Minimizing Communication Overhead in Window-Based
Parallel Complex Event Processing’

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel
{ruben.mayer,adnan.tariq,kurt.rothermel } @ipvs.uni-stuttgart.de
Institute for Parallel and Distributed Systems
University of Stuttgart, Stuttgart, Germany

ABSTRACT

Distributed Complex Event Processing has emerged as a well-
established paradigm to detect situations of interest from basic
sensor streams, building an operator graph between sensors and
applications. In order to detect event patterns that correspond to sit-
uations of interest, each operator correlates events on its incoming
streams according to a sliding window mechanism. To increase the
throughput of an operator, different windows can be assigned to
different operator instances—i.e., identical operator copies—which
process them in parallel. This implies that events that are part of
multiple overlapping windows are replicated to different operator
instances. The communication overhead of replicating the events
can be reduced by assigning overlapping windows to the same
operator instance. However, this imposes a higher processing load
on the single operator instance, possibly overloading it. In this
paper, we address the trade-off between processing load and com-
munication overhead when assigning overlapping windows to a
single operator instance. Controlling the trade-off is challenging
and cannot be solved with traditional reactive methods. To this
end, we propose a model-based batch scheduling controller build-
ing on prediction. Evaluations show that our approach is able to
significantly save bandwidth, while keeping a user-defined latency
bound in the operator instances.

CCS CONCEPTS

«Computer systems organization —Distributed architectures;

KEYWORDS

Complex Event Processing, Data Parallelization, Communication
Overhead

ACM Reference format:

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. 2017. Minimiz-
ing Communication Overhead in Window-Based Parallel Complex Event
Processing. In Proceedings of ACM International Conference on Distributed
and Event-Based Systems, Barcelona, Spain, June 19 - 23, 2017 (DEBS ’17),
12 pages.

DOI: http://dx.doi.org/10.1145/3093742.3093914

“Supported by Deutsche Forschungsgemeinschaft (DFG), project grant “PRECEPT”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’17, Barcelona, Spain

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5065-5/17/06...$15.00

DOI http://dx.doi.org/10.1145/3093742.3093914

1 INTRODUCTION

Modern applications need to be able to react to situations occur-
ring in the surrounding world. Thus, a growing number of sensor
streams need to be processed in order to detect situations which
the application or user is interested in, e.g., the traffic situation in
a smart city or the detection of a person in a video surveillance
application. To detect situations from sensor streams, Distributed
Complex Event Processing (DCEP) [16, 25] has been developed
as a well-established paradigm building the bridge between sen-
sors and consumers, i.e., applications or users that are interested
in situations. A DCEP middleware deploys an operator graph in
the network that incrementally detects patterns corresponding to
situations in the sensor streams. In doing so, timeliness of pattern
detection is of critical importance, as consumers need to react to
occurring situations. This typically poses a soft latency bound on
each operator of the DCEP system, because delayed situation detec-
tion leads to severe degradation of consumer benefits. For instance,
late detection of a traffic jam leads to wrong routing decisions, and
late detection of a person in a video surveillance application can
mean that the relevant person has already left the scene.

In a DCEP system, high workload on the operators can lead to
overload and long buffering delays when they process incoming
streams only sequentially. To increase the operator throughput,
data parallelization [4, 23] has been proposed as a powerful paral-
lelization method. In a data parallelization framework, incoming
event streams of an operator are split into windows that can be
processed in parallel by an arbitrary number of operator instances,
e.g., deployed in a cloud data center. To ensure consistency, each
window comprises all events needed in order to detect a pattern.
This means that different windows can overlap, i.e., events are part
of multiple windows [4, 23].

When splitting incoming event streams, the data parallelization
framework assigns a window to an operator instance when the
start of the window is detected. In doing so, assigning overlap-
ping windows to different operator instances results in increasing
communication overhead, as events that are part of multiple differ-
ent windows are replicated to multiple operator instances. In the
worst case, an event may be transmitted to all operator instances,
leading to a high network load. In cloud data centers, this may
not only impair the performance of the hosted DCEP systems, but
also the performance of other applications hosted on the same in-
frastructure. Network-intensive applications have been identified
as a major cause of bottlenecks in cloud data centers [6, 14, 19].
Therefore, reducing the bandwidth consumption of parallel DCEP
systems can be of great worth to all hosted applications.

(c) Owner 2017. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version is published in Proceedings of ACM International Conference on Distributed and Event-Based

Systems 2017 (DEBS ’17), http://dx.doi.org/10.1145/3093742.3093914.

DEBS 17, June 19 - 23, 2017, Barcelona, Spain

op.inst. 1

Consumers

incoming
—
events

outgoing

Operators events

Splitter

schedule

Sources windows ©OP-inst.n

Figure 1: DCEP oper- Figure 2: Data parallelization frame-
ator graph. work.

To reduce the bandwidth consumption, we employ batch sched-
uling of subsequent overlapping windows, i.e., assigning them to
the same operator instance. That way, events from the overlap
only need to be transferred once. However, at the same time, the
operator instance must process more windows in a shorter time.
This can lead to temporary overload, so that events get buffered and
queuing latency is accumulating. Nevertheless, latency between
arrival of an event and its successful processing must not exceed
a given latency bound. We address the following challenges in
batching the optimal amount of windows, which cannot be solved
with state-of-the-art scheduling algorithms from stream processing
[5,7, 21].

e Per-event latency: Each incoming event at an operator
can potentially trigger the detection of a pattern leading
to a situation detection. Therefore, a latency bound should
be kept for each single event.

e Window overlap: The overlap between windows of a
batch influences the processing load induced by each event,
as each event is processed in the context of each window
it is part of. Moreover, the scheduling decision is made on
open windows, i.e., the events and the overlap of a window
are not known at scheduling time.

e Automatic adaptation: A batch scheduling controller
should be able to automatically adapt to changing work-
load conditions without being manually trained for those
conditions beforehand.

Toward this end, we make the following contributions in this
paper. (1) Based on evaluations from different DCEP operators, we
identify key factors that influence the latency in operator instances.
In particular, we identify factors that have not been regarded in
related work before. (2) Taking into account the identified key
factors, we propose a model-based batch scheduling controller. The
model allows to predict the latency induced in operator instances
when assigning windows. (3) We provide extensive evaluations
of the system behavior in two different scenarios, showing that
our approach minimizes communication overhead while operator
instances keep a required latency bound even when the system
faces heavily fluctuating workloads.

2 DATA-PARALLEL DCEP SYSTEMS

Before introducing the methods for bandwidth-efficient batch sched-
uling, we introduce a common model of a data-parallel DCEP sys-
tem [4, 23].

A DCEP system builds an operator graph interconnecting event
sources, operators and consumers by event streams. For example,
Figure 1 depicts a DCEP deployment with 3 sources, 3 operators

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel

already assigned windows
unknown | known events

events s
LAa CiA B A | w, D
A3 C A | W,

- :
start of new window w,,,
A

batch ?

op. instance i

Splitter

stream
Figure 3: Splitting and scheduling.

and 2 consumers. An event e consists of its payload and a header
containing its event type. Events from all streams inherently have
a well-defined total order!. When receiving events from different
incoming streams, operators assign sequence numbers to the events
according to the global order, process the events in-order and emit
outgoing events to their successors in the operator graph. In doing
so, an operator « detects event patterns in finite, non-empty subsets
of their incoming event streams—called windows and denoted by w,
using a correlation function f,, : w — (e1, €2, ..., en). The patterns
to be detected can be defined in event specification languages like
Snoop [9] or Tesla [11], e.g., sequence patterns, logical (AND / OR
/ NOT) patterns, and others. Pattern definitions take into account
event meta-data such as timestamps and event types, but can also
rely on user-defined functions that analyze the events’ payload, e.g.,
face recognition functions.

To cope with high workload, each operator is executed in a
data parallelization framework (cf. Figure 2). It consists of a split—
process—merge architecture [4, 23]. A splitter divides the incoming
event streams of the operator into windows. The windows are
then scheduled (i.e., assigned) to an elastic set of operator instances
which simultaneously process their assigned windows. Finally, a
merger orders the events emitted by the operator instances into
a deterministic sequence. Each window must comprise all events
needed in order to detect a pattern instance.

Example: In the scenario in Figure 3, the pattern to be detected
is “within one minute after occurrence of an event of type A, a
sequence of events of type B and C occurs”—i.e., Aperiodic[A;
Sequence(B; C); A.timestamp + Imin] in Snoop syntax [9]. The split-
ter opens a window whenever an event of type A occurs, and closes
the window after one minute. The operator instances check whether
in a window, events of type B and C occur in the right order. Taking
a look at the splitting, we see that all events following A; within
one minute are part of the same window wy: If some of the events
would be missing, they could not be checked for the Sequence(B;C)
sub-pattern that follows Aj.

In contrast to horizontal splitting, vertical splitting techniques
(e.g., “panes” [21] or “stream batches” [18]) have been proposed for
stream aggregation operators. For instance, when the max or me-
dian value of a window of 1 minute shall be computed, that window
could be split into 6 fragments of 10 seconds, the fragments’ max
or median be computed in parallel, and the global window’s value
be computed from the local results. This way, mere aggregation
functions can be efficiently computed, as processing and aggregat-
ing the event subsets is an embarrassingly parallel task. In DCEP

I'This order can, for instance, be established on time-stamps assigned by event sources
with synchronized clocks, so that it reflects the ordering of physical occurrence of
source events.

Minimizing Communication Overhead in Window-Based Parallel CEP

pattern detection, the processing of any event may depend on the
complete temporal history of preceding events. For instance, when
detecting a sequence of three events A, B, and C, processing of an
event depends on the other events that have been detected before.
Often, additional constraints are formulated, e.g., that B and C must
occur within one minute from A (as in the example above), or that
A, B and C have a parameter x, such that A.x < B.x < C.x (e.g.,
to detect chart patterns in stock markets [4]). This naturally leads
to a window-based processing model, where windows capture the
dependencies between different event sets that potentially build a
pattern match; the windows themselves can hardly be split into
smaller fragments, because the dependencies between the events
may span the complete window. Hence, horizontal splitting is a nat-
ural choice to exploit the data parallelism in such pattern detections
(cf. [11, 23]).

To allow for a virtually unlimited parallelization degree, all com-
ponents are deployed on (possibly virtual) distinct shared-nothing
hosts, and each of them can access a dedicated set of resources in
terms of CPU and memory, i.e., we do not require shared mem-
ory between different operator instances or between the splitter
and the operator instances. The hosts of the components are inter-
connected by unicast communication channels that guarantee even-
tual in-order delivery of streamed events. Focusing on the main
technical challenges in this paper, we constrain ourselves to homo-
geneous hosts to deploy operator instances.

According to the pattern definition, windows can have different
sizes and a different number of events can occur between two start
events of subsequent windows. We denote the period of time that
a window spans, i.e., the time between the first event and the last
event of a window, as the window scope, ws. Further, we denote the
period of time between two start events of subsequent windows as
the window shift, A. Upon detection of the start of a new window,
this window is assigned to an operator instance according to a
scheduling algorithm. In an operator instance, incoming events
are processed sequentially. Within each window, an event has
a different context. Therefore, when processing an event e, the
operator instance sequentially processes e in the context of each
window that e is part of.

Example: Recall the scenario in Figure 3. Two overlapping
windows wy and wy have been assigned to the same operator
instance i. When i processes an event, e.g., C1, this event has a
different context in wy than in wy: In wy, the sequence (B;C) is
detected, while in wy, the sequence is not detected. In checking the
occurrences of the sequence pattern in different windows, operator
instance i processes C; sequentially first in wy and then in wy.

From the event consumer’s point of view, the situation detec-
tion latency is the period from the occurrence of a source event
that signals a situation of interest until the situation is actually
detected and signaled to the consumer. As the delayed detection
of a situation degrades the benefits for the application, it poses a
soft latency bound on the overall situation detection: violations of
the latency bound shall, if possible, be avoided. The situation de-
tection latency spans the whole operator graph and is sub-divided
into latency budgets for each single operator. In each operator, the
splitter and the merger induce latency for splitting the streams into
windows and merging the results. Because scheduling windows to
operator instances significantly influences the latency induced in

DEBS ’17, June 19 - 23, 2017, Barcelona, Spain

each operator instance, in this paper, we focus on batch scheduling
suitable amounts of windows to operator instances such that a
latency bound in those operator instances is kept.

We define the operational latency of e, Ay(e), as the period be-
tween the point in time when e arrives at an operator instance and
the point in time when e is completely processed in all assigned
windows in this operator instance. When, at the time of arrival of e,
the operator instance is still busy with processing earlier events, e
waits in a queue until its processing can start. This is called queuing
latency of e, Aq(e). Then, e is processed, which induces the process-
ing latency of e, A,(e), the time from starting to process e until e is
processed in all assigned windows. Overall, the operational latency
of an event is a combination of its queuing latency and processing
latency, i.e., Ao(e) = Ag(e) + Ap(e).

Problem Formalization: To minimize the communication over-
head, the batch scheduling controller tries to assign as many subse-
quent windows as possible to the same operator instance subject to
the constraint that the operational latency of events in that instance
must not exceed a latency bound LB. As soon as the start of a new
window Wy, is detected by the splitter, the batch scheduling con-
troller decides whether assigning that window to the same operator
instance as the previous window would cause operational latency
of events to exceed LB. This is noted as the batch scheduling problem
in data-parallel DCEP operators.

Example: The trade-off tackled in the batch scheduling problem
is exemplified in Figure 3. An event A3 arrives at the splitter and
the splitter detects that A3 starts a new window wpe,, which now
has to be scheduled. Suppose a set of previous windows W ;7 =(...,
Wy, Wy) has already been scheduled to a specific operator instance
i. Events before A3 in W,;; have been transferred to operator
instance i. However, further events arriving after A3 can as well be
part of some of the windows in W ,j4; hence, they are transferred
to operator instance i, too. When scheduling wpe, to operator
instance i, communication overhead can be reduced, because events
overlapping between wpe,, and W, do not need to be transferred
to multiple different operator instances. On the other hand, they
need to be processed additionally in the scope of wyey,, inducing
higher processing latency. The splitter has to decide whether wpeyy
can be assigned to operator instance i such that the operational
latency does not increase beyond LB.

3 BATCH SCHEDULING

To analyze the batch scheduling problem, in this section, we make
the following contributions. First, in Section 3.1, we identify and
thoroughly analyze key factors that influence the operational la-
tency in an operator instance. We conclude that the impact of key
factors on operational latency in an operator instance is complex
and depends on the workload as well as on the operator. Then, in
Section 3.2, we highlight the difficulties in developing a reactive
batch scheduling controller that works without a latency model.

3.1 Key Factors

In the following, we first identify and analyze key factors that
influence the processing latency of events in the scope of a single
window. Based on that, we identify and analyze key factors that
influence operational latency in a whole batch of windows. To this

DEBS 17, June 19 - 23, 2017, Barcelona, Spain

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel

06 1200 > 1 T T
1000 E 08 i
2 2 800 ° L i
: H 8 06
g g oo L o4 Window scope =500 s —
8 3 + 3 window scope = 600 s
5 5 400 ++ + + g 02[. P
= i i$$¢$ ++ ++ + E window scope =700s —
200 © 0 1 1 1
o 0 XXX KKK K KKK K KKK KKKRKIXAXK 10ms 1s 100s
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 5 10 15 20 25 30
Position Position Operational latency (log scale)

(a) Traffic monitoring: Processing latency of events (b)Face recognition: Processing latency of events in (c) Traffic monitoring: Operational latency
in different positions in a window. L1 events: black, different positions in a window. Face events: black, with reactive batch scheduling at TH =

L2 events: red. query events: red.

100ms under different window scopes.

Figure 4: Evaluations.

end, we evaluate two different DCEP operators: a traffic monitoring
and a face recognition operator. We ran all experiments on the
computer cluster described in Section 5 with a parallelization degree
of 8.

Traffic monitoring operator. A traffic monitoring application is
interested in violations of an overtaking ban, so that the transgres-
sor can be warned or punished. To this end, two cameras at two
different locations (L1 and L2) on a highway capture video streams
of vehicles passing by. To detect overtaking maneuvers, a traffic
monitoring operator w is deployed between the cameras and the
application. When a vehicle passes a camera, an event is emitted to
w, containing a time-stamp, the type (location L1 or L2), and the
number plate. To detect the violations, w uses an aperiodic window
window: Whenever a vehicle a passes L1, a window w is opened,
and when the same vehicle passes L2, w is closed. Another vehicle b
that appears in the L1 stream within w has passed L1 after a. When b
appears again in w in the L2 stream, it has passed L2 before a. If this
is the case, b has overtaken a and thus violated the traffic rules. The
query in w can be expressed in CEP query languages, e.g., in Snoop
[9] language as an aperiodic operator: Aperiodic(A; B; C) with A
— (plate=q, type=L1), B — Sequence({plate=b, type=L1);(plate=b,
type=L2)), C — (plate=a; type=L2)2.

Face recognition operator. A face recognition application wants to
know whether a person of interest is currently located in a specific
area. To this end, pictures of detected faces from a camera are
transferred to a face recognition operator w. Further, query events
from users querying whether a certain person is in the current video
stream are sent to w, containing a set of pictures of the person and
a time frame within which the person shall be detected. w uses a
face recognition algorithm in order to detect whether the queried
person is in the stream. This query can be resembled by an aperiodic
operator Aperiodic(A; B; C) with A — (type=query, time=t), B —
(type=face, “face_match(A)”), C — time > t + time frame.

Processing Latency of Events in a Window. When process-
ing a single window in an operator instance, each event imposes a
specific processing latency. This is different from stream processing
where the processing latency of an event in a window is consid-
ered fixed [5, 29]. We identified two key factors that influence
the processing latency of an event in a window: its type and its
position.

Event type. Event types are a fundamental concept in DCEP.
Many query languages, such as Snoop [9], Amit [1], SASE [26]

2 Aperiodic(A; B; C): Between the occurrence of two (complex) events A and C, the
(complex) event B occurs.

and Tesla [11], allow for the definition of event patterns based on
event types—e.g. SEQ(A;B), a sequence of events of type A and B. In
the traffic monitoring operator, different event types are processed
in a different way. L1 events are simply added to a list of seen
events, while L2 events are compared to the seen events (cf. Figure
4a). In the face recognition operator, query events are processed
by building a face model of the queried person, while face events
are processed by comparing them to the established face model
of the window (cf. Figure 4b). In both operators, we see different
processing latencies depending on the event types.

Position of Event. When processing events of a window, inter-
nal state is gathered in an operator [4, 8], which can influence the
processing latency of events. For instance, in the traffic monitor-
ing operator, an L2 event e, can potentially complete a pattern
Sequence((plate=b, type=L1);{plate=b, type=L2)) or close the win-
dow. Therefore, e, is compared to all L1 events that have been
seen in the window before (equi-join operator). Thus, with a higher
position of ey, its processing latency increases, as evaluated in
Figure 4a. However, the processing latency of events does not nec-
essarily increase with position. In the face recognition operator,
each face event is compared to a query event; the face_match func-
tion imposes the same processing latency in each event position
(cf. Figure 4b).

Operational Latency in a Batch of Windows. In a batch of
windows, different windows may overlap. When the batch sched-
uling controller assigns a window to an operator instance that
overlaps with other windows, the processing latency of all events
in the overlap is influenced, as events are processed sequentially in
the scope of their windows. Recall that a window has to comprise
all events needed in order to detect a queried pattern. Therefore,
the overlap of different windows cannot be changed by the batch
scheduling controller. That is different from batch scheduling prob-
lems handled in stream processing, where batches are considered to
be arbitrarily large, non-overlapping sets of events, and batch sched-
uling decides how many events shall be batched to a processing
node [12, 21].

In the following, we identify key factors influencing the over-
lap of windows and analyze their impact on operational latency
in operator instances. To this end, we run experiments with the
traffic monitoring operator and the face recognition operator. In
each experiment, using different traffic densities and different num-
bers of persons in a video frame, one key factor value is changed
while all other key factors are kept constant, and the differences
in operational latency peaks are analyzed (cf. Figure 5). For each

Minimizing Communication Overhead in Window-Based Parallel CEP

DEBS ’17, June 19 - 23, 2017, Barcelona, Spain

scenario parameters | measurements scenario parameters | measurements

batch | avg. ws (5) max. op. | feedback | max. q. | feedback batch |avg. ws (s) max. op. | feedback | max. q. [feedback

size |iat(s) lat. (s) |delay (s) |length |delay (s) size |iat(s) lat. (s) |delay (s) |length |delay (s)
1[500 [0.15 [900 [2.4 725.5 15 773.6 1[10 0.667 |10 37.9 46.3 43 10.1
2(500 10.125 [900 |3.7 757.7 27 724.8 2110 0.4 10 68.7 77.1 84 9.4
3(500 (0.1 900 |24.1 699.0 248 810.2 3110 0.286 |10 99.7 108.0 115 10.6
4(750 0.1 900 100.6 800.8 1029 844.0 4]15 0.286 |10 145.1 153.2 164 8.3
511,000 | 0.1 900 116.1 824.3 1194 795.6 5|20 0.286 |10 195.1 200.7 191 10.2
61,000 (0.1 1000 [197.8 1,041.8 [1699 999.0 6120 0.286 |15 289.4 301.8 234 14.4
711,000 | 0.1 1100 |199.2 1,179.2° | 1898 1,100.0 7120 0.286 |20 392.1 410.1 258 19.6

(a) Traffic monitoring operator.

(b) Face recognition operator.

Figure 5: Max. operational latency, queue length and feedback delays.

experiment, more than 370,000 operational latency measurements
have been taken.

Batch size. The batch size, i.e., number of windows assigned to an
operator instance in a batch, influences the overlap of the windows,
and hence, the operational latency of events. However, the relation
between batch size and operational latency peak is not trivial. In
the traffic monitoring operator, increasing the batch size by 50 %
and then by further 33 % induces an increase in operational latency
peak by 317 % and 15 %, respectively (cf. Figure 5a, #3, #4 and #5).
In the face recognition operator, the relation between batch size
and operational latency seems to be proportional (cf. Figure 5b).

Inter-arrival time (iat). Given a fixed batch size, the inter-arrival
time iat of events influences the queuing latency of events. Fur-
ther, it can influence the number of events in the windows, e.g., in
time-based windows. The number of events in windows influences
their overlap, which, in turn, influences the processing latency of
the events. Thus, there is a complex relation between iat and opera-
tional latency. In the traffic monitoring operator, we decreased the
average iat of events first by 17 %, and then by further 20 %. This
induced an increase in operational latency peak by 54 % and 551
%, respectively (cf. Figure 5a, #1, #2 and #3). Similarly, in the face
recognition operator, decreasing the average iat of events first by
40 % and then by further 28.5 %, led to an increase in operational
latency peak by 81 % and 45 %, respectively (cf. Figure 5b).

Window scope (ws). The window scope ws—i.e., the time be-
tween the start and end event of a window—depends on the queried
patterns to be detected by the DCEP operator. It can be fixed to a
specific time, e.g., when the query depends on a time-based window
[2], but it can also depend on the occurrence of specific events, e.g.,
in aperiodic queries or queries that define a sequence of specific
events [9, 11]. For instance, in the traffic monitoring operator, the
start and end of a window depend on the speed of the vehicles,
as a window starts when a vehicle passes L1 and ends when the
same vehicle passes L2. When the speed of a vehicle is lower, the
time spanned by the window opened from this vehicle is larger.
Therefore, the size and overlap of windows can change even when
the batch size and iat stay the same. This is different from stream
processing, where only windows of fixed size and fixed slide— time-
or count-based—are analyzed [5]. In the traffic monitoring oper-
ator, we increased ws in the traffic monitoring operator by 11 %,
and then by further 10 %. This induced an increase in operational
latency peak by 70 % and 1 %, respectively (Figure 5a, #5, #6 and
#7). In the face recognition operator, however, increasing ws led to
a proportional increase in operational latency peaks.

From the observations on key factors that influence operational
latency when processing a batch of windows, we see that building
a direct mapping from batch size, inter-arrival time and window
scope to operational latency peaks in operator instances is hard.
The relation between key factors and operational latency peaks that
occur in operator instances is complex, and different in different
operators. A model trained before run-time (off-line), hence, does
not suffice; due to the complex relations between key factors, it is
hard to train a model that can make reliable predictions outside of
the learned parameter value ranges. Further, domain knowledge
alone is not enough in order to hand-craft a latency model: Knowl-
edge about the operator implementation does not necessarily help
in understanding the relations between the identified key factors
and the operational latency peak.

In the following, we discuss whether the need for a latency model
predicting the operational latency can be completely avoided by
employing a reactive batch scheduling controller.

3.2 Reactive Controllers

Here, we discuss the difficulties involved in devising a reactive
batch scheduling controller. Reactive controllers are widely used in
scheduling algorithms in the related field of parallel stream process-
ing systems [12, 21]. The basic idea of a reactive controller is that
it schedules windows according to feedback parameters (like oper-
ational latency or queue length) from the operator instances that
indicate how many windows can be batched. In the following, we
point out the differences in batch scheduling in data-parallel DCEP
operators to scheduling problems that have been solved with reac-
tive controllers. Then, we analyze operational latency and queue
length of operator instances in the scope of the scenarios described
in Section 3.1 in detail and show that none of these parameters
provides reliable feedback to implement a reactive controller.

In data-paralle]l DCEP operators, in order to maintain the latency
bound for each event, the batch scheduling controller decides at
the start of a window to which instance this window is scheduled.
Then, it directs all events that arrive in the scope of that window to
the corresponding instance. It is infeasible for the controller to wait
until all events of the window are present and then schedule the
window; it would take too much time in view of per-event latency
bounds. After assigning a window to an operator instance at the
occurrence of its start event, many other events of that window
arrive until the window is finally closed. Thus, over the whole time
span of the window, feedback parameters in the operator instance
are influenced by the scheduling decision, i.e., a long time after

DEBS 17, June 19 - 23, 2017, Barcelona, Spain

A 10

time
AABBCCD
(b) W-C: Latency peak.

events

o w o

(a) Latency gains.

o w o

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel

A A

q q

alwsl [l

ADACBBC
(d) M-C: Latency peak.

time
ADACBCEB
(c) B-C: Latency peak.

o w o

Figure 6: Different sequences of negative and positive gains.

the scheduling decision has been made. That poses a completely
different problem from other batch scheduling problems that are
tackled with reactive batch scheduling, e.g., the problem of sched-
uling batches of events in streamed batch processing [12], where a
controller first builds a batch of available events and then assigns it
to an operator instance.

Therefore, in data-parallel DCEP operators, there can be a high
delay between assigning a window to an operator instance and the
occurrence of the peak value of the feedback parameters in that
operator instance. We denote this delay as the feedback delay. In
Figure 5a, we have measured the feedback delay of operational
latency and of queue length in the different runs of the traffic
monitoring operator under different conditions; a feedback delay
of 699 to 1,179 seconds occurred for both parameters. In that time,
many subsequent batch scheduling decisions have to be made by
the controller. At the same time, key factors like inter-arrival time,
window scope, event types, etc. continuously change. Moreover,
the feedback delay is not constant, so that the controller cannot
rely on it; it is not clear whether the parameter measured in an
operator instance is already the peak value or how much further it
will grow.

To mitigate high feedback delays, we devise a latency-reactive
controller that reacts on the current operational latency in operator
instances. Windows are batched to the same operator instance until
at the instance, the current operational latency reaches a threshold
TH; subsequent windows are scheduled to the next operator in-
stance. This, however, poses the question how to set TH. A simple
experiment shows that a static TH is not good enough to keep the
latency bound LB. We run evaluations using the traffic monitoring
operator at an average inter-arrival time of cars of 200 ms, aiming
to keep LB = 1s. With TH = 100ms, reactive batch scheduling more
or less was able to keep LB when ws was not higher than 500 s (cf.
Figure 4c). However, at a ws of 600 s and 700 s, TH = 100ms led to
systematically wrong batch scheduling decisions; LB was violated
by a factor of almost 100. Obviously, TH has to be adapted to the
changing key factor values. In doing so, the feedback to change
TH is available only after LB already has been violated, i.e., after
a long feedback delay. The same problems apply when using the
queue length peaks as a feedback parameter: The feedback delay is
high. Again, using the current queue length as feedback parameter
requires a suitable threshold, which in turn has to be adapted to
changing key factor values.

In the face recognition operator, window scopes are much smaller.
While the feedback delay of operational latency peaks is still high
(46 to 410 seconds), the feedback delay of the queue length peaks
is smaller (8 to 20 seconds; cf. Figure 5b). However, this does not
automatically make the queue length peaks a good parameter for
reactive controllers. First of all, 20 seconds is still a long time; in

the real-world workloads analyzed in Section 5, sudden bursts de-
mand for an even faster reaction. Second, the relation between
queue length peak and operational latency peak is not trivial; the
operational latency peak does not necessarily occur when the most
events are in the queue, but rather when the most expensive events
are in the queue. This demands for a more thorough analysis. We
conclude that neither operational latency nor queue length are a
reliable feedback parameter for a purely reactive batch scheduling
controller.

Instead of pure feedback mechanisms, our approach uses a sim-
ple, yet powerful latency model. It takes into account feedback
from operator instances, but also includes a prediction and analysis
step.

4 MODEL-BASED CONTROLLER

The batch scheduling controller must predict whether the opera-
tional latency peak in an operator instance will be higher than LB
when batching a new window w pe,,. To this, we introduce a latency
model. We aim to find the right balance between the complexity,
the reasonable consideration of feedback from operator instances
and of domain expert knowledge, and the accuracy and precision
of the model.

4.1 Basic Approach

Recall that the operational latency of an event e is built up of its
queuing and processing latency: Ao(e) = Ag(e) + Ap(e). If the
processing latency A, (e) of an event is higher than the inter-arrival
time iat to its successor event, this imposes additional queuing
latency to the successor event. On the other hand, if A (e) is smaller
than iat, the queuing latency of the successor event becomes smaller
or even zero, i.e., e does not induce queuing latency for the successor
event. In the following, we refer to the difference between Ap and
iat as the gain y of an event: y(e) = Ap(e) — iat. If Ap(e) > iat, we
speak of a negative gain; else, we speak of a positive gain®. In Figure
6a, we provide an example. Suppose that the iat between events is
5 time units (TU), and the window contains 7 events: 2 events of
type A impose 4, = 8 TU, 2 events of type B impose 4, =7 TU, 2
events of type C impose A, = 4 TU, and 1 event of type D imposes
Ap =2 TU. Then, the gains of the single events are between +3 and
-3 TU (+3 for type A, +2 for B, -1 for C, -3 for D).

Now, for the overall window wy,,, the aggregated gains of the
set of events with A, (e) > iat are termed as the total negative gain:
™ =X y(e): e € Wnew A Ap(e) > iat. In the given example (Figure
6a), those are the events of type A and B; hence, '™ = 3+3+2+2 = 10
TU. The aggregated gains of the set of events with A,(e) < iat are

3Negative gains are positive numbers and positive gains are negative numbers. The
terminology refers to the impact of an event on the feasibility to schedule a window
in a batch.

Minimizing Communication Overhead in Window-Based Parallel CEP

termed as the total positive gain*: T* = Y y(e) : e € Wpew Adp(e) <
iat. In the given example (Figure 6a), those are the events of type C
and D; hence, I'" = (=1) + (=1) + (=3) = -5 TU.

After defining the total negative and positive gains, in the follow-
ing, we analyze possible sequences of negative and positive gains
and the impact on the queuing latency peak Ag'**. In Figure 6b, first
all negative gains occur, followed by all positive gains. This is the
worst case with respect to 1¢'*; in the example sequence, g =
10 TU. Note, that also any other sequence of events of types A and
B would lead to the same Ag**. In the worst case, hence, 15" =T~
However, an interleaving between negative and positive gains is
possible as well. Take a look at Figures 6c and 6d: In the examples,
the events with negative and positive gains interleave to a different
extent. This leads to different values of A]'%*, because although the
queuing latency is increased by events with negative gains, events
with positive gains compensate for that; a successor event of an
event with positive gain faces a lower queuing latency.

The actual sequence of events with negative and positive gains
in Wpey is very difficult to predict. It would essentially correspond
to predicting each single event in wy,, and its iat. To account
for the discussed interleaving of events with negative and positive
gains, therefore, we introduce a compensation factor a. a allows for
modeling the extent of interleaving of negative and positive gains
without the need to explicitly define the sequence of events in wpey
in the prediction: Af =T~ +a=I"". Taking a look at the best-case
example in Figure 6c, we see that the negative and positive gains
are maximally interleaving, hence, « = 1. Accordingly, Aqm“x =
10 + 1 % (-=5) = 5. Figure 6d exemplifies an event sequence in
between the worst- and best-case: Parts of the positive gains are
interleaving with the negative gains, hence, @ = 0.8. Accordingly,
A% =10 + 0.8 * (=5) = 6.

Please notice, that the first event of wy,,, might already face
a queuing latency AP at its arrival. This can be due to previous
windows that had been scheduled to the same operator instance.
Hence, the final formula to calculate the queuing latency peak is:

Ag® = }LZ’” +T" +a=*Tt ae[0,1].

From the queuing latency peak A5**, the operational latency
peak Ag"** is calculated using the maximal processing latency 171
of any event in wp,,. This bases on the pessimistic assumption that
the most expensive event occurs right at the queuing latency peak;
as we do not know the event sequence, this assumption is justified

by the goal to avoid underestimations of AJ'**. Hence,
/ltr)nax — A:Inax + Amax.
Using this latency model, the operational latency peak can be

predicted, and the scheduling decision—to batch or not to batch—
can be made accordingly. In the following sub-section, we describe
how the parameters of the model are predicted.

4.2 Prediction of Model Parameters

The proposed latency model builds on predicting the total sum of
negative and positive gains of all events in wy,,; i.e., it does not
regard individual events, but it regards events in wpe as sets of
events imposing negative or positive gains. Hence, it builds on the

“If () = iat, neither negative nor positive gains occur.
5For the sake of readability, we did not mention in the text that)L;"“X = A;“t, if
I +axI" <.

DEBS ’17, June 19 - 23, 2017, Barcelona, Spain

WS

measurements —

Ewoldest n

- E

iat A L w .

]] e ne
0 ——
Bl Bz Bn) §/2

Figure 7: iat bins. Figure 8: Overlap.

prediction of the set of events in wpey, including their processing
latency A, and their inter-arrival time iat. Further, a prediction of
the initial queuing latency /15]”” and the compensation factor « is
needed. Based on those values, the model predicts the operational
latency peak. In this section, we discuss appropriate prediction
methods and algorithms.

Inter-arrival time. The splitter continuously monitors the past
iat values in a window of mtime time units. Our iat model tackles
two challenges: heavy fluctuations of the iat around an average
value (variance) and rapid changes of the average iat (changing
trend).

Tackling the first challenge, the splitter arranges the monitored
inter-arrival times in a discrete model (cf. Figure 7). The range of
measured iat values is divided into a number of equally-sized bins.
The measured iats are sorted into the corresponding bin; for each
bin B;, the mean value iat(Bi)l is computed: iat(B;) = iat(B,'),. Each
bin is assigned with a weight(B;), i.e. ratio of number of entries in
the bin to total number of measurements in all bins. The number of
bins manages the accuracy of the model; the minimum number of
bins is 1.

Tackling the second challenge, we introduce a negative bias on

the monitored mean value iat(B,'), in each bin. This way, the model
accounts for changes in the average iat between the monitored
value iat(Bi), and the value that will occur in wpey. The negative
bias is modeled based on a factor ;4 of standard deviations o of the
monitored iats, e.g., 1 standard deviation or 2 standard deviations.
Then, iat(B;) = iat(Bi)l — Ojgt * 0.

Processing Latency. In our model, A, depends on the overlap
© and the processing latency in a single window A3: 1 = © * 1.
As discussed in Section 3, 1Y depends on the event type and the
position in a window. Hence, first of all, our model differentiates
between different event types. This design decision has two con-
sequences: First, the prediction model of)Lp’ takes into account
the type, i.e., predict /11";/(type), the in-window processing latency
of events of a specific type. Second, the set of events in Wy, is
predicted with respect to the number of events of different types.

For modeling A (type), we propose the same methods as for
modeling iat, using a combination of negative bias and bins. Same
as in iat bins, in each latency bin Bj, we predict AI‘Q’(BZ) =).g(Bi), +
1) Ap* O i.e., the measured mean in-window processing latency in the
latency bin plus a factor & Ao of standard deviations. The advantage
of monitoring the current (distribution of) A}“,’(type) in the operator
instances over building a position-dependent latency model is that
we can implicitly incorporate the position-dependency: When the
(distribution of) positions of events in windows change, e.g., due to

DEBS 17, June 19 - 23, 2017, Barcelona, Spain

changing workload or changing window scopes, this is reflected in
the monitored current (distribution of) /I}A,’(type) values. We do not
need to explicitly model the positions of individual events.

The overlap © for all events of wy,,, is modeled as the average
overlap of events of wpey in the current batch, denoted by ©. Pre-
dicting © is performed according to the following model (cf. Figure
8). When w ., is scheduled in a batch of already opened windows,
a number of events in wye, has the current overlap O, until the
oldest open window w4 in the batch closes. From closing w yjges:
until closing W, the overlap decreases step-wise in regular in-
tervals each time a window between w yjges; and wpeyy is closed. In
that phase, the average overlap is ©/2. In order to compute ©, we
weigh the ratio of events with overlap © to the events with overlap
e} /2. In doing so, we assume in our model that all windows in the
batch have the same window scope ws, and between the start of
two windows there is the same shift A; ws and A are measured in
the splitter at regular intervals to keep them up to date at each
scheduling decision.

At the start of Wpew, Woges: is already open since (©—1)xA time
units, as © — 1 is the number of windows between w s and w ey
that were opened in intervals of A time units. Therefore, wyjges;
stays open for ws— (©—1) * A more time units. When Woldest Closes,
the phase of closing windows starts, spanning (© — 1) * A time units.

Hence, the weighed average overlap is computed as follows:
6= (ws—(0—1)xA)+O+(O—-1)xA+O /2

Number of Events. For predig}tsing the set of events in Wyey,
there are three significant factors in the model: (1) The window
scope ws, (2) the iat, and (3) the ratio of different event types,
denoted as ratio(type), that models which percentage of events in
Wpey is of a specific type. These factors are gained from monitoring
them in the incoming event stream in the splitter in the past mtime
time units. To predict the total number of events in wpey, We
again use a negative bias of J;,; standard deviations o(iat), so that
iat = iat’ — Siat * o(iat). Then, the total number of events n is
predicted as n = 323, and the number of events of a specific type,
denoted by #(type), is predicted as ratio(type) * n.

Initial Queuing Latency. The initial queuing latency is pre-
dicted for each operator instance separately, depending on the
content of the incoming event queue. To this end, operator in-
stances report the number of events of each type and their aver-
age overlap O in the assigned windows in regular intervals to the
splitter. The splitter calculates A of an operator instance as the
sum of the processing latencies of all reported events in its queue:
/121”” = Dtypes #events R Ay (type).

Compensation Factor. For modeling the compensation factor
a, there are two possibilities.

First, we propose a heuristic, denoted as T-COUNT, for adapting
a based on the current extent of interleaving between events with
different processing latency in the incoming stream. To this end,
events are divided into two groups, based on their in-window pro-
cessing latency A3: the group of events with higher A7 is denoted
by T~ and the group of events with lower).;,V is denoted by T*.
The distinction between the groups is made based on the average
Ag(type) of the event types; there is one half of event types that
has higher)L}",’(type) than the other half of event types. Events of
any of the types that pose higher processing latencies are grouped

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel

1: (long, long) predictGains () begin > returns I~ and T'*
2: predict #events for each latency bin B;: #(Bj)

3 sort latency bins by mean latency (highest first)
4: predict #events for each iat bin B;: #(B;)

5: sort iat bins by mean iat (lowest first)

6: while true do

7 #combination < min{#(B;), #(B;)}

8: gain — #combination x (© » A%(By) — iat(B;))

9: if gain > 0 then

10: I'" «TI" + gain

11: else

12: 't «T" + gain

13: end if

14: #(By) < #(By) — #combination

15: #(B;) « #(B;) — #combination

16: if #(B;) = 0 then

17: ie—i+1 > next iat bin
18: end if

19: if #(B;) = 0 then

20: le—1+1 > next latency bin
21: end if

22: if no more bins then

23: return (I, T*)

24: end if

25: end while
26: end function

Figure 9: Predict negative and positive gains.

: Operatorlnstance wy
: void schedule () begin
Al « LatencyModel.newPrediction()
if AJ™* < LB then
assign o to wx
else
x « (x + 1) MOD #op_instances
assign o to wy
end if
: end function

> current operator instance

> Round-Robin

SO RPTDDRP

-

Figure 10: Scheduling algorithm.

into T~, other events are grouped into T*. The splitter continu-
ously counts in a monitoring window of temporal size mtime, how
many events in T~, denoted by ¢~, and how many events in T™,
denoted by ¢, occur. Further, the splitter counts how often events
in T~ and T* follow each other, i.e., the number of transitions, de-
noted by c’. The maximal number of transitions is 2 * min{c*,c™}.
Trivially, the minimum number of transitions is 1. Then, « is pre-

dicted as the proportion of ¢! to the maximal number of transitions:
ci-1
2«min{c*,c™}"
Second, a domain expert can also set a fixed or dynamic value of
a based on off-line training if the characteristics of the expected

workloads are known beforehand.

a =

4.3 Scheduling Algorithm

Having a prediction of the set of events in wpe,,, processing latencies
and inter-arrival times, the batch scheduling controller predicts
the total negative and positive gains and the operational latency
peak in order to schedule wpe,,. In this section, we introduce the
algorithms.

Total Negative and Positive Gains Prediction. To predict
I~ and T'Y, the predicted processing latencies and inter-arrival
times have to be combined. Each processing latency bin represents
a number of events in wpe, having a specific A,; each iat bin
represents a number of events having a specific iat. In order to
calculate the total negative and positive gain of all events, the
number of events having a specific combination of A, and iat is
predicted. To this end, events from the bin with highest 1, are

Minimizing Communication Overhead in Window-Based Parallel CEP

combined with the lowest iat, etc., and events with lowest).p are
combined with the highest iat. The concrete algorithm is presented
in the following (cf. algorithm in Figure 9). First, for each type,
the total number of events, #(type), is divided into latency bins
according to the weights of the bins: The number of events #(B;) in
a latency bin By is: #(B;) = #(type) = weight(B;). Then, all latency
bins of all event types are globally sorted by their mean processing
latency (highest first). The iat bins are sorted by the mean iat
(lowest iat first); the number of events #(B;) in an iat bin B; is
computed based on the total number of events, n, and the weight
of the bin, #(B;) = n * weight(B;). Then, the numbers of events in
the processing latency bins and iat bins are combined such that
the highest processing latencies are combined with the lowest iats.
The algorithm iterates through the bins (lines 6 — 25): For the
combination of current latency and iat bin, the gain of the events
in this combination is calculated based on the processing latency
and the iat of the bins. If the predicted gain is greater than 0, it is
added to the total negative gains, else it is added to the total positive
gains. Then, the next combination of bins is processed. When the
iteration went through all bins, the resulting total negative and
positive gains are returned.

Operational Latency Peak. The operational latency peak A'*
is predicted with the formulas introduced in Section 4.1, taking
into account the predicted parameters as described in Section 4.2:
Ao ™ = Ag + A3, with A8 = AfI"” +T” +a=T". In doing
so, /11’,”“" is predicted as the in-window processing latency /1}",’ of
the most expensive event type in the most expensive latency bin,
denoted as max(/lj";/), at the average overlap: /1;,”“’“ =0x max(lz’).

Scheduling. When scheduling a new window, the controller
checks whether batching it to the same operator instance where the
last window was assigned to would lead to a violation of LB. The
scheduling algorithm is listed in Figure 10. The latency model is
queried for a prediction of the operational latency peak AJ'** (line
3). The predicted AJ'* is compared to LB and a batch scheduling
decision is made accordingly: If AJ*** < LB, the window is assigned
to the same instance as the last window (lines 4-5); else, it is sched-
uled to the next operator instance according to the Round-Robin
algorithm (lines 6-8).

5 EVALUATION

In our evaluations, we analyze the proposed methods in two steps.
In a first step, we perform a distinct evaluation of the proposed
latency model. We show the accuracy and precision of the la-
tency model in predicting the negative gains, positive gains and
latency peaks in different situations under synthetic workloads.
In the second step, we measure the performance of the overall
event processing system under different realistic conditions—such
as inter-arrival times and latency bounds—comparing the model-
based batch scheduling controller to Round-Robin and to a reactive
batch scheduling algorithm. The cost of prediction is also evaluated.

Experimental Setup and Notation. To evaluate the batch
scheduling controller, we have integrated it into an existing data
parallelization framework [23]. All experiments were performed on
a computing cluster consisting of 16 homogeneous hosts with each
8 CPU cores (Intel(r) Xeon(R) CPU E5620 @ 2.40 GHz) and 24 GB
memory, connected by 10-GB Ethernet links. The components of

DEBS ’17, June 19 - 23, 2017, Barcelona, Spain

[Symbol [Parameter Description]
iat average inter-arrival time of events
b batch size, i.e., number of subsequent windows scheduled to same
op. instance
ws window scope, i.e., temporal scope of a window
-, T total negative and positive gains

a compensation factor
Ao, Ag, Ap | operational latency, queuing latency and processing latency of an
event in an operator instance; Ao = A4 + 4

Ag™ queuing latency peak: A7 = AZ’” +I" +a=T*
A’qm' initial queuing latency before processing the first event of a win-
dow
LB latency bound, i.e., the peak operational latency that shall not be
exceeded
RR Round-Robin scheduling, circularly assigns one window to each
operator instance
Siat» SAP negative bias of measured iat or A, in the monitoring window, in
std. deviations: e.g., iat — Jjgt * O
mtime size of the workload monitoring window
TH scheduling threshold of reactive baseline controller, cf. Section 3.2

Figure 11: Symbols used.

the parallelization framework were distributed among the available
hosts. Symbols used in the evaluations are listed in Figure 11.

5.1 Latency Model

In the following, we evaluate the accuracy and precision of the
proposed latency model. We present the evaluation in two parts:
First, we evaluate the predictions of the total negative and positive
gains. Based on that, we then analyze the prediction of the queuing
latency peak, which depends on the prediction of negative and
positive gains as well as on the compensation factor a.

Interpretation of the figures in this section. We measured
both the predicted values as well as the values that actually occurred
in the operator instances. In all experiment results, i.e., Figure
12 and Figure 13, on the y-axis, we depict the predicted values
normalized to the measured values. For example, a value of 1.0
means that the prediction exactly met the actually occurred value,
a value smaller than 1.0 means that the prediction was too low
(i.e., underestimation), and a value higher than 1.0 means that the
prediction was too high (i.e., overestimation). All figures depict
the 10th, 25th, 50th, 75th, and 90th quantiles in a “candlesticks”
representation.

5.1.1 Negative and Positive Gains. In analyzing the prediction
of T™ and T'*, we run evaluations on synthetic workloads. Using
synthetic workloads allows us to perform measurements in con-
trolled situations where all of the parameters are well-known and
completely under our control. This is not the case in real-world
workloads, as we use them in the analysis of the overall event pro-
cessing system in Section 5.2. For the face recognition operator, we
created a synthetic stream of face events (i.e. images containing
a person’s face). Each 2 seconds, a burst of 4 face events with an
inter-arrival time of 10 ms was created, which resembles 4 persons
in front of a camera that captures a picture each 2 seconds. The
query events were generated with a fixed rate of 1 query per second,
so that each second, one new window was started. For the traffic
monitoring operator, we created a workload trace with an average
inter-arrival time of events of 100 ms following an exponential
distribution, which resembles 5 cars per second passing each road
checkpoint.

DEBS 17, June 19 - 23, 2017, Barcelona, Spain

é T |. | T 5 T T T T T

5 Negative Gains [£ Negative Gains
3 2f Positive Gains 1 > 2 Positive Gains [S
® ©

v 15} 1 L 15

z 7 s =8 off = fe B s
c = c g8 8 ;-7 © 1

2 05 - 2 05 L ﬁ 1
B = k]

@ o 1 1 T g oL In 1 I I 1 M
& 1 2 4 8 & 1 2 4 8 16 32
(a) Number of IAT Bins (b) Number of iat bins

Figure 12: Prediction of negative and positive gains. (a) Face
recognition operator, b = 4, ws = 10s, (b) Traffic monitoring
operator, b = 1000, ws = 500s.

€

r * M+
£ 2 F +0)\\'nit 1
[
5 i A\ hax =
w,l.s-iE é éiéqi 4
[
2 B A
S g — i
S
5 05} -
©
<
a O 1 1 1 1 T

a=T-COUNT0.0 0.25 0.5 0.75 1.0

Figure 13: Predictions of queuing latency peak. Face recog-
nition operator, b = 4, ws = 10s.

Figure 12a shows evaluations of the face recognition operator
using a different number of iat bins. If only 1 bin is used, the
predictions of I'™ and I'* are poor. With a growing number of iat
bins, the latency model becomes more accurate: With 2, 4 or 8 bins,
the predictions of both '™ and I'" are very accurate and precise. In
the traffic monitoring operator, employing more iat bins, as shown
in the results in Figure 12b, quickly improves the prediction quality
as well.

We have also evaluated the effects of a negative bias on iat, as
well as bins and negative bias on processing latency; a detailed
discussion with all the results can be found in [24]. Summarizing
those results, using a negative bias of J;4; standard deviations in the
iat bins makes the model more pessimistic. Further, the negative
and positive gains in the tested scenarios are dominated by iat such
that employing bins and negative bias only on processing latency
is insufficient to tune the model.

5.1.2 Queuing Latency Peak. Recall that the queuing latency
peak is predicted based on the total negative and positive gains and
the compensation factor a: 45" = /15]"” +T™ +a Tt We show
on the example of the face recognition operator that our proposed
T-COUNT heuristic provides a suitable, slightly pessimistic estima-
tion of @ such that no under-estimation of queuing latency peak
occurs. Additionally, we evaluate the prediction of the initial queu-
ing latency Afl””. Following our observations from Section 5.1.1, we
employ the latency model with 2 iat bins, so that the predictions of
I and T'* are accurate.

We see in Figure 13 that the T-COUNT heuristics leads to a
good overall estimation of Ag"**. In predicting AEI””, fluctuations
are caused by events in the network that have not yet arrived in
the queue of an operator instance and are not considered in the
feedback to the splitter. However, the impact of this behavior on the
prediction of /1;”“" is small, as /1;”“" is dominated by the negative
and positive gains.

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel

1.0 2
o S 800 k
8 & 600 k
= .
& RR — 3
T 098 LB =500ms * * £ 400k .
& LB =15 == g |
2 LB = 26 = g 200k
3 reactive = 0
o =+
0.96 J J ég@‘; A
ls 2s 3s //(,)0 SR
: S
(a) Operational latency (b) >

Figure 14: Traffic monitoring operator. (a) Operational la-
tency. (b) Communication cost.

Besides the T-COUNT heuristic, we also systematically evaluated
the impact of fixed values of @ on the prediction of AJ'**. As can
be seen in Figure 13, using different fixed values leads to different
degrees of over- or underestimations of Ag'**. Off-line profiling
can be used in order to develop optimally pessimistic or optimistic
models to set &, when the characteristics of the workload are well-
known before system deployment.

5.2 Overall Event Processing System

We compare our model-based batch scheduling controller to two
baseline scheduling algorithms: Round-Robin scheduling and latency-
reactive scheduling. Round-Robin aims for good load balancing but
disregards communication overhead; it is the standard scheduling
algorithm used in window-based data parallelization systems such

s [23]. Latency-reactive scheduling, as described in 3.2, batches
windows to an operator instance until its operational latency ex-
ceeds a threshold TH. It is used as a latency-aware baseline algo-
rithm to compete against our model-based controller.

Traffic Monitoring Scenario. In our dynamic traffic monitor-
ing scenario, we modeled the inter-arrival time of vehicles as an
exponential distribution with an average value following a sinu-
soidal curve between 2000 ms and 200 ms. Following the evaluation
of the latency model in Section 5.1, we set-up the controller to use 8
iat bins and a tumbling monitoring window with mtime = 60s. To
account for the position-dependency of the operator and the rapdily
changing workload, we add a pessimistic bias of § Ap = 2 standard
deviations on the monitored processing latency and 8;4; = 0.75
standard deviations on the monitored iat. In all experiments, the
parallelization degree, i.e., number of operator instances, was fixed
at 8. Each experiment was running for 5 hours.

At a window scope of 500 seconds, Round-Robin scheduling
resulted in a maximal operational latency of 200 ms (cf. Figure 14a)
and 724,464 events have been transmitted between the splitter and
the operator instances (cf. Figure 14b). We ran the same experi-
ment using our batch scheduling controller allowing for 2.5, 5 and
10 times higher operational latency peaks than yielded in Round-
Robin: 500 ms, 1 s and 2 s. As shown in Figure 14a, LB was kept.
The communication overhead was reduced by 53 %, 59 % and
64 %, respectively (cf. Figure 14b). We compared this performance
to the latency-reactive scheduler described in Section 3.2; the re-
active scheduler batches windows to an operator instance until it
reports a current operational latency of more than TH = 100ms.
The operational latency and communication overhead was very
similar to model-based scheduling at LB = 2s; however, the tail
of the latency distribution is much longer, leading to 50 % higher

Minimizing Communication Overhead in Window-Based Parallel CEP

2 2 80k
= c

e} [

'.é" _uz 60 k
a . []

B) LB=15s *+++ £ 40k
£ 04f LB=30s = - £

g 02 It LB=60s = = S 20k
5 reactive =

o 0 | N L L L E™S 0

0s 10s 20s 30s 40s 50s 60s

(a) Operational latency (b)

Figure 15: Face recognition operator. (a) Operational latency.
(b) Communication cost.

operational latency peaks. This indicates that the reactive scheduler
erratically batches too many windows, leading to a less predictable
behavior of the operator instances than when the model-based
controller is used.

Face Recognition Scenario. With the dynamic face recogni-
tion scenario, we evaluate the system behavior at a highly bursty
real-world workload. A real video stream from a camera installed
on campus—capturing 1 frame each 2 seconds—is processed by a
face detection operator and the detected faces are streamed to the
face recognition operator. Simulating users of a face recognition
application, the arrival of new queries is modeled as an exponen-
tial distribution with an average inter-arrival time of 2 seconds.
The face recognition operator detects whether the queried person
is in the face event stream, using a window scope of ws = 10s.
Each experiment ran for 150 minutes. According to the insights we
gained from the evaluation of the latency model in Section 5.1, we
set-up the controller to use 2 iat bins. Further, we set mtime = 10s
(tumbling window) and d;4; = 1.0 standard deviations to account
for the changing iat.

For Round-Robin scheduling, we measured an operational la-
tency peak of 6 seconds (cf. Figure 15a) and 68,412 events have
been transmitted between the splitter and the operator instances
(cf. Figure 15b). We ran the same experiment using our batch sched-
uling controller allowing for 2.5, 5 and 10 times higher operational
latency peaks than yielded in Round-Robin: 15 s, 30 s and 60 s. The
latency bounds are kept in all tested settings (cf. Figure 15a). The
communication overhead was reduced by 14 %, 31 % and 76 %,
respectively (cf. Figure 15b). We compared this performance to the
latency-reactive scheduler described in Section 3.2 with TH = 6s.
The operational latency peaks were 15 % higher than with the
model-based controller at LB = 60s, while the communication over-
head was 14 % higher as well. With a higher threshold TH, the
reactive scheduler would induce even higher latency peaks, while
with a lower TH, it would induce an even higher communication
overhead; hence, the model-based controller is more effective, no
matter how the reactive scheduler’s threshold is set up.

In summary, model-based batch scheduling is effective in trad-
ing communication overhead against operational latency. In com-
parison, reactive scheduling is less predictable and effective than
model-based scheduling; it might still be useful in cases where a
simple best-effort batching approach is sufficient, but should not
be used when latency bounds must be enforced.

Scalability. We evaluate the scalability of our approach in two
aspects. First, the scheduling latency, i.e., the time between the
detection of the start of a new window and the scheduling decision
(cf. Algorithm in Figure 10). It includes predicting the negative

DEBS ’17, June 19 - 23, 2017, Barcelona, Spain

- 0.04 1 T T T 1T @

£ £ 100
& 003 . T 10
fLl LI 8
§0,02]

5 § 0!
2 001 I T N N B | = 0.01

1 2 4 8 16 32
(a) Number of iat bins (b)
Figure 16: Latency of (a) scheduling and (b) updating statis-
tics.

100 1k 10k 100k 1M

Number of events

and positive gains (cf. Algorithm in Figure 9), whose complexity is
determined by the granularity of the latency model, i.e., the number
of bins used in the model. We measured a very low scheduling
latency of in average 0.02 ms for up to 32 bins used (cf. Figure
16a), which is the maximal number of bins needed in any of the
scenarios that we have tested (cf. Section 5.1.1). For comparison,
the median scheduling latency in reactive scheduling and in Round-
Robin scheduling was both 0.004 ms. Admittedly, there is a small
overhead for the model-based batch scheduling controller involved
compared to the simple strategies. This is not significant in most
scenarios; if scheduling would be a throughput bottleneck in the
splitter, the frequency of predicting negative and positive gains
could be adapted (i.e., not predicting fresh gains at each single
scheduling decision), trading model accuracy against throughput.
Second, we evaluate the time needed to update the latency model
with new statistics from the monitoring window;, i.e., the monitoring
latency. This comprises recomputing the weights, average values
and standard deviations of the bins. Using 32 bins, we measured
a linear growth with the number of events in the monitoring win-
dow (cf. Figure 16b). At 1,000,000 events in a monitoring window,
updating the statistics took between 100 and 200 ms, which is a
reasonable time to adapt the model to changes in the workload.

6 RELATED WORK

Complex Event Processing (CEP) has evolved as the paradigm of
choice to detect and integrate events in situation-aware applications
[1, 9, 11, 26]. In doing so, distributed CEP (DCEP) systems [16, 25]
distribute the detection logic over a network of operators. However,
individual operators can be a bottleneck and operator paralleliza-
tion is needed [8, 23]. Besides data parallelization, intra-operator
parallelization—also known as pipelining or state-based paralleliza-
tion [4]—has been proposed, which is limited by the functional
parallelism of an operator. Besides window-based splitting as pre-
sumed in this paper, key-based splitting [8, 15] has been proposed,
that is splitting by a key that is encoded in the events. However, this
is limited to the number of different key values, e.g., different stock
symbols in an algorithmic trading scenario. Moreover, not all DCEP
patterns exhibit key-based data parallelism, whereas window-based
data parallelism is inherent to most of them, as DCEP operators in
their very nature work on windows (cf. [11, 23]).

In related work, there have been addressed different problems
of assigning batches of individual events to instances of stream
processing operators. Das et al. [12] propose a reactive controller
in order to batch a minimal number of events to an operator such
that the throughput is sufficiently high to process the current work-
load. In their processing model, operators can aggregate larger
sets of events more efficiently, so that the throughput of operators

DEBS 17, June 19 - 23, 2017, Barcelona, Spain

grows with the batch size. A similar problem had been studied
before by Carney et al. [7]. Micro-batching, as used, e.g., in Spark
Streaming [28], provides efficient failure recovery and batch-like
programming paradigms by handling streaming events as a series of
fixed-sized batches. Unlike in this paper, in all of these approaches,
batches are composed of individual events and not of overlapping
windows. Balkesen and Tatbul [5] recognize the trade-off of commu-
nication overhead to latency in operator instances when scheduling
overlapping windows. Their analytical cost model assumes fixed
processing latency of an event in a window and fixed count-based
or time-based window size and slide. Further, it does not consider
inter-arrival times. Hence, it is not suitable for solving the batch
scheduling problem in data-parallel DCEP operators.

Elasticity in data-parallel stream processing, i.e., adapting the
number of operator instances to changing workloads, is a comple-
mentary problem. Existing solutions that apply latency models
often base on the assumption of fair load balancing [13, 22, 23];
batch scheduling defeats this assumption, deliberately inducing
a controlled load imbalance. How to use the proposed latency
model of the batch scheduling controller for elasticity control is an
interesting research question for future work.

Other latency models for DCEP operators have been proposed.
The Mace metrics from Chandramouli et al. [10] for latency estima-
tion in a DCEP middleware proposes an analytical model. However,
it assumes the usage of their proposed scheduling algorithm—which
is not a batch scheduling algorithm. In the latency model of Zeitler
and Risch, a fixed processing latency of each event is assumed [29];
our latency model differentiates between different event types and
takes into account the overlap of windows.

Batching is also applied in other fields, like graph processing
[27] and column data-stores [20], where it is often preferable to
process or store data in batches instead of handling each single tuple
separately. However, typically, optimal batch sizes are predefined,
e.g., by cache sizes, so that fixed batch sizes are employed.

Scheduling algorithms in non-parallel DCEP optimize the usage
of resources like CPU and memory [3, 17] without taking into
account batching of overlapping data sets.

7 CONCLUSION

In this paper, we have tackled the problem to batch as many sub-
sequent overlapping windows as possible to the same operator
instance in data-parallel DCEP operators subject to the constraint
that the operational latency in the operator instance must not ex-
ceed a given latency bound. As the batch scheduling decisions
are made on open windows, a long feedback delay between the
decisions and their impact on feedback parameters is induced, mak-
ing reactive scheduling approaches infeasible. Instead, we have
proposed a model-based controller. Evaluations show that the
controller batches an optimal amount of windows even at bursty
workloads. This way, the bandwidth consumption of data-parallel
DCEP operators can be significantly reduced.

REFERENCES

[1] Asaf Adi and Opher Etzion. 2004. Amit - the Situation Manager. The VLDB
Journal 13, 2 (May 2004), 177-203.

[2] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous
Query Language: Semantic Foundations and Query Execution. The VLDB Journal
15, 2 (June 2006), 121-142.

[5

[6

[7]

8

(10]

[11

[12

[13

[15]

[16]

(17]

(18]

=
2

[20]

[21]

[22]

(23]

[25

[26]

[27

(28]

™
0,

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys Thomas.
2004. Operator Scheduling in Data Stream Systems. The VLDB Journal 13, 4 (Dec.
2004), 333-353.

Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. 2013. RIP:
Run-based intra-query parallelism for scalable complex event processing (DEBS
’13). ACM, 3-14.

Cagri Balkesen and Nesime Tatbul. 2011. Scalable data partitioning techniques
for parallel sliding window processing over data streams (International Workshop
on Data Management for Sensor Networks (DMSN)).

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards Predictable Datacenter Networks (SIGCOMM ’11). 242-253.

Don Carney, Ugur Cetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and
Mike Stonebraker. 2003. Operator Scheduling in a Data Stream Manager (VLDB
’03). VLDB Endowment, 838—849.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating Scale out and Fault Tolerance in Stream Processing
Using Operator State Management (SIGMOD ’13). ACM, 725-736.

S. Chakravarthy and D. Mishra. 1994. Snoop: An expressive event specification
language for active databases. Data Knowl. Eng. 14, 1 (1994), 1-26.

B. Chandramouli, J. Goldstein, R. Barga, M. Riedewald, and I. Santos. 2011.
Accurate latency estimation in a distributed event processing system (ICDE ’11).
255-266.

Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: a formally defined
event specification language (DEBS ’10). ACM, 50-61.

Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive Stream
Processing Using Dynamic Batch Sizing (SOCC ’14). ACM, Article 16, 13 pages.
Tiziano De Matteis and Gabriele Mencagli. 2016. Keep Calm and React with
Foresight: Strategies for Low-latency and Energy-efficient Elastic Data Stream
Processing. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’16). ACM, New York, NY, USA, Article
13, 12 pages.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network (SIGCOMM
09). 51-62.

Martin Hirzel. 2012. Partition and Compose: Parallel Complex Event Processing
(DEBS ’12). 191-200.

Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park,
Philippe Selo, and Chitra Venkatramani. 2006. Design, Implementation, and Eval-
uation of the Linear Road Benchmark on the Stream Processing Core (SIGMOD
’06). ACM, 431-442.

Lukas Kencl and Jean-Yves Le Boudec. 2008. Adaptive Load Sharing for Network
Processors. IEEE/ACM Trans. Netw. 16, 2 (April 2008), 293-306.

Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures (SIGMOD °16). 555-569.
Katrina LaCurts, Shuo Deng, Ameesh Goyal, and Hari Balakrishnan. 2013.
Choreo: Network-aware Task Placement for Cloud Applications. In Proceed-
ings of the 2013 Internet Measurement Conference (IMC °13). 191-204.

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-store 7
Years Later. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1790-1801.

Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
No Pane, No Gain: Efficient Evaluation of Sliding-window Aggregates over Data
Streams. SIGMOD Rec. 34, 1 (March 2005), 39-44.

Bjorn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic Stream Process-
ing with Latency Guarantees. In 2015 IEEE 35th International Conference on
Distributed Computing Systems. 399-410.

Ruben Mayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable Low-
Latency Event Detection with Parallel Complex Event Processing. Internet of
Things Journal, IEEE 2, 4 (Aug 2015), 274-286.

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. Real-time Batch
Scheduling in Data-Parallel Complex Event Processing. Technical Report 2016/04.
University of Stuttgart. 14 pages.

Nicholas Poul Schultz-Mgller, Matteo Migliavacca, and Peter Pietzuch. 2009.
Distributed Complex Event Processing with Query Rewriting (DEBS "09). Article
4, 12 pages.

Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance Complex
Event Processing over Streams (SIGMOD ’06). 407-418.

Wenlei Xie, Guozhang Wang, David Bindel, Alan Demers, and Johannes Gehrke.
2013. Fast Iterative Graph Computation with Block Updates. Proc. VLDB Endow.
6, 14 (Sept. 2013), 2014-2025.

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. 2012.
Discretized Streams: An Efficient and Fault-tolerant Model for Stream Processing
on Large Clusters (HotCloud’12). USENIX Association.

Erik Zeitler and Tore Risch. 2011. Massive scale-out of expensive continuous
queries. VLDB Endowment 4, 11 (2011), 1181-1188.

	Abstract
	1 Introduction
	2 Data-Parallel DCEP Systems
	3 Batch Scheduling
	3.1 Key Factors
	3.2 Reactive Controllers

	4 Model-based Controller
	4.1 Basic Approach
	4.2 Prediction of Model Parameters
	4.3 Scheduling Algorithm

	5 Evaluation
	5.1 Latency Model
	5.2 Overall Event Processing System

	6 Related Work
	7 Conclusion
	References

