SPECTRE: Supporting Consumption Policies in Window-Based
Parallel Complex Event Processing

Ruben Mayer Ahmad Slo Muhammad Adnan Tariq
Institute of Parallel and Distributed Institute of Parallel and Distributed Department of Computer Science
Systems Systems FAST - National University of

University of Stuttgart, Germany
ruben.mayer@ipvs.uni-stuttgart.de

Kurt Rothermel
Institute of Parallel and Distributed
Systems
University of Stuttgart, Germany
kurt.rothermel@ipvs.uni-stuttgart.de

ABSTRACT

Distributed Complex Event Processing (DCEP) is a paradigm to in-
fer the occurrence of complex situations in the surrounding world
from basic events like sensor readings. In doing so, DCEP oper-
ators detect event patterns on their incoming event streams. To
yield high operator throughput, data parallelization frameworks
divide the incoming event streams of an operator into overlapping
windows that are processed in parallel by a number of operator
instances. In doing so, the basic assumption is that the different
windows can be processed independently from each other. How-
ever, consumption policies enforce that events can only be part of
one pattern instance; then, they are consumed, i.e., removed from
further pattern detection. That implies that the constituent events
of a pattern instance detected in one window are excluded from all
other windows as well, which breaks the data parallelism between
different windows. In this paper, we tackle this problem by means
of speculation: Based on the likelihood of an event’s consumption
in a window, subsequent windows may speculatively suppress that
event. We propose the SPECTRE framework for speculative pro-
cessing of multiple dependent windows in parallel. Our evaluations
show an up to linear scalability of SPECTRE with the number of
CPU cores.

CCS CONCEPTS

« Information systems — Stream management;

KEYWORDS

Complex Event Processing, Data Parallelization, Event Consump-
tion, Consumption Policy, Speculation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware ’17, Las Vegas, NV, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4720-4/17/12...$15.00

DOI: 10.1145/3135974.3135983

University of Stuttgart, Germany
ahmad.slo@ipvs.uni-stuttgart.de

Manuel Graber
Institute of Parallel and Distributed
Systems
University of Stuttgart, Germany
graeber.manuel@gmx.de

Computer & Emerging Sciences,
Islamabad, Pakistan
muhammad.adnan@nu.edu.pk

Umakishore Ramachandran
College of Computing
Georgia Institute of Technology, USA
rama@cc.gatech.edu

ACM Reference format:

Ruben Mayer, Ahmad Slo, Muhammad Adnan Tariq, Kurt Rothermel, Manuel
Graber, and Umakishore Ramachandran. 2017. SPECTRE: Supporting Con-
sumption Policies in Window-Based Parallel Complex Event Processing. In
Proceedings of Middleware °17, Las Vegas, NV, USA, December 11-15, 2017,
13 pages.

DOI: 10.1145/3135974.3135983

1 INTRODUCTION

Distributed Complex Event Processing (DCEP) [19, 29] is a par-
adigm applied in many different application areas like logistics,
traffic monitoring, and algorithmic trading, to infer the occurrence
of complex situations in the surrounding world from basic events
like sensor readings or stock quotes. Such situations can be, for in-
stance, the delayed delivery of a packet, traffic jams or accidents and
leading market signals. In order to stepwise infer their occurrence
from the sensor streams, a distributed network of interconnected
DCEP operators, the operator graph, is deployed. Each operator
processes incoming event streams and detects a designated part of
an event pattern that corresponds to a situation of interest. If such a
pattern is detected, a new (complex) event is produced and emitted
to successor operators or to a consumer, i.e., an entity interested in
the corresponding situation. In doing so, operators face increasingly
high event loads from their incoming event streams.

In order to be capable of processing high load, the paralleliza-
tion of DCEP operators has been proposed. In this regard, data
parallelization has proven to be a powerful technique to parallelize
operators [5, 15, 18, 25-27]. Data-parallel DCEP systems split the
incoming event streams into independently processable windows
that capture the temporal relations between single events posed by
the queried event pattern. The windows are processed in parallel
by a number of identical operator instances. An event can be part
of different windows, so that windows may overlap.

A crucial question in overlapping windows is whether an event
can be used in multiple pattern instances or not. In many cases, it is
preferable to consume an event once it is part of a pattern instance.
In particular, this means to not use the same event for the detection
of further pattern instances in other windows. This way, semantic

http://dx.doi.org/10.1145/10.1145/3135974.3135983.

(c) Owner 2017. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version is published in Proceedings of Middleware '17, Las Vegas, NV, USA, December 11-15, 2017,

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

ambiguities and inconsistencies in the complex events that are
emitted can be resolved or prevented. The problem tackled in this
paper is that event consumptions impose dependencies between the
different windows and thus, prevent their parallel processing. When
the same event is processed in parallel in two different windows,
consuming it in the first window also consumes it from the second
window; hence, there is a dependency between both windows,
which can hinder their parallel processing. Understanding that
problem, it is no surprise that existing parallel implementations
of DCEP systems [5, 13, 25] do not support event consumptions,
whereas sequential systems often do [1, 10, 12]. This limits the
scalability of operators that impose event consumptions. Moreover,
it even impedes event consumptions from their further development
in academia and industry, as in times of Big Data and Internet of
Things, parallel DCEP systems are becoming the gold standard.
In this paper, we propose a speculative processing method that
allows for parallel processing of window-based DCEP operators in
case of event consumptions. The basic idea is to speculate in each
window which events are consumed in the previous windows—
instead of waiting until the previous windows are completely pro-
cessed. This way, multiple overlapping windows can be processed
in parallel despite inter-window dependencies. To this end, we
propose the SPECTRE (SPECulaTive Runtime Environment) frame-
work, comprising the following contributions: (1) A speculative
processing concept that allows the execution of multiple versions
of multiple windows using different event sets in parallel. (2) A
probabilistic model to process always those window versions that
have the highest probability to be correct. (3) Extensive evaluations
that show the scalability with a growing number of CPU cores.

2 BACKGROUND AND PROBLEM ANALYSIS

To solve the problem of parallel event processing in face of event
consumptions, we first discuss a common DCEP model in Section
2.1. In Section 2.2, we analyze existing DCEP operator paralleliza-
tion methods and highlight the properties of window-based data
parallelization as an expressive and scalable parallelization method
[15, 25, 27]. Finally, in Section 2.3 we explain the challenges on
parallel processing imposed by event consumptions.

2.1 DCEP Systems

A DCEP system is modeled as an operator graph which inter-
connects event sources, operators and consumers by event streams.
An event e consists of attribute-value pairs containing meta-data,
such as event type, sequence numbers or timestamps, and the event
payload, such as sensor readings, stock quotes, etc. Based on the
event meta-data, events from different streams arriving at an oper-
ator have a well-defined global ordering (e.g., by timestamps and
tie-breaker rules). Each operator w processes events in-order on its
incoming streams, detecting event patterns according to a pattern
specification. If a pattern instance is detected, the operator emits a
(complex) event to its successor in the operator graph.

Event patterns are specified in an event specification language
such as Snoop [10], Amit [1], SASE [31], or Tesla [11]. Those lan-
guages involve operators like event sequences, conjunctions, and
negations, in order to define the event patterns to be detected. To
express the set of relevant events in pattern detection, the pattern

Ruben Mayer et al.

specification imposes a sliding window of valid events [3, 15]. This
can depend on time or the number of events [11, 12, 31], but also on
more complex predicates, e.g., on (combinations of) specific event
occurrences that mark the beginning and end of a window [25].
In this paper, we denote the valid window at a specific point in
time as w;. When the window slides, the subsequent valid windows
are denoted as wj+1, wit2 etc. Depending on the sliding semantics,
different subsequent windows can overlap, i.e., events are part of
multiple different windows.

Example: In intra-day stock trading, an operator w receives an
event stream containing live stock quote changes of stock A and B
throughout the trading day. An analyst wants to detect correlations
between a change in A and a change in B. To this end, he formulates
a query in the Tesla [11] event specification language:

define Influence(Factor)
fromB() and
£ A() within Tmin from B

where Factor = B : change / A : change

This pattern can be detected by opening a window with a scope
of 1 minute whenever an A event occurs; when a B event is detected
in a window opened by an A event, a complex event can be created.

Suppose the events Aj, Az, By, Ba and B3 occur in the event
stream in that order, i.e., A; denotes the i-th occurrence of an event
of type A in the stream (cf. Figure 1). Let us assume that the first A
in a window is correlated with every B in the same window—this
can be defined in a so-called selection policy. As shown in Figure 1a,
d:! gll, g‘;, gf, ’]322, and ‘g:. Notice, that
all events are correlated multiple times, i.e., they are not consumed
after building a complex event.

Generally, such multiple correlations of the same event can be
problematic. If there is a many-to-one relation between incoming
events and detected situations, i.e., many events build a pattern
instance but a single event can only be part of one pattern instance,
contradicting complex events are produced when events are not
consumed. Many-to-one or one-to-one relations are a common case
in situation detections.

Therefore, many event specification languages allow for the spec-
ification of a consumption policy [1, 10, 11, 34]. The consumption
policy defines which selected events are consumed after they have
participated in a complex event detection: It might be none, all or
some of them—e.g., depending on the event type or other parame-
ters. A detailed discussion on consumption policies supported in
event specification languages is provided in Section 5. In the exam-
ple in Figure 1b, selected events of type B are consumed when a
complex event is detected, referred to as consumption policy “se-
B
In that case, By and By are not re-used after being correlated with
Ay in the first window wj.

When a complex event is detected, all constituent events of the
event pattern are checked against the consumption policy. Then,
all events defined by the consumption policy are consumed as a
whole. This implies that events are not consumed while they only
build a partial match, but only when the match is completed and a

5 complex events are detecte

lected B”. Now, only 3 complex events are produced: and gz.
3

!)‘f denotes a complex event created from incoming events X and Y.

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

- incoming incoming

events events
)i (&) &) w,
Re R
[l l l A v (&]
outgoin, outgoin,
------ “lll (Coriplj() A1 - (coripli()
events Bl BZ BS events

a) CP: None. (b) CP: Selected B.

Figure 1: Query Qf with different consumption policies (CP).

complex event is produced. This inherent property is independent
of the concrete selection and consumption policy.

2.2 Operator Parallelization

The paradigm of data parallelization is very powerful in increas-
ing operator throughput. The incoming event stream is split and
processed by an elastic number of identical copies of the operator—
called operator instances. This paradigm has been applied to a wide
range of parallel CEP and stream processing systems [6, 9, 15—
17, 22, 25-27, 32]. We assume a shared memory (multi-core) archi-
tecture, where the splitter and operator instances are executed by
independent threads running on dedicated CPU cores (cf. Figure 2).
We assume that the underlying system can provide k + 1 threads, so
that 1 thread is pinned to the splitter and k threads are pinned to the
operator instances. In the rest of this paper, we do not differentiate
between operator instances (i.e., instances of the pattern detection
logic) and the threads that execute them—we simply refer to both
as operator instances.

As mentioned above, we follow a window-based data paralleliza-
tion approach. The incoming event streams are partitioned into
windows that capture (temporal) relations defined in the queried
pattern. They can naturally be processed by operator instances, as
DCEP operators in their core typically work on a sliding window
on the event stream [11, 12, 15, 21, 25, 27, 31]. The windows can
be based on time, event count or logical predicates that evaluate
whether arbitrary window start and end conditions are fulfilled—
a more detailed analysis of window-based data parallelization is
provided in [25] and in [15]. For instance, for the time-based win-
dow definition of example query Qf, a new window is opened on
each event of type A, whereas an open window is closed after 1
minute based on the events’ timestamps. The windows are assigned
with increasing window IDs and their boundaries are stored in the
shared memory (e.g., “w; from event X to event Y”).

The splitter periodically schedules to each operator instance a
specific window for processing. The operator instances can hold
local state of the processing in shared memory, e.g., partial pattern
matches detected in the assigned window. This allows a specific
window to be processed by any operator instance at any time; in
particular, the processing of a window can be interrupted for some
time and resumed later by the same or a different operator instance.

2.3 Challenges and Goal

In systems without consumptions, processing of a window cannot
impact the events within another window, i.e. in principle each

events

incoming windows

events

outgoing
—> (complex)
events

splitter
shared memory

12
'h

operator instances

Figure 2: Data parallelization framework.

pair of windows can be processed in parallel. However, event con-
sumptions impose a dependency between the windows, restricting
parallelism, as we discuss in the following.

Recall the example in Figure 1b. The Selection Policy is “first
A, each B” and the Consumption Policy is “selected B”. In the first

window wi, A1 and B; build a complex event gl, such that By

is consumed; furthermore, A; and By build a complex event 21,
such that By is consumed. If wq and wy are processed in parallel,
the consumption of B; and By in wq might not be known in wy,
so that By and By are erroneously processed in wa, too, leading
to inconsistent results. To prevent anomalies due to concurrent
processing, wy can only be processed after the consumptions in
wi are known. When the event patterns are more complex than in
the given minimal working examples, the dependencies become
hard to control. For instance, if the pattern requires 3 rising stock
quotes of B in a sequence, the completion of the pattern in wi—
and hence, the event consumptions—might be unsure until wq is
completely processed. If 2 events of type B with rising quotes have
already been detected in wq, the completion of the pattern depends
on whether a third B occurs; this might only be known at the end
of wj. The standard procedure to deal with data dependencies is
to wait with processing wz until w; is completely processed and
hence, all consumptions in wq are known. This, however, impedes
the parallel processing of overlapping windows.

In this paper, we aim to develop a framework to enable paral-
lel processing of all DCEP operators, regardless of their selection
and consumption policy. To this end, we develop a speculative pro-
cessing method that overcomes the data dependencies imposed
by event consumptions, so that data-parallel processing becomes
possible. The framework shall deliver exactly those complex events
that would be produced in sequential processing; in particular, no
false-positive and false-negatives shall occur.

3 THE SPECTRE SYSTEM

To tackle the dependencies between different windows imposed
by event consumptions, we propose the SPECTRE (SPECulaTive
Runtime Environment) system, a highly parallel framework for
DCEP operators. SPECTRE aims to detect the dependencies between
different windows and to resolve them by means of speculative
execution.

This section is organized as follows. In Section 3.1, we introduce
the speculative processing approach we follow in SPECTRE. It is
based on creating multiple speculative window versions in order
to resolve inter-dependencies between windows. Based on that
concept, in Section 3.2, we explain how SPECTRE determines and
schedules the k “best” window versions to k operator instances for

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

Ruben Mayer et al.

(a) event stream and windows

(b) window versions

(c) dependency tree

CG,

incoming

eients CG, |-
Ll

SLEJEJEJNE.) wv,

Wy

w,
wy,
WY

EIE]) w
CEE)wY, || e (vwys)) [vwve) | (vwvs) | [viwyyo) |

[WV,

Figure 3: Consumption Problem: (a) Structural View. (b) Processing View. (c) Management View.

parallel processing. Finally, in Section 3.3, we provide details on
how the k operator instances perform the parallel processing of the
assigned window versions.

3.1 Speculation Approach

As pointed out above, operators process their incoming data stream
based on windows. In particular, operators search for queried pat-
terns to occur in the sequence of events comprised by a window.
Windows can overlap, i.e. a pair of windows might have a sequence
of events in common. The windows of an operator are totally or-
dered according to their start events. We call a window, say wj, a
successor of another window, wj, iff the start event of w; occurs
before the starting event of w; in the corresponding event stream.
For example, in Figure 3(a), wy starts earlier than wgy; hence, wy is
a successor of wi. In the same way, w3 is a successor both of wy
and of wj.

Now, we can define a consumption dependency (or dependency for
short) between windows. Roughly speaking, a window w; depends
on another window wj, if the consumption of some events in w;
might affect the processing of window w;. Formally, we define that
w; depends on w; iff wj is a successor of w; and w; overlaps with
w;. For example, in Figure 3(a), wo depends on wq, and w3 depends
both on wy and on wj.

Now, we will introduce the concept of a consumption group. A
consumption group is maintained for each partial match of a search
pattern found in a window. It records all events of this window that
need to be consumed if the partial match becomes a total match,
i.e. the corresponding search pattern is eventually detected in the
window. Let’s assume that an operator is acting on some window
w. Whenever the operator processes an event starting a new partial
match of some search pattern, it creates a new consumption group
associated with w. When it processes an event that completes a
pattern, it completes the corresponding consumption group. On the
other hand, a consumption group is abandoned if the correspond-
ing pattern cannot be completed anymore. Consequently, while
processing the events of a window, multiple consumption groups
can be created that are associated with w. However, all of them will
be completed or abandoned at the latest when processing of w is
finished.

While acting upon w, the operator adds events to be potentially
consumed to the consumption groups associated with w, in confor-
mance with the specified consumption policy. When a consumption
group is completed, all events contained in this group are consumed
together. If the consumption group is abandoned instead, it is just
dropped and no events are consumed.

For example, let us assume that a query for pattern of a sequence
of three events of type A, B and C in a window of time scope 1
minute, is processed by an operator. Let us further assume the
consumption policy is set to consume all participating events in
case of a pattern match. When detecting an event of type A, say
A1, in a window, the operator creates a new consumption group.
The first event of type B, By, is added to the consumption group. If
the window ends (i.e., 1 minute has passed) and no event of type
C is detected, the consumption group is abandoned and no events
are consumed in the window. If an event of type C, say C1, occurs
after By and within the window scope, the consumption group is
completed, and all three events participating in the pattern match,
A1, By and Cy, are consumed together.

At the time a consumption group is created that is associated
with window w, it is unknown whether the corresponding pattern
will eventually be completed in w. Clearly, the outcome of the con-
sumption group (complete or abandon) might affect events of all
windows that depend on w. One way to handle this uncertainty
is to defer the processing of all depending windows until the con-
sumption group terminates (completed or abandoned). However, in
general this amounts to processing all windows sequentially. The
approach that we follow in SPECTRE is to generate two window
versions for each window depending on w, one version assuming
that the consumption group will be completed and the other one
assuming the consumption group will be abandoned. These window
versions can then be processed in parallel to w. Once the outcome
of the consumption group is known, i.e., completed or abandoned,
processing continues on the corresponding window versions that
assume the correct outcome while the other window versions that
assume the wrong outcome are just dropped. Obviously, this ap-
proach allows for processing dependent windows in parallel even
in the presence of event consumptions.

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

With this approach, windows that depend on other windows
may have multiple versions that depend on the outcome of the
associated consumption groups. In principle there is a window
version for any combination of the complete and abandon case of
the consumption groups that a window depends upon. When one
of these consumption group is abandoned, all window versions
assuming this consumption group to complete can be dropped, and
vice versa.

To capture the dependency between consumption groups and
window versions, we introduce the concept of a dependency tree.
There exists an individual dependency tree for each independent
window, i.e., each window that does not depend on any other win-
dow according to our definition above. The vertices of the depen-
dency tree are window versions or consumption groups, while
the directed edges of the tree specify the dependencies between
them. The root of the dependency tree is the only version of an
independent window—by definition, there is only one version of
an independent window.

The vertex of a window version WV, say v(WYV), has at most
one child. The sub-hierarchy rooted by this child includes all ver-
sions of windows depending on WV, if any. We will denote this
sub-hierarchy as v(WV)’s subtree. The subtree is rooted by a con-
sumption group if a consumption group is associated with v(WV).
Otherwise the root of the subtree is a window version directly
dependent on v(WV), if any.

A vertex representing a consumption group CG, say v(CG), al-
ways has two children, one for each possible outcome of CG (com-
pleted or abandoned). The so-called completion edge of v(CG) links
the subtree of window versions for which completion of CG is
assumed, whereas the so-called abandon edge of v(CG) links the
subtree of window versions which assume CG to be abandoned.
That is, all window versions that can be reached via v(CG)’s comple-
tion edge do not include any event included in CG, while events in
CG have no effect on window versions linked by v(CG)’s abandon
edge.

When a consumption group CG associated with a window ver-
sion WV is created, the following is performed: v(CG) is added as
a new child of v(WV) to the dependency tree. The old subtree of
v(WV) is linked by v(CG)’s abandon edge, while a modified copy of
the subtree is linked by v(CG)’s completion edge. The modification
makes sure that no events included in CG occur in the window
versions of the subtree linked by v(CG)’s completion edge. In other
words, for each window version existing in v(WV)’s old dependent
versions subtree, a copy that suppresses all events listed in CG is
added. Therefore, each new consumption group associated with
v(WV) doubles the window versions in v(WV)’s subtree.

Examples and Algorithms: In the following, a set of examples
on the management of the dependency tree is provided along with a
formalization of the associated management algorithms. We discuss
the following cases: (1) a new dependent window is opened, (2) a
new consumption group associated to a window version is created,
(3) an existing consumption group is completed or abandoned.

New dependent window. When a new window wpe,, is opened
that depends on another window wy., for every leaf vertex of the
dependency tree rooted by the window version of wy, new window
versions are created as child vertices (Figure 4, lines 1-10). For

example, in Figure 3, at the start of w3, new window versions (WVyg
to WV1g) of w3 are created and the corresponding vertices (v(W V)
to v(WV7yp)) are attached to all leaf nodes of the dependency tree
rooted by the window version of wy.If aleaf vertex is a consumption
group CG, two window versions of w3 are created and attached (a
version for completion of CG, and a version for abandoning of CG);
if a leaf vertex is a window version, one window version of w3 is
created and attached.

Consumption group created. Recall, that when a consumption
group CG associated with a window version WV is created, the
old subtree of v(WV) is linked by v(CG)’s abandon edge, while a
modified copy of the subtree is linked by v(CG)’s completion edge
(Figure 4, lines 12-16). In the example in Figure 3, WV creates
CGs. Then, v(CGs) is attached as a new child to v(WV3), and the
former child, v(WVg), becomes the root of the unmodified subtree
of v(CG3). For all window versions in the unmodified subtree of
v(CG3), a new alternative version is created that assumes that CG3
will be completed. Suppose CG3 contains event E4. Then, window
version WV (from the unmodified subtree) contains event E4,
whereas the alternative window version WV7 (from the modified
subtree) suppresses event Ey4.

Consumption group completed / abandoned. When a consumption
group is completed or abandoned, the respective opposite aban-
don or completion path of that consumption group is removed
from the dependency tree. There are two different reasons why a
consumption group is abandoned: (1) Due to the termination of
the corresponding window version/end of window, or (2) due to a
condition from a negation statement being fulfilled. For instance,
a pattern specification of a sequence of events of type A and B
can define that no event of type C shall occur between the A and
B events. If a consumption group is opened with an A event, the
occurrence of a C event would trigger the consumption group to be
abandoned as the pattern instance cannot be completed any more,
even if a B event would occur later. The algorithms for subtree
removal are listed in Figure 4, lines 18-26.

Discussion: To be able to process k window versions in parallel
we obviously need k operator instances. That means, that typically
only a small fraction of all possible window versions can be con-
sidered for speculative processing. To be able select the k most
promising window versions, we need a method for predicting the
probability of possible window versions to survive (i.e., not to be
dropped). In Section 3.2, we propose a scheme for scheduling the
k most promising window versions on a collection of k operator
instances.

3.2 Selecting and Scheduling the Top-k
Window Versions

The intuition behind SPECTRE is to predict the k “best” speculative
window versions and schedule them for parallel processing on
k operator instances. To determine the top-k window versions,
SPECTRE periodically determines the k window versions with the
highest probability to survive in the entire dependency tree. In
other words, SPECTRE does not create and schedule windows, as
assumed in Section 2.2, but window versions; in doing so, multiple
versions of the same window can be scheduled to different operator
instances in parallel.

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

Ruben Mayer et al.

1: newWindow () begin

2: for each leafVertex € dependencytree do

3 if leafVertex is window version then

4 leaf Vertex. child < new v(WYV)

5: else > else, it is a Consumption Group
6 leaf Vertex.completionEdge < new v(WV)

7 leaf Vertex.abandonEdge < new v(WV)

8 end if

9: end for

10: end function

12: consumptionGroupCreated (CGroup CG, WinVersion WV) begin
13: create a modified copy of the subtree attached to v(WV)

14: v(CG).completionEdge «—v(WV).modifiedSubtree

15: v(CG).abandonEdge «—v(WYV).originalSubtree

16: end function

18: consumptionGroupCompleted (CGroup CG) begin
19: v(CG).abandonEdge < null

20: v(CG).parent.child «—v(CG).completionEdge

21: end function

23: consumptionGroupAbandoned (CGroup CG) begin
24: v(CG).completionEdge < null

25: v(CG).parent.child «v(CG).abandonEdge

26: end function

1: predictCompletionProbability (ConsumptionGroup CG) begin
2: n « Splitter.avgWindowSize — poslnWindow

3: if n < 0then

4 nee1 > At least 1 more event expected
5: end if
6
7
8
9

Tp = (1= 2200w Tym o+ 204w Ty,
8 « CG.completionState
vy <« O-th unit vector
 vp — Ty xvg
10: return v, |[last]
11: end function

Figure 4: Algorithms for managing the dependency tree.

Whether or not a window version WV survives depends on the
outcome of the preceding consumption groups, i.e. the consumption
groups on the path from WV to the root of the dependency tree. In
the following, we will denote this path as WV’s root path. Remember,
each vertex representing a consumption group has two outgoing
edges, a complete and an abandon edge. We say that the complete or
abandon edge of a consumption group, say CG, becomes valid when
CG is completed or abandoned, respectively. Once one of these
edges becomes valid, the other one turns invalid. Consequently,
WYV survives only if all abandon and complete edges on its root
path eventually become valid, i.e., WV is dropped if at least one of
these edges turn invalid.

The probability of WV to survive depends on the completion
probabilities of the consumption groups on WV’s root path. The
survival probability of WV, denoted as SP(WV) is determined as fol-
lows: Let P(CG) be the probability that CG is completed. Moreover,
let CG, and CGy, be the set of consumption groups that contribute a
complete and abandon edge to WV’s root path, respectively. Then?,
SP(WV) = [Icece, P(e) X [1ereca, (1 = P(¢))).

3.2.1 Prediction Model. Now, we discuss how we predict the
completion probability of a consumption group. Generally, we ob-
serve that the probability that a consumption group is completed
equals to the probability that the underlying partial match for a
search pattern is completed. Our scheme for predicting the comple-
tion probability P(CG) of a consumption group CG at a given time
takes into account two factors: (1) The inverse degree of completion,

2Note that this calculation bases on the assumption that the different consumption
groups are completed or abandoned independently from each other. If there are depen-
dencies between different occurrences of a pattern and, hence, between the completion
of different consumption groups, this can be incorporated in the probability calculation
by using dependent / conditional probabilities. However, for the sake of simplicity
of the presentation of technical concepts and algorithms, we use the formula for
independent probabilities here.

Figure 5: Calculation of completion probability of a con-
sumption group.

i.e., how many more events are at least required in order to complete
the pattern—denoted by §—and (2) the expected number of events
left in the window, denoted by n. If § is low and many events are
still expected to occur in the window, the probability of completion
is high. On the other hand, if § is high and only very few events
are still expected in the window, the probability of completion is
low. In the following, we describe how the probabilistic model is
built and updated at system run-time.

The dynamic process of pattern completion while processing
events is modeled as a discrete-time Markov process. The state of
the Markov process is spanned from § to 0. For instance, if a pattern
instance consists of at least 3 events (e.g., a sequence of 3 events,
or a set of 3 events), the state-space has the elements “3”, “2”, “1”
and “0”, with “0” representing the state of total pattern completion.
Based on statistics monitored at system run-time, a stochastic matrix
Tj is built that describes the transition probabilities between the
states of the Markov process when processing one event. To this
end, window versions of independent windows gather statistics
about the probability of changing from §,;; to d,ew When an event
is processed. The transition probabilities between any pair of §,;4
and Jpew are captured in a matrix T;**". After p new measurements

are available, an updated T7 is computed from the old 7 ld 3nd the

newly calculated T**™ as Ty = (1-a) *Tl"ld +axT"*" (exponential
smoothing). a € [0, 1] is a system parameter to control the impact
of recent and of old statistics on Tj.

Now, the probability of state transitions when processing n
events can be computed by raising Tj to the n-th power: T, = (Ty)".
The initial state is modeled as a row vector vy = (0, ..., 0, 1,0, ...,0)—
the §-th unit vector, where the §-th position is 1 and all other
positions are 0. The probabilities of reaching the different states
in n steps can be computed as v, = T, * vy. The last entry of v,
referring to state “0”, is the probability to complete the pattern in n
steps starting from state vy.

To reduce the number of matrix multiplications, each time when
Ty is updated, a set of predefined “step sizes” is precomputed, e.g.,
Ty, T2o, T30, etc., providing transition probabilities when 10, 20, 30,
... events are processed. If the number of expected events n is in
between two precomputed steps, the transition probabilities are
linearly interpolated, e.g., T14 = 0.6 * T1g + 0.4 * Tyg. The step size,
denoted as ¢, is a system parameter.

Figure 5 formalizes the described methods in an algorithm. The
expected number of events left in the window, n, is calculated from
the average window size monitored in the splitter and the position

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

1: findTopKVersions (dependencyTree, k) begin
2: result « {} > set
3: candidates « {dependencyTree.root} > priority queue
4: fori«1...k do

5: tmp «— candidates. pop()
6 result.append(tmp)

7 for each M « tmp.child do
8 candidates.add(M)

9 end for

10: end for

11: return result

12: end function

Figure 6: Top-k window version selection algorithm.

of the last processed event in the window (line 2). The probability
matrix T, is calculated by linear interpolation of precomputed ma-
trices (line 6). § is obtained directly from CG (line 7), and used in
order to build vy (line 8); v, is calculated according to the descrip-
tion above (line 9). The resulting completion probability (transition
to state “ 0” / pattern completed) is returned (line 10).

3.2.2 Scheduling. Here, we describe how SPECTRE periodically
selects and schedules the k window versions with the highest sur-
vival probability.

Notice that the survival probability of window versions is de-
creasing in a root-to-leaf direction in the dependency tree, i.e. in
a window version’s subtree there exist only window versions that
have the same or a lower survival probability. Therefore, window
versions are already sorted by their survival probability in the de-
pendency tree, so that it already represents a max-heap, which
simplifies the selection of the top-k versions substantially. From
top to the bottom, window versions are added to the top-k list as
detailed in the algorithm in Figure 6. The algorithm works with two
data structures: (1) a set storing the resulting top-k versions (line 2),
and (2) a priority queue storing candidates for being added to the
top-k versions (line 3). The priority queue sorts the contained ver-
sions by their probability, highest probability first. Until k versions
are found, the highest version from the candidate list is added to
the result set (lines 4-6). The children of that version are also added
as candidates (lines 7-9). This way, the top-k window versions are
determined with only visiting the minimal number of vertices in
the dependency tree.

The scheduling algorithm, listed in Figure 7, does not re-schedule
window versions that are already scheduled to avoid unnecessary
operations and to increase memory and cache locality of opera-
tor instances. Hence, the to-be-scheduled versions are determined
(lines 7-9). Further, “free” operator instances are determined that
will get a new window version scheduled (lines 10-11). Then, every
window version that needs to be scheduled is scheduled to one of
the free operator instances (lines 14-17).

3.3 Parallel Processing of Window Versions

Here, we describe how operator instances process their assigned
window version according to the dependencies in the dependency
tree. In particular, we describe how events are processed and sup-
pressed, and how consumption groups are updated when sub-
patterns are detected in a window version.

. List(OperatorInstance) operatorInstances

: Tree dependencyTree

schedule () begin
List(WindowVersion) toBeScheduled > empty list
List(OperatorInstance) freeOperatorInstances < operatorinstances
List(WindowVersion) topkVersions —

findTopKVersions(dependencyTree)

7: for each WindowVersion WV in topkVersions do > first pass

if not WV.isScheduled() then > WV must be scheduled

AN AN S

9: toBeScheduled.add(WV)
10: else > the operator instance keeps WV
11: freeOperatorInstances.remove(WV .getOperatorInstance())
12: end if

13: end for

14: for each WindowVersion WV in toBeScheduled do > second pass
15: OperatorInstance OP « freeOperatorinstances.pop()

16: OP.scheduledWV «— WV

17: end for

18: end function

Figure 7: Splitter: Scheduling algorithm.

The scheduled window versions are processed in parallel by the
associated operator instances. This means, that an operator instance
processes or suppresses events according to the dependencies of the
window version. In particular, when the root path of the window
version meets the completion edge of a consumption group, events
in that consumption group are not processed: they are suppressed.
Complex events produced when processing a speculative window
version are kept buffered until the window version either becomes
valid—then, the complex events are emitted—or is dropped—then,
the complex events are dropped, too. Further, when an event is
processed, updates of the consumption groups can occur (creation,
completion or abandoning a consumption group, or adding the
event to an existing consumption group). In the following, we
detail the underlying algorithms.

Figure 8 lists the algorithm for event processing in the operator
instances. In the beginning of a processing cycle, the operator in-
stance checks whether the splitter has scheduled a new window
version (lines 7-9). Then, the next event of the currently scheduled
window version is processed (lines 11-29). The operator instance
checks whether the event is part of any consumption group that
shall be suppressed (line 13). If this is the case, the event is sup-
pressed, i.e., its processing is skipped. If the event is not suppressed,
it is processed according to the operator logic (line 14). In doing
so, there can be four different actions triggered based on feedback
the operator logic provides. (1) The processed event can complete
one or multiple partial matches: This induces the creation of one
or multiple complex events and the completion of the associated
consumption groups. In that case, the emitted complex events are
buffered, and the dependency tree is updated, calling the consump-
tionGroupCompleted function (cf. Section 3.1). (2) The processed
event can lead to the abandoning of consumption groups, either
by closing the window, or by invalidating the underlying partial
match. In this case, the dependency tree is updated, calling the
consumptionGroupAbandoned function (cf. Section 3.1). (3) The pro-
cessed event can lead to the creation of a new consumption group
by initiating a new partial match. In this case, the dependency tree
is updated, calling the consumptionGroupCreated function (cf. Sec-
tion 3.1). (4) The processed event can become part of one or several

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

> currently processed WV
> currently scheduled WV
> processing counter

1: WindowVersion currentWV
2: WindowVersion scheduledWV
3:inti«— 0

4: main () begin

5: while true do
6: i—i+1
7: if scheduledWV # currentWV then > changed WV?
8: currentWV « scheduled WV
9: end if
10:
11: // process the next event
12: Event nextEvent « currentWV . Window. getNextEvent()
13: if nextEvent not in currentWV .suppressedCGs then
14: Feedback fb « process(nextEvent)
15: if fb: emitted complex event E, completed CG, then
16: buffer E
17: dependencyTree.consumptionGroupCompleted(CG,)
18: end if
19: if fb: abandoned CG, then
20: dependencyTree.consumptionGroupAbandoned(CG,)
21: end if
22: if fb: created CGpe,, then
23: dependencyTree.
24: consumptionGroupCreated(CGheyy, currentWV)
25: end if
26: if fb: added nextEvent to CG then
27: CG. add(nextEvent)
28: end if
29: end if
30:
31: // consistency check after each i steps
32: if (i mod consistencyCheckFreq) == 0 then » consistency check
33: bool inconsistencyDetected « false
34: for CG € currentWV .suppressedCGs do
35: if CG.version! = CG.lastCheckedVersion then
36: if currentWV .usedEvents N CG.events # () then
37: inconsistencyDetected «— true
38: end if
39: end if
40: CG.lastCheckedVersion < CG.version
41: end for
42: if inconsistencyDetected then
43: rollback currentWv
44: end if
45: end if > end of consistency check

46: end while
47: end function

Figure 8: Operator Instances: Event Processing.

existing partial matches, possibly adding the event to the associ-
ated consumption groups. In this case, the affected consumption
groups are updated directly without changing the structure of the
dependency tree. Note, that in the implementation of SPECTRE,
the function calls of the operator instances on the dependency tree
are buffered—they are actually executed on the dependency tree in
a batch at each new scheduling cycle of the splitter.

The k scheduled window versions are processed concurrently
by the k operator instances, without synchronizing the process-
ing progress of the different window versions. This can lead to a
situation where an update on an existing consumption group is
propagated too late, causing inconsistencies. For instance, when
an event is added to a consumption group CG in one window ver-
sion WV, after it has been processed in another window version

Ruben Mayer et al.

WV}, adjacent to CG’s completion edge, an inconsistency can be in-
duced in WV}, (i.e., an event is processed that should be suppressed).
To detect such situations, SPECTRE employs periodic consistency
checks; the underlying algorithm is sketched in lines 31 — 45. For
every consumption group to be suppressed in the currently pro-
cessed window version, the algorithm checks whether an update
has occurred since the last consistency check. If this is the case,
the algorithm checks whether in the current window version, any
event in the updated consumption group has been erroneously pro-
cessed. If yes, then an inconsistency has been detected: The event
should have been suppressed, but has actually been processed. If an
inconsistency is detected, the state of the window version is rolled
back to the start, i.e., the window version is reprocessed from the
start. Instead of reprocessing a window version from the start in
case of an inconsistency, it could also be recovered from an inter-
mediate checkpoint. However, when implementing that approach,
we realized that the overhead in periodically checkpointing all win-
dow versions is much higher than the gain from recovering from
checkpoints.

4 EVALUATIONS

In this section, we evaluate the performance of SPECTRE under
different real-world and synthetic workloads and varying queries
in the setting of an algorithmic trading scenario. We analyze the
scalability of SPECTRE with a growing number of operator in-
stances and the overhead involved in speculation and dependency
management.

4.1 Experimental Setup

Here, we describe the evaluation platform, the SPECTRE implemen-
tation and the datasets and queries used in the evaluations.

Evaluation Platform. We run SPECTRE on a shared memory
multi-core machine with 2x10 CPU cores (Intel Xeon E5-2687WV3
3.1 GHz) that support hyper-threading (i.e., 40 hardware threads).
The total available memory in the machine is 128 GB and the oper-
ating system is CentOS 7.3.

Implementation. SPECTRE is implemented using C++. The
pattern detection and window splitting logic of the queries in these
evaluations are implemented as a user-defined function (UDF) in-
side SPECTRE. Further, we provide a client program that reads
events from a source file and sends them to SPECTRE over a TCP
connection. Our implementation of SPECTRE is open source>.

Datasets. We employ two different datasets centered around an
algorithmic trading scenario.

First, a real-world stock quotes stream originating from the New
York Stock Exchange (NYSE). This dataset contains real intra-day
quotes of around 3000 stock symbols from NYSE collected over two
months from Google Finance?; in total, it contains more than 24
million stock quotes. The quotes have a resolution of 1 quote per
minute for each stock symbol. We refer to this dataset as the NYSE
Stock Quotes dataset, denoted as NYSE. NYSE represents realistic
data for stock market pattern analytics.

Second, we generated a random sequence of 3 million events
consisting of 300 different stock symbols; the probability of each

Shttps://github.com/spectreCEP
*https://www.google.com/finance

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

PATTERN (MLE REq RE; ... REq) PATTERN (AB* CDTEF* GH* I JT KL M)
DEFINE DEFINE
MLE AS (MLE.closePrice A AS (A.closePrice < lowerLimit),
> MLE.openPrice),
RE; AS (REq.closePrice
> REj.openPrice),
[Ql] RE; AS (RE;.closePrice
> RE.openPrice),

B AS (B.closePrice > lowerLimit

AND B.closePrice < upperLimit),
C AS (C.closePrice > upperLimit),
D AS (D.closePrice > lowerLimit

AND D.closePrice < upperLimit),
E AS (E.closePrice < lowerLimit),

REq AS (REq.closePrice
> REq.openPrice)

WITHIN ws events FROM MLE [Qz]
CONSUME (MLE RE; RE; ... REq)

F AS (F.closePrice > lowerLimit
AND F.closePrice < upperLimit),

G AS (G.closePrice > upperLimit),

H AS (H.closePrice > lowerLimit
AND H.closePrice < upperLimit),

I AS (G.closePrice < lowerLimit),

J AS (J.closePrice > lowerLimit
AND J.closePrice < upperLimit),

PATTERN (A SET(X; ... Xa)) K AS (6.closePrice > upperLinit),

[Q3] ‘WITHIN ws events
FROM every s events

L AS (L.closePrice > lowerLimit
AND L.closePrice < upperLimit),
M AS (M.closePrice < lowerLimit),
WITHIN ws events FROM every s events
CONSUME (AB* CD"EFT GHY I TV KLT M)

CONSUME (A SET(X ... Xn))

Figure 9: Queries.

stock symbol is equally distributed in the sequence. We refer to this
dataset as the Random Stock Symbols dataset, denoted as RAND.

Queries. We employ three different queries, Q1 to Q3, in the eval-
uations (cf. Figure 9). The queries are listed in the MATCH-RECOGNI ZE
notation [33], which is concise and easy to understand. Note, that
we extended the MATCH-RECOGNIZE notation by two additional con-
structs stemming from the Tesla language [11]: WITHIN ... FROM
to specify a window size and window start condition, and CONSUME
to specify consumption policies.

Q1 detects a complex event when the first g rising or the first
q falling stock quotes of any stock symbol (defined as RE or FE,
respectively) are detected within ws minutes from a rising or falling
quote of a leading stock symbol (defined as MLE). The leading stock
symbols are composed of a list of 16 technology blue chip companies.
In the listing of Q1, we show only the stock rising pattern; the
falling pattern is constructed accordingly. In case a complex event
is detected, all constituent incoming events are consumed. Note,
that this query always has a fixed pattern length of ¢, and each
matching event moves the pattern detection to a higher completion
stage.

Q2 is a query from related work (Balkesen and Tatbul [5], Query
9) that we extended by a window size of ws events, a window slide
of s events and a consumption policy. It detects a complex event
when specific changes occur in the price of a stock symbol between
defined upper and lower limits. As in Q1, all constituent incoming
events are consumed when a complex event is detected. We use the
lower and upper limits to control the average pattern size. A small
lower and a large upper limit results in a larger average pattern size,
and vice versa. In contrast to Q1, Q2 has a variable length even for
a fixed lower and upper limit. A matching event might or might not
influence the pattern completion: the Kleene™ implies that many
events can match while the pattern completion does not progress.

Q3 detects a set of n specific stock symbols following stock
symbol A. In contrast to the other queries, the ordering of those n
symbols is not important. The pattern length n, window size ws,
and window slide s can be freely varied. All constituent events are
consumed when a complex event is detected.

4.2 Performance Evaluation

In this section, we evaluate the throughput and scalability of SPEC-
TRE. First of all, we evaluate how SPECTRE performs with a grow-
ing number of parallel operator instances and with different con-
sumption group completion probabilities. After that, we provide a
detailed analysis of the Markov model SPECTRE uses to predict the
completion probability of consumption groups. Finally, we discuss
a comparison to the CEP engine T-REX [12].

If not noted otherwise, we employ the following settings. The
number of created consumption groups is limited to one per window
version. The Markov model is employed with the parameters o =
0.7 and ¢ = 10.

To measure the system throughput, we streamed the datasets
as fast as possible to the system. Each experiment was repeated
10 times. The figures show the 0Oth, 25th, 50th, 75th and 100th per-
centiles of the experiment results in a “candlesticks” representation.

4.2.1 Scalability. Here, we evaluate the scalability of SPECTRE.
To this end, we analyze the system throughput, i.e., the number of
events processed per second, with a growing number of operator
instances. The following questions are addressed: (1) How does the
scalability depend on the completion probability of the consumption
groups? (2) How much computational and memory overhead is
induced by maintaining the dependency tree and determining the
top-k window versions?

Effect of Completion Probability of Consumption Groups. We ex-
pect that the completion probability of consumption groups in-
fluences the system throughput. To make that clear, regard two
extreme cases: All consumption groups are abandoned, or all con-
sumption groups are completed. In the first case, SPECTRE should
only schedule window versions on the left-most path of the de-
pendency tree. In the second case, SPECTRE should only schedule
window versions on the right-most path of the dependency tree.
In both cases, the scheduling algorithm should traverse the depen-
dency tree in depth; i.e., it should schedule k window versions from
k different windows. Further, none of the scheduled window ver-
sions should be dropped; all of them should survive. Hence, the
throughput should be maximal. On the other hand, suppose that
the completion probability of all consumption groups is constantly
at 50 %. In that case, SPECTRE should traverse the dependency tree
in breadth; i.e., it should schedule 1 window version of the first win-
dow, 2 window versions of the second window, 4 window versions
of the third window, etc. However, only 1 window version of each
window can survive; all others will be dropped. Hence, the higher
k is, the more futile processing is performed, as the probability to
predict the correct window version drops exponentially with k. In
the following, we analyze whether SPECTRE shows the expected
behavior and discuss implications.

To this end, we run a set of experiments with queries Q1 and
Q2, using the NYSE dataset. In both queries, there are parameters
that can be changed such that the average completion probability
of consumption groups is manipulated. In Q1, we achieve this by
directly setting the pattern size g, such that the ratio between pat-
tern size and window size changes. Larger patterns are less likely
to complete. In Q2, we cannot directly set the pattern size. How-
ever, we influence the average pattern size—and thus, the average

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

Ruben Mayer et al.

1 op. inst. — 8 op. inst. 1op.inst. — 8 op. inst.
2 op. inst. 16 op. inst. 2 op. inst. 16 op. inst.
el 6k 4 op. inst. 32 op. inst. —— g 256k[4.0p. inst. 32 op. inst. — | ik =& T T T T]
wn = 7 v [}
Z e 2 128k} £ -—
g g §E 2Mp il
2 64k & 64kp 38
- = -, - 1) —
2 3kl .. = . 3 sk T e - £: Mt .
® - - ® e = -
3 16k| *ce--a--=- - g 16k] £ sookf *
= ey —-— —_—— e —
+ 7_'_—.\%—?-—-% = L] «n
B RS M e S Sod o
KON N R SR N SN S RN 0<§ 1 2 4 8 16 32
ratio: pattern size / window size ratio: pattern size / window size #operator instances
(a) (b) (c)
10000 T T T T L
100 100 —
S X 80 =
s 80 §< & 1000 b
T £ 60 T £ 60 a9
QL = QL= o
g8 40 g8 40 5 -
S 8% 5 - il
5 20 I - 5 20 I I - 100 —
0 0 - I I I I
H$ > Q> P o D b O P QO oD D P
& ¥ Y 7 NENENENENENENEN) 1ozo4 8 16 3
. #operator instances
(d) ratio: pattern size / window size (e) ratio: pattern size / window size (f)

Figure 10: Evaluations. (a)+(d): Scalability (Q1 on NYSE). (b)+(e): Scalability (Q2 on NYSE). (¢)+(f): Overhead (Q1 on NYSE).

completion probability—by changing the upper and lower limit
parameters in the pattern definition.

In Q1, we employ a sliding window with a window size ws of
8,000 events, setting pattern sizes g of 40, 80, 160, 320, 640, 1280,
and 2560 events. We calculate a “ground truth” value of the comple-
tion probability of consumption groups by performing a sequential
pass without speculations: The number of created consumption
groups divided by the number of produced complex events pro-
vides the ground truth value. The system throughput employing
1, 2, 4, 8, 16, and 32 operator instances, is depicted in Figure 10
(a). The corresponding ground truth probabilities are depicted in
Figure 10 (d).

At a ratio of pattern size to window size of 40 / 8,000 (i.e., 0.005),
the ground truth of consumption group completion probability
is at 100 %, i.e., all partial matches are completed. The through-
put scales almost linearly with a growing number of operator in-
stances, from 10,800 events/second at 1 operator instance to 154,000
events/second at 16 operator instances (scaling factor 14.3) and
218,000 events/second at 32 operator instances (scaling factor 20.2).
Increasing the pattern size decreases the completion probability of
consumption groups. At a ratio of pattern size to window size of 640
/8,000 (i.e., 0.08), the ground truth of consumption group comple-
tion probability is at 56 %, i.e., half of partial matches are completed
and the other half are abandoned. The throughput scales from 9,200
events/second at 1 operator instance to 35,000 events/second at 8
operator instances (scaling factor 3.8). However, employing more
than 8 operator instances does not increase the throughput further:
With 16 and 32 operator instances, it is comparable to 8 operator
instances. Further increasing the pattern size, we reach a ground
truth of consumption group completion probability of 13 % at a

ratio of pattern size to window size of 2560 / 8,000 (i.e., 0.32). Here,
the throughput scales better, from 8,700 events/second at 1 operator
instance to 131,900 events/second at 16 operator instances (scal-
ing factor 15.2). Here, 32 operator instances do not improve the
throughput further compared to 16 operator instances.

In Q2, we employ a sliding window with a window size ws of
8,000 events and a sliding factor s of 1,000 events. We arranged the
lower and upper limit parameters in the pattern definition such
that the corresponding average pattern sizes were 180, 226, 496,
560, 839, 1261, 1653, and 2223 events, plus one setting that made it
impossible for a pattern to be completed. The system throughput
employing 1, 2, 4, 8, 16, and 32 operator instances, is depicted in
Figure 10 (b). The corresponding ground truth probabilities are
depicted in Figure 10 (e).

At a ratio of pattern size to window size of 180 / 8,000 (i.e., 0.02),
the ground truth of consumption group completion probability
is at 100 %, i.e., all partial matches are completed. The through-
put scales almost linearly with a growing number of operator in-
stances, from 10,300 events/second at 1 operator instance to 139,800
events/second at 16 operator instances (scaling factor 13.8) and
200,400 events/second at 32 operator instances (scaling factor 19.5).
At aratio of pattern size to window size of 560 / 8,000 (i.e., 0.07), the
ground truth of consumption group completion probability is at 50
%, i.e., half of partial matches are completed and the other half are
abandoned. The throughput scales from 10,900 events/second at 1
operator instance to 64,900 events/second at 8 operator instances
(scaling factor 6.0). Employing more than 8 operator instances does
not increase the throughput further: With 16 and 32 operator in-
stances, it is comparable to 8 operator instances. When none of the
partial matches can complete (denoted by “0 cplx”), the throughput

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

. T __ 100k
3 8 300k |- 58 - -
23 = 28 -
<5 <% -
@£ 200k - B @8 50k |- —_ e
2 % 100k |- - 1 £3
£8 - £3 -
0 T L1 L1 | o L1 L1 |
Y Y
ge {190\0 b§\° @\0%3\ 00\’\0 NS g (§\° thD\ObS\Q%S\OQS\Q O
N\ N “\’b

CG probability model

(@) (b)
Figure 11: Evaluation of Markov Model.

CG probability model

scales from 10,400 events/second at 1 operator instance to 108,400
events/second at 16 operator instances (scaling factor 10.4) and
174,300 events/second at 32 operator instances (scaling factor 16.8).
Discussion of the results. We draw the following conclusions
from the results. First of all, our assumptions on the system behav-
ior are backed by the measurements. Further, the different queries
impose “throughput profiles” that have a similar shape. The scaling
behavior in SPECTRE, using the speculation approach, is very differ-
ent from other event processing systems that have been analyzed in
related work. In SPECTRE, the parallelization-to-throughput ratio
largely depends on the completion probability of partial matches.
This new factor leads to interesting implications when adapting the
parallelization degree (i.e., elasticity), which is typically done based
on event rates [14, 24, 25] or CPU utilization [2, 9]. Existing elastic-
ity mechanisms do not take into account the completion probability
to determine the optimal resource provisioning. Using the described
throughput curves, SPECTRE could adapt the number of operator
instances based on the current pattern completion probability.

Overhead of Speculation. Here, we analyze the computational
and memory overhead of maintaining the dependency tree in the
splitter and scheduling the top-k window versions.

In a first experiment (Q1, NYSE dataset, g = 80, window size =
8,000), we measure how often the splitter can perform a complete
cycle of tree maintenance and top-k scheduling per second. The
cycle is described as follows: (a) Maintenance: performing all up-
dates on the dependency tree that have been issued since the last
maintenance, i.e., creating new consumption groups and window
versions and delete dropped ones, and (b) scheduling: schedule the
new top-k window versions to the k operator instances according
to the updated dependency tree.

In Figure 10 (c), the results are depicted. With 1 operator instance,
SPECTRE achieves a maintenance and scheduling frequency of 4
million cycles per second. With increasing number of operator in-
stances, the scheduling frequency decreases but is still considerably
high, where SPECTRE achieves a scheduling frequency of 650, 000
and 450, 000 times per second with 16 and 32 operator instances, re-
spectively. We conclude that there is some overhead involved in the
management of the dependency tree and the scheduling algorithm,
but there are no indications that this would become a bottleneck in
the system.

Another concern about the dependency tree might be its growth
and size in memory. To this end, we measured the maximal number
of window versions maintained in the dependency tree at the same
time (Q1, NYSE dataset, g = 80, window size = 8,000). The results
of the experiments are depicted in Figure 10 (f). With 1 operator
instance, the maximal tree size was at 41 window versions, growing
up to 4,332 at 16 operator instances and 6,730 window versions at 32

operator instances. This is not a serious issue in terms of memory
consumption. Indeed, the importance of a suitable top-k window
version selection becomes obvious here: Determining the k window
versions that will survive out of a large number of window versions
that will eventually be dropped is a huge challenge, which SPECTRE
could handle reasonably well in the performed experiments.

4.2.2 Markov Model. After we have discussed the overall sys-
tem throughput and different factors that impact it, we go into
a more detailed analysis of the completion probability model of
consumption groups. In particular, we want to know how well the
proposed Markov model behaves when the probabilities of complex
events are changing. To this end, we perform two different experi-
ments of query Q3 with different ratios of pattern size to window
size: A ratio of 0.002 that has a high consumption group completion
probability and a ratio of 0.1 that has a lower consumption group
completion probability. We employed 32 operator instances and
the window size ws was set to 1000 events where a new window
is opened every 100 events (s = 100). We compare the proposed
Markov model with a probability model that assigns each consump-
tion group a fixed completion probability. The results of the two
experiments are depicted in Figure 11 (a) and (b), respectively.

At a ratio 0.002, the completion probability of a consumption
group was at 100%. Accordingly, assigning a fixed probability of
100% to the consumption groups yielded a throughput of 279,000
events per second, which was significantly better than other fixed
probabilities. The Markov model with a throughput of 277,000
events per second proved to be competitive with the best fixed
model.

At a ratio of 0.1, the probability of a complex event was at of 32%.
Accordingly, assigning a fixed probability of 20% to the consumption
groups yielded a throughput of 86,000 events per second, which
was significantly better than other fixed probabilities. The Markov
model with a throughput of 79,000 events per second performed
almost as good as the best fixed model.

From those results, we draw two conclusions. First, the Markov
model is able to automatically learn suitable consumption group
probabilities in different settings. Second, we can see that wrong
probability predictions can cause a large throughput penalty.

4.2.3 Comparison to T-REX. We have also implemented query
Q1 in the T-REX event processing engine [12]. In total numbers,
T-REX performed much worse than SPECTRE, reaching a through-
put of only about 1,000 events per second. While this shows that
the throughput of SPECTRE is competitive, it is worth to mention
that both systems are different. T-REX is a general-purpose event
processing engine that automatically translates queries into state
machines, whereas SPECTRE employs user-defined functions to im-
plement queries which allows for more code optimizations. T-REX
does not support event consumptions in parallel processing, while
SPECTRE can utilize multi-core machines to scale the throughput.

5 RELATED WORK

In the past decades, a number of different Complex Event Processing
systems and languages has been proposed. Besides CEP languages
that do not support event consumptions, such as SASE [31], the
concept of event consumption gained growing importance. Based

Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

on practical use cases, Snoop [10] defined 4 different so-called pa-
rameter contexts, which are predefined combinations of Selection
and Consumption Policies. Building on a more systematic analysis
of the problem, Zimmer and Unland [34] proposed an event algebra
that differentiated between 5 different Selection and 3 different Con-
sumption Policies that can be combined. Picking up and extending
that work, the Amit system [1] allowed for distinct specifications
of the Selection and Consumption Policy. Finally, Tesla [11] and
its implementation T-REX [12] introduced a formal definition of
its supported policies. The proposed speculation methods and the
SPECTRE framework are applicable to any combination of selection
and consumption policies.

The crucial question in exploiting data parallelism in a DCEP
operator is how to split the incoming event streams, such that the
different partitions, assigned to different operator instances, can be
processed in parallel. Besides window-based splitting, as used in
SPECTRE, other splitting methods have been proposed. However,
they lack the expressiveness to capture temporal relations between
events that many DCEP queries expose.

In key-based splitting [9, 16, 17, 26, 32], the event stream is
split by a key that is encoded in the events, e.g., a stock symbol
in algorithmic trading [17] or a post ID in social network analysis
[26]. Different key value ranges are assigned to different operator
instances. However, the parallelism is restricted to the number of
different key values; moreover, not all pattern definitions exhibit
key-based data parallelism. For instance, in example query Qf
(cf. Section 2.1), events of both stock symbols A and B have to be
correlated, so that key-based splitting cannot be applied.

Pane-based splitting has been proposed in stream processing
systems [6, 22]. For instance, when the max or median value of a
window of 1 minute shall be computed, that window is split into 6
fragments of 10 seconds, the fragments’ max or median values are
computed in parallel, and the global window’s value is aggregated
from the fragments’ results. This parallel aggregation procedure
bases on the idea of pane-based aggregations [23]. However, DCEP
patterns often impose a temporal dependency between the events of
a window that hinders the vertical splitting, e.g., when a sequence
of events A and B is queried as in example query Qp (cf. Section 2.1).
Furthermore, additional constraints on the events can be formulated,
e.g., A and B have a parameter x, such that A : x > B : x (e.g.,
to detect chart patterns in stock markets [17]). If the events are
scattered among different vertical windows, such dependencies and
constraints cannot be analyzed.

Besides data parallelization, intra-operator parallelization, also
known as pipelining, has been proposed. Internal processing steps
that can be run in parallel are identified by deriving operator states
and transitions from the query (e.g., state-based approach in [5]).
According to the identified processing steps, the operator logic is
split and the processing steps are executed in parallel. This offers
only a limited achievable parallelization degree depending on the
number of processing steps in the query. For instance, in example
query Qg (cf. Section 2.1), only 2 processing steps, detecting A and
detecting B, are available, leading to a maximum parallelization
degree of 2. A common variant of intra-operator parallelization
uses lazy evaluation techniques on event sequence patterns to in-
crease the operator throughput [13, 20]. Those techniques check

Ruben Mayer et al.

the event stream for terminator events, i.e., the last event of the
event sequence in a pattern, and only evaluate preceding events
when such a terminator event is found. The underlying assumption
is that a terminator event can be determined independently from
other events, e.g., solely based on its event type. However, often,
sequence patterns depend on the comparison of the events’ payload,
e.g., a stock quote increasing 3 times in a row; whether a quote is
the third in a row that is increasing can only be determined when
the two preceding quotes are analyzed. Hence, such techniques are
only addressing a subset of possible event patterns.

Speculation has been widely applied to deal with out-of-order
events in stream processing. Mutschler and Philippsen [28] propose
an adaptive buffering mechanism to sort the events before process-
ing them, introducing a slack time. When an event arrives outside
of the slack time, results are recomputed. However, slack times
cannot be used to overcome window dependencies in the event
consumption problem: If one window is processed later, all depend-
ing windows would also need to be deferred. Brito et al. [8] as well
as Wester et al. [30] propose transaction-based systems to roll-back
processing when out-of-order events arrive. Their systems are not
parallel, meaning that they only employ one speculation path for
each operator. We also roll-back when window versions reach an in-
consistent state. However, we propose a highly parallel multi-path
speculation method (not only one path) and employ a probabilistic
model to schedule the most promising window versions; hence, our
system scales with an increasing number of CPU cores. Balazinska
et al. [4] propose a system that quickly emits approximate results
that are later refined when out-of-order events arrive. Our model
would generally allow to be extended toward supporting proba-
bilistic approximations, as a survival probability is given on the
window versions. However, in this paper, we focus on consistent
event detection (no false-positives, no false-negatives) and leave
approximate applications of our model to the future work. Brito et
al. [7] propose for non-deterministic stream processing operators to
mark events as speculative before logs have been committed to disc
for consistent recovery. The speculative events can be forwarded
to successor operators in the operator graph that treat them specif-
ically. In SPECTRE, speculative complex events are kept buffered
until the window version is confirmed. We focus on providing de-
terministic event streams to the successor operators; in particular,
we do not assume that subsequent operators or event consumers
can handle events that are marked as speculative.

6 CONCLUSION

The SPECTRE system uses window-based data parallelization and
optimized speculative execution of interdependent windows to
scale the throughput of DCEP operators that impose consumption
policies. The novel speculation approach employs a probabilistic
consumption model that allows for processing the k most promising
window versions by k operator instances in parallel on a multi-core
machine. Evaluations of the system show good scalability at a
moderate overhead for speculation management.

ACKNOWLEDGMENTS
This work was funded by DFG grant RO 1086/19-1 (PRECEPT).

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware *17, December 11-15, 2017, Las Vegas, NV, USA

REFERENCES

(1]

[2

—

=
X0

[10

[11

[15

[16

[17]

(18

[19]

[20]

[21]

Asaf Adi and Opher Etzion. 2004. Amit - the Situation Manager. The VLDB Journal
13, 2 (May 2004), 177-203. DOI:https://doi.org/10.1007/s00778-003-0108-y
Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (Aug. 2013), 1033-1044. DOI :https://doi.org/10.14778/2536222.2536229
Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous
Query Language: Semantic Foundations and Query Execution. The VLDB Journal
15, 2 (June 2006), 121-142. DOI : https://doi.org/10.1007/s00778-004-0147-z
Magdalena Balazinska, YongChul Kwon, Nathan Kuchta, and Dennis Lee. 2007.
Moirae: History-Enhanced Monitoring.. In CIDR. Citeseer, 375-386.

Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. 2013. RIP:
Run-based intra-query parallelism for scalable complex event processing (DEBS
’13). ACM, 3-14. DOI:https://doi.org/10.1145/2488222.2488257

Cagri Balkesen and Nesime Tatbul. 2011. Scalable data partitioning techniques for
parallel sliding window processing over data streams. In International Workshop
on Data Management for Sensor Networks (DMSN).

Andrey Brito, Christof Fetzer, and Pascal Felber. 2009. Minimizing Latency
in Fault-Tolerant Distributed Stream Processing Systems. In 2009 29th IEEE
International Conference on Distributed Computing Systems. 173-182. DOI:https:
//doi.org/10.1109/ICDCS.2009.35

Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. 2008. Spec-
ulative Out-of-order Event Processing with Software Transaction Memory. In
Proceedings of the Second International Conference on Distributed Event-based
Systems (DEBS 08). ACM, New York, NY, USA, 265-275. DOI :https://doi.org/10.
1145/1385989.1386023

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating Scale out and Fault Tolerance in Stream Processing
Using Operator State Management (SIGMOD °13). ACM, 725-736. DOI :https:
//doi.org/10.1145/2463676.2465282

Sharma Chakravarthy and Deepak Mishra. 1994. Snoop: An expressive event
specification language for active databases. Data Knowl. Eng. 14, 1 (1994), 1-26.
DOI : https://doi.org/10.1016/0169-023X(94)90006- X

Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: A Formally Defined
Event Specification Language. In Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems (DEBS ’10). ACM, New York, NY,
USA, 50-61. DOI:https://doi.org/10.1145/1827418.1827427

Gianpaolo Cugola and Alessandro Margara. 2012. Complex Event Processing
with T-REX. F. Syst. Softw. 85, 8 (Aug. 2012), 1709-1728. DOI :https://doi.org/10.
1016/j.jss.2012.03.056

Gianpaolo Cugola and Alessandro Margara. 2012. Low latency complex event
processing on parallel hardware. J. Parallel and Distrib. Comput. 72, 2 (2012), 205
- 218. DOI :https://doi.org/10.1016/j.jpdc.2011.11.002

Tiziano De Matteis and Gabriele Mencagli. 2016. Keep Calm and React with
Foresight: Strategies for Low-latency and Energy-efficient Elastic Data Stream
Processing. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’16). ACM, New York, NY, USA, Article
13, 12 pages. DOI:https://doi.org/10.1145/2851141.2851148

Tiziano De Matteis and Gabriele Mencagli. 2017. Parallel Patterns for Window-
Based Stateful Operators on Data Streams: An Algorithmic Skeleton Approach.
International Journal of Parallel Programming 45, 2 (01 Apr 2017), 382-401. DOI:
https://doi.org/10.1007/s10766-016-0413-x

Bugra Gedik. 2014. Partitioning functions for stateful data parallelism in stream
processing. The VLDB Journal 23, 4 (2014), 517-539. DOI : https://doi.org/10.1007/
s00778-013-0335-9

Martin Hirzel. 2012. Partition and Compose: Parallel Complex Event Processing.
In Proceedings of the 6th ACM International Conference on Distributed Event-Based
Systems (DEBS ’12). ACM, New York, NY, USA, 191-200. DOI :https://doi.org/10.
1145/2335484.2335506

Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. DOI:https://doi.org/10.1145/2528412
Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park,
Philippe Selo, and Chitra Venkatramani. 2006. Design, Implementation, and
Evaluation of the Linear Road Benchmark on the Stream Processing Core (SIG-
MOD °06). ACM, 431-442. DOI :https://doi.org/10.1145/1142473.1142522

Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. 2015. Lazy Evaluation
Methods for Detecting Complex Events. In Proceedings of the 9th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS ’15). ACM, New York,
NY, USA, 34-45. DOI:https://doi.org/10.1145/2675743.2771832

Boris Koldehofe, Ruben Mayer, Umakishore Ramachandran, Kurt Rothermel, and
Marco Volz. 2013. Rollback-recovery Without Checkpoints in Distributed Event
Processing Systems. In Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems (DEBS ’13). ACM, New York, NY, USA, 27-38.
DOI :https://doi.org/10.1145/2488222.2488259

[22]

[23]

[24]

[26

[27]

&
2

[29

[30]

(31]

[32

(34]

Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures (SIGMOD ’16). ACM, 555-
569. DOI:https://doi.org/10.1145/2882903.2882906

Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
No Pane, No Gain: Efficient Evaluation of Sliding-window Aggregates over Data
Streams. SIGMOD Rec. 34, 1 (March 2005), 39-44.

Bjorn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic Stream Processing
with Latency Guarantees. In 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems (ICDCS °15). 399-410. DOI : https://doi.org/10.1109/
ICDCS.2015.48

Ruben Mayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable Low-
Latency Event Detection with Parallel Complex Event Processing. Internet of
Things Journal, IEEE 2, 4 (Aug 2015), 274-286.

Ruben Mayer, Christian Mayer, Muhammad Adnan Tariq, and Kurt Rothermel.
2016. GraphCEP: Real-time Data Analytics Using Parallel Complex Event and
Graph Processing. In Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems (DEBS ’16). ACM, New York, NY, USA, 309-
316. DOI:https://doi.org/10.1145/2933267.2933509

Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. 2017. Minimizing
Communication Overhead in Window-Based Parallel Complex Event Processing.
In Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems (DEBS '17). ACM, New York, NY, USA, 54-65. DOI :https://doi.org/
10.1145/3093742.3093914

Christopher Mutschler and Michael Philippsen. 2014. Adaptive Speculative
Processing of Out-of-Order Event Streams. ACM Trans. Internet Technol. 14, 1,
Article 4 (Aug. 2014), 24 pages. DOI:https://doi.org/10.1145/2633686

Nicholas Poul Schultz-Mgller, Matteo Migliavacca, and Peter Pietzuch. 2009.
Distributed Complex Event Processing with Query Rewriting (DEBS "09). ACM,
Article 4, 12 pages. DOI:https://doi.org/10.1145/1619258.1619264

Benjamin Wester, James Cowling, Edmund B. Nightingale, Peter M. Chen, Jason
Flinn, and Barbara Liskov. 2009. Tolerating Latency in Replicated State Machines
Through Client Speculation. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI'09). USENIX Association,
Berkeley, CA, USA, 245-260.

Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance Complex
Event Processing over Streams (SIGMOD °06). ACM, 407-418. DOI:https://doi.
org/10.1145/1142473.1142520

Erik Zeitler and Tore Risch. 2011. Massive scale-out of expensive continuous
queries. VLDB Endowment 4, 11 (2011), 1181-1188.

Fred Zemke, Andrew Witkowski, and Mitch Cherniak. 2007. Pattern matching
in sequences of rows. (2007).

D. Zimmer and R. Unland. 1999. On the semantics of complex events in active
database management systems. In Data Engineering, 1999. Proceedings., 15th
International Conference on. 392-399. DOI:https://doi.org/10.1109/ICDE.1999.
754955

