentage of merged flows in the network in Figure 5(f)
for the random topology when zipfian distribution is used. As can
be seen in the figures, the comparison of performance in terms of
false positive rate of the various algorithms is similar to that for the
other topology which implies that the behavior of the algorithms
is not specific to a type of topology.

Comparing Runtime Overhead: The effectiveness of the algo-
rithms w.r.t. bandwidth efficiency is clear from the above discussion.
However, where FA-PB outperforms the others in bandwidth effi-
ciency, the others come with lower overhead. The higher overhead
in FA-PB is not only due to the fact that published events need to
be collected from the publisher but also due to a higher runtime
overhead than the others. We confirm the same in our next set of
experiments depicted in Figure 5(g) where we compare the two
flavors of filter aggregation algorithm. We measure the runtime
overhead with increasing number of subscriptions. Again, note,
FA-PB has a sampling factor of 1 in this set of experiments. As
depicted in the figure, FA-PB has a higher runtime overhead than
FA-LB consistently as it additionally considers event traffic patterns
for cost calculation. Our evaluations also show that the average
runtime overhead for LA is merely 200 microseconds on a switch .
So, we see that there is a trade-off between accuracy and overhead
as the improvement in one adversely affects the other.

We also evaluate the runtime overhead of the two flavors of
filter aggregation algorithm with increasing topology size. In this
experiment we keep the number of publishers and subscribers fixed
and expand the topology in terms of number of switches. Of course,
more the number of switches more will be the overhead for both
FA-PB and FA-LB as the cost calculation has to be done over more
switches with each calculation considering longer paths (more
upstream filters). Such a behavior is visible in Figure 5(h) where
the overhead for both FA-PB and FA-LB increases with increasing
number of switches. Again, FA-PB has higher overhead than FA-LB
due to the aforementioned reasons.

Impact of Sampling Factor: To reduce the overhead of collect-
ing published events and cost calculation of FA-PB, we introduced
the sampling factor (i.e., sfr) in Section 5. In the next set of ex-
periments, we show the behavior of our system when subjected
to various sampling factors. Figure 5(i) plots the false positive rate
with increasing value of s fr for zipfian distribution. As expected,
more the value of sfr, fewer are the false positives as FA-PB is
more accurate in its cost calculation when it considers more past
events. However, higher the sampling factor of FA-PB, higher is
the overhead as depicted in Figure 5(j) where we plot the runtime
overhead for increasing values of s fr.

To ensure that our aggregation algorithm is effective in realistic
scenarios, we conducted experiments to show its behavior on real-
world stock data. Figure 5(k) plots the false positive rate with
increasing sampling factor for the real-world data set. The plot
clearly shows that, even for a sampling factor of just 0.4, the network

DEBS 17, June 19-23, 2017, Barcelona, Spain

false positives due to aggregation are almost non-existent. These
evaluation results further highlight the applicability and efficiency
of the algorithm presented in this paper.

For our next set of experiments, we measure the false positives
at the subscribers when the aggregation algorithm is deployed
on a real SDN testbed described in the experimental setup of this
section. So, Figure 5(k) also plots the false positive rate when FA-
PB aggregates flows for increasing sampling factors for workload
generated using zipfian distribution. The graph shows that on the
real SDN testbed, the algorithm behaves as expected and the false
positive rate decreases rapidly with increasing sampling factor.

Dynamic Behavior: In our final set of experiments, we evalu-
ate the performance in terms of false positive rate of our system in
a dynamic environment. We progressively introduce subscriptions
in the system and apply our aggregation algorithm for handling
dynamics. So, in general, the local aggregation approach is applied
whenever switches exceed their capacity on introduction of a new
subscription as explained under handling dynamics in Section 5.
Additionally, FA-PB is employed after every 3000 subscriptions as
depicted in Figure 5(1). The figure shows that the false positive rate
gradually increases with more and more subscriptions when LA
is used till FA-PB is performed which makes the false positives in
the system almost negligible. Again, the false positive rate keeps
increasing on using LA till the next application of FA-PB. We, also,
plot the behavior of the system if only LA is employed. This clearly
shows the amount of false positives reduced in the system at every
step due to the intermittent application of FA-PB.

7 RELATED WORK

In the past couple of decades, a significant amount of research has
been dedicated to broker-based middleware implementations of
content-based pub/sub [11, 18, 25] that focus on achieving scalabil-
ity. In this context, techniques for subscription summarization that
include subscription covering [11] and subscription merging [25]
are widely employed to realize scalable systems. Subscription sum-
maries not only help in filtering out of events from the parts of
the broker network without interested users but also ensure for-
warding of new subscriptions only to brokers which previously
do not receive subsuming (or covering) subscription summaries.
So, these systems, primarily, use subscription summarization to
reduce unnecessary message overhead in the broker network. Also,
much effort [10, 15, 18] has been devoted to reduce the overhead of
maintenance of these subscription summaries but from the context
of efficiently handling dynamically changing subscription requests
in the broker network. Implemented in the application layer, these
systems do not need to address the problems of limited hardware
space in the network layer to accommodate the subscription filters
and subscription summarization is primarily performed to achieve
bandwidth efficiency in broker networks.

However, in recent times, network layer implementations of
pub/sub middleware [6, 7, 17, 29] has gained considerable popular-
ity as they exploit the capabilities of SDN to achieve forwarding
of events at line-rate. For example, in PLEROMA [6, 29], content
filters are directly installed in TCAM of hardware switches enabling
line-rate performance. However, existing SDN-based implemen-
tations do not consider the constraints on TCAM space (no. of

DEBS 17, June 19-23, 2017, Barcelona, Spain

flow table entries) while deploying content filters on them in their
design [4, 7, 29]. Besides the methods used to map content filters to
flows on switches in PLEROMA, other methods to do the same could
also be employed. For example, P4 [9], the protocol-independent
programming abstraction provides complete flexibility to imple-
ment new protocols and headers such that packets can be processed
independent of the hardware target. However, the flexible mapping
of content filters to flows using P4 will still face the problems of
limited TCAM space as no matter how the mapping is performed,
all expressive content filters must be installed on TCAM to reap the
benefits of line-rate forwarding. Bhowmik et al. [5] propose a hy-
brid pub/sub middleware which may be used to offload some of the
content filters to the application layer resulting in filtering of events
in both software and hardware. However, such a middleware loses
some of the advantages of a pure network layer implementation.

In general, the problem of limited flow table entries in TCAM of
SDN-compliant switches is well-known and much researched [19,
21, 30]. For example, Katta et al. [21] in CacheFlow use rule de-
pendencies to cache the more popular flows on the limited TCAM
while the remaining traffic is left to rely on software. As in the
aforementioned hybrid pub/sub, here, too, the performance of the
traffic forwarded by the software switch will suffer. Significant
amount of work in literature deals with optimizing rule place-
ment in a software-defined network [19, 20, 27]. For example,
OneBigSwitch [19] uses endpoint policy and routing policy to ag-
gregate sets of rules in order to take decisions on distributing them
over network switches. However, it is incapable of handling scenar-
ios where the rule sets are larger than the aggregate table size. Also,
considerable amount of work has been done in the lines of compact-
ing the representation of flow rules for the purposes of reducing
TCAM space [23, 24]. Although, the aforementioned systems target
efficient network provisioning and compressing rules on a switch,
the proposed solutions are not applicable to our problem in the
context of content-based routing. Also, systems, such as Smart-
Time [30], use an adaptive timeout technique to pro-actively evict
flow rules while ensuring that there is minimum TCAM misses.
Since, we consider a system that does not allow false negatives
and filters can only be removed on account of an unsubscription
or unadvertisement, a timeout-based heuristic is not ideal for our
problem.

8 CONCLUSION

In this paper, we design techniques to mitigate the problems associ-
ated with limited TCAM space in an SDN-based publish/subscribe
middleware. We propose, implement, and thoroughly evaluate a
filter aggregation algorithm that not only respects TCAM space
limitations on individual switches but also successfully minimizes
false positives in the network, despite merging of flows. To this end,
we introduce two flavors of this algorithm and compare various
aspects of their performance. Our evaluations include experiments
on a real SDN testbed and with real workload. Evaluation results
show that the designed filter aggregation algorithm reduces the
false positives, introduced in the network when a baseline approach
is used for aggregation, by up to 99.9%.

REFERENCES

[1] Hardware Switch Edge-Core AS5712-54X. http://www.edge-core.com/.

[10]

(1]

[12]

(13]

[17]

(18]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

Sukanya Bhowmik, Muhammad Adnan Tariq, Alexander Balogh, Kurt Rothermel

PicOS Version 2.6. http://www.pica8.com/documents/pica8-datasheet-picos.pdf.
SDN system performance. http://www.pica8.com/pica8-deep-dive/
sdn-system-performance/.

S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel. Bandwidth-efficient
content-based routing on software-defined networks. In Proc. of the 10th ACM
Int. Conf. on Distributed Event-Based Systems, DEBS 2016.

S. Bhowmik, M. A. Tariq, L. Hegazy, and K. Rothermel. Hybrid content-based
routing using network and application layer filtering. In Proc. of 36th IEEE Int.
Conf. on Distributed Computing Systems, ICDCS ’16.

S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Diirr, T. Kohler, and K. Rothermel.
High performance publish/subscribe middleware in software-defined networks.
In IEEE/ACM Transactions on Networking, 2016.

S. Bhowmik, M. A. Tariq, B. Koldehofe, A. Kutzleb, and K. Rothermel. Distributed
control plane for software-defined networks: A case study using event-based
middleware. In Proc. of the 9th ACM Int. Conf. on Distributed Event-Based Systems,
DEBS, 2015.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 1970.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev.

F. Cao and J. P. Singh. Efficient event routing in content-based publish-subscribe
service networks. In Proc. of 23rd IEEE INFOCOM, 2004.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
2001.

A. K. Y. Cheung and H. Jacobsen. Green resource allocation algorithms for
publish/subscribe systems. In Int. Conf. on Distributed Computing Systems, 2011.
G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Spidercast: A scalable
interest-aware overlay for topic-based pub/sub communication. In Proc. of the
Int. Conf. on Distributed Event-based Systems, 2007.

O. M. E. Committee. Software-defined Networking: The New Norm for Networks.
Open Networking Foundation, 2012.

G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the reconfiguration
overhead in content-based publish-subscribe. In Proc. of ACM Symp. on Applied
Computing (SAC), 2004.

A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee.
Devoflow: Scaling flow management for high-performance networks. In Proc. of
the ACM SIGCOMM 2011 Conference.

A. Hakiri and A. S. Gokhale. Data-centric publish/subscribe routing middleware
for realizing proactive overlay software-defined networking. In Proc. of the 10th
ACM Int. Conf. on Distributed Event-Based Systems DEBS, 2016.

K. R. Jayaram, C. Jayalath, and P. Eugster. Parametric subscriptions for content-
based publish/subscribe networks. In Proc. of 11th Int. Conf. on Middleware,
2010.

N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the “one big switch”
abstraction in software-defined networks. In Proc. of the 9th ACM Conference on
Emerging Networking Experiments and Technologies, CONEXT ’13.

Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in software-defined
networks. In Proc. of the IEEE INFOCOM 2013.

N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Cacheflow: Dependency-
aware rule-caching for software-defined networks. In Proc. of the Symposium on
SDN Research, SOSR "16.

B. Lantz, B. Heller, and N. McKeown. A network on a laptop: Rapid prototyping
for software-defined networks. In Proc. of 9th ACM Workshop on Hot Topics in
Networks, 2010.

A. X. Liu, C. R. Meiners, and E. Torng. TCAM razor: a systematic approach
towards minimizing packet classifiers in TCAMs. IEEE/ACM IEEE/ACM Transac-
tions on Networking, 2010.

C. R. Meiners, A. X. Liu, and E. Torng. Bit Weaving: A non-prefix approach to
compressing packet classifiers in tcams. IEEE/ACM IEEE/ACM Transactions on
Networking, 2012.

G. Miihl. Large-Scale Content-Based Publish-Subscribe Systems. PhD thesis, TU
Darmstadt, November 2002.

V. Muthusamy and H.-A. Jacobsen. Infrastructure-free content-based pub-
lish/subscribe. IEEE/ACM IEEE/ACM Transactions on Networking, 2014.

X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti. Optimizing rules placement
in openflow networks: Trading routing for better efficiency. In Proc. of the 3rd
Workshop on HotSDN ’14.

E. Spitznagel, D. Taylor, and J. Turner. Packet classification using extended
TCAM:s. In Proc. of the 11th IEEE ICNP Conference, 2003.

M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel. PLEROMA: A SDN-
based high performance publish/subscribe middleware. In Proc. of 15th Int.
Middleware Conference, 2014.

A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya. Effective switch mem-
ory management in openflow networks. In Proc. of the 8th ACM Int. Conf. on
Distributed Event-Based Systems, DEBS "14.

