
SPECTRE: Supporting Consumption Policies in Window-Based
Parallel Complex Event Processing

Ruben Mayer
Institute of Parallel and Distributed

Systems
University of Stuttgart, Germany
ruben.mayer@ipvs.uni-stuttgart.de

Ahmad Slo
Institute of Parallel and Distributed

Systems
University of Stuttgart, Germany
ahmad.slo@ipvs.uni-stuttgart.de

Muhammad Adnan Tariq
Department of Computer Science
FAST - National University of
Computer & Emerging Sciences,

Islamabad, Pakistan
muhammad.adnan@nu.edu.pk

Kurt Rothermel
Institute of Parallel and Distributed

Systems
University of Stuttgart, Germany

kurt.rothermel@ipvs.uni-stuttgart.de

Manuel Gräber
Institute of Parallel and Distributed

Systems
University of Stuttgart, Germany

graeber.manuel@gmx.de

Umakishore Ramachandran
College of Computing

Georgia Institute of Technology, USA
rama@cc.gatech.edu

ABSTRACT

Distributed Complex Event Processing (DCEP) is a paradigm to in-

fer the occurrence of complex situations in the surrounding world

from basic events like sensor readings. In doing so, DCEP oper-

ators detect event patterns on their incoming event streams. To

yield high operator throughput, data parallelization frameworks

divide the incoming event streams of an operator into overlapping

windows that are processed in parallel by a number of operator

instances. In doing so, the basic assumption is that the different

windows can be processed independently from each other. How-

ever, consumption policies enforce that events can only be part of

one pattern instance; then, they are consumed, i.e., removed from

further pattern detection. That implies that the constituent events

of a pattern instance detected in one window are excluded from all

other windows as well, which breaks the data parallelism between

different windows. In this paper, we tackle this problem by means

of speculation: Based on the likelihood of an event’s consumption

in a window, subsequent windows may speculatively suppress that

event. We propose the SPECTRE framework for speculative pro-

cessing of multiple dependent windows in parallel. Our evaluations

show an up to linear scalability of SPECTRE with the number of

CPU cores.

CCS CONCEPTS

• Information systems → Stream management;

KEYWORDS

Complex Event Processing, Data Parallelization, Event Consump-

tion, Consumption Policy, Speculation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware ’17, Las Vegas, NV, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4720-4/17/12. . . $15.00
DOI: 10.1145/3135974.3135983

ACM Reference format:

RubenMayer, Ahmad Slo,MuhammadAdnan Tariq, Kurt Rothermel,Manuel

Gräber, and Umakishore Ramachandran. 2017. SPECTRE: Supporting Con-

sumption Policies in Window-Based Parallel Complex Event Processing. In

Proceedings of Middleware ’17, Las Vegas, NV, USA, December 11–15, 2017,

13 pages.

DOI: 10.1145/3135974.3135983

1 INTRODUCTION

Distributed Complex Event Processing (DCEP) [19, 29] is a par-

adigm applied in many different application areas like logistics,

traffic monitoring, and algorithmic trading, to infer the occurrence

of complex situations in the surrounding world from basic events

like sensor readings or stock quotes. Such situations can be, for in-

stance, the delayed delivery of a packet, traffic jams or accidents and

leading market signals. In order to stepwise infer their occurrence

from the sensor streams, a distributed network of interconnected

DCEP operators, the operator graph, is deployed. Each operator

processes incoming event streams and detects a designated part of

an event pattern that corresponds to a situation of interest. If such a

pattern is detected, a new (complex) event is produced and emitted

to successor operators or to a consumer, i.e., an entity interested in

the corresponding situation. In doing so, operators face increasingly

high event loads from their incoming event streams.

In order to be capable of processing high load, the paralleliza-

tion of DCEP operators has been proposed. In this regard, data

parallelization has proven to be a powerful technique to parallelize

operators [5, 15, 18, 25–27]. Data-parallel DCEP systems split the

incoming event streams into independently processable windows

that capture the temporal relations between single events posed by

the queried event pattern. The windows are processed in parallel

by a number of identical operator instances. An event can be part

of different windows, so that windows may overlap.

A crucial question in overlapping windows is whether an event

can be used in multiple pattern instances or not. In many cases, it is

preferable to consume an event once it is part of a pattern instance.

In particular, this means to not use the same event for the detection

of further pattern instances in other windows. This way, semantic

(c) Owner 2017. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version is published in Proceedings of Middleware ’17, Las Vegas, NV, USA, December 11–15, 2017,
http://dx.doi.org/10.1145/10.1145/3135974.3135983.

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

ambiguities and inconsistencies in the complex events that are

emitted can be resolved or prevented. The problem tackled in this

paper is that event consumptions impose dependencies between the

different windows and thus, prevent their parallel processing.When

the same event is processed in parallel in two different windows,

consuming it in the first window also consumes it from the second

window; hence, there is a dependency between both windows,

which can hinder their parallel processing. Understanding that

problem, it is no surprise that existing parallel implementations

of DCEP systems [5, 13, 25] do not support event consumptions,

whereas sequential systems often do [1, 10, 12]. This limits the

scalability of operators that impose event consumptions. Moreover,

it even impedes event consumptions from their further development

in academia and industry, as in times of Big Data and Internet of

Things, parallel DCEP systems are becoming the gold standard.

In this paper, we propose a speculative processing method that

allows for parallel processing of window-based DCEP operators in

case of event consumptions. The basic idea is to speculate in each

window which events are consumed in the previous windows—

instead of waiting until the previous windows are completely pro-

cessed. This way, multiple overlapping windows can be processed

in parallel despite inter-window dependencies. To this end, we

propose the SPECTRE (SPECulaTive Runtime Environment) frame-

work, comprising the following contributions: (1) A speculative

processing concept that allows the execution of multiple versions

of multiple windows using different event sets in parallel. (2) A

probabilistic model to process always those window versions that

have the highest probability to be correct. (3) Extensive evaluations

that show the scalability with a growing number of CPU cores.

2 BACKGROUND AND PROBLEM ANALYSIS

To solve the problem of parallel event processing in face of event

consumptions, we first discuss a common DCEP model in Section

2.1. In Section 2.2, we analyze existing DCEP operator paralleliza-

tion methods and highlight the properties of window-based data

parallelization as an expressive and scalable parallelization method

[15, 25, 27]. Finally, in Section 2.3 we explain the challenges on

parallel processing imposed by event consumptions.

2.1 DCEP Systems

A DCEP system is modeled as an operator graph which inter-

connects event sources, operators and consumers by event streams.

An event e consists of attribute-value pairs containing meta-data,

such as event type, sequence numbers or timestamps, and the event

payload, such as sensor readings, stock quotes, etc. Based on the

event meta-data, events from different streams arriving at an oper-

ator have a well-defined global ordering (e.g., by timestamps and

tie-breaker rules). Each operator ω processes events in-order on its

incoming streams, detecting event patterns according to a pattern

specification. If a pattern instance is detected, the operator emits a

(complex) event to its successor in the operator graph.

Event patterns are specified in an event specification language

such as Snoop [10], Amit [1], SASE [31], or Tesla [11]. Those lan-

guages involve operators like event sequences, conjunctions, and

negations, in order to define the event patterns to be detected. To

express the set of relevant events in pattern detection, the pattern

specification imposes a sliding window of valid events [3, 15]. This

can depend on time or the number of events [11, 12, 31], but also on

more complex predicates, e.g., on (combinations of) specific event

occurrences that mark the beginning and end of a window [25].

In this paper, we denote the valid window at a specific point in

time aswi . When the window slides, the subsequent valid windows

are denoted aswi+1,wi+2 etc. Depending on the sliding semantics,

different subsequent windows can overlap, i.e., events are part of

multiple different windows.

Example: In intra-day stock trading, an operator ω receives an

event stream containing live stock quote changes of stock A and B
throughout the trading day. An analyst wants to detect correlations

between a change inA and a change in B. To this end, he formulates

a query in the Tesla [11] event specification language:

[QE]

define Influence(Factor)
from B() and
A() within 1min from B

where Factor = B : change / A : change

This pattern can be detected by opening a window with a scope

of 1 minute whenever an A event occurs; when a B event is detected

in a window opened by an A event, a complex event can be created.

Suppose the events A1, A2, B1, B2 and B3 occur in the event

stream in that order, i.e., Ai denotes the i-th occurrence of an event

of type A in the stream (cf. Figure 1). Let us assume that the first A
in a window is correlated with every B in the same window—this

can be defined in a so-called selection policy. As shown in Figure 1a,

5 complex events are detected:1 A1

B1
, A1

B2
, A2

B1
, A2

B2
, and A2

B3
. Notice, that

all events are correlated multiple times, i.e., they are not consumed

after building a complex event.

Generally, such multiple correlations of the same event can be

problematic. If there is a many-to-one relation between incoming

events and detected situations, i.e., many events build a pattern

instance but a single event can only be part of one pattern instance,

contradicting complex events are produced when events are not

consumed. Many-to-one or one-to-one relations are a common case

in situation detections.

Therefore, many event specification languages allow for the spec-

ification of a consumption policy [1, 10, 11, 34]. The consumption

policy defines which selected events are consumed after they have

participated in a complex event detection: It might be none, all or

some of them—e.g., depending on the event type or other parame-

ters. A detailed discussion on consumption policies supported in

event specification languages is provided in Section 5. In the exam-

ple in Figure 1b, selected events of type B are consumed when a

complex event is detected, referred to as consumption policy “se-

lected B”. Now, only 3 complex events are produced: A1

B1
, A1

B2
, and A2

B3
.

In that case, B1 and B2 are not re-used after being correlated with

A1 in the first window w1.

When a complex event is detected, all constituent events of the

event pattern are checked against the consumption policy. Then,

all events defined by the consumption policy are consumed as a

whole. This implies that events are not consumed while they only

build a partial match, but only when the match is completed and a

1 X
Y

denotes a complex event created from incoming events X and Y .

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

...

w1

w2

... incoming
events

outgoing
(complex)
events

B3 B2 B1 A2 A1

B2

B2 B3 B1

B1 A1

A2

A2
B3

A2
B2

A2
B1

A1
B2

A1
B1

(a) CP: None.

B1 B2

... B3 B2 B1 A2 A1

B2 B1 A1

B11BBB3 A2 B1B22B2

A2
B3

A1
B2

A1
B1

w1

w2

incoming
events

outgoing
(complex)
events

(b) CP: Selected B.

Figure 1: QueryQE with different consumption policies (CP).

complex event is produced. This inherent property is independent

of the concrete selection and consumption policy.

2.2 Operator Parallelization

The paradigm of data parallelization is very powerful in increas-

ing operator throughput. The incoming event stream is split and

processed by an elastic number of identical copies of the operator—

called operator instances. This paradigm has been applied to a wide

range of parallel CEP and stream processing systems [6, 9, 15–

17, 22, 25–27, 32]. We assume a shared memory (multi-core) archi-

tecture, where the splitter and operator instances are executed by

independent threads running on dedicated CPU cores (cf. Figure 2).

We assume that the underlying system can provide k +1 threads, so
that 1 thread is pinned to the splitter and k threads are pinned to the

operator instances. In the rest of this paper, we do not differentiate

between operator instances (i.e., instances of the pattern detection

logic) and the threads that execute them—we simply refer to both

as operator instances.

As mentioned above, we follow a window-based data paralleliza-

tion approach. The incoming event streams are partitioned into

windows that capture (temporal) relations defined in the queried

pattern. They can naturally be processed by operator instances, as

DCEP operators in their core typically work on a sliding window

on the event stream [11, 12, 15, 21, 25, 27, 31]. The windows can

be based on time, event count or logical predicates that evaluate

whether arbitrary window start and end conditions are fulfilled—

a more detailed analysis of window-based data parallelization is

provided in [25] and in [15]. For instance, for the time-based win-

dow definition of example query QE , a new window is opened on

each event of type A, whereas an open window is closed after 1

minute based on the events’ timestamps. The windows are assigned

with increasing window IDs and their boundaries are stored in the

shared memory (e.g., “wi from event X to event Y ”).
The splitter periodically schedules to each operator instance a

specific window for processing. The operator instances can hold

local state of the processing in shared memory, e.g., partial pattern

matches detected in the assigned window. This allows a specific

window to be processed by any operator instance at any time; in

particular, the processing of a window can be interrupted for some

time and resumed later by the same or a different operator instance.

2.3 Challenges and Goal

In systems without consumptions, processing of a window cannot

impact the events within another window, i.e. in principle each

operator instances

incoming
events

... sp
lit

te
r

outgoing
(complex)
events

sh
ar

ed
 m

em
or

y

events

windows

Figure 2: Data parallelization framework.

pair of windows can be processed in parallel. However, event con-

sumptions impose a dependency between the windows, restricting

parallelism, as we discuss in the following.

Recall the example in Figure 1b. The Selection Policy is “first

A, each B” and the Consumption Policy is “selected B”. In the first

window w1, A1 and B1 build a complex event A1

B1
, such that B1

is consumed; furthermore, A1 and B2 build a complex event A1

B2
,

such that B2 is consumed. If w1 and w2 are processed in parallel,

the consumption of B1 and B2 in w1 might not be known in w2,

so that B1 and B2 are erroneously processed in w2, too, leading

to inconsistent results. To prevent anomalies due to concurrent

processing, w2 can only be processed after the consumptions in

w1 are known. When the event patterns are more complex than in

the given minimal working examples, the dependencies become

hard to control. For instance, if the pattern requires 3 rising stock

quotes of B in a sequence, the completion of the pattern in w1—

and hence, the event consumptions—might be unsure until w1 is

completely processed. If 2 events of type B with rising quotes have

already been detected in w1, the completion of the pattern depends

on whether a third B occurs; this might only be known at the end

of w1. The standard procedure to deal with data dependencies is

to wait with processing w2 until w1 is completely processed and

hence, all consumptions in w1 are known. This, however, impedes

the parallel processing of overlapping windows.

In this paper, we aim to develop a framework to enable paral-

lel processing of all DCEP operators, regardless of their selection

and consumption policy. To this end, we develop a speculative pro-

cessing method that overcomes the data dependencies imposed

by event consumptions, so that data-parallel processing becomes

possible. The framework shall deliver exactly those complex events

that would be produced in sequential processing; in particular, no

false-positive and false-negatives shall occur.

3 THE SPECTRE SYSTEM

To tackle the dependencies between different windows imposed

by event consumptions, we propose the SPECTRE (SPECulaTive

Runtime Environment) system, a highly parallel framework for

DCEP operators. SPECTRE aims to detect the dependencies between

different windows and to resolve them by means of speculative

execution.

This section is organized as follows. In Section 3.1, we introduce

the speculative processing approach we follow in SPECTRE. It is

based on creating multiple speculative window versions in order

to resolve inter-dependencies between windows. Based on that

concept, in Section 3.2, we explain how SPECTRE determines and

schedules the k “best” window versions to k operator instances for

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

w1

w2

incoming
events

w3

WV1

WV2 CG3 ...

... WV6

...

completion abandon

... WV7

WV10

v(CG1)

(c) dependency tree (b) window versions (a) event stream and windows

... w1

w2

... w3
WV5

WV3

WV4

c c

c

a

a

a

E1

CG1 ... E2

E2

E2

E2

E4

E3

E4 E3

E4 E3

E4 E3

E4

E1

...

CG2 ... E3

... E2 E4 E3 E1

E2 E4 E3 ...

E2 E4 E3 ... E3

E2 E4 E3 ... E2

E2 E4 E3 ... E2E3

E3 E4

E3 E4 E4

... E3 E4 E3

v(WV1)

v(CG2) v(CG2)

v(CG3)

v(WV2) v(WV3) v(WV4) v(WV5)

v(WV6) v(WV7) v(WV8) v(WV9) v(WV10)

Figure 3: Consumption Problem: (a) Structural View. (b) Processing View. (c) Management View.

parallel processing. Finally, in Section 3.3, we provide details on

how the k operator instances perform the parallel processing of the

assigned window versions.

3.1 Speculation Approach

As pointed out above, operators process their incoming data stream

based on windows. In particular, operators search for queried pat-

terns to occur in the sequence of events comprised by a window.

Windows can overlap, i.e. a pair of windows might have a sequence

of events in common. The windows of an operator are totally or-

dered according to their start events. We call a window, say wj , a

successor of another window, wi , iff the start event of wi occurs

before the starting event of wj in the corresponding event stream.

For example, in Figure 3(a), w1 starts earlier than w2; hence, w2 is

a successor of w1. In the same way, w3 is a successor both of w2

and of w1.

Now, we can define a consumption dependency (or dependency for

short) between windows. Roughly speaking, a window wj depends

on another window wi , if the consumption of some events in wi

might affect the processing of window wj . Formally, we define that

wj depends on wi iff wj is a successor of wi and wj overlaps with

wi . For example, in Figure 3(a), w2 depends on w1, and w3 depends

both on w2 and on w1.

Now, we will introduce the concept of a consumption group. A

consumption group is maintained for each partial match of a search

pattern found in a window. It records all events of this window that

need to be consumed if the partial match becomes a total match,

i.e. the corresponding search pattern is eventually detected in the

window. Let’s assume that an operator is acting on some window

w. Whenever the operator processes an event starting a new partial

match of some search pattern, it creates a new consumption group

associated with w. When it processes an event that completes a

pattern, it completes the corresponding consumption group. On the

other hand, a consumption group is abandoned if the correspond-

ing pattern cannot be completed anymore. Consequently, while

processing the events of a window, multiple consumption groups

can be created that are associated with w. However, all of them will

be completed or abandoned at the latest when processing of w is

finished.

While acting upon w, the operator adds events to be potentially

consumed to the consumption groups associated with w, in confor-

mance with the specified consumption policy. When a consumption

group is completed, all events contained in this group are consumed

together. If the consumption group is abandoned instead, it is just

dropped and no events are consumed.

For example, let us assume that a query for pattern of a sequence

of three events of type A, B and C in a window of time scope 1

minute, is processed by an operator. Let us further assume the

consumption policy is set to consume all participating events in

case of a pattern match. When detecting an event of type A, say
A1, in a window, the operator creates a new consumption group.

The first event of type B, B1, is added to the consumption group. If

the window ends (i.e., 1 minute has passed) and no event of type

C is detected, the consumption group is abandoned and no events

are consumed in the window. If an event of type C , say C1, occurs

after B1 and within the window scope, the consumption group is

completed, and all three events participating in the pattern match,

A1, B1 and C1, are consumed together.

At the time a consumption group is created that is associated

with window w, it is unknown whether the corresponding pattern

will eventually be completed in w. Clearly, the outcome of the con-

sumption group (complete or abandon) might affect events of all

windows that depend on w. One way to handle this uncertainty

is to defer the processing of all depending windows until the con-

sumption group terminates (completed or abandoned). However, in

general this amounts to processing all windows sequentially. The

approach that we follow in SPECTRE is to generate two window

versions for each window depending on w, one version assuming

that the consumption group will be completed and the other one

assuming the consumption group will be abandoned. These window

versions can then be processed in parallel to w. Once the outcome

of the consumption group is known, i.e., completed or abandoned,

processing continues on the corresponding window versions that

assume the correct outcome while the other window versions that

assume the wrong outcome are just dropped. Obviously, this ap-

proach allows for processing dependent windows in parallel even

in the presence of event consumptions.

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

With this approach, windows that depend on other windows

may have multiple versions that depend on the outcome of the

associated consumption groups. In principle there is a window

version for any combination of the complete and abandon case of

the consumption groups that a window depends upon. When one

of these consumption group is abandoned, all window versions

assuming this consumption group to complete can be dropped, and

vice versa.

To capture the dependency between consumption groups and

window versions, we introduce the concept of a dependency tree.

There exists an individual dependency tree for each independent

window, i.e., each window that does not depend on any other win-

dow according to our definition above. The vertices of the depen-

dency tree are window versions or consumption groups, while

the directed edges of the tree specify the dependencies between

them. The root of the dependency tree is the only version of an

independent window—by definition, there is only one version of

an independent window.

The vertex of a window version WV , say v(WV), has at most

one child. The sub-hierarchy rooted by this child includes all ver-

sions of windows depending on WV , if any. We will denote this

sub-hierarchy as v(WV)’s subtree. The subtree is rooted by a con-

sumption group if a consumption group is associated with v(WV).

Otherwise the root of the subtree is a window version directly

dependent on v(WV), if any.

A vertex representing a consumption group CG, say v(CG), al-

ways has two children, one for each possible outcome of CG (com-

pleted or abandoned). The so-called completion edge of v(CG) links

the subtree of window versions for which completion of CG is

assumed, whereas the so-called abandon edge of v(CG) links the
subtree of window versions which assume CG to be abandoned.

That is, all window versions that can be reached via v(CG)’s comple-

tion edge do not include any event included in CG, while events in

CG have no effect on window versions linked by v(CG)’s abandon

edge.

When a consumption group CG associated with a window ver-

sionWV is created, the following is performed: v(CG) is added as

a new child of v(WV) to the dependency tree. The old subtree of

v(WV) is linked by v(CG)’s abandon edge, while a modified copy of

the subtree is linked by v(CG)’s completion edge. The modification

makes sure that no events included in CG occur in the window

versions of the subtree linked by v(CG)’s completion edge. In other

words, for each window version existing in v(WV)’s old dependent

versions subtree, a copy that suppresses all events listed in CG is

added. Therefore, each new consumption group associated with

v(WV) doubles the window versions in v(WV)’s subtree.

Examples and Algorithms: In the following, a set of examples

on the management of the dependency tree is provided along with a

formalization of the associated management algorithms. We discuss

the following cases: (1) a new dependent window is opened, (2) a

new consumption group associated to a window version is created,

(3) an existing consumption group is completed or abandoned.

New dependent window. When a new window wnew is opened

that depends on another window wx , for every leaf vertex of the

dependency tree rooted by the window version of wx , new window

versions are created as child vertices (Figure 4, lines 1–10). For

example, in Figure 3, at the start of w3, new window versions (WV 6

toWV 10) of w3 are created and the corresponding vertices (v(WV 6)

to v(WV 10)) are attached to all leaf nodes of the dependency tree

rooted by thewindow version of w1. If a leaf vertex is a consumption

group CG, two window versions of w3 are created and attached (a

version for completion of CG, and a version for abandoning of CG);

if a leaf vertex is a window version, one window version of w3 is

created and attached.

Consumption group created. Recall, that when a consumption

group CG associated with a window version WV is created, the

old subtree of v(WV) is linked by v(CG)’s abandon edge, while a

modified copy of the subtree is linked by v(CG)’s completion edge

(Figure 4, lines 12–16). In the example in Figure 3, WV 2 creates

CG3. Then, v(CG3) is attached as a new child to v(WV 2), and the

former child, v(WV 6), becomes the root of the unmodified subtree

of v(CG3). For all window versions in the unmodified subtree of

v(CG3), a new alternative version is created that assumes that CG3

will be completed. Suppose CG3 contains event E4. Then, window
version WV 6 (from the unmodified subtree) contains event E4,
whereas the alternative window versionWV 7 (from the modified

subtree) suppresses event E4.
Consumption group completed / abandoned.When a consumption

group is completed or abandoned, the respective opposite aban-

don or completion path of that consumption group is removed

from the dependency tree. There are two different reasons why a

consumption group is abandoned: (1) Due to the termination of

the corresponding window version/end of window, or (2) due to a

condition from a negation statement being fulfilled. For instance,

a pattern specification of a sequence of events of type A and B
can define that no event of type C shall occur between the A and

B events. If a consumption group is opened with an A event, the

occurrence of aC event would trigger the consumption group to be

abandoned as the pattern instance cannot be completed any more,

even if a B event would occur later. The algorithms for subtree

removal are listed in Figure 4, lines 18–26.

Discussion: To be able to process k window versions in parallel

we obviously need k operator instances. That means, that typically

only a small fraction of all possible window versions can be con-

sidered for speculative processing. To be able select the k most

promising window versions, we need a method for predicting the

probability of possible window versions to survive (i.e., not to be

dropped). In Section 3.2, we propose a scheme for scheduling the

k most promising window versions on a collection of k operator

instances.

3.2 Selecting and Scheduling the Top-k
Window Versions

The intuition behind SPECTRE is to predict the k “best” speculative

window versions and schedule them for parallel processing on

k operator instances. To determine the top-k window versions,

SPECTRE periodically determines the k window versions with the

highest probability to survive in the entire dependency tree. In

other words, SPECTRE does not create and schedule windows, as

assumed in Section 2.2, but window versions; in doing so, multiple

versions of the same window can be scheduled to different operator

instances in parallel.

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

1: newWindow () begin
2: for each leafVertex ∈ dependencytree do
3: if leafVertex is window version then
4: leafVertex .child ← new v(WV)
5: else � else, it is a Consumption Group
6: leafVertex .completionEdge ← new v(WV)
7: leafVertex .abandonEdge ← new v(WV)
8: end if
9: end for
10: end function
11:

12: consumptionGroupCreated (CGroup CG, WinVersionWV) begin
13: create a modified copy of the subtree attached to v(WV)
14: v(CG).completionEdge ←v(WV).modifiedSubtree
15: v(CG).abandonEdge ←v(WV).originalSubtree
16: end function
17:

18: consumptionGroupCompleted (CGroup CG) begin
19: v(CG).abandonEdge ← null

20: v(CG).parent .child ←v(CG).completionEdge
21: end function
22:

23: consumptionGroupAbandoned (CGroup CG) begin
24: v(CG).completionEdge ← null

25: v(CG).parent .child ←v(CG).abandonEdge
26: end function

Figure 4: Algorithms for managing the dependency tree.

Whether or not a window version WV survives depends on the

outcome of the preceding consumption groups, i.e. the consumption

groups on the path fromWV to the root of the dependency tree. In

the following, wewill denote this path asWV ’s root path. Remember,

each vertex representing a consumption group has two outgoing

edges, a complete and an abandon edge. We say that the complete or

abandon edge of a consumption group, say CG, becomes valid when

CG is completed or abandoned, respectively. Once one of these

edges becomes valid, the other one turns invalid. Consequently,

WV survives only if all abandon and complete edges on its root

path eventually become valid, i.e., WV is dropped if at least one of

these edges turn invalid.

The probability of WV to survive depends on the completion

probabilities of the consumption groups on WV ’s root path. The

survival probability ofWV , denoted as SP(WV) is determined as fol-

lows: Let P(CG) be the probability that CG is completed. Moreover,

let CGc and CGa be the set of consumption groups that contribute a

complete and abandon edge toWV ’s root path, respectively. Then2,

SP(WV) =∏
c ∈CGc P(c) ×

∏
c ′ ∈CGa (1 − P(c ′)).

3.2.1 Prediction Model. Now, we discuss how we predict the

completion probability of a consumption group. Generally, we ob-

serve that the probability that a consumption group is completed

equals to the probability that the underlying partial match for a

search pattern is completed. Our scheme for predicting the comple-

tion probability P(CG) of a consumption group CG at a given time

takes into account two factors: (1) The inverse degree of completion,

2Note that this calculation bases on the assumption that the different consumption
groups are completed or abandoned independently from each other. If there are depen-
dencies between different occurrences of a pattern and, hence, between the completion
of different consumption groups, this can be incorporated in the probability calculation
by using dependent / conditional probabilities. However, for the sake of simplicity
of the presentation of technical concepts and algorithms, we use the formula for
independent probabilities here.

1: predictCompletionProbability (ConsumptionGroup CG) begin
2: n ← Splitter .avgWindowSize − posInWindow
3: if n ≤ 0 then
4: n ← 1 � At least 1 more event expected
5: end if
6: Tn ← (1 − n mod �

�) ∗T� n� �∗� + n mod �
� ∗T	 n�
∗�

7: δ ← CG.completionState
8: v0 ← δ -th unit vector
9: vn ← Tn ∗ v0

10: return vn [last]
11: end function

Figure 5: Calculation of completion probability of a con-

sumption group.

i.e., howmanymore events are at least required in order to complete

the pattern—denoted by δ—and (2) the expected number of events

left in the window, denoted by n. If δ is low and many events are

still expected to occur in the window, the probability of completion

is high. On the other hand, if δ is high and only very few events

are still expected in the window, the probability of completion is

low. In the following, we describe how the probabilistic model is

built and updated at system run-time.

The dynamic process of pattern completion while processing

events is modeled as a discrete-time Markov process. The state of

the Markov process is spanned from δ to 0. For instance, if a pattern

instance consists of at least 3 events (e.g., a sequence of 3 events,

or a set of 3 events), the state-space has the elements “3”, “2”, “1”

and “0”, with “0” representing the state of total pattern completion.

Based on statistics monitored at system run-time, a stochastic matrix

T1 is built that describes the transition probabilities between the

states of the Markov process when processing one event. To this

end, window versions of independent windows gather statistics

about the probability of changing from δold to δnew when an event

is processed. The transition probabilities between any pair of δold
and δnew are captured in a matrixTnew1 . After ρ newmeasurements

are available, an updated T1 is computed from the old T old1 and the

newly calculatedTnew1 asT1 = (1−α)∗T old1 +α ∗Tnew1 (exponential

smoothing). α ∈ [0, 1] is a system parameter to control the impact

of recent and of old statistics on T1.
Now, the probability of state transitions when processing n

events can be computed by raisingT1 to the n-th power:Tn = (T1)n .
The initial state is modeled as a row vectorv0 = (0, ..., 0, 1, 0, ..., 0)—
the δ -th unit vector, where the δ -th position is 1 and all other

positions are 0. The probabilities of reaching the different states

in n steps can be computed as vn = Tn ∗ v0. The last entry of vn ,
referring to state “0”, is the probability to complete the pattern in n
steps starting from state v0.

To reduce the number of matrix multiplications, each time when

T1 is updated, a set of predefined “step sizes” is precomputed, e.g.,

T10, T20, T30, etc., providing transition probabilities when 10, 20, 30,

... events are processed. If the number of expected events n is in

between two precomputed steps, the transition probabilities are

linearly interpolated, e.g., T14 = 0.6 ∗T10 + 0.4 ∗T20. The step size,

denoted as �, is a system parameter.

Figure 5 formalizes the described methods in an algorithm. The

expected number of events left in the window, n, is calculated from

the average window size monitored in the splitter and the position

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

1: findTopKVersions (dependencyTree, k) begin
2: result ← {} � set
3: candidates ← {dependencyTree.root } � priority queue
4: for i ← 1...k do
5: tmp ← candidates.pop()
6: result .append(tmp)
7: for each M ← tmp.child do
8: candidates.add(M)
9: end for
10: end for
11: return result
12: end function

Figure 6: Top-k window version selection algorithm.

of the last processed event in the window (line 2). The probability

matrix Tn is calculated by linear interpolation of precomputed ma-

trices (line 6). δ is obtained directly from CG (line 7), and used in

order to build v0 (line 8); vn is calculated according to the descrip-

tion above (line 9). The resulting completion probability (transition

to state “ 0” / pattern completed) is returned (line 10).

3.2.2 Scheduling. Here, we describe how SPECTRE periodically

selects and schedules the k window versions with the highest sur-

vival probability.

Notice that the survival probability of window versions is de-

creasing in a root-to-leaf direction in the dependency tree, i.e. in

a window version’s subtree there exist only window versions that

have the same or a lower survival probability. Therefore, window

versions are already sorted by their survival probability in the de-

pendency tree, so that it already represents a max-heap, which

simplifies the selection of the top-k versions substantially. From

top to the bottom, window versions are added to the top-k list as

detailed in the algorithm in Figure 6. The algorithm works with two

data structures: (1) a set storing the resulting top-k versions (line 2),

and (2) a priority queue storing candidates for being added to the

top-k versions (line 3). The priority queue sorts the contained ver-

sions by their probability, highest probability first. Until k versions

are found, the highest version from the candidate list is added to

the result set (lines 4–6). The children of that version are also added

as candidates (lines 7–9). This way, the top-k window versions are

determined with only visiting the minimal number of vertices in

the dependency tree.

The scheduling algorithm, listed in Figure 7, does not re-schedule

window versions that are already scheduled to avoid unnecessary

operations and to increase memory and cache locality of opera-

tor instances. Hence, the to-be-scheduled versions are determined

(lines 7–9). Further, “free” operator instances are determined that

will get a new window version scheduled (lines 10–11). Then, every

window version that needs to be scheduled is scheduled to one of

the free operator instances (lines 14–17).

3.3 Parallel Processing of Window Versions

Here, we describe how operator instances process their assigned

window version according to the dependencies in the dependency

tree. In particular, we describe how events are processed and sup-

pressed, and how consumption groups are updated when sub-

patterns are detected in a window version.

1: List〈OperatorInstance〉 operatorInstances
2: Tree dependencyTree
3: schedule () begin
4: List〈WindowVersion〉 toBeScheduled � empty list
5: List〈OperatorInstance〉 freeOperatorInstances ← operatorInstances
6: List〈WindowVersion〉 topkVersions ←

findTopKVersions(dependencyTree)
7: for eachWindowVersionWV in topkVersions do � first pass
8: if notWV .isScheduled() then � WV must be scheduled
9: toBeScheduled .add(WV)
10: else � the operator instance keeps WV
11: freeOperatorInstances.remove(WV .getOperatorInstance())
12: end if
13: end for
14: for each WindowVersionWV in toBeScheduled do � second pass
15: OperatorInstance OP ← freeOperatorInstances.pop()
16: OP .scheduledWV ← WV
17: end for
18: end function

Figure 7: Splitter: Scheduling algorithm.

The scheduled window versions are processed in parallel by the

associated operator instances. This means, that an operator instance

processes or suppresses events according to the dependencies of the

window version. In particular, when the root path of the window

version meets the completion edge of a consumption group, events

in that consumption group are not processed: they are suppressed.

Complex events produced when processing a speculative window

version are kept buffered until the window version either becomes

valid—then, the complex events are emitted—or is dropped—then,

the complex events are dropped, too. Further, when an event is

processed, updates of the consumption groups can occur (creation,

completion or abandoning a consumption group, or adding the

event to an existing consumption group). In the following, we

detail the underlying algorithms.

Figure 8 lists the algorithm for event processing in the operator

instances. In the beginning of a processing cycle, the operator in-

stance checks whether the splitter has scheduled a new window

version (lines 7–9). Then, the next event of the currently scheduled

window version is processed (lines 11–29). The operator instance

checks whether the event is part of any consumption group that

shall be suppressed (line 13). If this is the case, the event is sup-

pressed, i.e., its processing is skipped. If the event is not suppressed,

it is processed according to the operator logic (line 14). In doing

so, there can be four different actions triggered based on feedback

the operator logic provides. (1) The processed event can complete

one or multiple partial matches: This induces the creation of one

or multiple complex events and the completion of the associated

consumption groups. In that case, the emitted complex events are

buffered, and the dependency tree is updated, calling the consump-

tionGroupCompleted function (cf. Section 3.1). (2) The processed

event can lead to the abandoning of consumption groups, either

by closing the window, or by invalidating the underlying partial

match. In this case, the dependency tree is updated, calling the

consumptionGroupAbandoned function (cf. Section 3.1). (3) The pro-

cessed event can lead to the creation of a new consumption group

by initiating a new partial match. In this case, the dependency tree

is updated, calling the consumptionGroupCreated function (cf. Sec-

tion 3.1). (4) The processed event can become part of one or several

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

1: WindowVersion currentWV � currently processed WV
2: WindowVersion scheduledWV � currently scheduled WV
3: int i ← 0 � processing counter
4: main () begin
5: while true do
6: i ← i + 1
7: if scheduledWV � currentWV then � changed WV?
8: currentWV ← scheduledWV
9: end if
10:

11: // process the next event
12: Event nextEvent ← currentWV .Window .getNextEvent()
13: if nextEvent not in currentWV .suppressedCGs then
14: Feedback fb ← process(nextEvent)
15: if fb: emitted complex event E , completed CGc then
16: buffer E
17: dependencyTree.consumptionGroupCompleted(CGc)
18: end if
19: if fb: abandoned CGa then
20: dependencyTree.consumptionGroupAbandoned(CGa)
21: end if
22: if fb: created CGnew then
23: dependencyTree.
24: consumptionGroupCreated(CGnew, currentWV)
25: end if
26: if fb: added nextEvent to CG then
27: CG.add(nextEvent)
28: end if
29: end if
30:

31: // consistency check after each i steps
32: if (i mod consistencyCheckFreq) == 0 then � consistency check
33: bool inconsistencyDetected ← false
34: for CG ∈ currentWV .suppressedCGs do
35: if CG.version! = CG.lastCheckedVersion then
36: if currentWV .usedEvents ∩ CG.events � ∅ then
37: inconsistencyDetected ← true
38: end if
39: end if
40: CG.lastCheckedVersion ← CG.version
41: end for
42: if inconsistencyDetected then
43: rollback currentWV
44: end if
45: end if � end of consistency check
46: end while
47: end function

Figure 8: Operator Instances: Event Processing.

existing partial matches, possibly adding the event to the associ-

ated consumption groups. In this case, the affected consumption

groups are updated directly without changing the structure of the

dependency tree. Note, that in the implementation of SPECTRE,

the function calls of the operator instances on the dependency tree

are buffered—they are actually executed on the dependency tree in

a batch at each new scheduling cycle of the splitter.

The k scheduled window versions are processed concurrently

by the k operator instances, without synchronizing the process-

ing progress of the different window versions. This can lead to a

situation where an update on an existing consumption group is

propagated too late, causing inconsistencies. For instance, when

an event is added to a consumption group CG in one window ver-

sionWVa after it has been processed in another window version

WVb adjacent to CG’s completion edge, an inconsistency can be in-

duced inWVb (i.e., an event is processed that should be suppressed).

To detect such situations, SPECTRE employs periodic consistency

checks; the underlying algorithm is sketched in lines 31 – 45. For

every consumption group to be suppressed in the currently pro-

cessed window version, the algorithm checks whether an update

has occurred since the last consistency check. If this is the case,

the algorithm checks whether in the current window version, any

event in the updated consumption group has been erroneously pro-

cessed. If yes, then an inconsistency has been detected: The event

should have been suppressed, but has actually been processed. If an

inconsistency is detected, the state of the window version is rolled

back to the start, i.e., the window version is reprocessed from the

start. Instead of reprocessing a window version from the start in

case of an inconsistency, it could also be recovered from an inter-

mediate checkpoint. However, when implementing that approach,

we realized that the overhead in periodically checkpointing all win-

dow versions is much higher than the gain from recovering from

checkpoints.

4 EVALUATIONS

In this section, we evaluate the performance of SPECTRE under

different real-world and synthetic workloads and varying queries

in the setting of an algorithmic trading scenario. We analyze the

scalability of SPECTRE with a growing number of operator in-

stances and the overhead involved in speculation and dependency

management.

4.1 Experimental Setup

Here, we describe the evaluation platform, the SPECTRE implemen-

tation and the datasets and queries used in the evaluations.

Evaluation Platform.We run SPECTRE on a shared memory

multi-core machine with 2x10 CPU cores (Intel Xeon E5-2687WV3

3.1 GHz) that support hyper-threading (i.e., 40 hardware threads).

The total available memory in the machine is 128 GB and the oper-

ating system is CentOS 7.3.

Implementation. SPECTRE is implemented using C++. The

pattern detection and window splitting logic of the queries in these

evaluations are implemented as a user-defined function (UDF) in-

side SPECTRE. Further, we provide a client program that reads

events from a source file and sends them to SPECTRE over a TCP

connection. Our implementation of SPECTRE is open source3.

Datasets.We employ two different datasets centered around an

algorithmic trading scenario.

First, a real-world stock quotes stream originating from the New

York Stock Exchange (NYSE). This dataset contains real intra-day

quotes of around 3000 stock symbols from NYSE collected over two

months from Google Finance4; in total, it contains more than 24

million stock quotes. The quotes have a resolution of 1 quote per

minute for each stock symbol. We refer to this dataset as the NYSE

Stock Quotes dataset, denoted as NYSE. NYSE represents realistic

data for stock market pattern analytics.

Second, we generated a random sequence of 3 million events

consisting of 300 different stock symbols; the probability of each

3https://github.com/spectreCEP
4https://www.google.com/finance

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

[Q1]

PATTERN (MLE RE1 RE2 ... REq)
DEFINE

MLE AS (MLE.closePrice
> MLE.openPrice),

RE1 AS (RE1.closePrice
> RE1.openPrice),

RE2 AS (RE2.closePrice
> RE2.openPrice),

...,

REq AS (REq.closePrice
> REq.openPrice)

WITHIN ws events FROM MLE

CONSUME (MLE RE1 RE2 ... REq)

[Q3]
PATTERN (A SET(X1 ... Xn))
WITHIN ws events

FROM every s events

CONSUME (A SET(X1 ... Xn))

[Q2]

PATTERN (A B+ C D+ E F+ G H+ I J+ K L+ M)
DEFINE

A AS (A.closePrice < lowerLimit),
B AS (B.closePrice > lowerLimit

AND B.closePrice < upperLimit),
C AS (C.closePrice > upperLimit),
D AS (D.closePrice > lowerLimit

AND D.closePrice < upperLimit),
E AS (E.closePrice < lowerLimit),
F AS (F.closePrice > lowerLimit

AND F.closePrice < upperLimit),
G AS (G.closePrice > upperLimit),
H AS (H.closePrice > lowerLimit

AND H.closePrice < upperLimit),
I AS (G.closePrice < lowerLimit),
J AS (J.closePrice > lowerLimit

AND J.closePrice < upperLimit),
K AS (G.closePrice > upperLimit),
L AS (L.closePrice > lowerLimit

AND L.closePrice < upperLimit),
M AS (M.closePrice < lowerLimit),

WITHIN ws events FROM every s events

CONSUME (A B+ C D+ E F+ G H+ I J+ K L+ M)

Figure 9: Queries.

stock symbol is equally distributed in the sequence. We refer to this

dataset as the Random Stock Symbols dataset, denoted as RAND.

Queries.We employ three different queries, Q1 to Q3, in the eval-

uations (cf. Figure 9). The queries are listed in the MATCH-RECOGNIZE
notation [33], which is concise and easy to understand. Note, that

we extended the MATCH-RECOGNIZE notation by two additional con-

structs stemming from the Tesla language [11]: WITHIN ... FROM
to specify a window size and window start condition, and CONSUME
to specify consumption policies.

Q1 detects a complex event when the first q rising or the first

q falling stock quotes of any stock symbol (defined as RE or FE,
respectively) are detected within ws minutes from a rising or falling

quote of a leading stock symbol (defined as MLE). The leading stock

symbols are composed of a list of 16 technology blue chip companies.

In the listing of Q1, we show only the stock rising pattern; the

falling pattern is constructed accordingly. In case a complex event

is detected, all constituent incoming events are consumed. Note,

that this query always has a fixed pattern length of q, and each

matching event moves the pattern detection to a higher completion

stage.

Q2 is a query from related work (Balkesen and Tatbul [5], Query

9) that we extended by a window size of ws events, a window slide

of s events and a consumption policy. It detects a complex event

when specific changes occur in the price of a stock symbol between

defined upper and lower limits. As in Q1, all constituent incoming

events are consumed when a complex event is detected. We use the

lower and upper limits to control the average pattern size. A small

lower and a large upper limit results in a larger average pattern size,

and vice versa. In contrast to Q1, Q2 has a variable length even for

a fixed lower and upper limit. A matching event might or might not

influence the pattern completion: the Kleene+ implies that many

events can match while the pattern completion does not progress.

Q3 detects a set of n specific stock symbols following stock

symbol A. In contrast to the other queries, the ordering of those n
symbols is not important. The pattern length n, window size ws,

and window slide s can be freely varied. All constituent events are

consumed when a complex event is detected.

4.2 Performance Evaluation

In this section, we evaluate the throughput and scalability of SPEC-

TRE. First of all, we evaluate how SPECTRE performs with a grow-

ing number of parallel operator instances and with different con-

sumption group completion probabilities. After that, we provide a

detailed analysis of the Markov model SPECTRE uses to predict the

completion probability of consumption groups. Finally, we discuss

a comparison to the CEP engine T-REX [12].

If not noted otherwise, we employ the following settings. The

number of created consumption groups is limited to one per window

version. The Markov model is employed with the parameters α =
0.7 and � = 10.

To measure the system throughput, we streamed the datasets

as fast as possible to the system. Each experiment was repeated

10 times. The figures show the 0th, 25th, 50th, 75th and 100th per-

centiles of the experiment results in a “candlesticks” representation.

4.2.1 Scalability. Here, we evaluate the scalability of SPECTRE.

To this end, we analyze the system throughput, i.e., the number of

events processed per second, with a growing number of operator

instances. The following questions are addressed: (1) How does the

scalability depend on the completion probability of the consumption

groups? (2) How much computational and memory overhead is

induced by maintaining the dependency tree and determining the

top-k window versions?

Effect of Completion Probability of Consumption Groups. We ex-

pect that the completion probability of consumption groups in-

fluences the system throughput. To make that clear, regard two

extreme cases: All consumption groups are abandoned, or all con-

sumption groups are completed. In the first case, SPECTRE should

only schedule window versions on the left-most path of the de-

pendency tree. In the second case, SPECTRE should only schedule

window versions on the right-most path of the dependency tree.

In both cases, the scheduling algorithm should traverse the depen-

dency tree in depth; i.e., it should schedule k window versions from

k different windows. Further, none of the scheduled window ver-

sions should be dropped; all of them should survive. Hence, the

throughput should be maximal. On the other hand, suppose that

the completion probability of all consumption groups is constantly

at 50 %. In that case, SPECTRE should traverse the dependency tree

in breadth; i.e., it should schedule 1 window version of the first win-

dow, 2 window versions of the second window, 4 window versions

of the third window, etc. However, only 1 window version of each

window can survive; all others will be dropped. Hence, the higher

k is, the more futile processing is performed, as the probability to

predict the correct window version drops exponentially with k . In
the following, we analyze whether SPECTRE shows the expected

behavior and discuss implications.

To this end, we run a set of experiments with queries Q1 and

Q2, using the NYSE dataset. In both queries, there are parameters

that can be changed such that the average completion probability

of consumption groups is manipulated. In Q1, we achieve this by

directly setting the pattern size q, such that the ratio between pat-

tern size and window size changes. Larger patterns are less likely

to complete. In Q2, we cannot directly set the pattern size. How-

ever, we influence the average pattern size—and thus, the average

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

(a) (b) (c)

0
20
40
60
80

100

co
m

pl
et

io
n

pr

ob
ab

ili
ty

 (%
)

ratio: pattern size / window size (d)

0
20
40
60
80

100
co

m
pl

et
io

n

pr
ob

ab
ili

ty
 (%

)

ratio: pattern size / window size (e) (f)

Figure 10: Evaluations. (a)+(d): Scalability (Q1 on NYSE). (b)+(e): Scalability (Q2 on NYSE). (c)+(f): Overhead (Q1 on NYSE).

completion probability—by changing the upper and lower limit

parameters in the pattern definition.

In Q1, we employ a sliding window with a window size ws of

8,000 events, setting pattern sizes q of 40, 80, 160, 320, 640, 1280,

and 2560 events. We calculate a “ground truth” value of the comple-

tion probability of consumption groups by performing a sequential

pass without speculations: The number of created consumption

groups divided by the number of produced complex events pro-

vides the ground truth value. The system throughput employing

1, 2, 4, 8, 16, and 32 operator instances, is depicted in Figure 10

(a). The corresponding ground truth probabilities are depicted in

Figure 10 (d).

At a ratio of pattern size to window size of 40 / 8,000 (i.e., 0.005),

the ground truth of consumption group completion probability

is at 100 %, i.e., all partial matches are completed. The through-

put scales almost linearly with a growing number of operator in-

stances, from 10,800 events/second at 1 operator instance to 154,000

events/second at 16 operator instances (scaling factor 14.3) and

218,000 events/second at 32 operator instances (scaling factor 20.2).

Increasing the pattern size decreases the completion probability of

consumption groups. At a ratio of pattern size to window size of 640

/ 8,000 (i.e., 0.08), the ground truth of consumption group comple-

tion probability is at 56 %, i.e., half of partial matches are completed

and the other half are abandoned. The throughput scales from 9,200

events/second at 1 operator instance to 35,000 events/second at 8

operator instances (scaling factor 3.8). However, employing more

than 8 operator instances does not increase the throughput further:

With 16 and 32 operator instances, it is comparable to 8 operator

instances. Further increasing the pattern size, we reach a ground

truth of consumption group completion probability of 13 % at a

ratio of pattern size to window size of 2560 / 8,000 (i.e., 0.32). Here,

the throughput scales better, from 8,700 events/second at 1 operator

instance to 131,900 events/second at 16 operator instances (scal-

ing factor 15.2). Here, 32 operator instances do not improve the

throughput further compared to 16 operator instances.

In Q2, we employ a sliding window with a window size ws of

8,000 events and a sliding factor s of 1,000 events. We arranged the

lower and upper limit parameters in the pattern definition such

that the corresponding average pattern sizes were 180, 226, 496,

560, 839, 1261, 1653, and 2223 events, plus one setting that made it

impossible for a pattern to be completed. The system throughput

employing 1, 2, 4, 8, 16, and 32 operator instances, is depicted in

Figure 10 (b). The corresponding ground truth probabilities are

depicted in Figure 10 (e).

At a ratio of pattern size to window size of 180 / 8,000 (i.e., 0.02),

the ground truth of consumption group completion probability

is at 100 %, i.e., all partial matches are completed. The through-

put scales almost linearly with a growing number of operator in-

stances, from 10,300 events/second at 1 operator instance to 139,800

events/second at 16 operator instances (scaling factor 13.8) and

200,400 events/second at 32 operator instances (scaling factor 19.5).

At a ratio of pattern size to window size of 560 / 8,000 (i.e., 0.07), the

ground truth of consumption group completion probability is at 50

%, i.e., half of partial matches are completed and the other half are

abandoned. The throughput scales from 10,900 events/second at 1

operator instance to 64,900 events/second at 8 operator instances

(scaling factor 6.0). Employing more than 8 operator instances does

not increase the throughput further: With 16 and 32 operator in-

stances, it is comparable to 8 operator instances. When none of the

partial matches can complete (denoted by “0 cplx”), the throughput

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

0
100k
200k
300k

0%
20%

40%
60%

80%
100%

Mark
ov

th
ro

ug
hp

ut

 (e
ve

nt
s/

se
c)

CG probability model
(a)

0

50k

100k

0%
20%

40%
60%

80%
100%

Mark
ov

th
ro

ug
hp

ut

 (e
ve

nt
s/

se
c)

CG probability model
(b)

Figure 11: Evaluation of Markov Model.

scales from 10,400 events/second at 1 operator instance to 108,400

events/second at 16 operator instances (scaling factor 10.4) and

174,300 events/second at 32 operator instances (scaling factor 16.8).

Discussion of the results. We draw the following conclusions

from the results. First of all, our assumptions on the system behav-

ior are backed by the measurements. Further, the different queries

impose “throughput profiles” that have a similar shape. The scaling

behavior in SPECTRE, using the speculation approach, is very differ-

ent from other event processing systems that have been analyzed in

related work. In SPECTRE, the parallelization-to-throughput ratio

largely depends on the completion probability of partial matches.

This new factor leads to interesting implications when adapting the

parallelization degree (i.e., elasticity), which is typically done based

on event rates [14, 24, 25] or CPU utilization [2, 9]. Existing elastic-

ity mechanisms do not take into account the completion probability

to determine the optimal resource provisioning. Using the described

throughput curves, SPECTRE could adapt the number of operator

instances based on the current pattern completion probability.

Overhead of Speculation. Here, we analyze the computational

and memory overhead of maintaining the dependency tree in the

splitter and scheduling the top-k window versions.

In a first experiment (Q1, NYSE dataset, q = 80, window size =

8,000), we measure how often the splitter can perform a complete

cycle of tree maintenance and top-k scheduling per second. The

cycle is described as follows: (a) Maintenance: performing all up-

dates on the dependency tree that have been issued since the last

maintenance, i.e., creating new consumption groups and window

versions and delete dropped ones, and (b) scheduling: schedule the

new top-k window versions to the k operator instances according

to the updated dependency tree.

In Figure 10 (c), the results are depicted. With 1 operator instance,

SPECTRE achieves a maintenance and scheduling frequency of 4

million cycles per second. With increasing number of operator in-

stances, the scheduling frequency decreases but is still considerably

high, where SPECTRE achieves a scheduling frequency of 650, 000

and 450, 000 times per second with 16 and 32 operator instances, re-

spectively. We conclude that there is some overhead involved in the

management of the dependency tree and the scheduling algorithm,

but there are no indications that this would become a bottleneck in

the system.

Another concern about the dependency tree might be its growth

and size in memory. To this end, we measured the maximal number

of window versions maintained in the dependency tree at the same

time (Q1, NYSE dataset, q = 80, window size = 8,000). The results

of the experiments are depicted in Figure 10 (f). With 1 operator

instance, the maximal tree size was at 41 window versions, growing

up to 4,332 at 16 operator instances and 6,730 window versions at 32

operator instances. This is not a serious issue in terms of memory

consumption. Indeed, the importance of a suitable top-k window

version selection becomes obvious here: Determining the k window

versions that will survive out of a large number of window versions

that will eventually be dropped is a huge challenge, which SPECTRE

could handle reasonably well in the performed experiments.

4.2.2 Markov Model. After we have discussed the overall sys-

tem throughput and different factors that impact it, we go into

a more detailed analysis of the completion probability model of

consumption groups. In particular, we want to know how well the

proposed Markov model behaves when the probabilities of complex

events are changing. To this end, we perform two different experi-

ments of query Q3 with different ratios of pattern size to window

size: A ratio of 0.002 that has a high consumption group completion

probability and a ratio of 0.1 that has a lower consumption group

completion probability. We employed 32 operator instances and

the window size ws was set to 1000 events where a new window

is opened every 100 events (s = 100). We compare the proposed

Markov model with a probability model that assigns each consump-

tion group a fixed completion probability. The results of the two

experiments are depicted in Figure 11 (a) and (b), respectively.

At a ratio 0.002, the completion probability of a consumption

group was at 100%. Accordingly, assigning a fixed probability of

100% to the consumption groups yielded a throughput of 279,000

events per second, which was significantly better than other fixed

probabilities. The Markov model with a throughput of 277,000

events per second proved to be competitive with the best fixed

model.

At a ratio of 0.1, the probability of a complex event was at of 32%.

Accordingly, assigning a fixed probability of 20% to the consumption

groups yielded a throughput of 86,000 events per second, which

was significantly better than other fixed probabilities. The Markov

model with a throughput of 79,000 events per second performed

almost as good as the best fixed model.

From those results, we draw two conclusions. First, the Markov

model is able to automatically learn suitable consumption group

probabilities in different settings. Second, we can see that wrong

probability predictions can cause a large throughput penalty.

4.2.3 Comparison to T-REX. We have also implemented query

Q1 in the T-REX event processing engine [12]. In total numbers,

T-REX performed much worse than SPECTRE, reaching a through-

put of only about 1,000 events per second. While this shows that

the throughput of SPECTRE is competitive, it is worth to mention

that both systems are different. T-REX is a general-purpose event

processing engine that automatically translates queries into state

machines, whereas SPECTRE employs user-defined functions to im-

plement queries which allows for more code optimizations. T-REX

does not support event consumptions in parallel processing, while

SPECTRE can utilize multi-core machines to scale the throughput.

5 RELATEDWORK

In the past decades, a number of different Complex Event Processing

systems and languages has been proposed. Besides CEP languages

that do not support event consumptions, such as SASE [31], the

concept of event consumption gained growing importance. Based

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

on practical use cases, Snoop [10] defined 4 different so-called pa-

rameter contexts, which are predefined combinations of Selection

and Consumption Policies. Building on a more systematic analysis

of the problem, Zimmer and Unland [34] proposed an event algebra

that differentiated between 5 different Selection and 3 different Con-

sumption Policies that can be combined. Picking up and extending

that work, the Amit system [1] allowed for distinct specifications

of the Selection and Consumption Policy. Finally, Tesla [11] and

its implementation T-REX [12] introduced a formal definition of

its supported policies. The proposed speculation methods and the

SPECTRE framework are applicable to any combination of selection

and consumption policies.

The crucial question in exploiting data parallelism in a DCEP

operator is how to split the incoming event streams, such that the

different partitions, assigned to different operator instances, can be

processed in parallel. Besides window-based splitting, as used in

SPECTRE, other splitting methods have been proposed. However,

they lack the expressiveness to capture temporal relations between

events that many DCEP queries expose.

In key-based splitting [9, 16, 17, 26, 32], the event stream is

split by a key that is encoded in the events, e.g., a stock symbol

in algorithmic trading [17] or a post ID in social network analysis

[26]. Different key value ranges are assigned to different operator

instances. However, the parallelism is restricted to the number of

different key values; moreover, not all pattern definitions exhibit

key-based data parallelism. For instance, in example query QE

(cf. Section 2.1), events of both stock symbols A and B have to be

correlated, so that key-based splitting cannot be applied.

Pane-based splitting has been proposed in stream processing

systems [6, 22]. For instance, when the max or median value of a

window of 1 minute shall be computed, that window is split into 6

fragments of 10 seconds, the fragments’ max or median values are

computed in parallel, and the global window’s value is aggregated

from the fragments’ results. This parallel aggregation procedure

bases on the idea of pane-based aggregations [23]. However, DCEP

patterns often impose a temporal dependency between the events of

a window that hinders the vertical splitting, e.g., when a sequence

of eventsA and B is queried as in example queryQE (cf. Section 2.1).

Furthermore, additional constraints on the events can be formulated,

e.g., A and B have a parameter x , such that A : x > B : x (e.g.,

to detect chart patterns in stock markets [17]). If the events are

scattered among different vertical windows, such dependencies and

constraints cannot be analyzed.

Besides data parallelization, intra-operator parallelization, also

known as pipelining, has been proposed. Internal processing steps

that can be run in parallel are identified by deriving operator states

and transitions from the query (e.g., state-based approach in [5]).

According to the identified processing steps, the operator logic is

split and the processing steps are executed in parallel. This offers

only a limited achievable parallelization degree depending on the

number of processing steps in the query. For instance, in example

query QE (cf. Section 2.1), only 2 processing steps, detecting A and

detecting B, are available, leading to a maximum parallelization

degree of 2. A common variant of intra-operator parallelization

uses lazy evaluation techniques on event sequence patterns to in-

crease the operator throughput [13, 20]. Those techniques check

the event stream for terminator events, i.e., the last event of the

event sequence in a pattern, and only evaluate preceding events

when such a terminator event is found. The underlying assumption

is that a terminator event can be determined independently from

other events, e.g., solely based on its event type. However, often,

sequence patterns depend on the comparison of the events’ payload,

e.g., a stock quote increasing 3 times in a row; whether a quote is

the third in a row that is increasing can only be determined when

the two preceding quotes are analyzed. Hence, such techniques are

only addressing a subset of possible event patterns.

Speculation has been widely applied to deal with out-of-order

events in stream processing. Mutschler and Philippsen [28] propose

an adaptive buffering mechanism to sort the events before process-

ing them, introducing a slack time. When an event arrives outside

of the slack time, results are recomputed. However, slack times

cannot be used to overcome window dependencies in the event

consumption problem: If one window is processed later, all depend-

ing windows would also need to be deferred. Brito et al. [8] as well

as Wester et al. [30] propose transaction-based systems to roll-back

processing when out-of-order events arrive. Their systems are not

parallel, meaning that they only employ one speculation path for

each operator. We also roll-back when window versions reach an in-

consistent state. However, we propose a highly parallel multi-path

speculation method (not only one path) and employ a probabilistic

model to schedule the most promising window versions; hence, our

system scales with an increasing number of CPU cores. Balazinska

et al. [4] propose a system that quickly emits approximate results

that are later refined when out-of-order events arrive. Our model

would generally allow to be extended toward supporting proba-

bilistic approximations, as a survival probability is given on the

window versions. However, in this paper, we focus on consistent

event detection (no false-positives, no false-negatives) and leave

approximate applications of our model to the future work. Brito et

al. [7] propose for non-deterministic stream processing operators to

mark events as speculative before logs have been committed to disc

for consistent recovery. The speculative events can be forwarded

to successor operators in the operator graph that treat them specif-

ically. In SPECTRE, speculative complex events are kept buffered

until the window version is confirmed. We focus on providing de-

terministic event streams to the successor operators; in particular,

we do not assume that subsequent operators or event consumers

can handle events that are marked as speculative.

6 CONCLUSION

The SPECTRE system uses window-based data parallelization and

optimized speculative execution of interdependent windows to

scale the throughput of DCEP operators that impose consumption

policies. The novel speculation approach employs a probabilistic

consumptionmodel that allows for processing the k most promising

window versions by k operator instances in parallel on a multi-core

machine. Evaluations of the system show good scalability at a

moderate overhead for speculation management.

ACKNOWLEDGMENTS

This work was funded by DFG grant RO 1086/19-1 (PRECEPT).

SPECTRE: Supporting Consumption Policies in Window-Based Parallel CEP Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

REFERENCES
[1] Asaf Adi and Opher Etzion. 2004. Amit - the SituationManager. The VLDB Journal

13, 2 (May 2004), 177–203. DOI:https://doi.org/10.1007/s00778-003-0108-y
[2] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (Aug. 2013), 1033–1044. DOI:https://doi.org/10.14778/2536222.2536229

[3] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous
Query Language: Semantic Foundations and Query Execution. The VLDB Journal
15, 2 (June 2006), 121–142. DOI:https://doi.org/10.1007/s00778-004-0147-z

[4] Magdalena Balazinska, YongChul Kwon, Nathan Kuchta, and Dennis Lee. 2007.
Moirae: History-Enhanced Monitoring.. In CIDR. Citeseer, 375–386.

[5] Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. 2013. RIP:
Run-based intra-query parallelism for scalable complex event processing (DEBS
’13). ACM, 3–14. DOI:https://doi.org/10.1145/2488222.2488257

[6] Cagri Balkesen and Nesime Tatbul. 2011. Scalable data partitioning techniques for
parallel sliding window processing over data streams. In International Workshop
on Data Management for Sensor Networks (DMSN).

[7] Andrey Brito, Christof Fetzer, and Pascal Felber. 2009. Minimizing Latency
in Fault-Tolerant Distributed Stream Processing Systems. In 2009 29th IEEE
International Conference on Distributed Computing Systems. 173–182. DOI:https:
//doi.org/10.1109/ICDCS.2009.35

[8] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. 2008. Spec-
ulative Out-of-order Event Processing with Software Transaction Memory. In
Proceedings of the Second International Conference on Distributed Event-based
Systems (DEBS ’08). ACM, New York, NY, USA, 265–275. DOI:https://doi.org/10.
1145/1385989.1386023

[9] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating Scale out and Fault Tolerance in Stream Processing
Using Operator State Management (SIGMOD ’13). ACM, 725–736. DOI:https:
//doi.org/10.1145/2463676.2465282

[10] Sharma Chakravarthy and Deepak Mishra. 1994. Snoop: An expressive event
specification language for active databases. Data Knowl. Eng. 14, 1 (1994), 1–26.
DOI:https://doi.org/10.1016/0169-023X(94)90006-X

[11] Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: A Formally Defined
Event Specification Language. In Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems (DEBS ’10). ACM, New York, NY,
USA, 50–61. DOI:https://doi.org/10.1145/1827418.1827427

[12] Gianpaolo Cugola and Alessandro Margara. 2012. Complex Event Processing
with T-REX. J. Syst. Softw. 85, 8 (Aug. 2012), 1709–1728. DOI:https://doi.org/10.
1016/j.jss.2012.03.056

[13] Gianpaolo Cugola and Alessandro Margara. 2012. Low latency complex event
processing on parallel hardware. J. Parallel and Distrib. Comput. 72, 2 (2012), 205
– 218. DOI:https://doi.org/10.1016/j.jpdc.2011.11.002

[14] Tiziano De Matteis and Gabriele Mencagli. 2016. Keep Calm and React with
Foresight: Strategies for Low-latency and Energy-efficient Elastic Data Stream
Processing. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’16). ACM, New York, NY, USA, Article
13, 12 pages. DOI:https://doi.org/10.1145/2851141.2851148

[15] Tiziano De Matteis and Gabriele Mencagli. 2017. Parallel Patterns for Window-
Based Stateful Operators on Data Streams: An Algorithmic Skeleton Approach.
International Journal of Parallel Programming 45, 2 (01 Apr 2017), 382–401. DOI:
https://doi.org/10.1007/s10766-016-0413-x

[16] Buğra Gedik. 2014. Partitioning functions for stateful data parallelism in stream
processing. The VLDB Journal 23, 4 (2014), 517–539. DOI:https://doi.org/10.1007/
s00778-013-0335-9

[17] Martin Hirzel. 2012. Partition and Compose: Parallel Complex Event Processing.
In Proceedings of the 6th ACM International Conference on Distributed Event-Based
Systems (DEBS ’12). ACM, New York, NY, USA, 191–200. DOI:https://doi.org/10.
1145/2335484.2335506

[18] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. DOI:https://doi.org/10.1145/2528412

[19] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park,
Philippe Selo, and Chitra Venkatramani. 2006. Design, Implementation, and
Evaluation of the Linear Road Benchmark on the Stream Processing Core (SIG-
MOD ’06). ACM, 431–442. DOI:https://doi.org/10.1145/1142473.1142522

[20] Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. 2015. Lazy Evaluation
Methods for Detecting Complex Events. In Proceedings of the 9th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS ’15). ACM, New York,
NY, USA, 34–45. DOI:https://doi.org/10.1145/2675743.2771832

[21] Boris Koldehofe, Ruben Mayer, Umakishore Ramachandran, Kurt Rothermel, and
Marco Völz. 2013. Rollback-recovery Without Checkpoints in Distributed Event
Processing Systems. In Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems (DEBS ’13). ACM, New York, NY, USA, 27–38.
DOI:https://doi.org/10.1145/2488222.2488259

[22] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures (SIGMOD ’16). ACM, 555–
569. DOI:https://doi.org/10.1145/2882903.2882906

[23] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005.
No Pane, No Gain: Efficient Evaluation of Sliding-window Aggregates over Data
Streams. SIGMOD Rec. 34, 1 (March 2005), 39–44.

[24] Björn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic Stream Processing
with Latency Guarantees. In 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems (ICDCS ’15). 399–410. DOI:https://doi.org/10.1109/
ICDCS.2015.48

[25] Ruben Mayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable Low-
Latency Event Detection with Parallel Complex Event Processing. Internet of
Things Journal, IEEE 2, 4 (Aug 2015), 274–286.

[26] Ruben Mayer, Christian Mayer, Muhammad Adnan Tariq, and Kurt Rothermel.
2016. GraphCEP: Real-time Data Analytics Using Parallel Complex Event and
Graph Processing. In Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems (DEBS ’16). ACM, New York, NY, USA, 309–
316. DOI:https://doi.org/10.1145/2933267.2933509

[27] Ruben Mayer, Muhammad Adnan Tariq, and Kurt Rothermel. 2017. Minimizing
Communication Overhead in Window-Based Parallel Complex Event Processing.
In Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems (DEBS ’17). ACM, New York, NY, USA, 54–65. DOI:https://doi.org/
10.1145/3093742.3093914

[28] Christopher Mutschler and Michael Philippsen. 2014. Adaptive Speculative
Processing of Out-of-Order Event Streams. ACM Trans. Internet Technol. 14, 1,
Article 4 (Aug. 2014), 24 pages. DOI:https://doi.org/10.1145/2633686

[29] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. 2009.
Distributed Complex Event Processing with Query Rewriting (DEBS ’09). ACM,
Article 4, 12 pages. DOI:https://doi.org/10.1145/1619258.1619264

[30] Benjamin Wester, James Cowling, Edmund B. Nightingale, Peter M. Chen, Jason
Flinn, and Barbara Liskov. 2009. Tolerating Latency in Replicated State Machines
Through Client Speculation. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’09). USENIX Association,
Berkeley, CA, USA, 245–260.

[31] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance Complex
Event Processing over Streams (SIGMOD ’06). ACM, 407–418. DOI:https://doi.
org/10.1145/1142473.1142520

[32] Erik Zeitler and Tore Risch. 2011. Massive scale-out of expensive continuous
queries. VLDB Endowment 4, 11 (2011), 1181–1188.

[33] Fred Zemke, Andrew Witkowski, and Mitch Cherniak. 2007. Pattern matching
in sequences of rows. (2007).

[34] D. Zimmer and R. Unland. 1999. On the semantics of complex events in active
database management systems. In Data Engineering, 1999. Proceedings., 15th
International Conference on. 392–399. DOI:https://doi.org/10.1109/ICDE.1999.
754955

