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ABSTRACT

Today, massive amounts of streaming data from smart devices need
to be analyzed automatically to realize the Internet of Things. The
Complex Event Processing (CEP) paradigm promises low-latency
pattern detection on event streams. However, CEP systems need
to be extended with Machine Learning (ML) capabilities such as
online training and inference in order to be able to detect fuzzy
patterns (e.g. outliers) and to improve pattern recognition accuracy
during runtime using incremental model training. In this paper, we
propose a distributed CEP system denoted as StreamLearner for
ML-enabled complex event detection. The proposed programming
model and data-parallel system architecture enable a wide range of
real-world applications and allow for dynamically scaling up and
out system resources for low-latency, high-throughput event pro-
cessing. We show that the DEBS Grand Challenge 2017 case study
(i.e., anomaly detection in smart factories) integrates seamlessly
into the StreamLearner APIL. Our experiments verify scalability and
high event throughput of StreamLearner.
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1 INTRODUCTION AND BACKGROUND

In recent years, the surge of Big Streaming Data being available
from sensors [12], social networks [17], and smart cities [3], has led
to a shift of paradigms in data analytics throughout all disciplines.
Instead of batch-oriented processing [8, 14, 15], stream-oriented
data analytics [7] is becoming the gold standard. This has led to the
development of scalable stream processing systems that implement
the relational query model of relational data base management
systems (RDBMS) as continuous queries on event streams [2], and
Complex Event Processing systems that implement pattern matching
on event streams [6].

Query-driven stream processing, however, demands a domain
expert to specify the analytics logic in a deterministic query lan-
guage with a query that exactly defines which input events are
transformed into which output events by an operator. However, an
explicit specification is not always possible, as the domain expert
might rather be interested in a more abstract query such as “Re-
port me all anomalies that molding machine 42 experiences on the
shopfloor.” In this example, it is infeasible to explicitly specify all
event patterns that can be seen as an anomaly.

There have been different proposals how to deal with this issue.
EP-SPARQL employs background ontologies to empower (com-
plex) event processing systems with stream reasoning [1] — while
focusing on the SPARQL query language. On the other hand, sev-
eral general-purpose systems for stream processing exist such as
Apache Kafka [11], Apache Flink [4], Apache Storm [19], Apache
Spark Streaming [22]. Although these systems are powerful and
generic, they are not tailored towards parallel and scalable incre-
mental model training and inference on event streams.

At the same time, an increasing body of research addresses incre-
mental (or online) updates of Machine Learning (ML) models: there
are incremental algorithms for all kinds of ML techniques such
as support vector machines [5], neural networks [9], or Bayesian
models [21]. Clearly, a stream processing framework supporting
intuitive integration of these algorithms would be highly beneficial
- saving the costs of hiring expensive ML experts to migrate these
algorithms to the stream processing systems.

In this paper, we ask the question: how can we combine event-
based stream processing (e.g., for pattern recognition) with pow-
erful Machine Learning functionality (e.g., to perform anomaly
detection) in a way that is compatible with existing incremental ML
algorithms? We propose the distributed event processing system
StreamLearner that decouples expertise of Machine Learning from
Distributed CEP using a general-purpose modular API. In particular,
we provide the following contributions.
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e An architectural design and programming interface for
data-parallel CEP that allows for easy integration of exist-
ing incremental ML algorithms (cf. Section 3).

e An algorithmic solution to the problems of incremental K-
Means clustering and Markov model training in the context
of anomaly detection in smart factories (cf. Section 4).

e An evaluation showing scalability of the StreamLearner
architecture and throughput of up to 500 events per second
using our algorithms for incremental ML model updates
(cf. Section 5).

2 CHALLENGES AND GOALS

Machine Learning algorithms train a model using a given set of
training data, e.g., building clusters, and then apply the trained
model to solve problems, e.g., classifying unknown events. In the
course of streaming data becoming available from sensors, models
need to be dynamically adapted. That means, that new data is taken
into account in the learned model, while old data “fades out” and
leaves the model as it becomes irrelevant. This can be modeled by a
sliding window over the incoming event streams: Events within the
window are relevant for the model training, whereas events that fall
out of the window become irrelevant and should not be reflected
in the model any longer. Machine Learning on sliding windows is
also known as non-stationary Machine Learning, i.e., the problem
of keeping a model updated as the underlying streaming data gen-
eration “process” underlies a changing probability distribution. To
adapt the ML model online, there are different possibilities. For in-
stance, incremental algorithms change the model in a step-by-step
fashion. The challenge in doing so is to support incremental pro-
cessing — i.e., streaming learning. The model should not be re-built
from scratch for every new window, but rather incrementally be
updated with new data while old data is removed.

Another challenge in ML in streaming data is that data from
different streams might lead to independent models. For instance,
data captured in one production machine might not be suitable to
train the model of another production machine. The challenge is to
determine which independent models shall be built based on which
data from which incoming event streams. Further, the question is
how to route the corresponding events to the appropriate model.
When these questions are solved, the identified machine learning
models can be built in parallel — enabling scalable, low-latency, and
high-throughput stream processing.

3 STREAMLEARNER

In this section, we first give an overview about the StreamLearner
architecture, followed by a description of the easy-to-use API for
incremental machine learning and situation inference models.

3.1 System Overview

The architecture of StreamLearner is given in Figure 1. In order
to parallelize ML-based computation, we have extended the split-
process-merge architecture of traditional event-based systems [16-
18]. The splitter receives events via the event input stream and
forwards them to independent processing units, denoted as tube-ops,
according to its splitting logic. Each tube-op atomically performs
ML-based incremental stream processing by reading an event from
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Figure 1: System Architecture

the in-queue, processing the event, and forwarding the output
event to the merger. The merger decides about the final events on
the event output stream (e.g. sorts the events from the different
tube-ops by timestamp to provide a consistent ordering of the
event output stream). Due to the independent processing of events,
the architecture supports both, scale-up operations by spawning
more threads per machine and scale-out operations by adding more
machines.

Each tube-op processes an event in three phases: shaping, train-
ing, and inference. In the shaping phase, it performs stateless pre-
processing operations w; and wy (denoted as shaper) to transform
the input event into appropriate formats. In the training phase, the
stateful trainer module incrementally updates the model parame-
ters of model M (e.g. a neural network in Figure 1) according to the
user-specified model update function. In the inference phase, the
updated model and the preprocessed event serve as an input for the
stateful predictor performing a user-defined inference operation
and transforming the updated model and the input event to an
output event with the model-driven prediction.

Note that the StreamLearner API does not restrict application
programmers to perform training and inference on different event
data. Hence, application programmers are free to use either disjoint
subsets, or intersecting subsets of events in the stream for training
and inference. Although it is common practice in ML to separate
data that is used for training and inference, we still provide this flex-
ibility, as in real-world streams we might use some events for both,
incorporating changing patterns into the ML model and initiating
an inference event using the predictor. However, the application
programmer can also separate training and inference data by defin-
ing the operators in the tube-op accordingly (e.g. generating a
dummy event as input for the predictor to indicate that no inference
step should be performed). Furthermore, the application program-
mer can also specify whether the training should happen before
inference or vice versa.

3.2 Programming Model

The application programmer specifies the following functions in
order to use the StreamLearner framework in a distributed environ-
ment.

3.2.1 Splitter. Given an event e;, the application programmer
defines a stateful splitting function split(e;) that returns a tuple
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(mid, tid, e;) defining the tube-op tid on machine mid that receives
event e;.

3.2.2  Shaping. The stateless shaper operations w1 (e;) and wz(e;)
return modified events e} and el.2 that serve as input for the trainer
and the predictor module. The default shaper performs the identity
operation.

3.2.3 Trainer. The stateful trainer operation trainer(e}) returns
a reference to the updated model object M’. The application pro-
grammer can use any type of machine learning model as long as
the model can be used for inference by the predictor. If the model
M remains unchanged after processing event e}, the trainer must
return a reference to the unchanged model M in order to trigger
the predictor for each event. StreamLearner performs a delaying
strategy when the application programmer prefers inference before
learning. In this case, the tube-op first executes the predictor on
the old model M and executes the trainer afterwards to update the
model.

3.2.4  Predictor. The stateful predictor receives a reference to
model M’ and input (event) el.2 and returns the predicted event
e} = predictor(M’, e2).

3.2.5 Merger. The stateful merger receives predicted output
events from the tube-ops and returns a sequence of events that is put
to the event output stream, i.e., merger(e?) = f(eg, v e;, e?) for
Jj < iand any function f. Any aggregator function, event ordering

scheme, or filtering method can be implemented by the merger.

4 CASE STUDY: ANOMALY DETECTION IN
SMART FACTORIES

In this section, we exemplify usage of our StreamLearner API based
on a realistic use case for data analytics posed by the DEBS Grand
Challenge 20171 [10].

4.1 Problem Description

In smart factories, detecting malfunctioning of production machines
is crucial to enable automatic failure correction and timely reactions
to bottlenecks in the production line. The goal of this case study
is to detect anomalies, i.e., abnormal sequences of sensor events
quantifying the state of the production machines. In particular, the
input event stream consists of events transporting measurements
from a set of production machines P to an anomaly detection oper-
ator. The events are created by the set of sensors S that monitor the
production machines. We include the time stamps of each measured
sensor event by defining a set of discrete time steps DT. Each event
ei = (pi,di,si, t;) consists of a production machine id p; € P that
was monitored, a numerical data value d; € R quantifying the state
of the production machine (e.g. temperature, pressure, failure rate),
a sensor with id s; € S that has generated the event, and a time
stamp t; € DT storing the event creation time.

The anomaly detection operator has to pass three stages for each
event-generating sensor (cf. Figure 2).

First, it collects all events e; that were generated within the last
W time units (denoted as event window) and clusters the events e;
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Figure 2: Case study anomaly detection in smart factories.

using the K-means algorithm on the numerical data values d; for
at least M iterations. The standard K-means algorithm iteratively
assigns each event in the window to its closest cluster center (with
respect to euclidean distance) and recalculates each cluster center
as the centroid of all assigned events’ numerical data values (in the
following we do not differentiate between events and their data
values). In the figure, there are five events es, g, €7, €3, €9 in the
event window that are clustered into three clusters Cq, C2, C3. With
this method, we can characterize each event according to its state,
i.e., the cluster it is assigned to.

Second, the operator trains a first-order Markov model in order
to differentiate normal from abnormal event sequences. A Markov
model is a state diagram, where a probability value is associated to
each state transition. The probability of a state transition depends
only on the current state and not on previous state transitions (in-
dependence assumption). These probabilities are maintained in a
transition matrix T using the following method: (i) The Markov
model consists of K states, one state for each cluster. Each event
is assumed to be in the state of the cluster it is assigned to. (ii)
The events are ordered with respect to their time stamp - from
oldest to youngest. Subsequent events are viewed as state transi-
tions. In Figure 2, the events can be sorted as [es, eg, €7, es, e9]. The
respective state transitions are Cy — C3 — Cz — Cy — Cy. (iii)
The transition matrix contains the probabilities of state transitions
between any two states, i.e., cluster centers. The probability of two
subsequent events being in cluster C; and transition into cluster
Cjforalli,j € {1,...,K} is the relative number of these observa-
tions. For example the probability of transition from state Cy to
state Cy is the number of events in state Cy that transition to state
C1 divided by the total number of transitions from state Cy, i.e.,
P(C1]Cy) = 5225 =1/3.

Third, an anomaly is defined using the probability of a sequence of
observed transitions with length N. In particular, if a series of unlikely
state transitions is observed, i.e., the total sequence probability is
below the threshold ©, an event is generated that indicates whether
an anomaly has been found. The probability of the sequence can be
calculated by breaking the sequence into single state transitions, i.e.,
in Figure 2, P(Cz — C3 — Cy — Cy — C1) = P(C2 — C3)P(C3 —
C2)P(Cy — C2)P(C2 — C1). Using the independence assumption of
Markov models, we can assign a probability value to each sequence
of state transition and hence quantify the likelihood.
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4.2 Formulating the Problem in the
StreamLearner API

The scenario fits nicely into the StreamLearner API: for each sen-
sor, an independent ML model is subject to incremental training
and inference steps. Therefore, each thread in the StreamLearner
API is responsible for all observations of a single sensor enabling
StreamLearner to monitor multiple sensors in parallel.

4.2.1 Splitter. The splitter receives an event e; = (p;, d;, s, t;)
and assigns the event exclusively to the thread that is responsible for
sensor s (or initiates creation of this responsible thread if it does not
exist yet). It uses a simple hash map assigning sensor ids to thread
ids to provide thread resolution with constant time complexity
during processing of the input event stream. With this method,
we break the input stream into multiple independent sensor event
streams (one stream per sensor).

4.2.2  Shapers. Shapers w1 and w; are simply identity operators
that pass the event without changes to the respective training or
prediction modules.

4.2.3 Trainer. The trainer maintains and updates the model in
an incremental fashion. The model is defined via the transition ma-
trix T that is calculated using K-means clustering and the respective
state transition sequence.

Incremental K-Means. The goal is to iteratively assign each event
to the closest cluster center and recalculate the cluster center as
the centroid of all assigned events. The standard approach is to
perform M iterations of the K-means clustering algorithm for all
events in the event window when triggered by the arrival of a new
event. However, this method results in suboptimal runtime due to
unnecessary computations that arise in practical settings:

o A single new event in the event window will rarely have
a global impact to the clustering. In particular, most as-
signments of events to clusters remain unchanged after
adding a new event to the event window. Therefore, the
brute-force method of full reclustering can result in huge
computational redundancies.

e Performing M iterations is unnecessary, if the clustering
has already converged in an earlier iteration M’ < M.
Clearly, we should terminate the algorithm as fast as pos-
sible.

o The one-dimensional K-means problem is fundamentally
easier than the standard NP-hard K-means problem: an op-
timal solution can be calculated in polynomial time O(n?K)
for fixed number of clusters K and number of events in
the window n [13, 20]. Therefore, using a general-purpose
K-means algorithm that supports arbitrary dimensionality
can result in unnecessary overhead (the trade-off between
generality, performance, and optimality).

This is illustrated in Figure 3. There are four clusters Cy, ..., Cy4
and events es, ..., e in the event window. A new event ey is arriving.
Instead of recomputation of the whole clustering in each iteration,
i.e., calculating the distance between each event and cluster center,
we touch only events that are potentially affected by a change of
the cluster centers. For example, event e is assigned to cluster C4
which leads to a new cluster center C 2. However, the next closest
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Figure 3: Saving computation time in K-Means.

event eg (left side) keeps the same cluster center C3. Our basic
reasoning is that each event on the left side of the unchanged event
e keeps its cluster center as there can be no disturbance in the
form of changed cluster centers left-hand of eg (only a cascading
cluster center shift is possible as C4 > C3 > Cy > Cj in any phase
of the algorithm). A similar argumentation can be made for the
right side and also for the removal of events from the window.

This idea heavily utilizes the possibility of sorting cluster cen-
ters and events in the one-dimensional space. It reduces average
runtime of a single iteration of K-means as in many cases only
a small subset of events has to be accessed. Combined with the
optimization of skipping further computation after convergence
in iteration M’ < M, incremental updates of the clustering can
be much more efficient than naive reclustering. The incremental
one-dimensional clustering method is in the same complexity class
as naive reclustering as in the worst case, we have to reassign all
events to new clusters (the sorting of events takes only logarithmic
runtime complexity in the event window size per insertion of a
new event — hence the complexity is dominated by the K-means
computation).

Markov Model. The Markov model is defined by the state transi-
tion matrix T. Cell (i, j) in the transition matrix T is the probability
of two subsequent events to transition from cluster C; (the first
event) to cluster C; (the second event). Semantically, we count the
number of state transitions in the event window to determine the
relative frequency such that the row values in T sum to one. Instead
of complete recomputation of the whole matrix, we only recalculate
the rows and columns of clusters that were subject to any change
in the K-means incremental clustering method. This ensures that
all state transitions are reflected in the model while saving compu-
tational overhead. A reference to the new model T is handed to the
predictor method that performs inference on the updated model as
presented in the following.

4.24  Predictor. The predictor module applies the inference step
on the changed model for each incoming event. In this scenario,
inference is done via the Markov model (i.e., the transition matrix
T) to determine whether an anomaly was detected or not. We use
the transition matrix to assign a probability value to a sequence of
events with associated states (i.e., cluster centers). The brute-force
method would calculate the product of state transition probabilities
for each sequence of length N and compare it with the probability
threshold ©. However, this leads to many redundant computations
for subsequent events.

We present an improved incremental method in Figure 4. The
event window consists of events e, ..., eg sorted by time stamps.
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Figure 4: anomaly detection.

Each event is assigned to a cluster C; or C; resulting in a series
of state transitions. We use the transition matrix of the Markov
model to determine the probability of each state transition. We
calculate the probability of the state transition sequence as the
product of all state transitions (the state independence property of
Markov models). For instance the probability II of the first three
state transitions is I = P(C1|Cy1) * P(C3|Cy) * P(Co|Cq) = 1/3 =
2/3 % 3/4 = 1/4 which is larger than the threshold ® = 0.1. Now
we can easily calculate the probability of the next state transition
sequence of length N by dividing by the first transition probability
of the sequence (i.e., P(C1|C1) = 1/3) and multiplying with the
probability of the new state transition (i.e., P(C2|C2) = 3/4). Hence,
the total probability IT’ of the next state transition sequence is
I = 1% % 3/4 = 9/16 > ©. This method reduces the number of
multiplications to N + 2(W — N) rather than N(W — N). Finally, the
predictor issues an anomaly detection event to the merger (Yes/No).

4.2.5 Merger. The merger sorts all anomalies events w.r.t. time
stamp to ensure a consistent output event stream using the same
procedure as in GraphCEP [17]. This method ensures a monotonic
increase of event time stamps in the output event stream.

5 EVALUATIONS

In this section, we present our experiments with StreamLearner on
the DEBS Grand Challenge 2017 data set with 50,000 sensor data
events.

Experimental Setup: We used the following two computing
environments. (i) A notebook with 4x 3.5 GHz (8 threads, Intel Core
i7-4710MQ), 8 GB RAM (L1 Cache 256 KB, L2 Cache 1024 KB, L3
Cache 6144 KB), and 64 Bit support. (ii) An in-house shared memory
infrastructure with 32 X 2.3 GHz (Quad-Core AMD Opteron(tm)
Processor 8356), and 280 GB RAM (L1d cache 64 KB, L1i cache 64
KB, L2 cache 512 KB, L3 cache 2048 KB), and 64 Bit support.

Adapting the window size W: In Figure 5a, we show the abso-
lute throughput of StreamLearner on the y-axis and different win-
dow sizes W on the x-axis using the notebook for a different number
of threads. Clearly, larger window size leads to lower throughput
as computational overhead grows. We normalized this data in Fig-
ure 5c to the interval [0, 100] to compare the relative throughput
improvements for the different number of threads. Clearly, the ben-
efit of multi-threading arises only for larger window sizes due to
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the constant distribution overhead that can not be compensated by
increased parallelism because each thread has only little computa-
tional tasks between points of synchronization (on the splitter and
on the merger). Overall scalability is measured in Figure 5a. It can
be seen that StreamLearner scales best for data-parallel problems
with relatively little synchronization overhead in comparison to the
computational task. For small window sizes (e.g. W = 10), through-
put does not increase with increasing number of workers. However,
for moderate to large window sizes, scaling the number of worker
threads has an increasing impact on the relative throughput: scaling
from one to nine threads increases throughput by 2.5x.

In Figure 6a, we repeated the experiment on the shared-memory
infrastructure. The first observation is that the single threaded
experiments are four times slower compared to the notebook infras-
tructure due to the older hardware. Nevertheless, in Figure 6b, we
can see clearly that the relative throughput decreases when using
a low rather than a high number of threads (e.g. for larger window
sizes W > 100). In Figure 6¢, we measure scalability improvements
of up to 60%. Nevertheless, it can be also seen that it is not always
optimal to use a high number of threads - even if the problem is
highly parallelizable.

Adapting the number of clusters K: In Figure 7, we plot the
absolute throughput for a varying number of clusters and different
threads. We fixed the window size to W = 100. Not surprisingly, an
increasing number of clusters leads to reduced throughput due to
the increased computational complexity of the clustering problem.
Evidently, increasing the number of threads increases the through-
put up to a certain point. This is consistent with the findings above.

6 CONCLUSION

StreamLearner is a distributed CEP system and API tailored to
scalable event detection using Machine Learning on streaming data.
Although our API is general-purpose, StreamLearner is especially
well-suited to data-parallel problems — with multiple event sources
causing diverse patterns in the event streams. For these scenarios,
StreamLearner can enrich standard CEP systems with powerful
Machine Learning functionality while scaling exceptionally well
due to the pipelined incremental training and inference steps on
independent models.
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Figure 6: Throughput evaluations for different window sizes on shared memory infrastructure.
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Figure 7: Throughput for varying number of clusters K.
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