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Abstract. With the advent of the internet of things and industry 4.0
an enormous amount of data is produced at the edge of the network. Due
to a lack of computing power, this data is currently send to the cloud
where centralized machine learning models are trained to derive higher
level knowledge. With the recent development of specialized machine
learning hardware for mobile devices, a new era of distributed learning
is about to begin that raises a new research question: How can we search
in distributed machine learning models? Machine learning at the edge
of the network has many benefits, such as low-latency inference and
increased privacy. Such distributed machine learning models can also
learn personalized for a human user, a specific context, or application
scenario. As training data stays on the devices, control over possibly
sensitive data is preserved as it is not shared with a third party. This
new form of distributed learning leads to the partitioning of knowledge
between many devices which makes access difficult. In this paper we
tackle the problem of finding specific knowledge by forwarding a search
request (query) to a device that can answer it best. To that end, we use
a entropy based quality metric that takes the context of a query and the
learning quality of a device into account. We show that our forwarding
strategy can achieve over 95 % accuracy in a urban mobility scenario
where we use data from 30 000 people commuting in the city of Trento,
Italy.
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1 Introduction

In many areas such as stock trading, drug design, manufacturing, and urban
mobility [9, 16] machine learning is the key enabler of optimization and driver
of performance [9, 21, 15]. Besides choosing the right machine learning algorithm
and applying it right, the amount of training data is key to success [9]. While
the selection and application of machine learning algorithms is a research field
of its own, enough training data is needed to calibrate machine learning models,
such that they can make correct predictions.



With the advent of paradigms like the Internet of Things, smart city, and
Industry 4.0, data will be abundantly available [21]. Cisco, for example, estimates
that the I.o.T. alone will generate over 400 ZB of data annually, by 2020 [1]. In
particular, the proliferation of smart phones made training data from different
sensors, such as accelerometers, cameras, microphones, and GPS units widely
available [15]. Google reported that by centralizing a great amount of training
data for speech recognition from Google voice search [32], it became possible to
train high-quality feature-rich machine learning models for voice recognition[12].

The current approach to share such information is massive centralization. In
many application scenarios, however, centralization of possibly sensitive data is
not desirable as centralized data is regularly subject to breaches [14]. Today, it
is well known that it is possible to derive knowledge of a user’s habits, such as
his home and work location from his GPS traces [4]. Many human users are thus
unwilling, at least uncomfortable sharing such private information [39].

The common approach to tackle this issue is to distribute the computing
infrastructure [24], and even push computing towards the edge of the network
[11, 26]. The upcoming trend of fog computing [13, 23] supports this by providing
computational resources close to the edge, creating a computational continuum
that spans from the edge devices to the centralized cloud data centers. Sensitive
data can then be processed directly on devices that are under control of the user
or on fog nodes very close to them. In this respect, mobile device manufactures
are building specialized machine learning hardware that enables machine learn-
ing at the edge1. Machine learning at the edge has many additional advantages,
it allows for example to keep the user in the loop, learn personalized, and offer
low latency feedback [11, 26]. Google for example has recognized this trend and
made approaches, where personalized learning is done directly on smart phones
[25]; however, the generated local machine learning models are synchronized with
a central server. Google argues, that by processing the data locally, privacy is
increased compared to an entirely centralized approach.

Completely decentralized learning also holds great challenges. As training
data is not centralized, each machine learning model is only trained with respect
to its local experiences. In particular, such models may become local experts
that are very good in predicting local phenomena. In a medical scenario this
might be an advantage, as a model could learn the peculiarities of one specific
patient and enable a detailed analysis. For other use cases, this is not enough.
In an urban mobility scenario, for example, users are usually more interested, in
traffic conditions in another part of the city which they have never seen before.
Distributed learning holds the opportunity to learn about local phenomena in
great detail on the one hand, on the other hand it creates the problem of locating
specific knowledge.

To address this problem, in this paper, we present methods to route a query
for specific knowledge through a network of nodes (local experts) that each

1 Mark Gurman; BloombergTechnology, Apple Is Working on a Dedicated Chip
to Power AI on Devices: https://www.bloomberg.com/news/articles/2017-05-
26/apple-said-to-plan-dedicated-chip-to-power-ai-on-devices



train a local machine learning model. Our goal is to forward such a query to
the node that can answer it best. In particular, we look at scenarios where
knowledge in the form of machine learning models is fully distributed. Such
a fully decentralized approach holds three mayor difficulties: First, we cannot
assume a central index of all available knowledge. Second, the different devices
(nodes) might learn based on different local observations and contexts. Third,
parts of the knowledge changes or becomes outdated over time.

To this end, our contributions are: (1) We propose a decentralized routing
strategy that forwards queries for specific knowledge towards nodes that can
answer them best. (2) We propose methods to maintain routing tables that
guide the forwarding of such a query. (3) We use entropy to evaluate how good a
given query can be answered based on its context and the local machine learning
model of a node. (4) We develop a modified form of the Barabasi Albert model
[2] to generate a scale free topology that clusters network nodes with similar
knowledge close together to deal with heterogeneous knowledge. With its scale
free properties such a topology provides short paths between any two network
nodes and is robust against node failures. (5) We show that we can achieve
over 95 % accuracy when using synthetic data and data generated by a mobility
simulator where 30 000 people commute in the city of Trento, Italy, in the context
of different weather conditions, times of the day, and traffic conditions.

2 System Model and Problem Formulation

We assume a distributed system of fog [13, 23] nodes that each train a machine
learning model based on local observations. These nodes can join and leave the
system at any time and range from user managed devices such as smart phones,
laptops, and desktop computers, to infrastructure based services located in data
centers, such as private clouds. All nodes communicate directly over a undirected,
scale free topology, i.e. power law distributed node degree and short paths. These
properties make scale free networks particularly well suited for our problem as
they connect two arbitrary nodes (e.g. the source and optimal destination of
a query) with a small number of hops. Furthermore, many existing networks
such as social networks or the internet already show scale free properties [3].
Maintaining such a topology is also a well studied research problem [17, 2].

In order to learn, all nodes maintain a graphical machine learning model
as shown in Fig. 1. Graphical models (Probabilistic Graphical Models, PGM)
such as Bayesian networks or conditional random fields have a wide range of
machine learning applications in computer vision, natural language processing,
and bioinformatics [36]. In a PGM, random variables are represented as nodes
and dependencies between them as edges of a graph. This gives them great
flexibility in modeling complex dependencies.

We assume, that all network nodes maintain structural identical PGMs that
are continuously evolving based on individual training data (observations). This
training data can be generated either by the nodes themselves, e.g. a smart phone
generates GPS traces from its internal sensors, or can be received from other sen-
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Fig. 1. System overview.

sors, such as a wristband sensor that collects cardiovascular data. Furthermore,
the different nodes learn about different phenomena in different contexts, lead-
ing to individual expertise of the different nodes. In an urban mobility scenario,
for example, two nodes could learn about traffic conditions in different parts of
the city at different times of the day. In particular, this means that the different
nodes train different subsets of random variables. In consequence, not all nodes
can predict all random variables equally well. A reliable prediction about the
outcome of a specific random variable thus requires to search for (i.e. query) the
network node that has best training.

Given any PGM, we categorize the random variables of the PGM into two
groups: predicting variables and context variables. Predicting variables are the
subset of random variables that we want to predict based on a certain context,
modeled as context variables. In an urban mobility scenario, where we want to
predict the travel time for the streets in a city with a PGM, the travel time for
each street would be represented as a predicting variable. Factors that influence
this travel time, such as weather or time of the day would be represented as
context variables. In Fig. 1 this categorization is reflected by the color of the
random variable. Predicting variables Pn in blue, context variables Cn in green
and untrained random variables of both types in grey.

In this context, we define a query as a request to predict the outcome for a
specific predicting variable in a certain context. In this respect, we define context
as given assignments for a set of context variables. Our goal is to forward a query
to a node that can answer it with the highest possible quality (we introduce
quality in Sec: 3).

2.1 Formal Model and Problem Statement

More formally, we assume a set of network nodes N = {N1, ..., Nn} that are
connected over a scale free topology. Each node Nx holds a PGM that con-
sists of a graph G = (V,E) of discrete random variables V where dependencies
between random variables are modeled by the edges E. We classify the ran-
dom variables into predicting variables Pn = {p1n, ..., pmn } and context variables
Cn = {c1n, ..., cm

′

n }, where pn and cn are possible assignments. Each random
variable must be classified either as predicting variable or as context variable
(V = C ∪ P and C ∩ P = ∅).



We define a query −→q = (Px, {cyx, ..., c
y′

x′}, H,R,Q,
−→
N ), where Px is the random

variable that needs to be predicted in context of a given set of assignments

({cyx, ..., c
y′

x′}) for a subset of context variables and a limited number of hops H
(number of times a query can be forwarded). Furthermore, the query contains a
field to hold the prediction result R, the estimated quality of this result Q and

a vector of visited nodes
−→
N .

We can now define the concrete knowledge retrieval problem. Given i) a set
of nodes {N1, ..., Nn} holding ii) continuously evolving, heterogeneously trained
PGMs and iii) a query −→q for specific knowledge, our goal is to maximize the
retrieval quality of a query while forwarding it only H times.

In the following, we first establish a notion of knowledge quality in the context
of PGMs and describe how to measure the quality with that a node can answer
a query. (cf. Sec. 3). Based on this quality metric, we present methods to route
a query towards the node that can answer it with highest quality in Sec. 4.

3 Entropy, a Measure of Training Quality

In this section we discuss how we measure the training quality of a PGM. Based
on this quality, we describe how to estimate the quality with that a PGM can
answer a query for specific knowledge.

As stated above, Probabilistic Graphical Models (PGM) consist of interde-
pendent random variables. Such models are usually designed by an expert who
puts his domain knowledge in the structure of the model, e.g. chooses the ran-
dom variables and their conditional dependencies such that the model reflects
the dependencies in the real world. Training data is then used to converge the
probability distributions of the random variables from a uniform distribution
to the distributions of the real world. In other words, if an increasing amount
of training data is fed into the machine learning model, the uncertainty of the
model decreases. In machine learning, this uncertainty (or often called surprise)
of a model is measured by calculating the entropy of its random variables [20].

If, for example, we want to learn the probability of a coin flip being “Heads
Up”, we could use a very simplistic model that only consists of one random
variable X with possible outcomes {0%, ..., 100%}. We now flip a fair coin several
times and use the results to train the random variable as shown in Fig. 2. With
an increasing number of observations (or coin tosses) the “true” probability
distribution establishes and the entropy decreases.

Given a random variable X with possible assignments {x1, ..., xn} we can cal-
culate the entropy (H(X)) as the average surprise (or uncertainty) of the random
variable (cf. Eq 1). The logarithm of the probability of an assignment log(P (xn))
represents the amount of surprise we perceive for the specific outcome [20]. The
“surprises” of all possible outcomes are then weighted by their probability P (xn)
and summed up to one entropy value often also called self-information [20].

H(X) = −
n∑

k=1

P (xk)log2P (xk) (1)
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Fig. 2. Probability distribution (l) and entropy (r) of a coin flip for different number
of observations.

In complex machine learning models, we usually want to predict the out-
come of multiple random variables. In these cases we calculate the joint entropy
H(X0, ..., Xn) in order to describe their “joint uncertainty”, e.g. {X0, ..., Xn}
(cf. Eq. 2). Similar to entropy for one random variable, the idea is to calculate
the uncertainty for each combination of random variables involved and weight
these combinations w.r.t. their probabilities.

H(X0, ..., Xn) = −
∑

x0∈X0

· · ·
∑

xn∈Xn

P (x0, ..., xn)log2P (x0, ..., xn) (2)

The joint entropy describes the “total uncertainty” of multiple random vari-
ables. Given a random variable X0 that is dependent on the outcome of other
random variables {X1, ..., Xn}, the entropy H(X0, ..., Xn) denotes the uncer-
tainty of the outcome given that we don’t know anything about the outcome
of {X0, ..., Xn}. If we now gain information about the outcome of one of the
variables (e.g. X0 is a context variable and its outcome is given by a query), we
can derive the remaining entropy (uncertainty) according to the chain rule of
conditional entropy by subtracting the entropy H(X0) from the total entropy
H(X0, ..., Xn), cf. Eq. 3. In the following, we use this chain rule to calculate the
uncertainty which the PGM of a specific network node has to answer a query.

H(X1, ..., Xn|X0) = H(X0, ..., Xn)−H(X0) (3)

In Sec. 2 we divided the random variables of a PGM in two categories, pre-
dicting variables and context variables, where each predicting variable is de-
pendent on the outcomes of a number of independent context variables. For a
given predicting variable P0 that is dependent on the outcome of context vari-
ables {C0, C1, C2} we can calculate the joint entropy H(P0, C0, C1, C2) and indi-
vidual entropies for the context variables H(C0), H(C1), H(C2). Given a query
−→q = (P0, {c10, c31}, ...)2 for P0 with observed outcomes c10 ∈ C0 and c31 ∈ C1 we
can calculate the remaining uncertainty of the PGM to answer the query by
subtracting the entropy of the context variables from the joint entropy of the

2 For better readability we do not state all fields of the query here (i.e. H, R, Q,
−→
N ).



predicting variable (cf. Eq. 4). This results in the remaining uncertainty of the
PGM to answer the query.

H(P0, C3|C0, C1) = H(P0, C0, C1, C2)−H(C0)−H(C1) (4)

For the rest of this paper we will also refer to entropy as the learning or
training quality of a PGM.

4 Routing

Now that we have established how we can measure the training quality of the
PGMs of each node, we describe how we build routing models and use them
to forward queries towards the node that can answer them best. In contrast
to a classic routing table, where a network address is associated with a spe-
cific port (outgoing link), each node Ni maintains a routing model RMNi

Nn
for

each neighbor Nn. Each RMNi

Nn
serves as a descriptive model that cumulatively

represents the knowledge available over the respective outgoing link. Keeping
link-individual routing models is necessary, because we need to calculate the es-
timated answering quality of a query with respect to its context (cf. Sec. 3) as
storing all possible combinations of contexts easily becomes too much overhead.

In order to process a query, a node first tries to improve the prediction R
of a query based on its local PGM. In the next step, the node uses its routing
models to determine to which neighbor the query should be forwarded. As this
is an approximate routing process, we limit the number of hops (H) that a query
−→q is forwarded before the result is returned to the sender.

In order to improve the retrieval quality we use a network topology that
clusters nodes with similar knowledge (nodes that have learned about a similar
set of predicting nodes). We can then optimize our routing models by maintaining
context information of predicting variables only for predicting variables that have
been learned by the cluster. This leads to a double-staged routing approach,
where a query for a predicting variable Pn is first forwarded to a cluster of nodes
that have learned about Pn. In the second stage, the query is then forwarded
within a cluster to a node that has learned it in the requested context. In the
following we describe how we build the routing tables, forward a query, maintain
the network topology and deal with loops in the topology in detail.

4.1 Building the Routing Tables

The routing models RMNi

Nn
that each node Ni maintains for every neighbor

Nn store entropy values of random variables (predicting variables and context
variables) and represent the knowledge available to the respective neighbor Nn.
In order to maintain them in a proactive fashion, each node sends summaries of
its entropy values stored in its local PGM and its routing models to its neighbors,
whenever they have changed above a certain threshold and a minimum amount
of time has passed since the last update. This makes sure that all neighbors have



up-to-date information about their neighbors and at the same time avoids that
the network is flooded with updates.

In the following, we explain this forwarding process with respect to a set
of nodes {N1, N2, N3} in detail. For better readability and without loss of gen-
erality this example is with respect to one predicting variable P0 and context
variables {C1, C2}. A further simplification is the use of a flat topology, i.e. all
nodes are connected in a line (cf. Fig. 3). In the given example, N3 has only
one neighbor (N2) and therefore can directly forward its set of entropy values
{H(P0, C1, C2)PGM , H(C1)PGM , H(C2)PGM} from its PGM to its neighbor
N2, where they are used as entries in the routing table RMN2

N3
(cf. Fig. 3 A).

These entropy values represent the learning quality for P0 available over the
edge N2 → N3. As described in Sec. 3 this values can be used to calculate the
quality with which a query in any context (i.e. {{C0}, {C1}, {C0, C1}} can be
answered.

H 𝑃1, 𝐶1, 𝐶2 𝑃𝐺𝑀 = 0.8

H 𝐶1 𝑃𝐺𝑀 = 0.2
H C2 𝑃𝐺𝑀 = 0.3

𝑃1, 𝐶1, 𝐶2 0.8

𝐶2 0.3

𝐶1 0.2

𝑵𝟏

𝑵𝟐 𝑵𝟑

𝑃1, 𝐶1, 𝐶2 0.8

𝐶2 0.3

𝐶1 0.2

𝑅𝑇𝑁3
𝑁2

𝑵𝟏

Fo
rw

ar
d

H 𝑃1, 𝐶1, 𝐶2 𝑃𝐺𝑀 = 0.9

H 𝐶1 𝑃𝐺𝑀 = 0.5
H C2 𝑃𝐺𝑀 = 0.3

𝑃1, 𝐶1, 𝐶2 0.8

𝐶2 0.3

𝐶1 0.2

𝑅𝑇𝑁2
𝑁1

𝑃1, 𝐶1, 𝐶2 0.8

𝐶2 0.2

𝐶2 0.1

𝑅𝑇𝑁2
𝑁1 Fo

rw
ar
d

B A

Fig. 3. Forwarding entropy values in same context.

When N2 has received the set of entropy values from N3, it decides to update
the entropy values send to N1. In contrast to N3, N2 cannot send the entropy
values from its PGM directly as it has to consider the entropy received from N3.
Node N2 needs to select which set of entropy values ({H(P0, C1, C2), H(C1),
H(C2)}) is forwarded. In order to determine this, it compares the joint entropy
value of its local PGM (H(P0, C1, C2)PGM = 0.9) with the joint entropy value
of its routing table RMN1

N2
(H(P0, C1, C2) = 0.8) As the local joint entropy is

higher (0.9 > 0.8) it forwards the complete entropy set for P0 received from N3

({H(P0, C1, C2) = 0.8, H(C1) = 0.2, H(C2) = 0.3}) to N1 (cf. Fig. 3 B).
Generalization: If, in contrast to our example, a node has multiple neigh-

bors, it stores the entropy value sets it receives from them in a separate routing
table for each neighbor. In order to decide which entropy set (e.g. {H(P0, C1, C2),
H(C1), H(C2)}) should be forwarded, we compare all the entropy sets, including
the entropy of the local PGM by their joint entropy values (i.e. H(P0, C1, C2))
and forward the set with the lowest joint entropy. This forwarding approach
makes sure that for each predicting variable (P ), the lowest joint entropy (e.g.
H(P0, C1, C2) = 0.8) and the entropy values of its corresponding context vari-
ables (e.g H(C1) = 0.2, H(C2) = 0.3) are propagated.

In cases where predicting variables have been trained with respect to different
context variables by different nodes, entropy values cannot simply be merged.
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Fig. 4. Forwarding entropy values in different context.

For example, N2 has trained P1 with respect to context variables {C1, C2} and
N1 has trained P1 with respect to {C1, C3} (cf. Fig. 4). In such cases, we store and
forward up to K ∈ N different context combinations for each predicting variable
P (cf. Fig. 4 C). In this respect, K is a design parameter that determines how
many context combinations for one predicting variable are stored in the routing
tables. In general K is dependent on the number of relevant contexts in a concrete
scenario. In cases where we have to limit them we can use existing dimension
reduction algorithms to select the most important context variables. We will
discuss the influence of K in our evaluations in Sec. 5.

4.2 Forwarding of a Query

As discussed in Sec. 2, a query −→q is a message issued by one node in the network,
to retrieve a prediction for a specific predicting variable Px in a given context,

represented by a set of assignments ({cyx, ..., c
y′

x′}) for a subset of context variables
{Cx, ..., Cx′} ∈ C. A query is forwarded from one node to another until the
predefined number of hops, H, has been reached.

When a node Ni receives a query −→q it first decreases the hop counter H of the
query and then determines if the query can be improved by the local PGM, by
computing the entropy of answering the query (cf. Sec. 3). The resulting entropy
value is then compared to the entropy value Q in the query. If the entropy value
in the query is higher than the locally computed value (i.e. the node has less
uncertainty cf. Sec. 3), the node predicts the outcome of the query with its PGM
and updates the result field R and the quality field Q of the query −→q accordingly.
If the hop counter H of the query is greater then zero (H > 0) the node uses its
local routing models to select a neighbor to which the query is forwarded.

In order to select a neighbor to send the query to, node Ni compares all
routing models RMNi

Nn
by computing the conditional entropy H(Px|Cx, ..., Cx′).

This is done by subtracting the entropy values of the context variables ({H(Cx),
..., H(Cx′)}) from the joint entropy value H(Px, Cx, ..., Cx′) stored in the routing
tables RMNi

Nn
(cf. Sec. 3). The query is then forwarded to the neighbor with the

smallest conditional entropy H(Px|Cx, ..., Cx′).
Discussion: So far, we have described how routing models are built and how

they are used to forward a query. The maintenance of entropy values in multiple
routing models, especially for different context combinations, produces signifi-
cant overhead. The number of possible context combination grows according to



the binomial coefficient. If, for example, the nodes learns w.r.t. 5 out of 10 pos-
sible context variables, there are already 252 possible combinations. In order to
reduce this overhead, we cluster nodes that have learned about a similar set of
predicting variables. Based on this clusters, our routing protocol uses two opti-
mizations. First, nodes only forward entropy values from their PGM if they have
a minimum level of quality (i.e. the entropy value is below a certain threshold).
Second, if a node has not reached a minimum quality for a predicting variable
Pn it only maintains a single joint entropy value for Pn (no entropy values for
context) in its routing models. This single joint entropy value can then be used
to forward a query to the next cluster that has learned about Pn, where context
sensitive routing, as described above, is performed. In the following we describe
how we maintain such a clustered network topology.

4.3 Topology Maintainance

As mentioned in previous sections, the topology of our network should exhibit
scale free properties, such as a power law distributed node degree and short
paths. Additionally we want to cluster nodes that have learned about a similar
subset of predicting variables. In order to manage the overhead of maintaining
routing models for each neighbor, we also need to give each node the option to
limit the maximum number of neighbors. This limit can be determined node-
individually, e.g., dependent on the amount of memory consumed by the routing
models. In order to generate such a topology, we use a modified version of the
Barabasi Albert model [2]. Our idea is to make the preferential attachment of
the Barabasi Albert model dependent on node similarity. The original algorithm
starts with an initial set of m0 nodes and connects a new node Nn to an existing
node Ne with a probability proportional to the edge degree of the existing nodes.
This way, Nn can connect with up to m < m0 existing nodes. In the original
algorithm the probability of a node Nx connecting to an existing node Ny is

given by px→y =
ky∑
j kj

where ky is the degree of the existing node divided by

sum of all edge degrees. We multiply this probability with a similarity factor
S(PGMNx

, PGMNy
) → [0, 1] that describes the similarity between two PGM

(e.g. PGMNx and PGMNy ). If a node already has reached its individual max-
imum number of edges (edgelimit) we set the probability to zero as shown in
Eq. 5.

px→y =

{
ky∑
j kj
· Similarity(PGMNx

, PGMNy
) if ky ≤ edgelimit

0 else
(5)

Let there be two nodes {N1, N2} where N1 has trained the set A = {P1, P2, P3}
and N2 the set B = {P1, P3, P4, P5} of predicting variables of their PGM as
shown in Fig. 5. We define the similarity between them as the size of the in-
tersection between A and B divided by the minimum cardinality of A and B
cf. Eq. 6.
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Fig. 5. Two PGMs with similar learning.

S(PGMN1
, PGMN2

) =
|A ∩B|

min(|A|, |B|)
=

2

min(3, 4)
=

2

3
(6)

To demonstrate that this modified algorithm still produces a topology with
power law distributed node degree, we plotted the number of edges for a network
of 600 nodes using the original Barabasi Albert Model and our modified version
where we limited the number of edges to 60. The major difference is, that our
modified version exhibits multiple nodes degree 60 instead of having several
nodes with degree > 60.
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Fig. 6. Comparison of node degree between the modified and unmodified B. A. Model.

In order to deal with loops in the topology we slightly increase the forwarded
entropy value with every hop. This way, propagated entropy values increase more
over longer propagation paths than over shorter ones. Queries will then always
be forwarded over shortest paths with lower entropy values.

5 Evaluation

In this section we evaluate the above presented aggregation based routing strat-
egy (ABS) with respect to different network sizes, number of context nodes,
context combinations, number of hops, and the context diversity parameter K
(cf. Sec. 4) on synthetic training data and on data from an urban mobility sce-
nario, in the following referred to as “Trento data”. We compare our strategy to



a directed random walk approach commonly used in unstructured Peer to Peer
networks cf. Sec. 6.

We implemented our routing strategy (cf. Sec. 4) in the Peer to Peer simula-
tor PeerSim [27] and performed our evaluations on an Open Stack virtual ma-
chine with 64 cores and 256 GB RAM running Ubuntu 16.04. We used PeerSim
to instantiate up to 32 768 (215) network nodes. To represent the Probabilistic
Graphical Models (PGM), each node individually trained a Bayesian network
consisting of an experiment dependent number of random variables. In the fol-
lowing we will state for each experiment how many predicting variables (Pn)
and context variables (Cn) were used to form a PGM as described in Sec. 2. The
Bayesian networks on the individual nodes were then trained either on synthetic
training data (Gaussian distributed observations) or on data from the Trento
data set respectively. The use of synthetic data gave us the ability to flexibly
generate experiment setups with any number of predicting or context variables.
Based on the trained nodes, the topology between the nodes was created as
described in Sec. 4.

Based on this setup, we used the cycle based engine of PeerSim to perform
our evaluations. In each cycle, each node first propagated its knowledge and then
issues a query that is forwarded as described in Sec. 4. In order to determine the
accuracy of the result, we compared the entropy of the result with the optimal
entropy which was determined by an exhaustive search over all nodes.

The “Trento data” data originates from a real world simulator for collabora-
tive and distributed learning [29] developed at the German center for artificial
intelligence (DFKI) to generate large-scale, realistic data sets for machine learn-
ing. The simulator is based on the city map of Trento in Italy. It features genuine
bus tables, weather, and commuting statistics of the city. Based on this data,
we used the simulator to hosts 30 000 autonomous agents that emulate the be-
havior of citizens, even forming traffic jams that lead to different travel times at
different times of the day, days of the week under different weather conditions
for different road segments of the Trento street graph. In our experiments we
used weather, time of the day, and day of the week as context nodes to predict
travel times for different road segments that we used as predicting variables.

In our first evaluation (Fig. 7) we compare the retrieval accuracy of our ag-
gregation based strategy (ABS) on synthetic data and the Trento data averaged
over an increasing number of cycles with the random walk approach. In this eval-
uation we used 1024 nodes that we trained on 100 different predicting variables
and 3 context variables (weather, time of the day, and day of the week in the
Trento data). We can see, that in the first cycle, the accuracy is low, as most of
the routing models are empty. As knowledge gets propagated through the net-
work, the retrieval quality increases until it settles around 90%. This evaluation
already indicates the good performance of our algorithm on synthetic data and
on the Trento data.

In Fig. 8 we evaluate the performance of ABS at different network sizes (up
to 32 768 nodes) with the random walk approach using synthetic and Trento
data. Just like in the previous evaluation we used 100 predicting nodes and



3 context nodes according to the Trento data. We forwarded each query 2 ·
log(network size) times. In comparison to the synthetic data, the standard de-
viation (indicated by the whiskers in the graph) is a bit higher for the Trento
data. The reason for this is, that the knowledge about some predicting variables
is scarce and thus harder to find.
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Fig. 7. Retrieval accuracy averaged over time (cycles) compared.
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Fig. 8. Network size and retrieval quality.

Fig. 9 shows the influence of the number of hops. For this evaluation we
used a network of 512 nodes, 10 predicting variables, and 3 context variables
on synthetic data. We can see that with an increasing number of hops not only
the accuracy increases, but also the standard deviation (whiskers) decreases. In
general the number of required hops grows proportional to the network diameter.
As we are using a free scale topology, this is approximately logarithmic to the
number of nodes (cf. Sec. 4).

In the following, we will have a closer look at the influence of the number
of possible combinations of context variables and their influence on routing ac-
curacy. We introduced the problem of different context combinations in Sec. 4
and tackled it by introducing a parameter K that defines how many different
context combinations are stored in the routing models. In Fig. 10 we can see
that keeping about 50% of all possible context combinations already leads to a
reasonably good retrieval accuracy.
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Fig. 9. Retrieval Quality w.r.t different number of hops.

Fig. 11 shows how the accuracy degrades with an increasing amount of con-
text combinations for a network of 512 nodes, K = 10, one predicting variable,
and 10 context variables of which up to 4 have been trained. According to the
binomial coefficient this creates up to 252 possible context combinations that
could have been learned. We can see that with an increasing amount of possi-
ble context, not only the accuracy decreases, but also the standard deviation
of the accuracy increases. The surprisingly good performance and low standard
deviation for the random strategy for 10 context combinations can be explained
when realizing that there are potentially up to 51 nodes that have learned the
respective contexts.
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Fig. 10. Retrieval quality with respect to K.
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Fig. 11. Possible context combination for K = 10, 512 nodes, and 3 hops.

When K is chosen around 50% of the number of context combinations, re-
trieval accuracy is fairly independent form the number of context variables used,
as shown in Fig. 12. For this experiment we used a network of 2048 nodes that



were trained on 500 predicting variables in up to 10 contexts, 25 context combina-
tions and k = 12. As we highlighted in Sec. 4 we can use of the shelf methods for
dimension reduction to determine most important context combinations w.r.t.
the application scenario at hand.
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Fig. 12. Retrieval accuracy with respect to different number of context nodes

6 Related Work

Information retrieval from peer to peer (P2P) systems and machine learning
are both well studied areas. Today, machine learning is often done in Big Data
scenarios, where all training data is logically centralized. There exist many ap-
proaches to distribute the training data and machine learning models between
several machines, for example on a cluster. These systems have the benefit of
a centralized controller that actively manages how information is distributed
between the different machines. In such scenarios, communication-efficient dis-
tribution of data between machines is a hard research problem of its own [22].

In this paper we argue that with the trend of decentralized computing, ma-
chine learning is coming to the edge of the network (cf. Sec. 1). On the one hand,
this enables many benefits such as low latency access and the ability to maintain
control over sensible information. On the other hand, without a central index
structure, the problem of searching in distribute machine learning models is cre-
ated. Therefore we focus on related work that tackles the problem of content
sharing in P2P networks and discuss how fit these approaches are for knowledge
retrieval.

First P2P systems such as Chord [35], CAN [30] and Pastry [31] tackled the
problem of how to find specific data items in a distributed system. Except for
CAN, most of these early work focuses on retrieval based on one unique key
such as a hash value. CAN allows for multidimensional keys in euclidean space
to locate data items. All approaches, however, share the draw back that they
can only retrieve items that are identified by a unique index.

The second generation of P2P systems (e.g. Mercury [7], Squid [33], and
Znet[34]) introduced the support for more complex, multidimensional, and range
queries. This enabled searches like Find persons age ≥ 10 and age ≤ 20 and
gender = female. These systems enable search in multidimensional space, where



Data locality is usually achieved by dimension reduction techniques, such as
space filling curves (e.g. [10]). A general problem is that range queries might
be too restricted in cases with sparse data. For example, if there are very few
results for the above mentioned query, results for persons slightly older than 20
years would also be interesting for the user.

This gap was filled by research centered around nearest neighbor queries for
P2P systems, like pSearch [37] and Semantic Small World [17]. The main idea
is to provide nearest neighborhood search for multidimensional queries. Most
work focuses on selecting important dimensions [28, 18] or methods to form an
overlay network that connects nodes with similar information [38]. Just like in
this paper, some of these approaches also form a small world topology [17] that
has a small network diameter, which makes each node reachable with only a
few hops and enables efficient routing. There also exists work that relies on
a predefined similarity metric, e.g. the euclidean distance, and retrieves the k
nearest data items in a large collection of high dimensional data [19, 8, 6, 18].

All these approaches have been designed to retrieve items that are explicitly
defined by matching a specific identifier (id, hash value), fall in a specific range
of a set of attributes, or are close to a given query. In order to retrieve knowledge
this notion has to be extended by some sort of confidence metric that can take
the quality of available knowledge (information) into account. Such a confidence
metric needs to express the expertise of a node, reflecting for example that it
holds a lot of similar information [5] or can do reliable prediction. In our previous
work [5] we have tackled this issue for knowledge modeled as N-Dimensional
point-clouds. We proposed a point-cluster-based confidence metric that took the
variance and number of points in each cluster as an indicator of quality into
account.

To the best of our knowledge, there is no peer to peer based approach that
is specifically designed so search for knowledge in graphical machine learning
models.

7 Conclusion and Future Work

In this paper we have stressed the importance of machine learning at the edge of
the network. We argued that with an increasing amount of fog computing devices
carrying specialized machine learning hardware knowledge becomes inherently
distributed. In this setting we defined and tackled the problem of finding and
retrieving specific knowledge. We showed that our aggregation based routing
approach can retrieve specific knowledge with over 95% accuracy even if it was
learned in many different contexts.

We think that the field of distributed knowledge management is in its infancy
and will rapidly gain importance.With our generic notion of predicting variables
and context variables our retrieval strategy is flexible and can be adapted to
many future application scenarios in health care, manufacturing, and urban mo-
bility.
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