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ABSTRACT
Distributed Complex Event Processing has emerged as a well-
established paradigm to detect situations of interest from basic
sensor streams, building an operator graph between sensors and
applications. In order to detect event pa�erns that correspond to sit-
uations of interest, each operator correlates events on its incoming
streams according to a sliding window mechanism. To increase the
throughput of an operator, di�erent windows can be assigned to
di�erent operator instances—i.e., identical operator copies—which
process them in parallel. �is implies that events that are part of
multiple overlapping windows are replicated to di�erent operator
instances. �e communication overhead of replicating the events
can be reduced by assigning overlapping windows to the same
operator instance. However, this imposes a higher processing load
on the single operator instance, possibly overloading it. In this
paper, we address the trade-o� between processing load and com-
munication overhead when assigning overlapping windows to a
single operator instance. Controlling the trade-o� is challenging
and cannot be solved with traditional reactive methods. To this
end, we propose a model-based batch scheduling controller build-
ing on prediction. Evaluations show that our approach is able to
signi�cantly save bandwidth, while keeping a user-de�ned latency
bound in the operator instances.
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1 INTRODUCTION
Modern applications need to be able to react to situations occur-
ring in the surrounding world. �us, a growing number of sensor
streams need to be processed in order to detect situations which
the application or user is interested in, e.g., the tra�c situation in
a smart city or the detection of a person in a video surveillance
application. To detect situations from sensor streams, Distributed
Complex Event Processing (DCEP) [16, 25] has been developed
as a well-established paradigm building the bridge between sen-
sors and consumers, i.e., applications or users that are interested
in situations. A DCEP middleware deploys an operator graph in
the network that incrementally detects pa�erns corresponding to
situations in the sensor streams. In doing so, timeliness of pa�ern
detection is of critical importance, as consumers need to react to
occurring situations. �is typically poses a so� latency bound on
each operator of the DCEP system, because delayed situation detec-
tion leads to severe degradation of consumer bene�ts. For instance,
late detection of a tra�c jam leads to wrong routing decisions, and
late detection of a person in a video surveillance application can
mean that the relevant person has already le� the scene.

In a DCEP system, high workload on the operators can lead to
overload and long bu�ering delays when they process incoming
streams only sequentially. To increase the operator throughput,
data parallelization [4, 23] has been proposed as a powerful paral-
lelization method. In a data parallelization framework, incoming
event streams of an operator are split into windows that can be
processed in parallel by an arbitrary number of operator instances,
e.g., deployed in a cloud data center. To ensure consistency, each
window comprises all events needed in order to detect a pa�ern.
�is means that di�erent windows can overlap, i.e., events are part
of multiple windows [4, 23].

When spli�ing incoming event streams, the data parallelization
framework assigns a window to an operator instance when the
start of the window is detected. In doing so, assigning overlap-
ping windows to di�erent operator instances results in increasing
communication overhead, as events that are part of multiple di�er-
ent windows are replicated to multiple operator instances. In the
worst case, an event may be transmi�ed to all operator instances,
leading to a high network load. In cloud data centers, this may
not only impair the performance of the hosted DCEP systems, but
also the performance of other applications hosted on the same in-
frastructure. Network-intensive applications have been identi�ed
as a major cause of bo�lenecks in cloud data centers [6, 14, 19].
�erefore, reducing the bandwidth consumption of parallel DCEP
systems can be of great worth to all hosted applications.
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Figure 1: DCEP oper-
ator graph.
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Figure 2: Data parallelization frame-
work.

To reduce the bandwidth consumption, we employ batch sched-
uling of subsequent overlapping windows, i.e., assigning them to
the same operator instance. �at way, events from the overlap
only need to be transferred once. However, at the same time, the
operator instance must process more windows in a shorter time.
�is can lead to temporary overload, so that events get bu�ered and
queuing latency is accumulating. Nevertheless, latency between
arrival of an event and its successful processing must not exceed
a given latency bound. We address the following challenges in
batching the optimal amount of windows, which cannot be solved
with state-of-the-art scheduling algorithms from stream processing
[5, 7, 21].

• Per-event latency: Each incoming event at an operator
can potentially trigger the detection of a pa�ern leading
to a situation detection. �erefore, a latency bound should
be kept for each single event.

• Window overlap: �e overlap between windows of a
batch in�uences the processing load induced by each event,
as each event is processed in the context of each window
it is part of. Moreover, the scheduling decision is made on
open windows, i.e., the events and the overlap of a window
are not known at scheduling time.

• Automatic adaptation: A batch scheduling controller
should be able to automatically adapt to changing work-
load conditions without being manually trained for those
conditions beforehand.

Toward this end, we make the following contributions in this
paper. (1) Based on evaluations from di�erent DCEP operators, we
identify key factors that in�uence the latency in operator instances.
In particular, we identify factors that have not been regarded in
related work before. (2) Taking into account the identi�ed key
factors, we propose a model-based batch scheduling controller. �e
model allows to predict the latency induced in operator instances
when assigning windows. (3) We provide extensive evaluations
of the system behavior in two di�erent scenarios, showing that
our approach minimizes communication overhead while operator
instances keep a required latency bound even when the system
faces heavily �uctuating workloads.

2 DATA-PARALLEL DCEP SYSTEMS
Before introducing the methods for bandwidth-e�cient batch sched-
uling, we introduce a common model of a data-parallel DCEP sys-
tem [4, 23].

A DCEP system builds an operator graph interconnecting event
sources, operators and consumers by event streams. For example,
Figure 1 depicts a DCEP deployment with 3 sources, 3 operators
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Figure 3: Splitting and scheduling.

and 2 consumers. An event e consists of its payload and a header
containing its event type. Events from all streams inherently have
a well-de�ned total order1. When receiving events from di�erent
incoming streams, operators assign sequence numbers to the events
according to the global order, process the events in-order and emit
outgoing events to their successors in the operator graph. In doing
so, an operatorω detects event pa�erns in �nite, non-empty subsets
of their incoming event streams—called windows and denoted by w,
using a correlation function fω : w→ (e1, e2, ..., en ). �e pa�erns
to be detected can be de�ned in event speci�cation languages like
Snoop [9] or Tesla [11], e.g., sequence pa�erns, logical (AND / OR
/ NOT) pa�erns, and others. Pa�ern de�nitions take into account
event meta-data such as timestamps and event types, but can also
rely on user-de�ned functions that analyze the events’ payload, e.g.,
face recognition functions.

To cope with high workload, each operator is executed in a
data parallelization framework (cf. Figure 2). It consists of a split–
process–merge architecture [4, 23]. A spli�er divides the incoming
event streams of the operator into windows. �e windows are
then scheduled (i.e., assigned) to an elastic set of operator instances
which simultaneously process their assigned windows. Finally, a
merger orders the events emi�ed by the operator instances into
a deterministic sequence. Each window must comprise all events
needed in order to detect a pa�ern instance.

Example: In the scenario in Figure 3, the pa�ern to be detected
is “within one minute a�er occurrence of an event of type A, a
sequence of events of type B and C occurs”—i.e., Aperiodic[A;
Sequence(B;C); A.timestamp +1min] in Snoop syntax [9]. �e split-
ter opens a window whenever an event of type A occurs, and closes
the window a�er one minute. �e operator instances check whether
in a window, events of type B and C occur in the right order. Taking
a look at the spli�ing, we see that all events following A1 within
one minute are part of the same window wx : If some of the events
would be missing, they could not be checked for the Sequence(B;C)
sub-pa�ern that follows A1.

In contrast to horizontal spli�ing, vertical spli�ing techniques
(e.g., “panes” [21] or “stream batches” [18]) have been proposed for
stream aggregation operators. For instance, when the max or me-
dian value of a window of 1 minute shall be computed, that window
could be split into 6 fragments of 10 seconds, the fragments’ max
or median be computed in parallel, and the global window’s value
be computed from the local results. �is way, mere aggregation
functions can be e�ciently computed, as processing and aggregat-
ing the event subsets is an embarrassingly parallel task. In DCEP
1�is order can, for instance, be established on time-stamps assigned by event sources
with synchronized clocks, so that it re�ects the ordering of physical occurrence of
source events.
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pa�ern detection, the processing of any event may depend on the
complete temporal history of preceding events. For instance, when
detecting a sequence of three events A, B, and C , processing of an
event depends on the other events that have been detected before.
O�en, additional constraints are formulated, e.g., that B andC must
occur within one minute from A (as in the example above), or that
A, B and C have a parameter x , such that A.x < B.x < C .x (e.g.,
to detect chart pa�erns in stock markets [4]). �is naturally leads
to a window-based processing model, where windows capture the
dependencies between di�erent event sets that potentially build a
pa�ern match; the windows themselves can hardly be split into
smaller fragments, because the dependencies between the events
may span the complete window. Hence, horizontal spli�ing is a nat-
ural choice to exploit the data parallelism in such pa�ern detections
(cf. [11, 23]).

To allow for a virtually unlimited parallelization degree, all com-
ponents are deployed on (possibly virtual) distinct shared-nothing
hosts, and each of them can access a dedicated set of resources in
terms of CPU and memory, i.e., we do not require shared mem-
ory between di�erent operator instances or between the spli�er
and the operator instances. �e hosts of the components are inter-
connected by unicast communication channels that guarantee even-
tual in-order delivery of streamed events. Focusing on the main
technical challenges in this paper, we constrain ourselves to homo-
geneous hosts to deploy operator instances.

According to the pa�ern de�nition, windows can have di�erent
sizes and a di�erent number of events can occur between two start
events of subsequent windows. We denote the period of time that
a window spans, i.e., the time between the �rst event and the last
event of a window, as the window scope, ws. Further, we denote the
period of time between two start events of subsequent windows as
the window shi�, ∆. Upon detection of the start of a new window,
this window is assigned to an operator instance according to a
scheduling algorithm. In an operator instance, incoming events
are processed sequentially. Within each window, an event has
a di�erent context. �erefore, when processing an event e , the
operator instance sequentially processes e in the context of each
window that e is part of.

Example: Recall the scenario in Figure 3. Two overlapping
windows wx and wy have been assigned to the same operator
instance i . When i processes an event, e.g., C1, this event has a
di�erent context in wx than in wy : In wx , the sequence (B;C) is
detected, while in wy , the sequence is not detected. In checking the
occurrences of the sequence pa�ern in di�erent windows, operator
instance i processes C1 sequentially �rst in wx and then in wy .

From the event consumer’s point of view, the situation detec-
tion latency is the period from the occurrence of a source event
that signals a situation of interest until the situation is actually
detected and signaled to the consumer. As the delayed detection
of a situation degrades the bene�ts for the application, it poses a
so� latency bound on the overall situation detection: violations of
the latency bound shall, if possible, be avoided. �e situation de-
tection latency spans the whole operator graph and is sub-divided
into latency budgets for each single operator. In each operator, the
spli�er and the merger induce latency for spli�ing the streams into
windows and merging the results. Because scheduling windows to
operator instances signi�cantly in�uences the latency induced in

each operator instance, in this paper, we focus on batch scheduling
suitable amounts of windows to operator instances such that a
latency bound in those operator instances is kept.

We de�ne the operational latency of e , λo (e), as the period be-
tween the point in time when e arrives at an operator instance and
the point in time when e is completely processed in all assigned
windows in this operator instance. When, at the time of arrival of e ,
the operator instance is still busy with processing earlier events, e
waits in a queue until its processing can start. �is is called queuing
latency of e , λq (e). �en, e is processed, which induces the process-
ing latency of e , λp (e), the time from starting to process e until e is
processed in all assigned windows. Overall, the operational latency
of an event is a combination of its queuing latency and processing
latency, i.e., λo (e) = λq (e) + λp (e).

ProblemFormalization: To minimize the communication over-
head, the batch scheduling controller tries to assign as many subse-
quent windows as possible to the same operator instance subject to
the constraint that the operational latency of events in that instance
must not exceed a latency bound LB. As soon as the start of a new
window wnew is detected by the spli�er, the batch scheduling con-
troller decides whether assigning that window to the same operator
instance as the previous window would cause operational latency
of events to exceed LB. �is is noted as the batch scheduling problem
in data-parallel DCEP operators.

Example: �e trade-o� tackled in the batch scheduling problem
is exempli�ed in Figure 3. An event A3 arrives at the spli�er and
the spli�er detects that A3 starts a new window wnew which now
has to be scheduled. Suppose a set of previous windows Wold =(…,
wx , wy ) has already been scheduled to a speci�c operator instance
i . Events before A3 in Wold have been transferred to operator
instance i . However, further events arriving a�er A3 can as well be
part of some of the windows in Wold ; hence, they are transferred
to operator instance i , too. When scheduling wnew to operator
instance i , communication overhead can be reduced, because events
overlapping between wnew and Wold do not need to be transferred
to multiple di�erent operator instances. On the other hand, they
need to be processed additionally in the scope of wnew , inducing
higher processing latency. �e spli�er has to decide whether wnew
can be assigned to operator instance i such that the operational
latency does not increase beyond LB.

3 BATCH SCHEDULING
To analyze the batch scheduling problem, in this section, we make
the following contributions. First, in Section 3.1, we identify and
thoroughly analyze key factors that in�uence the operational la-
tency in an operator instance. We conclude that the impact of key
factors on operational latency in an operator instance is complex
and depends on the workload as well as on the operator. �en, in
Section 3.2, we highlight the di�culties in developing a reactive
batch scheduling controller that works without a latency model.

3.1 Key Factors
In the following, we �rst identify and analyze key factors that
in�uence the processing latency of events in the scope of a single
window. Based on that, we identify and analyze key factors that
in�uence operational latency in a whole batch of windows. To this
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(a) Tra�c monitoring: Processing latency of events
in di�erent positions in a window. L1 events: black,
L2 events: red.

(b) Face recognition: Processing latency of events in
di�erent positions in a window. Face events: black,
query events: red.
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Figure 4: Evaluations.

end, we evaluate two di�erent DCEP operators: a tra�c monitoring
and a face recognition operator. We ran all experiments on the
computer cluster described in Section 5 with a parallelization degree
of 8.

Tra�c monitoring operator. A tra�c monitoring application is
interested in violations of an overtaking ban, so that the transgres-
sor can be warned or punished. To this end, two cameras at two
di�erent locations (L1 and L2) on a highway capture video streams
of vehicles passing by. To detect overtaking maneuvers, a tra�c
monitoring operator ω is deployed between the cameras and the
application. When a vehicle passes a camera, an event is emi�ed to
ω, containing a time-stamp, the type (location L1 or L2), and the
number plate. To detect the violations, ω uses an aperiodic window
window: Whenever a vehicle a passes L1, a window w is opened,
and when the same vehicle passes L2,w is closed. Another vehicle b
that appears in the L1 stream withinw has passed L1 a�era. Whenb
appears again inw in the L2 stream, it has passed L2 before a. If this
is the case, b has overtaken a and thus violated the tra�c rules. �e
query in ω can be expressed in CEP query languages, e.g., in Snoop
[9] language as an aperiodic operator: Aperiodic(A; B; C) with A
→ 〈plate=a, type=L1〉, B→ Sequence(〈plate=b, type=L1〉;〈plate=b,
type=L2〉), C→ 〈plate=a; type=L2〉2.

Face recognition operator. A face recognition application wants to
know whether a person of interest is currently located in a speci�c
area. To this end, pictures of detected faces from a camera are
transferred to a face recognition operator ω. Further, query events
from users querying whether a certain person is in the current video
stream are sent to ω, containing a set of pictures of the person and
a time frame within which the person shall be detected. ω uses a
face recognition algorithm in order to detect whether the queried
person is in the stream. �is query can be resembled by an aperiodic
operator Aperiodic(A; B; C) with A→ 〈type=query, time=t〉, B→
〈type=face, “face match(A)”〉, C→ time ≥ t + time frame.

Processing Latency of Events in a Window. When process-
ing a single window in an operator instance, each event imposes a
speci�c processing latency. �is is di�erent from stream processing
where the processing latency of an event in a window is consid-
ered �xed [5, 29]. We identi�ed two key factors that in�uence
the processing latency of an event in a window: its type and its
position.

Event type. Event types are a fundamental concept in DCEP.
Many query languages, such as Snoop [9], Amit [1], SASE [26]

2Aperiodic(A; B; C): Between the occurrence of two (complex) events A and C, the
(complex) event B occurs.

and Tesla [11], allow for the de�nition of event pa�erns based on
event types—e.g. SEQ(A;B), a sequence of events of type A and B. In
the tra�c monitoring operator, di�erent event types are processed
in a di�erent way. L1 events are simply added to a list of seen
events, while L2 events are compared to the seen events (cf. Figure
4a). In the face recognition operator, query events are processed
by building a face model of the queried person, while face events
are processed by comparing them to the established face model
of the window (cf. Figure 4b). In both operators, we see di�erent
processing latencies depending on the event types.

Position of Event. When processing events of a window, inter-
nal state is gathered in an operator [4, 8], which can in�uence the
processing latency of events. For instance, in the tra�c monitor-
ing operator, an L2 event eL2 can potentially complete a pa�ern
Sequence(〈plate=b, type=L1〉;〈plate=b, type=L2〉) or close the win-
dow. �erefore, eL2 is compared to all L1 events that have been
seen in the window before (equi-join operator). �us, with a higher
position of eL2 , its processing latency increases, as evaluated in
Figure 4a. However, the processing latency of events does not nec-
essarily increase with position. In the face recognition operator,
each face event is compared to a query event; the face match func-
tion imposes the same processing latency in each event position
(cf. Figure 4b).

Operational Latency in a Batch of Windows. In a batch of
windows, di�erent windows may overlap. When the batch sched-
uling controller assigns a window to an operator instance that
overlaps with other windows, the processing latency of all events
in the overlap is in�uenced, as events are processed sequentially in
the scope of their windows. Recall that a window has to comprise
all events needed in order to detect a queried pa�ern. �erefore,
the overlap of di�erent windows cannot be changed by the batch
scheduling controller. �at is di�erent from batch scheduling prob-
lems handled in stream processing, where batches are considered to
be arbitrarily large, non-overlapping sets of events, and batch sched-
uling decides how many events shall be batched to a processing
node [12, 21].

In the following, we identify key factors in�uencing the over-
lap of windows and analyze their impact on operational latency
in operator instances. To this end, we run experiments with the
tra�c monitoring operator and the face recognition operator. In
each experiment, using di�erent tra�c densities and di�erent num-
bers of persons in a video frame, one key factor value is changed
while all other key factors are kept constant, and the di�erences
in operational latency peaks are analyzed (cf. Figure 5). For each
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scenario parameters measurements

# batch
size

avg.
iat (s) ws (s) max. op.

lat. (s)
feedback
delay (s)

max. q.
length

feedback
delay (s)

1 500 0.15 900 2.4 725.5 15 773.6
2 500 0.125 900 3.7 757.7 27 724.8
3 500 0.1 900 24.1 699.0 248 810.2
4 750 0.1 900 100.6 800.8 1029 844.0
5 1,000 0.1 900 116.1 824.3 1194 795.6
6 1,000 0.1 1000 197.8 1,041.8 1699 999.0
7 1,000 0.1 1100 199.2 1,179.2 1898 1,100.0

(a) Tra�c monitoring operator.

scenario parameters measurements

# batch
size

avg.
iat (s) ws (s) max. op.

lat. (s)
feedback
delay (s)

max. q.
length

feedback
delay (s)

1 10 0.667 10 37.9 46.3 43 10.1
2 10 0.4 10 68.7 77.1 84 9.4
3 10 0.286 10 99.7 108.0 115 10.6
4 15 0.286 10 145.1 153.2 164 8.3
5 20 0.286 10 195.1 200.7 191 10.2
6 20 0.286 15 289.4 301.8 234 14.4
7 20 0.286 20 392.1 410.1 258 19.6

(b) Face recognition operator.

Figure 5: Max. operational latency, queue length and feedback delays.

experiment, more than 370,000 operational latency measurements
have been taken.

Batch size. �e batch size, i.e., number of windows assigned to an
operator instance in a batch, in�uences the overlap of the windows,
and hence, the operational latency of events. However, the relation
between batch size and operational latency peak is not trivial. In
the tra�c monitoring operator, increasing the batch size by 50 %
and then by further 33 % induces an increase in operational latency
peak by 317 % and 15 %, respectively (cf. Figure 5a, #3, #4 and #5).
In the face recognition operator, the relation between batch size
and operational latency seems to be proportional (cf. Figure 5b).

Inter-arrival time (iat). Given a �xed batch size, the inter-arrival
time iat of events in�uences the queuing latency of events. Fur-
ther, it can in�uence the number of events in the windows, e.g., in
time-based windows. �e number of events in windows in�uences
their overlap, which, in turn, in�uences the processing latency of
the events. �us, there is a complex relation between iat and opera-
tional latency. In the tra�c monitoring operator, we decreased the
average iat of events �rst by 17 %, and then by further 20 %. �is
induced an increase in operational latency peak by 54 % and 551
%, respectively (cf. Figure 5a, #1, #2 and #3). Similarly, in the face
recognition operator, decreasing the average iat of events �rst by
40 % and then by further 28.5 %, led to an increase in operational
latency peak by 81 % and 45 %, respectively (cf. Figure 5b).

Window scope (ws). �e window scope ws—i.e., the time be-
tween the start and end event of a window—depends on the queried
pa�erns to be detected by the DCEP operator. It can be �xed to a
speci�c time, e.g., when the query depends on a time-based window
[2], but it can also depend on the occurrence of speci�c events, e.g.,
in aperiodic queries or queries that de�ne a sequence of speci�c
events [9, 11]. For instance, in the tra�c monitoring operator, the
start and end of a window depend on the speed of the vehicles,
as a window starts when a vehicle passes L1 and ends when the
same vehicle passes L2. When the speed of a vehicle is lower, the
time spanned by the window opened from this vehicle is larger.
�erefore, the size and overlap of windows can change even when
the batch size and iat stay the same. �is is di�erent from stream
processing, where only windows of �xed size and �xed slide— time-
or count-based—are analyzed [5]. In the tra�c monitoring oper-
ator, we increased ws in the tra�c monitoring operator by 11 %,
and then by further 10 %. �is induced an increase in operational
latency peak by 70 % and 1 %, respectively (Figure 5a, #5, #6 and
#7). In the face recognition operator, however, increasing ws led to
a proportional increase in operational latency peaks.

From the observations on key factors that in�uence operational
latency when processing a batch of windows, we see that building
a direct mapping from batch size, inter-arrival time and window
scope to operational latency peaks in operator instances is hard.
�e relation between key factors and operational latency peaks that
occur in operator instances is complex, and di�erent in di�erent
operators. A model trained before run-time (o�-line), hence, does
not su�ce; due to the complex relations between key factors, it is
hard to train a model that can make reliable predictions outside of
the learned parameter value ranges. Further, domain knowledge
alone is not enough in order to hand-cra� a latency model: Knowl-
edge about the operator implementation does not necessarily help
in understanding the relations between the identi�ed key factors
and the operational latency peak.

In the following, we discuss whether the need for a latency model
predicting the operational latency can be completely avoided by
employing a reactive batch scheduling controller.

3.2 Reactive Controllers
Here, we discuss the di�culties involved in devising a reactive
batch scheduling controller. Reactive controllers are widely used in
scheduling algorithms in the related �eld of parallel stream process-
ing systems [12, 21]. �e basic idea of a reactive controller is that
it schedules windows according to feedback parameters (like oper-
ational latency or queue length) from the operator instances that
indicate how many windows can be batched. In the following, we
point out the di�erences in batch scheduling in data-parallel DCEP
operators to scheduling problems that have been solved with reac-
tive controllers. �en, we analyze operational latency and queue
length of operator instances in the scope of the scenarios described
in Section 3.1 in detail and show that none of these parameters
provides reliable feedback to implement a reactive controller.

In data-parallel DCEP operators, in order to maintain the latency
bound for each event, the batch scheduling controller decides at
the start of a window to which instance this window is scheduled.
�en, it directs all events that arrive in the scope of that window to
the corresponding instance. It is infeasible for the controller to wait
until all events of the window are present and then schedule the
window; it would take too much time in view of per-event latency
bounds. A�er assigning a window to an operator instance at the
occurrence of its start event, many other events of that window
arrive until the window is �nally closed. �us, over the whole time
span of the window, feedback parameters in the operator instance
are in�uenced by the scheduling decision, i.e., a long time a�er
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Figure 6: Di�erent sequences of negative and positive gains.

the scheduling decision has been made. �at poses a completely
di�erent problem from other batch scheduling problems that are
tackled with reactive batch scheduling, e.g., the problem of sched-
uling batches of events in streamed batch processing [12], where a
controller �rst builds a batch of available events and then assigns it
to an operator instance.

�erefore, in data-parallel DCEP operators, there can be a high
delay between assigning a window to an operator instance and the
occurrence of the peak value of the feedback parameters in that
operator instance. We denote this delay as the feedback delay. In
Figure 5a, we have measured the feedback delay of operational
latency and of queue length in the di�erent runs of the tra�c
monitoring operator under di�erent conditions; a feedback delay
of 699 to 1,179 seconds occurred for both parameters. In that time,
many subsequent batch scheduling decisions have to be made by
the controller. At the same time, key factors like inter-arrival time,
window scope, event types, etc. continuously change. Moreover,
the feedback delay is not constant, so that the controller cannot
rely on it; it is not clear whether the parameter measured in an
operator instance is already the peak value or how much further it
will grow.

To mitigate high feedback delays, we devise a latency-reactive
controller that reacts on the current operational latency in operator
instances. Windows are batched to the same operator instance until
at the instance, the current operational latency reaches a threshold
TH ; subsequent windows are scheduled to the next operator in-
stance. �is, however, poses the question how to set TH . A simple
experiment shows that a static TH is not good enough to keep the
latency bound LB. We run evaluations using the tra�c monitoring
operator at an average inter-arrival time of cars of 200 ms, aiming
to keep LB = 1s . With TH = 100ms, reactive batch scheduling more
or less was able to keep LB when ws was not higher than 500 s (cf.
Figure 4c). However, at a ws of 600 s and 700 s, TH = 100ms led to
systematically wrong batch scheduling decisions; LB was violated
by a factor of almost 100. Obviously, TH has to be adapted to the
changing key factor values. In doing so, the feedback to change
TH is available only a�er LB already has been violated, i.e., a�er
a long feedback delay. �e same problems apply when using the
queue length peaks as a feedback parameter: �e feedback delay is
high. Again, using the current queue length as feedback parameter
requires a suitable threshold, which in turn has to be adapted to
changing key factor values.

In the face recognition operator, window scopes are much smaller.
While the feedback delay of operational latency peaks is still high
(46 to 410 seconds), the feedback delay of the queue length peaks
is smaller (8 to 20 seconds; cf. Figure 5b). However, this does not
automatically make the queue length peaks a good parameter for
reactive controllers. First of all, 20 seconds is still a long time; in

the real-world workloads analyzed in Section 5, sudden bursts de-
mand for an even faster reaction. Second, the relation between
queue length peak and operational latency peak is not trivial; the
operational latency peak does not necessarily occur when the most
events are in the queue, but rather when the most expensive events
are in the queue. �is demands for a more thorough analysis. We
conclude that neither operational latency nor queue length are a
reliable feedback parameter for a purely reactive batch scheduling
controller.

Instead of pure feedback mechanisms, our approach uses a sim-
ple, yet powerful latency model. It takes into account feedback
from operator instances, but also includes a prediction and analysis
step.

4 MODEL-BASED CONTROLLER
�e batch scheduling controller must predict whether the opera-
tional latency peak in an operator instance will be higher than LB
when batching a new window wnew . To this, we introduce a latency
model. We aim to �nd the right balance between the complexity,
the reasonable consideration of feedback from operator instances
and of domain expert knowledge, and the accuracy and precision
of the model.

4.1 Basic Approach
Recall that the operational latency of an event e is built up of its
queuing and processing latency: λo (e) = λq (e) + λp (e). If the
processing latency λp (e) of an event is higher than the inter-arrival
time iat to its successor event, this imposes additional queuing
latency to the successor event. On the other hand, if λp (e) is smaller
than iat, the queuing latency of the successor event becomes smaller
or even zero, i.e., e does not induce queuing latency for the successor
event. In the following, we refer to the di�erence between λp and
iat as the gain γ of an event: γ (e) = λp (e) − iat. If λp (e) > iat, we
speak of a negative gain; else, we speak of a positive gain3. In Figure
6a, we provide an example. Suppose that the iat between events is
5 time units (TU), and the window contains 7 events: 2 events of
type A impose λp = 8 TU, 2 events of type B impose λp = 7 TU, 2
events of type C impose λp = 4 TU, and 1 event of type D imposes
λp = 2 TU. �en, the gains of the single events are between +3 and
-3 TU (+3 for type A, +2 for B, -1 for C, -3 for D).

Now, for the overall window wnew , the aggregated gains of the
set of events with λp (e) > iat are termed as the total negative gain:
Γ− =

∑
γ (e) : e ∈ wnew ∧ λp (e) > iat. In the given example (Figure

6a), those are the events of type A and B; hence, Γ− = 3+3+2+2 = 10
TU. �e aggregated gains of the set of events with λp (e) < iat are

3Negative gains are positive numbers and positive gains are negative numbers. �e
terminology refers to the impact of an event on the feasibility to schedule a window
in a batch.
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termed as the total positive gain4: Γ+ =
∑
γ (e) : e ∈ wnew ∧λp (e) <

iat. In the given example (Figure 6a), those are the events of type C
and D; hence, Γ+ = (−1) + (−1) + (−3) = −5 TU.

A�er de�ning the total negative and positive gains, in the follow-
ing, we analyze possible sequences of negative and positive gains
and the impact on the queuing latency peak λmax

q . In Figure 6b, �rst
all negative gains occur, followed by all positive gains. �is is the
worst case with respect to λmax

q ; in the example sequence, λmax
q =

10 TU. Note, that also any other sequence of events of types A and
B would lead to the same λmax

q . In the worst case, hence, λmax
q = Γ−.

However, an interleaving between negative and positive gains is
possible as well. Take a look at Figures 6c and 6d: In the examples,
the events with negative and positive gains interleave to a di�erent
extent. �is leads to di�erent values of λmax

q , because although the
queuing latency is increased by events with negative gains, events
with positive gains compensate for that; a successor event of an
event with positive gain faces a lower queuing latency.

�e actual sequence of events with negative and positive gains
in wnew is very di�cult to predict. It would essentially correspond
to predicting each single event in wnew and its iat. To account
for the discussed interleaving of events with negative and positive
gains, therefore, we introduce a compensation factor α . α allows for
modeling the extent of interleaving of negative and positive gains
without the need to explicitly de�ne the sequence of events in wnew
in the prediction: λmax

q = Γ−+α ∗Γ+. Taking a look at the best-case
example in Figure 6c, we see that the negative and positive gains
are maximally interleaving, hence, α = 1. Accordingly, λmax

q =

10 + 1 ∗ (−5) = 5. Figure 6d exempli�es an event sequence in
between the worst- and best-case: Parts of the positive gains are
interleaving with the negative gains, hence, α = 0.8. Accordingly,
λmax
q = 10 + 0.8 ∗ (−5) = 6.

Please notice, that the �rst event of wnew might already face
a queuing latency λinitq at its arrival. �is can be due to previous
windows that had been scheduled to the same operator instance.
Hence, the �nal formula to calculate the queuing latency peak is:5

λmax
q = λinitq + Γ− + α ∗ Γ+,α ∈ [0, 1].

From the queuing latency peak λmax
q , the operational latency

peak λmax
o is calculated using the maximal processing latency λmax

p
of any event in wnew . �is bases on the pessimistic assumption that
the most expensive event occurs right at the queuing latency peak;
as we do not know the event sequence, this assumption is justi�ed
by the goal to avoid underestimations of λmax

o . Hence,
λmax
o = λmax

q + λmax
p .

Using this latency model, the operational latency peak can be
predicted, and the scheduling decision—to batch or not to batch—
can be made accordingly. In the following sub-section, we describe
how the parameters of the model are predicted.

4.2 Prediction of Model Parameters
�e proposed latency model builds on predicting the total sum of
negative and positive gains of all events in wnew ; i.e., it does not
regard individual events, but it regards events in wnew as sets of
events imposing negative or positive gains. Hence, it builds on the

4If λp (e) = iat, neither negative nor positive gains occur.
5For the sake of readability, we did not mention in the text that λmax

q = λinitq , if
Γ− + α ∗ Γ+ < 0.
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prediction of the set of events in wnew , including their processing
latency λp and their inter-arrival time iat. Further, a prediction of
the initial queuing latency λinitq and the compensation factor α is
needed. Based on those values, the model predicts the operational
latency peak. In this section, we discuss appropriate prediction
methods and algorithms.

Inter-arrival time. �e spli�er continuously monitors the past
iat values in a window of mtime time units. Our iat model tackles
two challenges: heavy �uctuations of the iat around an average
value (variance) and rapid changes of the average iat (changing
trend).

Tackling the �rst challenge, the spli�er arranges the monitored
inter-arrival times in a discrete model (cf. Figure 7). �e range of
measured iat values is divided into a number of equally-sized bins.
�e measured iats are sorted into the corresponding bin; for each
bin Bi , the mean value iat(Bi)

′ is computed: iat(Bi) = iat(Bi)
′. Each

bin is assigned with a weight(Bi), i.e. ratio of number of entries in
the bin to total number of measurements in all bins. �e number of
bins manages the accuracy of the model; the minimum number of
bins is 1.

Tackling the second challenge, we introduce a negative bias on
the monitored mean value iat(Bi)

′ in each bin. �is way, the model
accounts for changes in the average iat between the monitored
value iat(Bi)

′ and the value that will occur in wnew . �e negative
bias is modeled based on a factor δiat of standard deviations σ of the
monitored iats, e.g., 1 standard deviation or 2 standard deviations.
�en, iat(Bi) = iat(Bi)

′ − δiat ∗ σ .
Processing Latency. In our model, λp depends on the overlap

Θ and the processing latency in a single window λwp : λp = Θ ∗ λwp .
As discussed in Section 3, λwp depends on the event type and the
position in a window. Hence, �rst of all, our model di�erentiates
between di�erent event types. �is design decision has two con-
sequences: First, the prediction model of λwp takes into account
the type, i.e., predict λwp (type), the in-window processing latency
of events of a speci�c type. Second, the set of events in wnew is
predicted with respect to the number of events of di�erent types.

For modeling λwp (type), we propose the same methods as for
modeling iat, using a combination of negative bias and bins. Same
as in iat bins, in each latency bin Bl , we predict λwp (Bl) = λwp (Bi)

′
+

δλp ∗σ , i.e., the measured mean in-window processing latency in the
latency bin plus a factor δλp of standard deviations. �e advantage
of monitoring the current (distribution of) λwp (type) in the operator
instances over building a position-dependent latency model is that
we can implicitly incorporate the position-dependency: When the
(distribution of) positions of events in windows change, e.g., due to
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changing workload or changing window scopes, this is re�ected in
the monitored current (distribution of) λwp (type) values. We do not
need to explicitly model the positions of individual events.

�e overlap Θ for all events of wnew is modeled as the average
overlap of events of wnew in the current batch, denoted by Θ. Pre-
dicting Θ is performed according to the following model (cf. Figure
8). When wnew is scheduled in a batch of already opened windows,
a number of events in wnew has the current overlap Θ̂, until the
oldest open window woldest in the batch closes. From closing woldest
until closing wnew , the overlap decreases step-wise in regular in-
tervals each time a window between woldest and wnew is closed. In
that phase, the average overlap is Θ̂/2. In order to compute Θ, we
weigh the ratio of events with overlap Θ̂ to the events with overlap
Θ̂/2. In doing so, we assume in our model that all windows in the
batch have the same window scope ws, and between the start of
two windows there is the same shi� ∆; ws and ∆ are measured in
the spli�er at regular intervals to keep them up to date at each
scheduling decision.

At the start of wnew , woldest is already open since (Θ̂−1) ∗∆ time
units, as Θ̂− 1 is the number of windows between woldest and wnew
that were opened in intervals of ∆ time units. �erefore, woldest
stays open for ws−(Θ̂−1)∗∆ more time units. When woldest closes,
the phase of closing windows starts, spanning (Θ̂−1) ∗∆ time units.
Hence, the weighed average overlap is computed as follows:

Θ = (ws−(Θ̂−1)∗∆)∗Θ̂+(Θ̂−1)∗∆∗Θ̂/2
ws .

Number of Events. For predicting the set of events in wnew ,
there are three signi�cant factors in the model: (1) �e window
scope ws, (2) the iat, and (3) the ratio of di�erent event types,
denoted as ratio(type), that models which percentage of events in
wnew is of a speci�c type. �ese factors are gained from monitoring
them in the incoming event stream in the spli�er in the past mtime
time units. To predict the total number of events in wnew , we
again use a negative bias of δiat standard deviations σ (iat), so that
iat = iat ′ − δiat ∗ σ (iat). �en, the total number of events n is
predicted as n = ws

iat , and the number of events of a speci�c type,
denoted by #(type), is predicted as ratio(type) ∗ n.

Initial �euing Latency. �e initial queuing latency is pre-
dicted for each operator instance separately, depending on the
content of the incoming event queue. To this end, operator in-
stances report the number of events of each type and their aver-
age overlap Θ in the assigned windows in regular intervals to the
spli�er. �e spli�er calculates λinitq of an operator instance as the
sum of the processing latencies of all reported events in its queue:
λinitq =

∑
types #events ∗ Θ ∗ λwp (type).

Compensation Factor. For modeling the compensation factor
α , there are two possibilities.

First, we propose a heuristic, denoted as T-COUNT, for adapting
α based on the current extent of interleaving between events with
di�erent processing latency in the incoming stream. To this end,
events are divided into two groups, based on their in-window pro-
cessing latency λwp : the group of events with higher λwp is denoted
by T− and the group of events with lower λwp is denoted by T+.
�e distinction between the groups is made based on the average
λwp (type) of the event types; there is one half of event types that
has higher λwp (type) than the other half of event types. Events of
any of the types that pose higher processing latencies are grouped

1: 〈long, long〉 predictGains ( ) begin . returns Γ− and Γ+

2: predict #events for each latency bin Bl : #(Bl )
3: sort latency bins by mean latency (highest first)
4: predict #events for each iat bin Bi : #(Bi )
5: sort iat bins by mean iat (lowest first)
6: while true do
7: #combination←min {#(Bl ), #(Bi )}
8: gain← #combination ∗ (Θ ∗ λwp (Bl ) − iat(Bi))
9: if gain > 0 then

10: Γ− ← Γ− + gain
11: else
12: Γ+ ← Γ+ + gain
13: end if
14: #(Bl ) ← #(Bl ) − #combination
15: #(Bi ) ← #(Bi ) − #combination
16: if #(Bi ) = 0 then
17: i ← i + 1 . next iat bin
18: end if
19: if #(Bl ) = 0 then
20: l ← l + 1 . next latency bin
21: end if
22: if no more bins then
23: return 〈Γ−, Γ+ 〉
24: end if
25: end while
26: end function

Figure 9: Predict negative and positive gains.

1: OperatorInstance ωx . current operator instance
2: void schedule ( ) begin
3: λmax

o ← LatencyModel .newPrediction()
4: if λmax

o ≤ LB then
5: assign σ to ωx
6: else
7: x ← (x + 1)MOD #op instances . Round-Robin
8: assign σ to ωx
9: end if

10: end function

Figure 10: Scheduling algorithm.

into T−, other events are grouped into T+. �e spli�er continu-
ously counts in a monitoring window of temporal size mtime, how
many events in T−, denoted by c−, and how many events in T+,
denoted by c+, occur. Further, the spli�er counts how o�en events
in T− and T+ follow each other, i.e., the number of transitions, de-
noted by ct . �e maximal number of transitions is 2 ∗min{c+, c−}.
Trivially, the minimum number of transitions is 1. �en, α is pre-
dicted as the proportion of ct to the maximal number of transitions:
α = c t−1

2∗min{c+,c− } .
Second, a domain expert can also set a �xed or dynamic value of

α based on o�-line training if the characteristics of the expected
workloads are known beforehand.

4.3 Scheduling Algorithm
Having a prediction of the set of events inwnew , processing latencies
and inter-arrival times, the batch scheduling controller predicts
the total negative and positive gains and the operational latency
peak in order to schedule wnew . In this section, we introduce the
algorithms.

Total Negative and Positive Gains Prediction. To predict
Γ− and Γ+, the predicted processing latencies and inter-arrival
times have to be combined. Each processing latency bin represents
a number of events in wnew having a speci�c λp ; each iat bin
represents a number of events having a speci�c iat. In order to
calculate the total negative and positive gain of all events, the
number of events having a speci�c combination of λp and iat is
predicted. To this end, events from the bin with highest λp are
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combined with the lowest iat, etc., and events with lowest λp are
combined with the highest iat. �e concrete algorithm is presented
in the following (cf. algorithm in Figure 9). First, for each type,
the total number of events, #(type), is divided into latency bins
according to the weights of the bins: �e number of events #(Bl ) in
a latency bin Bl is: #(Bl ) = #(type) ∗ weight(Bl ). �en, all latency
bins of all event types are globally sorted by their mean processing
latency (highest �rst). �e iat bins are sorted by the mean iat
(lowest iat �rst); the number of events #(Bi ) in an iat bin Bi is
computed based on the total number of events, n, and the weight
of the bin, #(Bi ) = n ∗ weight(Bi ). �en, the numbers of events in
the processing latency bins and iat bins are combined such that
the highest processing latencies are combined with the lowest iats.
�e algorithm iterates through the bins (lines 6 – 25): For the
combination of current latency and iat bin, the gain of the events
in this combination is calculated based on the processing latency
and the iat of the bins. If the predicted gain is greater than 0, it is
added to the total negative gains, else it is added to the total positive
gains. �en, the next combination of bins is processed. When the
iteration went through all bins, the resulting total negative and
positive gains are returned.

Operational Latency Peak. �e operational latency peak λmax
o

is predicted with the formulas introduced in Section 4.1, taking
into account the predicted parameters as described in Section 4.2:
λmax
o = λmax

q + λmax
p , with λmax

q = λinitq + Γ− + α ∗ Γ+. In doing
so, λmax

p is predicted as the in-window processing latency λwp of
the most expensive event type in the most expensive latency bin,
denoted as max(λwp ), at the average overlap: λmax

p = Θ ∗max(λwp ).
Scheduling. When scheduling a new window, the controller

checks whether batching it to the same operator instance where the
last window was assigned to would lead to a violation of LB. �e
scheduling algorithm is listed in Figure 10. �e latency model is
queried for a prediction of the operational latency peak λmax

o (line
3). �e predicted λmax

o is compared to LB and a batch scheduling
decision is made accordingly: If λmax

o ≤ LB, the window is assigned
to the same instance as the last window (lines 4–5); else, it is sched-
uled to the next operator instance according to the Round-Robin
algorithm (lines 6–8).

5 EVALUATION
In our evaluations, we analyze the proposed methods in two steps.
In a �rst step, we perform a distinct evaluation of the proposed
latency model. We show the accuracy and precision of the la-
tency model in predicting the negative gains, positive gains and
latency peaks in di�erent situations under synthetic workloads.
In the second step, we measure the performance of the overall
event processing system under di�erent realistic conditions—such
as inter-arrival times and latency bounds—comparing the model-
based batch scheduling controller to Round-Robin and to a reactive
batch scheduling algorithm. �e cost of prediction is also evaluated.

Experimental Setup and Notation. To evaluate the batch
scheduling controller, we have integrated it into an existing data
parallelization framework [23]. All experiments were performed on
a computing cluster consisting of 16 homogeneous hosts with each
8 CPU cores (Intel(r) Xeon(R) CPU E5620 @ 2.40 GHz) and 24 GB
memory, connected by 10-GB Ethernet links. �e components of

Symbol Parameter Description
iat average inter-arrival time of events
b batch size, i.e., number of subsequent windows scheduled to same

op. instance
ws window scope, i.e., temporal scope of a window

Γ−, Γ+ total negative and positive gains
α compensation factor

λo , λq , λp operational latency, queuing latency and processing latency of an
event in an operator instance; λo = λq + λp

λmax
q queuing latency peak: λmax

q = λinitq + Γ− + α ∗ Γ+
λinitq initial queuing latency before processing the �rst event of a win-

dow
LB latency bound, i.e., the peak operational latency that shall not be

exceeded
RR Round-Robin scheduling, circularly assigns one window to each

operator instance
δiat, δλp negative bias of measured iat or λp in the monitoring window, in

std. deviations: e.g., iat − δiat ∗ σ
mtime size of the workload monitoring window
TH scheduling threshold of reactive baseline controller, cf. Section 3.2

Figure 11: Symbols used.

the parallelization framework were distributed among the available
hosts. Symbols used in the evaluations are listed in Figure 11.

5.1 Latency Model
In the following, we evaluate the accuracy and precision of the
proposed latency model. We present the evaluation in two parts:
First, we evaluate the predictions of the total negative and positive
gains. Based on that, we then analyze the prediction of the queuing
latency peak, which depends on the prediction of negative and
positive gains as well as on the compensation factor α .

Interpretation of the �gures in this section. We measured
both the predicted values as well as the values that actually occurred
in the operator instances. In all experiment results, i.e., Figure
12 and Figure 13, on the y-axis, we depict the predicted values
normalized to the measured values. For example, a value of 1.0
means that the prediction exactly met the actually occurred value,
a value smaller than 1.0 means that the prediction was too low
(i.e., underestimation), and a value higher than 1.0 means that the
prediction was too high (i.e., overestimation). All �gures depict
the 10th, 25th, 50th, 75th, and 90th quantiles in a “candlesticks”
representation.

5.1.1 Negative and Positive Gains. In analyzing the prediction
of Γ− and Γ+, we run evaluations on synthetic workloads. Using
synthetic workloads allows us to perform measurements in con-
trolled situations where all of the parameters are well-known and
completely under our control. �is is not the case in real-world
workloads, as we use them in the analysis of the overall event pro-
cessing system in Section 5.2. For the face recognition operator, we
created a synthetic stream of face events (i.e. images containing
a person’s face). Each 2 seconds, a burst of 4 face events with an
inter-arrival time of 10 ms was created, which resembles 4 persons
in front of a camera that captures a picture each 2 seconds. �e
query events were generated with a �xed rate of 1 query per second,
so that each second, one new window was started. For the tra�c
monitoring operator, we created a workload trace with an average
inter-arrival time of events of 100 ms following an exponential
distribution, which resembles 5 cars per second passing each road
checkpoint.
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Figure 12: Prediction of negative and positive gains. (a) Face
recognition operator, b = 4, ws = 10s, (b) Tra�c monitoring
operator, b = 1000, ws = 500s.
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Figure 13: Predictions of queuing latency peak. Face recog-
nition operator, b = 4, ws = 10s.

Figure 12a shows evaluations of the face recognition operator
using a di�erent number of iat bins. If only 1 bin is used, the
predictions of Γ− and Γ+ are poor. With a growing number of iat
bins, the latency model becomes more accurate: With 2, 4 or 8 bins,
the predictions of both Γ− and Γ+ are very accurate and precise. In
the tra�c monitoring operator, employing more iat bins, as shown
in the results in Figure 12b, quickly improves the prediction quality
as well.

We have also evaluated the e�ects of a negative bias on iat, as
well as bins and negative bias on processing latency; a detailed
discussion with all the results can be found in [24]. Summarizing
those results, using a negative bias of δiat standard deviations in the
iat bins makes the model more pessimistic. Further, the negative
and positive gains in the tested scenarios are dominated by iat such
that employing bins and negative bias only on processing latency
is insu�cient to tune the model.

5.1.2 �euing Latency Peak. Recall that the queuing latency
peak is predicted based on the total negative and positive gains and
the compensation factor α : λmax

q = λinitq + Γ− + α ∗ Γ+. We show
on the example of the face recognition operator that our proposed
T-COUNT heuristic provides a suitable, slightly pessimistic estima-
tion of α such that no under-estimation of queuing latency peak
occurs. Additionally, we evaluate the prediction of the initial queu-
ing latency λinitq . Following our observations from Section 5.1.1, we
employ the latency model with 2 iat bins, so that the predictions of
Γ− and Γ+ are accurate.

We see in Figure 13 that the T-COUNT heuristics leads to a
good overall estimation of λmax

q . In predicting λinitq , �uctuations
are caused by events in the network that have not yet arrived in
the queue of an operator instance and are not considered in the
feedback to the spli�er. However, the impact of this behavior on the
prediction of λmax

q is small, as λmax
q is dominated by the negative

and positive gains.
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Figure 14: Tra�c monitoring operator. (a) Operational la-
tency. (b) Communication cost.

Besides the T-COUNT heuristic, we also systematically evaluated
the impact of �xed values of α on the prediction of λmax

q . As can
be seen in Figure 13, using di�erent �xed values leads to di�erent
degrees of over- or underestimations of λmax

q . O�-line pro�ling
can be used in order to develop optimally pessimistic or optimistic
models to set α , when the characteristics of the workload are well-
known before system deployment.

5.2 Overall Event Processing System
We compare our model-based batch scheduling controller to two
baseline scheduling algorithms: Round-Robin scheduling and latency-
reactive scheduling. Round-Robin aims for good load balancing but
disregards communication overhead; it is the standard scheduling
algorithm used in window-based data parallelization systems such
as [23]. Latency-reactive scheduling, as described in 3.2, batches
windows to an operator instance until its operational latency ex-
ceeds a threshold TH . It is used as a latency-aware baseline algo-
rithm to compete against our model-based controller.

Tra�c Monitoring Scenario. In our dynamic tra�c monitor-
ing scenario, we modeled the inter-arrival time of vehicles as an
exponential distribution with an average value following a sinu-
soidal curve between 2000 ms and 200 ms. Following the evaluation
of the latency model in Section 5.1, we set-up the controller to use 8
iat bins and a tumbling monitoring window with mtime = 60s . To
account for the position-dependency of the operator and the rapdily
changing workload, we add a pessimistic bias of δλp = 2 standard
deviations on the monitored processing latency and δiat = 0.75
standard deviations on the monitored iat. In all experiments, the
parallelization degree, i.e., number of operator instances, was �xed
at 8. Each experiment was running for 5 hours.

At a window scope of 500 seconds, Round-Robin scheduling
resulted in a maximal operational latency of 200 ms (cf. Figure 14a)
and 724,464 events have been transmi�ed between the spli�er and
the operator instances (cf. Figure 14b). We ran the same experi-
ment using our batch scheduling controller allowing for 2.5, 5 and
10 times higher operational latency peaks than yielded in Round-
Robin: 500 ms, 1 s and 2 s. As shown in Figure 14a, LB was kept.
The communication overhead was reduced by 53 %, 59 % and
64 %, respectively (cf. Figure 14b). We compared this performance
to the latency-reactive scheduler described in Section 3.2; the re-
active scheduler batches windows to an operator instance until it
reports a current operational latency of more than TH = 100ms .
�e operational latency and communication overhead was very
similar to model-based scheduling at LB = 2s; however, the tail
of the latency distribution is much longer, leading to 50 % higher
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Figure 15: Face recognition operator. (a) Operational latency.
(b) Communication cost.

operational latency peaks. �is indicates that the reactive scheduler
erratically batches too many windows, leading to a less predictable
behavior of the operator instances than when the model-based
controller is used.

Face Recognition Scenario. With the dynamic face recogni-
tion scenario, we evaluate the system behavior at a highly bursty
real-world workload. A real video stream from a camera installed
on campus—capturing 1 frame each 2 seconds—is processed by a
face detection operator and the detected faces are streamed to the
face recognition operator. Simulating users of a face recognition
application, the arrival of new queries is modeled as an exponen-
tial distribution with an average inter-arrival time of 2 seconds.
�e face recognition operator detects whether the queried person
is in the face event stream, using a window scope of ws = 10s .
Each experiment ran for 150 minutes. According to the insights we
gained from the evaluation of the latency model in Section 5.1, we
set-up the controller to use 2 iat bins. Further, we set mtime = 10s
(tumbling window) and δiat = 1.0 standard deviations to account
for the changing iat.

For Round-Robin scheduling, we measured an operational la-
tency peak of 6 seconds (cf. Figure 15a) and 68,412 events have
been transmi�ed between the spli�er and the operator instances
(cf. Figure 15b). We ran the same experiment using our batch sched-
uling controller allowing for 2.5, 5 and 10 times higher operational
latency peaks than yielded in Round-Robin: 15 s, 30 s and 60 s. �e
latency bounds are kept in all tested se�ings (cf. Figure 15a). The
communication overhead was reduced by 14 %, 31 % and 76 %,
respectively (cf. Figure 15b). We compared this performance to the
latency-reactive scheduler described in Section 3.2 with TH = 6s .
�e operational latency peaks were 15 % higher than with the
model-based controller at LB = 60s , while the communication over-
head was 14 % higher as well. With a higher threshold TH , the
reactive scheduler would induce even higher latency peaks, while
with a lower TH , it would induce an even higher communication
overhead; hence, the model-based controller is more e�ective, no
ma�er how the reactive scheduler’s threshold is set up.

In summary, model-based batch scheduling is e�ective in trad-
ing communication overhead against operational latency. In com-
parison, reactive scheduling is less predictable and e�ective than
model-based scheduling; it might still be useful in cases where a
simple best-e�ort batching approach is su�cient, but should not
be used when latency bounds must be enforced.

Scalability. We evaluate the scalability of our approach in two
aspects. First, the scheduling latency, i.e., the time between the
detection of the start of a new window and the scheduling decision
(cf. Algorithm in Figure 10). It includes predicting the negative
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Figure 16: Latency of (a) scheduling and (b) updating statis-
tics.

and positive gains (cf. Algorithm in Figure 9), whose complexity is
determined by the granularity of the latency model, i.e., the number
of bins used in the model. We measured a very low scheduling
latency of in average 0.02 ms for up to 32 bins used (cf. Figure
16a), which is the maximal number of bins needed in any of the
scenarios that we have tested (cf. Section 5.1.1). For comparison,
the median scheduling latency in reactive scheduling and in Round-
Robin scheduling was both 0.004 ms. Admi�edly, there is a small
overhead for the model-based batch scheduling controller involved
compared to the simple strategies. �is is not signi�cant in most
scenarios; if scheduling would be a throughput bo�leneck in the
spli�er, the frequency of predicting negative and positive gains
could be adapted (i.e., not predicting fresh gains at each single
scheduling decision), trading model accuracy against throughput.

Second, we evaluate the time needed to update the latency model
with new statistics from the monitoring window, i.e., the monitoring
latency. �is comprises recomputing the weights, average values
and standard deviations of the bins. Using 32 bins, we measured
a linear growth with the number of events in the monitoring win-
dow (cf. Figure 16b). At 1,000,000 events in a monitoring window,
updating the statistics took between 100 and 200 ms, which is a
reasonable time to adapt the model to changes in the workload.

6 RELATEDWORK
Complex Event Processing (CEP) has evolved as the paradigm of
choice to detect and integrate events in situation-aware applications
[1, 9, 11, 26]. In doing so, distributed CEP (DCEP) systems [16, 25]
distribute the detection logic over a network of operators. However,
individual operators can be a bo�leneck and operator paralleliza-
tion is needed [8, 23]. Besides data parallelization, intra-operator
parallelization—also known as pipelining or state-based paralleliza-
tion [4]—has been proposed, which is limited by the functional
parallelism of an operator. Besides window-based spli�ing as pre-
sumed in this paper, key-based spli�ing [8, 15] has been proposed,
that is spli�ing by a key that is encoded in the events. However, this
is limited to the number of di�erent key values, e.g., di�erent stock
symbols in an algorithmic trading scenario. Moreover, not all DCEP
pa�erns exhibit key-based data parallelism, whereas window-based
data parallelism is inherent to most of them, as DCEP operators in
their very nature work on windows (cf. [11, 23]).

In related work, there have been addressed di�erent problems
of assigning batches of individual events to instances of stream
processing operators. Das et al. [12] propose a reactive controller
in order to batch a minimal number of events to an operator such
that the throughput is su�ciently high to process the current work-
load. In their processing model, operators can aggregate larger
sets of events more e�ciently, so that the throughput of operators
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grows with the batch size. A similar problem had been studied
before by Carney et al. [7]. Micro-batching, as used, e.g., in Spark
Streaming [28], provides e�cient failure recovery and batch-like
programming paradigms by handling streaming events as a series of
�xed-sized batches. Unlike in this paper, in all of these approaches,
batches are composed of individual events and not of overlapping
windows. Balkesen and Tatbul [5] recognize the trade-o� of commu-
nication overhead to latency in operator instances when scheduling
overlapping windows. �eir analytical cost model assumes �xed
processing latency of an event in a window and �xed count-based
or time-based window size and slide. Further, it does not consider
inter-arrival times. Hence, it is not suitable for solving the batch
scheduling problem in data-parallel DCEP operators.

Elasticity in data-parallel stream processing, i.e., adapting the
number of operator instances to changing workloads, is a comple-
mentary problem. Existing solutions that apply latency models
o�en base on the assumption of fair load balancing [13, 22, 23];
batch scheduling defeats this assumption, deliberately inducing
a controlled load imbalance. How to use the proposed latency
model of the batch scheduling controller for elasticity control is an
interesting research question for future work.

Other latency models for DCEP operators have been proposed.
�e Mace metrics from Chandramouli et al. [10] for latency estima-
tion in a DCEP middleware proposes an analytical model. However,
it assumes the usage of their proposed scheduling algorithm—which
is not a batch scheduling algorithm. In the latency model of Zeitler
and Risch, a �xed processing latency of each event is assumed [29];
our latency model di�erentiates between di�erent event types and
takes into account the overlap of windows.

Batching is also applied in other �elds, like graph processing
[27] and column data-stores [20], where it is o�en preferable to
process or store data in batches instead of handling each single tuple
separately. However, typically, optimal batch sizes are prede�ned,
e.g., by cache sizes, so that �xed batch sizes are employed.

Scheduling algorithms in non-parallel DCEP optimize the usage
of resources like CPU and memory [3, 17] without taking into
account batching of overlapping data sets.

7 CONCLUSION
In this paper, we have tackled the problem to batch as many sub-
sequent overlapping windows as possible to the same operator
instance in data-parallel DCEP operators subject to the constraint
that the operational latency in the operator instance must not ex-
ceed a given latency bound. As the batch scheduling decisions
are made on open windows, a long feedback delay between the
decisions and their impact on feedback parameters is induced, mak-
ing reactive scheduling approaches infeasible. Instead, we have
proposed a model-based controller. Evaluations show that the
controller batches an optimal amount of windows even at bursty
workloads. �is way, the bandwidth consumption of data-parallel
DCEP operators can be signi�cantly reduced.
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