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Abstract—Today, workflows are executed in heterogeneous en-
vironments, such as the Internet, to automate interactions with
services of business partners and other third parties. In such
heterogeneous environments, device and communication fail-
ures occur frequently. These failures might delay or even stop
the workflow executions rendering the workflow unavailable.
For ensuring availability, workflow executions are replicated on
multiple devices allowing the workflow execution to continue
even if some of the devices fail. So far, two workflow replication
mechanisms have been proposed: active and passive replication.
While active replication incurs high cost in terms of com-
pensation even for failure free executions, passive replication
provides lower availability than active replication. In this paper,
we propose a new replication mechanism called partition-
tolerant replication that combines the benefits of active and
passive replication. Our evaluations on OpenStack show that
partition-tolerant replication imposes no compensation cost for
failure free executions like passive replication while providing
availability close to active replication.

1. Introduction

Workflows have manifested as the de facto standard for
managing and optimizing business processes [1]. A workflow
defines the process as a set of activities and specifies the
order in which these activities have to be executed through an
ordering relation. Thereby, workflows can be represented as
graphs, allowing the intuitive management and optimization
of the underlying processes.

The automation of complex business operations requires
workflows to orchestrate services that are offered by business
partners and other third parties located on servers anywhere
on the planet. Consequently, these service orchestrations need
to be executed in heterogeneous environments, where devices
and communication failures occur frequently. A failure of
the device on which the workflow is executed might delay or
even terminate the workflow execution. Thus, the workflow
execution becomes unavailable through failures, which incurs
cost. A study revealed that a single hour of unavailability
can induce a typical cost of up to $6.48 million [2].

Often, businesses assume that migrating their systems
to datacenters or the cloud solves all availability concerns.
However, this is far from reality. A study showed that
Microsoft datacenters on average experience more than
40 failures with end-user impact per day [3], [4], [5]. Also,
wired connections that are usually assumed to be highly

reliable suffer from frequent failures. For instance, the IP
Backbone experiences failures at a median rate of 3000s [4],
[6]. Thus, availability is an important design consideration for
all networked systems irrespective where these are deployed.

Workflow replication places multiple replicas of a work-
flow instance on different devices that are able to execute the
workflow [1], [7]. Thereby, a failure or partitioning of one
of these devices does not harm availability as the replicas
on the other devices can continue the workflow execution.

In particular, there are two replication techniques: passive
and active replication. Passive replication [1], [8], [9] elects
a primary that executes the workflow. The other replicas,
called backups, receive state updates from the primary. In
case of a primary failure, the backups decide a new primary
using majority election. The new primary then continues the
execution from the received state.

However, since failures occur frequently, a situation
where no majority is available might arise quickly. Regardless
of the number of replicas, one partitioning plus one crash
failure can divide the network such that no partition contains
a majority. Then, passive replication is unable to elect a new
primary rendering the workflow execution unavailable.

Active replication [1] overcomes this problem because it
executes the workflow on each replica independently. Thus,
the failure of a replica does not affect the execution of the
other replicas. Upon finishing the workflow execution, the
replicas agree on one of the executions and compensate all
others – causing significant compensation cost. Especially
undesirable is that active replication causes the compensation
cost even if no failure occurs during the workflow execution,
where passive replication incurs no compensation cost at all.

In this paper, we propose partition-tolerant replication,
which allows to exploit the search space between active and
passive replication. In specific, our main contributions are:
1) We develop a partition-tolerant replication protocol, which
allows continuing workflow executions without majorities,
similar to active replication, while inducing significant lower
compensation cost by mimicking the behavior of passive
replication. 2) We integrate a mechanism that allows to
control whether the protocol behaves closer to passive
replication – allowing fewer primaries and decreasing the
compensation cost – or closer to active replication – reducing
the impact of failures on availability. 3) Our extensive
evaluations on the OpenStack platform show that our protocol
incurs no compensation cost for failure free executions while
reaching nearly the availability of active replication.
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Figure 1. Passive replication (left) versus active replication (right)

2. System Model

We consider a distributed system of computing nodes and
services connected by communication links. Each computing
node is running a workflow engine capable of executing
workflows. All resources, i.e., computing nodes, services,
and communication links, might fail at any point in time.
According to the crash recovery model [10], we assume that
each resource eventually recovers from a failure. For enabling
failure tolerance, each computing node participates in the
replicated execution of a workflow. Thus, the computing
nodes are called replicas, where each replica r from the set
of all replicas R has a unique identifier.

A workflow is modeled as a directed acyclic graph
G = (mID,A,L,Σ), where mID is a unique workflow model
identifier, A is the set of activities, L the set of links defining
the execution order of the activities, and Σ specifies the
variables that the workflow stores, called the internal state.
The activities a ∈ A are performed in the order specified by
the links l ∈ L. The links are defined by L : A×A×T , where
T is the set of all transition conditions. A link l = (a1,a2, t)
specifies that an activity a2 is performed after the activity
a1 completed and the transition condition t ∈ T is fulfilled.

For executing a workflow, a replica instantiates the
workflow model, which initializes the variables of the internal
state. The initial internal state σi created by instantiation is
identical for any instance of a workflow G. Each activity
of a workflow can read from or write to the internal state.
Each activity might also interact with a service by sending a
request to the service and receiving a reply. A service might
write to external state, where the external state refers to any
state that is not in direct control of the execution engine,
e.g., the service’s state in case of a stateful service.

We assume that each activity a ∈ A has a compensation
handler comp(a). The execution of this compensation handler
semantically reverses the effects that an activity execution
had on the external state and rolls back the internal state.
The compensation may incur cost (e.g., monetary cost) that
we refer to as the compensation cost. An activity a can only
be compensated after all causally succeeding activities [11]
have been compensated, i.e., after all activities that used
the internal state produced by a have been compensated.
This compensation model originates from Sagas [12] and
conforms to business processes [13]. Thereby, our model
is compatible with workflow description languages such as
the Web Service Business Process Execution Language (WS-
BPEL), which is standardized by OASIS1 and widely used

1. http://docs.oasis-open.org/wsbpel/2.0/

in industry. Each workflow engine hosts a component called
the Compensation Unit that is responsible for executing
compensation handlers. For the purpose of this work, we
assume that any compensation handler that is sent to the
Compensation Unit is eventually executed, where all handlers
are executed in the order in which they were received.

3. Passive versus Active Replication

Passive replication elects one primary replica that exe-
cutes the workflow, for example, replica r1 in Fig. 1. The
other replicas, called backups, save the execution state (or eS
for short) that the primary sends after each activity execution.
In case of a primary failure, the backups elect a new primary
that uses the received execution state for continuing the
workflow execution. To ensure that there is always only one
valid primary, passive replication uses majority election [14].
Thus, out of any majority of replicas at least one knows the
most recent, i.e., valid, primary. Upon finishing the workflow
execution, the primary initiates a majority consensus [15]
for agreeing on the result of the execution.

As passive replication uses majority election, the backups
can only elect a new primary in case a majority of replicas
is operational. In Fig. 2, we evaluate a replicated workflow
execution with 5 replicas, where we inject one partitioning
plus one crash failure such that none of the partitions contain
a majority. The failure lasts for 30s. We measured the time
of unavailability (i.e., the time the workflow execution does
not make progress) and the compensation cost, where 100%
refers to compensating the complete workflow once. We
can observe that passive replication is unavailable for the
complete failure time because it cannot elect a new primary.

Active replication overcomes this problem by executing
the workflow on all replicas independently. Upon finishing
the execution, the replicas agree on one of the workflow
executions via majority consensus and compensate all other
executions (cf. Fig. 1). Consequently, all but one replica might
fail during the execution without impacting availability. Only
the agreement in the end requires a majority to be operational.

The problem of active replication is that it incurs high
compensation cost because all but one of the executions have
to be compensated. In our scenario of Fig. 2, the availability
of active replication is not impacted by the failures. However,
the compensation cost is above 300%. In a failure free
execution, active replication with 5 replicas would even
cause 400% of compensation cost. Here, it is lower because
one replica experiences a crash failure and, thus, cannot
continue the workflow execution.
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Figure 2. Comparison of passive and active replication with 5 replicas in
the failure scenario of having no majority within a partition [lower is better]

In conclusion, Fig. 2 shows that passive and active
replication constitute two opposing extremes leaving a huge
search space in between. In this paper, we address this search
space by proposing a protocol for obtaining the best of
both worlds. Without any failures, one primary executes
the workflow exactly as when using passive replication.
However, in the case of a failure, we allow the replicas to
elect a new primary without requiring a majority. In specific,
each partition elects a primary. For example, assume that all
replicas are partitioned from each other. Then, all replicas
will elect themselves as primary and execute the workflow
independently – similar to active replication. We call this
replication mechanism partition-tolerant replication.

Of course, partition-tolerant replication increases the
compensation cost in the presence of network partitioning
because it elects multiple primaries. For controlling this
compensation cost, we integrate the vote threshold tv. A
replica needs tv votes for being elected as primary, where

1≤ tv ≤�|R|2 �+1. A workflow designer, as the domain expert,
can decide the threshold depending on the desired availability.
When setting the tv = 1, each replica can vote for itself

and become primary. Setting tv = � |R|2 �+1 leads to passive
replication, where a majority is required to elect a primary.
Any threshold between 1 and f +1 realizes a tradeoff.

But how can we realize such a partition-tolerant replica-
tion protocol? In specific, every partition should only elect a
single primary even when tv = 1. Otherwise, we again would
induce unnecessary compensation cost. However, when a
replica is in a partition on its own, it should quickly become
primary. Moreover, when two partitions reconnect, how do
we detect and resolve conflicts without stopping or delaying
the workflow execution? Any delay would forfeit availability,
where availability is our main goal.

4. Partition-tolerant Replication Protocol

A replicated workflow execution is started when the
workflow client application [16] sends an execution request
to all replicas. The request contains the unique identifier of
the workflow model that shall be executed. Upon receiving
the request, a replica loads the respective model from the
workflow repository, which is running locally or on a remote
server. The replica with the highest identifier is the initial
primary saving the overhead of an election on start-up.

The primary executes the activities, where each activity
execution produces an output internal state. The primary
stores this internal state as well as the activity to be executed
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Figure 3. Example of partition-tolerant replication with 3 replicas and tv = 1

next in the execution state. Additionally, each execution
state contains a state number that is incremented upon every
activity execution. Thereby, the state number indicates the
progress of the workflow execution. The primary sends
updates containing the produced execution state to all other
replicas, called backups, which save the received state.

In case that the primary crashes or is partitioned, the
backups elect a new primary. The new primary has to
receive a vote from tv replicas (including itself) for being
elected. Each vote message includes the execution state
of the voting replica. The new primary chooses one of
the received execution states as the state to continue the
workflow execution from. We call this state the take-over
state. Because the state number reflects the progress of the
workflow execution, the new primary chooses the state with
the highest state number as take-over state.

In case of partitioning, multiple partitions might elect a
new primary – depending on tv. For example, with tv = 1
each partition will elect a primary. The primaries of the
different partitions are not aware of each other. Upon re-
connecting, the primaries will get to know of the competing
executions through the reception of updates from the other
primaries. Obviously, all but one execution have eventually
to be compensated for ensuring that the overall workflow
execution is correct [1]. For example in Fig. 3, activity a1

was executed both by r1 and r2. Thus, either r1 or r2 has
to compensate its execution of a1 to resolve the conflict.

When the primaries detect a conflict, all but one execution
are stopped to reduce the compensation cost. For achieving
the best performance in terms of execution time, we stop the
executions that lag behind while letting the most progressed
execution continue. For example, in Fig. 3, r2 becomes
primary after partitioning from r1. After reconnecting, r2
stops its execution because it receives an update from r1,
which is already progressed further.

For completely resolving the conflict, r2 has to compen-
sate its execution of a1. However, r2 does not know whether
the execution state produced by a1 was used by another
primary as a take-over state – as is the case in Fig. 3.

In general, a primary can only compensate an activity ax
after all activity executions that depend on ax (i.e., that used
the state produced by ax as input) were compensated (if any).
For this purpose, each replica keeps a history of its activity
executions, where each activity includes the information
which execution state was used as input and which execution
state was produced through the activity execution. Thus, each
execution state needs a unique identifier.



An execution state identifier consists of three parts: a
replica’s identifier, a failover counter, and a state number.
The replica identifier specifies which replica was the primary
that produced the state. However, a replica might become
primary multiple times during the execution. The failover
counter indicates how many times a replica tried to become
primary through an election, i.e., how many times the replica
started a failover. Finally, the state number is incremented
with every activity execution as already described.

As stated above, a replica can only compensate an activity
ax if all activity executions that used the execution state
produced by ax were compensated. Actually, an execution
that used ax’s execution state as a take-over state might be
the execution on which the replicas agree in the end. Then,
ax is part of the decided workflow execution and will not be
compensated. Consequently, we only compensate activities
after the replicas have agreed on one workflow execution.

This agreement is part of the termination of the workflow
execution. In specific, the termination consists of three phases.
In the first phase, the replicas agree on one finished workflow
execution. The agreement requires a majority of replicas to
be operational. The replicas send the result of the decided
execution to the workflow client application. In the second
phase, all replicas learn about the decision, allowing the
replicas to compensate the activity executions that are not
part of the decided workflow execution. In the final phase,
the replicas forget the workflow execution after all replicas
have finished all necessary compensations.

During the workflow execution, we can ensure progress
as long as tv replicas are operational while the agreement
requires a majority of replicas. The last two termination
phases require all replicas to be operational. However, this
is not critical as this phase is completely decoupled from
the workflow client application.

Note that our protocol supports XOR- and AND-
branching because we identify the logged activity executions
based on the input execution state and the produced execution
state, where the execution state identifiers are decoupled from
the workflow model. Only one small extension is required
for AND-branching: the execution state contains not a single
activity but a set of activities that have to be executed next,
i.e., one activity per branch. The primary can selects any of
the activities in the set for execution.

4.1. Data Structures

The protocol has to maintain data in volatile memory
as well as on stable storage for the workflow execution. In
specific, the volatile memory of a replica r contains the
following information:

• eID: the unique identifier of the replicated execution.
• G: the workflow model that is executed.
• tv: the vote threshold required for becoming primary.
• primr: the indicator on whether r is currently primary.
• eSr: the last execution state that r is aware of. In other

words, if r is primary, this is the last produced execution
state. If r is a backup, eSr is the last execution state
received from a primary.

The execution identifier eID, the workflow G, and the vote
threshold tv are same on all replicas that participate in the
execution. All other data, i.e., the primary indicator and the
execution state, might be different on each replica. In specific,
the execution state consists of the following variables:

• next: the next activity to execute (or set of activities
during AND-branching).

• σ : the internal state that is input for the next activity
execution.

• sID: the execution state’s unique identifier.

As described above, the identifier of an execution state sID
consists of the following variables:

• rID: the identifier of the replica that produced the
execution state.

• f : the value that the failover counter had when the
execution state was produced.

• s: the state number that the producer assigned to the
execution state.

All the above described variables are saved in volatile mem-
ory, which is wiped through crash failures. The following
variables are saved in stable storage to survive crash failures:

• fr: the current failover counter of r. Each time r starts
a failover, the counter is incremented. Initially, fr is 0.

• Hr: the execution history of r, where each activity
execution is logged.

The failover counter fr is saved on stable storage to prevent
crash failures from resetting fr. The execution history Hr
is stored on stable storage for ensuring that a replica
never forgets an activity execution (which it might need to
compensate later). In specific, a replica r writes an execution
record for every executed activity ax to Hr. The execution
record (eID,eSinput .sID,eSprod .sID,comp(ax)) contains the
execution identifier eID, the identifier of the execution state
eSinput that is used as input for the activity execution, the
identifier of the produced execution state eSprod , and the
compensation handler comp(ax) of the executed activity
ax. For triggering the execution of a compensation handler,
a replica sends the execution record to the Compensation
Unit. The Compensation Unit filters duplicate compensation
requests based on the eSprod .ID.

4.2. Normal Operation

The workflow client application sends an execution
request message EXEC(eID,mID) to all replicas, where
the message contains the unique execution identifier and
the identifier of the workflow model that shall be executed.
Upon receiving the message, a replica stores the execution
identifier and loads the workflow model from the workflow
repository. If the replica is the initial primary, i.e., the replica
with the highest ID, it instantiates the loaded workflow model
and sets its primary indicator primr to true.

A replica, say r, that is primary executes the workflow
as follows (cf. Alg. 1 line 1-10): First, r writes an execution
record for the activity that is going to be executed into
the execution history Hr. Then, r executes the activity and
updates eSr.next. Finally, r sends an update containing the



Algorithm 1: Protocol on replica r (Part I)

// normal operation
1 while eSr.next �= null do
2 if primr = true then

// Save input execution state’s ID
3 eSInputIDr := eS.sID;

// Produce next execution state
4 eSr.sID.rID := r;
5 eSr.sID. f := fr;
6 eSr.sID.s := eSr.sID.s+1;
7 write (eID,eSInputIDr,eSr.sID,comp(eSr.next)) to Hr;
8 eSr.σ := execute(eSr.next,eSr.σ );
9 next := succ(G,eS.next);

10 async send UPDATE(eID,eSr);

11 upon receive UPDATE(eID,eSx) do
12 if eSx.s > eSr.s then
13 primr := f alse;
14 eSr := eSx;

// failover
15 upon detected primary failure do
16 fr := fr +1;
17 send REQ VOTE(eID,r, fr) to all replicas;
18 wait for votes;

19 upon receive REQ VOTE(eID,x, fx) from x do
20 if primr = true then // r is primary
21 send REJECT(eID,x, fx) to x;
22 else if x < r then // r has a higher ID
23 if r is not waiting for votes then
24 trigger event detected primary failure;

25 send REJECT(eID,x, fx) to x;
26 else
27 send VOTE(eID,x, fx,eSr) to x;

28 upon receive VOTE(eID,x, fx,eSx) from x do
29 if received VOTE from ≥ tv replicas for (x, fx)
30 AND waited ≥ tt then
31 eSr := execStateWithHighestStateNumber(VOTEs);
32 primr := true;

produced execution state to all replicas. Note that r sends
the update asynchronously, i.e., r continues the workflow
execution while sending the update.

Upon receiving an update from the primary, a backup
applies the included execution state if the state number of
the received state is higher than the one that the backup
currently stores (cf. Alg. 1 line 11-14).

4.3. Failover

All backups monitor the primary by means of a heartbeat
mechanism. If the primary becomes unavailable through
crashing or partitioning, the backups elect a new primary.
Any partition with at least tv replicas elects the replica with
the highest ID in that partition as primary.

Upon detecting a primary failure (cf. Alg. 1 line 15-18), a
backup increments its failover counter indicating it now starts
a failover. Then, it requests VOTE messages from all replicas.

All replicas with lower IDs reply with a VOTE that includes
the execution state of the voter (cf. Alg. 1 line 19-27). Any
replica with a higher ID sends a REJECT message.

A replica requires tv votes for becoming primary. If a
replica receives a single REJECT message, it will not become
primary since this means there is a replica with a higher ID
in the same partition. It, however, might be the case that a
replica receives enough VOTE messages before receiving a
REJECT. Thus, every replica that requested VOTE messages
waits for the time threshold tt even if the replica already
received enough VOTE messages.

If a replica has received tv VOTE messages and no
REJECT after waiting for tt , it becomes primary (cf. Alg. 1
line 28-32). The replica uses the state with the highest state
number from the received VOTE messages as the take-over
state. Now, the new primary returns to normal operation.

When there are multiple partitions each hosting a primary,
the primaries will receive UPDATE messages from each other
after the partitions reconnect. When a primary receives an
UPDATE that contains an execution state with a higher state
number than its own state, the primary stops its execution (cf.
Alg. 1 line 13). Thereby, competing executions are stopped
without introducing additional coordination overhead.

4.4. Termination

When a primary has executed the last activity of the
workflow, it initiates the termination (cf. Alg. 2 line 1-2). The
termination consists of three phases. In the first phase, the
replicas agree on one workflow execution. This also decides
the result of the workflow execution, which is then sent to the
workflow client application. In the second phase, all replicas
learn of the decided workflow execution and compensate the
activities that do not belong to this workflow execution. In
the final phase, the replicas forget the workflow execution
after all replicas finished the necessary compensations.

The first phase can be realized by any consensus protocol,
such as the Paxos protocol [17]. Using Paxos, a majority of
replicas elect a leader which proposes an execution state of
a finished workflow execution as the final execution state. If
a majority of replicas accept the proposal, it is guaranteed
that all replicas will eventually accept the proposal. Thus, a
majority can decide on a final execution state and, thereby,
on the respective workflow execution which produced this
state. Moreover, the final execution state also determines the
result that is then sent to the workflow client application.

In the second phase, the proposer repeatedly sends the
decided final execution state to all replicas until all replicas
have acknowledged the reception. Now, the replicas need
to identify which of their activity executions belong to the
decided workflow execution and compensate all others. For
each executed activity, a replica sends a COMP REQ mes-
sage to all replicas (cf. Alg. 2 line 3-5), where the message
contains the identifier of the execution state produced through
the respective activity execution.

Upon receiving a COMP REQ message (cf. Alg. 2 line 6-
13), a replica, say r, uses the included execution state
identifier for checking whether r used the state as input



Algorithm 2: Protocol on replica r (Part II)

// termination
1 upon eSr.next = null do
2 start Agreement;

3 upon Successful Agreement(eSx) do
4 forall the (eID,eSInputID,eSProdID,comp(a)) ∈ Hr do
5 send COMP REQ(eSProdID) to all replicas;

6 upon Receive COMP REQ(sID) from x do
7 if (eID,eSInputID,eSProdID,comp(a)) ∈ Hr, where

eSInputID = sID then
8 if (comp,eID,eSProdID) ∈ Hr then
9 send COMP(eID,sID);

10 else if (keep,eID,eSProdID) ∈ Hr then
11 send KEEP(eID,sID);
12 else
13 do nothing; // not yet decidable

14 else
15 send COMP(eID,sID) to x;

16 upon Receive COMP(sID) do
17 if received COMP for sID from all replicas then
18 send (eID,eSInputIDr,sID,comp(eSr.next)) to

Compensation Unit;
19 write (comp,eID,sID) to Hr;

20 upon Receive KEEP(sID) do
21 write (keep,eID,sID) to Hr;

// recovery
22 upon Recover in ACTIVE state do
23 send RECOV REQ(eID) to all replicas;

24 upon Receive RECOV REQ(eID) from x do
25 if Terminated and already reached agreement then
26 send DECISION(eID,eSr) to x;
27 else
28 send RECOV RPLY(eID,mID, tv,eSr) to x;

for any of its activity executions. If not, then r can allow
the compensation by replying with an ALLOW message.
However, if r used the execution state as input, it can
only allow the compensation after compensating the activity
execution for which the state was used. Moreover, in case
this activity execution belongs to the decided execution, it
has to be kept. In this case, r replies with a KEEP message.

A replica can only compensate the activity after all
replicas replied with an ALLOW message (cf. Alg. 2 line 16-
19). For triggering the compensation, a replica sends the ex-
ecution record of the activity execution to the Compensation
Unit. Afterwards, the replicas writes a compensation record
(comp,eS.sID) to the execution history. If one replica replies
with a KEEP message (cf. Alg. 2 line 20-21), the activity
execution belongs to the decided workflow execution and the
activity is not compensated. In this case, the replica writes
a keep record (keep,eS.sID).

The replica regularly repeats the COMP REQ messages
until it has written a keep or compensation record for each
activity that it has executed. After all records have been
written, the second phase is finished. Basically, the workflow

execution is now completed. However, the replica has to
keep the execution’s data in volatile memory because the
other replicas still might be in the second phase.

To forget the execution, i.e., to remove all the data of
the execution from the volatile memory – and stable storage
if desired – the termination has a third phase. A replica
that finishes the second phase starts a 2PC protocol [18].
The action carried out by the 2PC protocol is the forgetting
of the execution. When all replicas agree to be ready to
forget, i.e., when the replicas have finished the second phase,
the forgetting is committed. Upon receiving such a commit,
the replicas write an (end,eS.sID) record to the execution
history and remove all data from volatile memory. For saving
space on stable storage any workflow execution with a begin
and end record may be pruned from the execution history.

4.5. Recovery

Through crash failures, a replica loses the data kept in its
volatile memory. Upon recovery, a replica reads its execution
history. Here, we differentiate the following cases:

UNKNOWN A replica that has either no record of the
execution eID in the execution history or both a begin
and an end record for eID in its execution history.

ACTIVE A replica that has a begin but no end record for
the execution eID in its execution history.

Obviously, a replica that recovers in the UNKNOWN state
cannot initiate any recovery steps for eID.

When recovering in the ACTIVE state (cf. Alg. 2 line 22-
23), the replica has to retrieve values for the variables in its
volatile memory before it can participate in the replicated
execution again. Thus, it requests the data from all replicas
by sending a RECOV REQ message.

Upon receiving a RECOV REQ (cf. Alg. 2 line 24-28), a
replica reacts differently depending on whether the workflow
execution is already terminating. In specific, if the execution
has already finished the first phase of termination, the replica
sends a DECISION message to the recovering replica, where
the DECISION message contains the decided execution
state. Otherwise, the replica sends a RECOV RPLY, which
contains the workflow model identifier, the vote threshold,
and execution state that the replica currently stores.

When the recovering replica receives an RECOV RPLY,
it loads the workflow model of the received workflow model
identifier from the workflow repository. Additionally, it saves
the received vote threshold and executions state. Afterwards,
the replica returns to normal operation acting as a backup.
In case that the recovering replica receives a DECISION
message, the replica also saves the included execution state
and returns to normal operation, where it directly starts the
second phase of termination.

5. Evaluations

We implemented a prototype of our partition-tolerant
replication protocol using the Apache MINA framework
for realizing the communication.2 We deploy the prototype

2. https://mina.apache.org/, https://www.openstack.org/
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Figure 4. Execution time and compensation cost of replicated workflow executions in the presence of failures [lower is better].

on OpenStack, where up to 9 replicas are running each in
a dedicated virtual machine (VM) with 1 vCPU and 2 GB
RAM. For the measurements, we generate workflows with
100 activities, which is in the range of typical workflow
lengths [19]. A study has shown that for clients with a
reliable connection, most web services have a response time
below 500ms while few services have a response time of
several seconds [20]. We reflect this by setting the execution
time of the activities using random non-negative values of
a Gaussian distribution with a mean of 0ms and a standard
deviation of 500ms. The compensation cost of activities is
domain specific and, thus, cannot be generalized. However,
this is no problem as a user or domain expert can set the vote
threshold tv through which the compensation cost incurred
by our protocol can be controlled, as we will see below. In
our measurements, we set the compensation cost of each
activity using the values of a random function with a uniform
distribution ranging from $0 to $100.

Overall, we measured over 40,000 workflow executions
in terms of availability and compensation cost. For making
the compensation cost of the randomly generated workflows
comparable, we normalize the compensation cost by the cost
for compensating the complete workflow once. Here, 100%
is equal to compensating all activities of the workflow once.
The optimal value is 0%. Moreover, we inject failures at
random points in time, where each failure either partitions
the network or crashes one replica. The ratio of partition to
crash failures is 1 to 4 reflecting that partitioning failures
occur less frequently [21]. Both partition and crash failures
have a mean-time to recovery of 30s.

For comparison, we evaluate active replication (ACT) and
a non-replicated execution (NR). Additionally, our partition-
tolerant replication protocol is identical to passive replication

when setting the vote threshold tv to � |R|2 �+1, where R is
the set of all replicas.

In Fig. 4, we evaluated replicated workflow executions
with 3, 5, and 9 replicas as well as a non-replicated execution.
The unavailability of the non-replicated execution (NR) is
steeply increasing with failures. Actually, each failure delays
the non-replicated execution by the mean-time-to-recovery,
i.e., 30s. Any replicated execution easily outperforms the
non-replicated execution.

With only one failure, the availability of active replication
and all partition-tolerant replication approaches is basically

unaffected. This is not surprising because all approaches can
tolerate one partitioning or crash failure. With more than
one failure, the approaches start to diverge. In specific, one
partitioning plus one crash failure can create two partitions,
where no partition contains a majority of replicas. This means
that passive replication (i.e., tv = 2 for 3 replicas, tv = 3 for
5 replicas, and tv = 5 for 9 replicas) cannot elect a primary.
Here, active replication performs substantially better because
it continues the execution even if all but one replica is failed.
Thus, active replication provides the baseline of what can
be achieved in the best case. With replication degree 3, our
partition-tolerant replication with tv = 1 reaches nearly the
availability of active replication. With replication degree 5
and 9, the availability of active replication and our partition-
tolerant replication with tv = 1 are almost identical.

When considering the compensation cost of the repli-
cation approaches in Fig. 4, we can observe that active
replication is no feasible solution. In the failure free case,
it implies 200% compensation cost with replication degree
3, 400% with 5 replicas, and 800% with 9 replicas. The
compensation cost gets smaller with an increasing amount
of failures because crashed replicas do not execute activities
and, thus, reduce the compensation cost.

All other replication approaches, i.e., passive and our
partition-tolerant replication with the different vote thresh-
olds, do not cause any compensation cost in the failure free
case. With more than one failure, partition-tolerant replication
incurs higher compensation cost when the vote threshold tv
is decreased. As decreasing tv allows smaller partitions to
elect a primary, partitioning failures lead to more competing
workflow executions and, eventually, to more compensations.

In conclusion, when striving for availability, setting
low values for tv allows to reach near active replication
performance. Especially, with a low replication degree, such
as replication degree 3, setting tv = 1 and tolerating the
higher compensation cost increases availability significantly.

6. Related Work

Ensuring availability is an important consideration for
any network-related application. Replication is commonly
used to ensure availability in the presence of failures for
such applications [10]. So far, there only exist two workflow
replication techniques: passive and active replication [8],
[9], [22]. However, both techniques have their shortcomings:



active replication implies high compensation cost even in
failure free cases, while passive replication provides lower
availability than active replication. Our proposed partition-
tolerant replication protocol overcomes the limitations by
providing the availability of active replication while imposing
no compensation cost in the failure free case and even
significantly lower compensation cost in the presence of
failures compared to active replication.

Some existing approaches propose hybrid active-passive
replication scheme, where they switch between active and
passive replication at run-time [1]. Thus, the approaches use
either active or passive replication at each point in time,
which means that the approaches still have the shortcomings
of the respective technique. In contrast, our protocol explores
the search space between active and passive replication.

Other approaches for tolerating failures are integrating
fault handlers into the workflow model [23]. If failures occur,
the workflow model will react as defined by the workflow
designer. However, these approaches cannot mask failures
of the device on which the workflow is running.

For ensuring availability in the presence of service
failures, there are mechanisms that allow to call an alternative
service if the currently called service fails [24]. Even though
this decouples the availability of the workflow execution from
the availability of a specific service, the technique cannot
tolerate the failure of the device on which the workflow
is being executed. Interestingly, we could integrate these
techniques into our protocol for further improving availability.
Another possibility would be to execute the services (if these
are internally modeled as workflows) with our protocol for
making the services themselves highly available nullifying
the need of calling alternative services.

7. Conclusion

In this paper, we proposed a partition-tolerant repli-
cated workflow execution protocol, which combines the
strengths of active and passive replication protocols. Our
protocol provides a mechanism for letting a domain expert
decide whether the execution should behave closer to active
replication – tolerating more concurrent failures during the
workflow execution – or to passive replication – minimizing
the compensation cost in the presence of failures. Our
evaluations show that our protocol successfully avoids to
incur compensation cost for failure free executions like
passive replication while ensuring high availability in the
presence of multiple failures like active replication.
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