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ABSTRACT
Recently, several approaches have been proposed to automatically
model indoor environments. Most of such efforts principally rely
on the crowd to sense data such as motion traces, images, and WiFi
footprints. However, large datasets are usually required to derive
precise indoor models which can negatively affect the energy ef-
ficiency of the mobile devices participating in the crowd-sensing
system. Furthermore, the aforementioned data types are hardly suit-
able for deriving 3D indoor models. To overcome these challenges,
we propose GraMap, a QoS-aware automatic indoor modeling ap-
proach through crowd-sensing 3D point clouds. GraMap exploits
a recently-developed sensors fusion mechanism, namely Tango
technology, to cooperatively collect point clouds from the crowd.
Afterward, a set of backend servers extracts the required geometri-
cal information to derive indoor models.

For the sake of improving the energy efficiency of the mobile
devices, GraMap performs data quality assurance along with 3D
data compression. Specifically, we propose a probabilistic quality
model—implemented on the mobile devices—to ensure high-quality
of the captured point clouds. In this manner, we conserve energy
via sidestepping the repetition of sensing queries due to uploading
low-quality point clouds. Nevertheless, the resultant indoor models
may still suffer from incompleteness and inaccuracies. Therefore,
GraMap leverages formal grammars which encode design-time
knowledge, i.e. structural information about the building, to en-
hance the quality of the derived models. To demonstrate the ef-
fectiveness of GraMap, we implemented a crowd-sensing Android
App to collect point clouds from volunteers. We show that GraMap
derives highly-accurate models while reducing the energy costs of
pre-processing and reporting the point clouds.
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1 INTRODUCTION
Location-based services (LBS) play nowadays a significant role in
our daily life. They broadly acquire real-time geo-data from mobile
devices to provide information, entertainment or security. However,
the provision of such services in indoor environments, e.g. emer-
gency response, indoor navigation/routing in airports, universities,
hotels, and other public buildings, is still limited due to the lack of
precise and up-to-date indoor maps. The primary reason behind this
scarcity emerges since manual mapping of indoor environments is
often cumbersome and costly. Therefore, it is drastically favorable
to automate the process of generating indoor maps.

Lately, several approaches for automatic indoor mapping have
been proposed in the literature [1, 10, 16, 18]. The common feature
among these efforts is the acquisition of mapping data, such as
motion traces, images, WiFi footprints from a crowd of users. Al-
though these approaches showed promising results, they primarily
suffer from various shortcomings: (1) Large datasets are mostly
required to construct precise indoor maps. For instance, Jigsaw [10]
demands collecting between 100 and 150 images for each landmark
to achieve precise mapping. (2) Important QoS metrics, such as
energy overhead on the participating mobile devices as well as the
sensing latency, have been broadly overlooked. (3) The collected
data types are limited to the derivation of 2D maps. To tackle such
challenges, we introduce GraMap as an indoor modeling method
through crowd-sensing 3D point clouds in a participatory fashion.
GraMap leverages a recently-developed sensor fusion mechanism,
namely Tango technology, to cooperatively collect point clouds
from mobile devices of normal individuals.

GraMap represents a two-step process of deriving indoor mod-
els: (1) deriving an initial model through applying several stages of
clutter filtration on the collected point clouds and (2) augmenting
accuracy of the initial model via integrating them with indoor gram-
mars. In general, indoor grammars are powerful tools to encode
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structural information for different kind of architectural domains.
Floor plans of public buildings usually follows certain architectural
principles. For instance, the buildings are typically traversed by
a set of hallways to ensure convenient access to the rooms. Such
hallways divides each floor into a set of hallway areas and non-
hallway areas. The latter can be further divided into a set of rooms
or room units. In these cases, grammars can be simply adopted
along with point clouds to derive a highly-accurate indoor model.
To the best of our knowledge, GraMap is the first mapping method
which employs formal grammars along with point clouds to gener-
ate highly-accurate indoor models.

Aside from modeling accuracy, GraMap also considers the en-
ergy costs of collecting point clouds from “resources-constrained”
mobile devices. To this end, we employ Octree compression to
reduce the transmission overhead. Nevertheless, energy can still
be wasted if a sensing area is repeatedly queried due to receiv-
ing low-quality data collected by non-experts. In these cases, the
sensing task typically takes longer time and the mobile devices
waste energy of pre-processing and uploading several point clouds
of the same area. To overcome such a problem, We first analysis
the quality of point clouds in terms of several criteria including
completeness and skewness. Based on this analysis, we introduce
a probabilistic quality model (PQM) — implemented on the mobile
devices — to assess the quality of the captured point clouds before
further processing and radio transmission. Hence, point clouds can
be entirely rejected if their quality measure is smaller than a quality
margin. In this realm, it is important to mention that we are the first
to consider several QoS metrics (i.e. accuracy, latency, and energy
consumption) while deriving indoor models.

In detail, the paper provides the following contributions: (1) We
define an architectural framework for modeling indoor maps us-
ing crowd-sensed 3D point clouds. (2) We present an approach
that exploits structural knowledge encoded in formal grammars to
compensate for inaccuracies due to collecting point clouds from
the crowd. (3) We introduce a probabilistic quality model to avoid
wasting energy due to uploading several low-quality point clouds
of the same geographical region. (4) We provide an implementa-
tion of indoor grammars describing structural information about
room layouts. In this regard, we employ a Hidden Markov Model
(HMM) [19] along with the Viterbi algorithm to properly estimate
the probable room layout. (5) We present a proof-of-concept imple-
mentation and evaluation of the proposed approach in a real-world
scenario. To this end, we implemented an Android App to collect
more than 107 point clouds, i.e. circa 2.5 GBytes of collected data.
Our App improves accuracy of the collected data through integrat-
ing the main three features of Tango technology, namely motion
tracking, depth perception, and area learning [2]. The results show
that using our grammar-based approach, we obtain a significant
improvement of the modeling accuracy relative to the initial models
with a reasonable reduction in the consumed energy.

The remainder of this paper is organized as follows: Section 2
introduces the system model and briefly explains the various com-
ponents of our proposed method. Section 3 explains the acquisition
of point clouds from personal mobile devices along with presenting
the probabilistic quality model. Section 4 describes the processing

of point clouds to derive initial indoor models. In Section 5, we ex-
plain the exploitation of formal grammars to enhance accuracy of
the initial models derived using point clouds. Section 6 presents our
real-world performance evaluations in terms of modeling accuracy
and energy consumption of the mobile devices. Finally, Section 7
discusses recent work in the realm of indoor mapping and crowd-
sensing before Section 8 concludes the paper with an outlook on
future work.

2 SYSTEM OVERVIEW
In this section, we introduce the system architecture along with
our assumptions. The system consists of a set of mobile devices
M = M1, · · · ,Mn which upload their point clouds P = P1, · · · , Ps
to a back-end server. A sensing query q in indoor modeling ap-
plications typically comprises: (1) the location of the area to be
scanned lq and (2) the minimum quality requirements Tq . Once a
participating mobile device receives a sensing query, the user scans
the queried space lq . Figure 1 depicts the main processing steps re-
quired to extract precise indoor models. The point cloud acquisition
component, implemented on the mobile devices, receives sensing
queries from a crowd-sensing server to scan geographical areas.
In this regard, we assume that the mobile devicesM are aware of
their location in the building. To reduce the energy overhead of
repeatedly scanning an area, the point cloud acquisition compo-
nent implements a probabilistic quality model to sidestep uploading
low-quality data.

The Initial modeling component receives n point clouds from
the participating mobile devices. Subsequently, it processes the
point clouds to generate an initial indoor model. Specifically, it
starts with downsampling the point clouds to reduce the noise
level. Furthermore, performing downsampling significantly reduces
the execution time of the subsequent steps. Afterward, GraMap
employs principal component analysis (PCA) to filter out the points
in accordance with their normals’ angle (cf. Section 4). To infer the
geometrical semantics, we partition the point clouds into a set of
planar segments. Subsequently, an initial indoor model is obtained
through projecting the 3D segments onto 2D segments, converting
the segments into lines, and finally refining the line segments.

In fact, the collected point cloudsP typically comprise duplicated
objects, i.e. common walls of neighboring rooms. Furthermore, not
all queried areas are perpetually accessible by the participating
users. Besides, the inexact localization often results in generating
less-accurate point clouds. These shortcomings hinder the direct
derivation of highly-accurate indoor models from crowd-sensed
data. To amend the initial model, the Grammar-based modeling
component improves the modeling accuracy through exploiting
indoor grammars. Indoor grammars typically comprise a set of
terminal and non-terminal symbols which represent the rooms
and hallways. A typical grammar comprises also a set of deriva-
tion rules for splitting the non-hallway areas into room sequence.
Particularly, GraMap extracts geometrical information, e.g. room
size, from the initial model and then it feeds this knowledge to the
grammar for generating the room layout. In this paper, we assume
that the grammar is generated from the floor plan of other buildings
which have similar architectural style. Since grammar generation
is beyond the scope of this paper, the implementation details of the
grammar generator can be found in [5].
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Figure 1: Various processing steps in GraMap

3 POINT CLOUDS ACQUISITION
In this section, we explain our approach for sampling point clouds
from the depth sensors of Tango devices. Afterward, we discuss col-
lecting point clouds from the crowd in an energy-efficient manner.
In this regard, we apply a well-known 3D data compression method,
namely Octree compression. We also introduce our probabilistic
model for assessing the quality of the sampled point clouds before
compressing and uploading them to the crowd-sensing servers.

3.1 Point Clouds Pre-Processing
To sample the point clouds, we exploit the main features of Tango
devices, namelymotion tracking, area learning, and depth perception.
Tango devices are generally capable of tracking their own position
and orientation in space, i.e. their pose, through fusing visual and
inertial odometry [2]. Specifically, Tango devices estimate changes
in their position via tracking features in a set of image frames
collected using the motion tracking camera. Subsequently, Tango
integrates these position changes with the rotation and acceleration
changes coming from the inertial motion sensors. However, the
motion traces — obtained by motion tracking — often suffer from
accumulative drifts. To overcome such a technological obstacle,
the collected frames are to be matched to unique reference frames.
Through area learning, mobile users can store the key visual land-
marks of a physical space in highly-compressed files, namely area
description files (ADFs). These landmarks are then exploited as
reference frames.

Generally, depth sensors rely on viewing infrared (IR) light to
collect the depth information. Practically speaking, the sensors gen-
erate several snapshots while scanning a certain space, e.g. room or
room unit. Each snapshot comprises the 3D coordinates for as many
points in the scene as are possible to calculate. These coordinates
use the coordinate frame of the depth-sensing camera as the origin.
In GraMap, we perform two steps to sample a proper point cloud,
including (1) point cloud registration and (2) snapshots alignment.
The former step denotes integrating area learning and depth per-
ception features of the Tango technology so that all sampled point
clouds are referenced to a unique coordinate system. In other words,
the collected points are not anymore estimated relative to the focal
center of the depth camera, instead they are computed relative to a

stored ADF file. In the second step, we align the sampled snapshots
to their correct orientation and position. The coordinate system of
the range data from a tango device is relative to the depth sensor
itself. This means that if we capture consecutive snapshots while
moving, the snapshots will not display correctly relative to each
other. To properly align the snapshots, we again exploit the motion
traces — recorded while scanning the snapshots — to rotate and
translate the snapshots into the same coordinate system [22].

To reduce the communication costs, the mobile devices upload
a compressed version of the point clouds to the back-end server.
Afterward, the required geometrical information are precisely ex-
tracted on the server-side. To this end, we utilize the octree-based
compressionwhichwasmainly designed for 3D point clouds [23]. In
octree compression, a sampled point cloud is spatially decomposed
into an octree data structure. Literally, an octree is a tree-based
data structure for managing 3D data where each internal node
has exactly eight children. Subsequently, the decomposed data is
quantized through replacing the points, present in each cell, by the
cell centers of the octree’s leaves. An additional compression step
involves arithmetically encoding the remaining points through con-
sidering only cells whose child cells are nonempty. After receiving
the compressed point clouds, the servers perform decompression
before extracting the geometrical information. To further improve
the energy efficiency, we below describe a probabilistic method to
judge quality of the sampled point clouds.

3.2 Probabilistic Quality Model
Since point clouds are to be collected by non-experts, the collected
data may suffer from low quality, i.e. being incomplete, inaccurate,
and/or oblique. In this case, the crowd-sensing servers may need
to repeatedly query for additional point clouds of the same area lq .
Consequently, the energy overhead for scanning a certain area can
be significantly increased. As a way out of this limitation, we adopt
a quality check point on the mobile devices while answering a given
sensing query q. Once a mobile devicem receives a sensing query
q, the depth sensor generates a point cloud Pq of the targeted area
lq . Ahead of pre-processing and uploading the point cloud Pq to a
corresponding server, the mobile devicem checks various quality
metrics. In this regard, we define an acceptance probability Pac as



MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia M. Abdelaal et al.

a conditional probability of the depth sensor to generate a high-
quality point cloud given a set of quality metrics X = {x1,x2, · · · }.
If the probability Pac is found to be low compared to the quality
requirements Tq encoded in the sensing query, then the crowd-
sensing App asks the user to rescan the area lq . Thus, GraMap
sidesteps the repetition of sensing queries which can be instantiated
due to uploading low-quality point clouds.

In fact, there exist several factors which inevitably affect the
quality of point clouds. First, the acquisition system and the mea-
surement principle, i.e. time-of-flight, stereo matching, or struc-
tured light, strongly affect accuracy of the depth data. For instance,
we demonstrated in [20] that point clouds generated from laser
scanners are relatively more accurate than those acquired by Tango
mobile devices. Nevertheless, we selected to utilize the mobile de-
vices to share the load of collecting point clouds among several
users. Simultaneously, GraMap compensates for this accuracy differ-
ence through imposing the Tango-based point clouds to additional
filtering steps (cf. Section 4).

Second, the environmental conditions such as variations in am-
bient light, pressure, temperature or humidity have sometimes a
non-negligible influence during the sampling process [26]. Since
they rely on IR light, Tango devices are not mostly capable of col-
lecting depth information in areas illuminated by light sources high
in IR such as sunlight or incandescent bulbs. Furthermore, lighting
may negatively affect the localization accuracy. According to [2],
the sampled rooms may shift from their actual locations when-
ever the lighting conditions are dissimilar to that conditions while
recording the area learning model. To avoid such drifts, GraMap
utilizes several ADF models recorded at different time of the day.
While answering a sensing query, a participating mobile device
selects an ADF model whose recording time is relatively close to
the moment of scanning the queried area lq .

Third, characteristics of the observed scene in terms of object
materials, surface reflectivity, and surface roughness significantly
influence light reflection on the object surfaces. This implies that
Tango devices can hardly collect depth information from objects
that do not reflect IR light, e.g. glass walls and windows [2]. Fourth,
scanning geometry — defined as the distance and orientation of
scanned surfaces with respect to the involved depth sensor — highly
impacts the density and accuracy of the collected points. Current
Tango devices have typically an operating range between half a
meter to four meters. Scanning an object at a distance outside this
range leads either to collecting an insufficient number of points or to
crashing the Tango core. Similarly, swift movements of the mobile
devices can negatively contribute to the collected data quality.

Based on this analysis of factors impacting the quality of point
clouds, we selected to monitor two distinct metrics, namely in-
completeness and skewness. As aforementioned, point clouds are
captured through aligning several snapshots together. Through our
experiments, we found that the number of points in each snapshot
is inversely proportional to the distance between the mobile de-
vice and the targeted surface. Additionally, the number of points
per snapshot highly reduces when scanning a window, or a glass
wall. To collect as many points in these scenarios, a user has to
slowly scan these surfaces several times to cover as much details
as possible. To express the incompleteness metric, we define a

points threshold αp where snapshots whose number of points ns
is smaller than the threshold αp can be annotated as incomplete
snapshots Sin . Throughout our experiments, we found that setting
αp to five thousand 3D points enables proper annotation of snap-
shots. Accordingly, we define the probability of a point cloud to
be incomplete Pin = |Sin ||S | ,∀ Sin : ns ≤ αp where |S | is the total
number of snapshots in the captured point cloud and |Sin | is the
number of incomplete snapshots.

Aside from incompleteness, skewness denotes the incorrect ori-
entation of scanned objects as a result of tilting the mobile devices
while scanning an area. In fact, it is hard to entirely sidestep skews
originated from improper scanning. However, the quality model
can reject severe cases in which tilting of the scanned objects is
broadly intolerable. In this regard, GraMap exploits the pose in-
formation to estimate the Euler’s rotation angle, namely the roll
angle ψ (cf. Equation 1). Specifically, Tango devices provides the
orientation data as a quaternion of the target frame with reference
to the base frame [2]. These quaternions are typically defined in the
form: a +b · −→i + c · −→j +d ·

−→
k where a, b, c , and d are real numbers

while −→i , −→j , and
−→
k represent the standard orthogonal basis of the

3D space [6].

ψ = atan2(2(ab + cd), 1 − 2(b2 + c2)) (1)

To infer skewness of captured objects due to improper handling
of the mobile device, we map the roll angleψ onto a random vari-
able Xψ which is normally-distributed, i.e. Xψ ∼ N(µ,σ 2). It is
reasonable to set the mean µ to 90◦ which reflects the correct han-
dling of the mobile devices while scanning point clouds. A variance
σ 2 = 30◦ has been found convenient for detecting intolerable skews.
Accordingly, skewness probability Psk can be estimated as follows.

Psk = 1 − P(Xψ = ψ ) (2)

To denote the acceptance probability Pac , we employ the inclusion–
exclusion principle to sum up the various probabilities. In this re-
gard, we introduce a random variable Xa ∈ {0, 1}, which reflects
the case that a sampled point cloud P can be further pre-processed
and uploaded (Xa = 1), or not (Xa = 0). Since our quality metrics
are independent, we obtain

Psum = Pin (Pq ) + Psk (Pq ) − Pin (Pq ) × Psk (Pq ). (3)

Consequently, the acceptance probability of Pq to be annotated as a
high-quality point cloud can be computed according to Equation 4.
In this regard, we consider the quality requirement Tq encoded in
the sensing query q.

Pac (Xa = 1 | X) =

1 if Psum ≤ Tq
0 otherwise

(4)

4 POINT CLOUDS-BASED MODELING
In this section, we elaborate on the initial modeling of indoor en-
vironments through crowd-sensed point clouds. As depicted in
Figure 1, the aggregated point clouds are imposed to multi-stage
filtering to compensate for possible inaccuracies. Let the octree
decompression generates a point cloud Pdec ∈ R

m where m is
the number of 3D points, i.e. pi = {xi ,yi , zi }, pi ∈ Pdec . We first
perform downsampling and removal of clutter, i.e. any undesirable
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object present in the scanned point cloud Pdec . In general, the de-
sired objects, e.g. walls, ceiling, floors, have usually superfluous
points describing them. Hence, the voxel grid filter [21] is employed
before further processing the point cloud Pdec . A voxel grid is prin-
cipally a 3D grid map with fixed resolution, i.e. a set of tiny identical
3D boxes in space. The core idea behind voxel grid is to convert
the continuous geometric representation into a set of voxels, i.e.
V = {v1, · · · ,vi , · · · ,vr } where r ≪m, that best approximates the
continuous representation. Downsampling is performed through
approximating the points present in each 3D box vi with their cen-

troid C :=
∑ρ
i=1 pi
ρ where ρ is the number of points in each voxel

vi . Hence, the resultant point cloud Pvox has a resolution of r , i.e.
Pvox ∈ R

r .
To derive an indoor map, we have to identify the walls location in

the point cloud Pvox . To this end, we utilize the normal of each point
to filter out the points describing other semantics, e.g. furniture. In
geometry, a normal is a vector that is orthogonal to a given object.
For points belong to a wall, their normals are ideally parallel to
the ground plane ϑ = 0 (cf. Figure 2a). Whereas, other objects may
have normals pointing to any other direction. In fact, estimating
the normal to a point on a surface is approximated by the problem
of estimating the normal of a plane tangent to that surface. As
depicted in Figure 2b, the normal ni at a point pi is determined
from the surrounding point neighborhood support of the point (i.e.
dotted circle of radius η comprises k neighboring points). In this
realm, we employ the principal component analysis (PCA) method
[11] for computing the surface normal.

(a) Normals angle relative
to the ground plane

(b) Normal estimation at
point pi

(c) An example of normals estimation for a small room

Figure 2: PCA-based normals estimation

For each point pi ∈ Pvox , the PCA method determines three
eigenvector/eigenvalue pairs. An eigenvector −→v serves as a direc-
tion, while the corresponding eigenvalue λ denotes the variance
in this direction. Formally, for each point pi ∈ Pvox , a covariance
matrix Σ is estimated for a set of neighboring points within the
circle, as expressed in Equation 5 [21] where p is the 3D centroid
of the neighbors. Generally, the covariance between two points pi

and pi+1 is a measure of the joint variability of these two points,
i.e. quantifying their cross-correlation. Specifically, the eigenvalues
are determined by solving det(Σ − λ · I ) = 0 where det is the de-
terminant operator and I is the identity matrix. Subsequently, the
eigenvectors are determined through solving Equation 6 given the
covariance matrix Σ and the eigenvalues λ.

Σ =
1
k

k∑
i=1
(pi − p) · (pi − p)

T (5)

Σ · −→vj = λj ·
−→vj , j ∈ {1, 2, 3} (6)

To illustrate the normals-based filtering method, Figure 2a shows
four different normals n1, · · · ,n4. To compensate for possible drifts
due to approximating the normals estimation method, we consider
a small safety margin θth while classifying a point to be part of
a wall. Accordingly, the normals n1,n2 are to be classified as wall
points since their angles are smaller than the margin θth . Whereas,
the other normals n3 and n4 are annotated as outliers. Figure 2c
demonstrates an example of uniformly spatial-distributed normals
for a point cloud Pvox . As it can be seen in the figure, for each
point pi there exists a normal vector, i.e. red arrow which declares
the point’s orientation. The number of points having normals in a
direction parallel to the ground plane is a convenient criterion for
filtering out the clutter. After filtering out the points whose normal
angle is larger than the safety margin, i.e. ϑ > θth , the point cloud
Pvox turns into a smaller cloud Pnorm . Nevertheless, there may
exist clutter whose surface is parallel to the walls, e.g. chairs body,
screens, etc. Moreover, clutter may present in the corners between
the walls.

Therefore, the next filtering step involves partitioning the point
cloud Pnorm into a set of planar segments S = {S1, · · · , Sд} where
д is the number of segments. Afterward, we filter out segments
according to their orientation, their point density, and their sur-
face curvature. Literally, segmentation stands for the process of
partitioning a point cloud into smaller and distinct segments, with
the points in each segment Si being in a semantic relation to each
other. For our purpose of detecting the wall segments, the seman-
tic relations are defined in terms of the points’ locations in space,
i.e. points are part of the same smooth surface, and the difference
between normals angle of the neighboring points. Points which
cannot be allocated to any segment are referred to as outliers and
hence they are filtered out. GraMap employs the region-growing
segmentation [15] to cluster the point clouds into planar segments.

As its name implies, the region-growing method selects a seed
point ps with normal angle θs and then it extends the region around
ps till meeting a stopping condition. To select an appropriate seed-
ing point pi , the method sorts the point cloud Pnorm to find the
point having the minimum curvature value. The intuition behind
this selection is that growth from the flattest area typically decreases
the number of segments [14]. The algorithm starts with finding
the k-nearest neighbors of the seed point ps . These neighboring
points are added to the region whenever the difference between
their normals and the angle θs is less than a certain threshold. The
points whose curvature values are less than a threshold Cth , are to
be added to the list of potential seed points. If the list of potential
seeds is empty, the region is annotated as a complete segments and
the algorithm is repeated for the rest of the point cloud.
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So far, the point cloud Pnorm is converted into a set of segments
S ∈ Rд . Recalling that the point clouds are collected from the
crowd, the uploaded point clouds sometimes suffer from skews
which cause the segments to be tilted and rotated, instead of — in
case of ideal scanning — being aligned in a flat vertical plane. To
overcome these problems, we project the segments onto the x/y-
plane. Afterward, we construct a bounding box for each segment.
To this end, we make use of the eigenvectors e1 and e2 pointing
in the direction of the segment’s width and height, i.e. parallel to
the segment’s surface (cf. Figure 3). Specifically, the eigenvectors
are utilized to rotate the segment around its centroid such that
the eigenvectors align with the axes of the coordinate system. The
four corner points of the bounding box then correspond to possible
combinations of the minimum and maximum x- and y-coordinates
of the segment’s points. Finally, we inscribe a line segment (long
dashed line in Figure 3) in the middle of the bounding box such
that its end points are located in the middle of the segment’s lateral
edges.

Figure 3: Transforming a segment of points into a line

The resultant model from the previous step, for some wall seg-
ments, may contain multiple disjointed lines describing the same
wall. An example could be a line segment with a large window,
where the wall segments above and below the window might have
been split into separate segments by region growing. It is then
likely, that their ventral positions differ and thus they also yield
two individual wall sections. Moreover, some walls which separate
neighboring rooms, are to be mostly scanned twice from both sides.
To refine the line segments, we merge segments with similar fea-
tures. Merging occurs, if (1) two segments si and sj are oriented
in the same direction (i.e. both horizontally or both vertically) and
(2) the Euclidean distance d between the two line segments is less
than a specified threshold. If these two conditions are met, an ar-
tificial line segment smerged is constructed replacing the original
segments si and sj . After refining the line segments, the output
model represents the indoor model derived from crowd-sensing
point clouds. Despite the successive filtration and refining steps,
the resultant model still suffers from repetitive line segments and
several inaccurately localized wall segments. To further refine the
indoor model, we exploit the structural knowledge embedded in
formal indoor grammars. Below, we explain the formal grammars
in more detail, before we explain their utilization for enhancing the
indoor modeling process.

5 GRAMMAR-ENHANCED MODELING
In this section, we introduce indoor grammars as a tool for fitting
the initial model derived by processing the crowd-sensed point
clouds. We start with defining the indoor grammar and its compo-
nents. Subsequently, we explain a hidden Markov model (HMM)
method to derive the indoor model using the grammar rules and
the initial model, obtained in the previous section.

5.1 Indoor Grammar
Before delving into the details of indoor grammars, we have first
to introduce the idea behind formal grammars [17]. A grammar
mainly consists of a set of production rules of the formA→ α where
A is a non-terminal symbol and α is a sequence of symbols. The
production rules can be viewed as definitions of the non-terminal
symbols at the left-hand side of the rules. There exists also a set
of terminal symbols which do not appear on the left-hand side of
any rule. The process of replacing non-terminal symbols by their
definitions is referred to as derivation where a distinguished non-
terminal symbol, called Start S is used to trigger the derivation
process. Derivation is successively applied till obtaining a sequence
which contains solely terminal symbols.

Grammars have been utilized in manifold applications for infer-
ring higher-level semantics, data compression, and pattern match-
ing [12, 13]. In this paper, we discuss the invocation of formal
grammars to model the structural information of buildings. In gen-
eral, buildings are usually traversed by a system of hallways to
ensure convenient access to the rooms. Such hallways partitions
each floor into hallway spaces and non-hallway spaces. Along each
non-hallway space predominantly lies a linear sequence of rooms
which are parallel to the adjacent hallway. The design of such
buildings typically follows architectural principles and semantics
relationships. For example, public buildings often comprise a lim-
ited set of room sizes. Such architectures can be precisely modeled
by formal grammars.

Specifically, the structural information of non-hallway spaces
can be described by a formal grammar of the form G = (N ,T ,R, S),
where N is the non-terminal symbols, T = {ϵ, r1, r2, · · · } is the
set of terminal symbols, R is a set of production rules, and S =
Space is the axiom. Each terminal symbol ri ∈ T constitutes a
class i of rooms. Table 1 provides an example of a room grammar
rule Rroom1 which describes a room in terms of its width and its
type. Although the indoor grammar encodes knowledge about the
geometrical semantics, it lacks knowledge of the neighborhood of
these semantics. Hence, we define two probability models for the
grammar: (1) the a priori probability Pa (ri ) principally stands for
the relative frequency of occurrence of a room or room unit and (2)
the relationship probability Pr (r j | ri ) is a conditional probability
which models the relationship between rooms or room units. The
room units are defined in a similar manner as sequence of rooms.
Below, we explain our proposed method for enhancing the initial
indoor model using the described indoor grammar.

5.2 Grammar-Based Model Fitting
As explained earlier, the collected point clouds are usually not
complete and sometimes they do not include important details. The
reason lies in collecting the point clouds on-the-fly while employing
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Table 1: Examples of grammar rules representing rooms and
room units

Rroom1 Runit5

Rule Space → r1Space Space → r3r2r3Space
Width 2.4 m 19.2 m

A-priori 0.06 0.04
Type small office two executives with assistant’s office

untrained individuals who lack the knowledge of the processing
pipeline. As demonstrated in Figure 1, the initial indoor model is
used as input to a subsequent processing stage for improving the
modeling accuracy. To this end, we utilize the indoor grammar to
fit the model so that the rooms are properly allocated. In particular,
we perform two main steps: (1) extracting the room sizes from
the initial model, and (2) employing an HMM method to derive a
highly-accurate floor plan.

5.2.1 Walls Extraction. To explain how the split grammars can
be used as a model fitting tool, we have to understand the method-
ology by which we apply the split grammar to derive the room
layouts. Specifically, the production rules have to be applied along
a given line, referred to as the reference line segment (RLS). These
RLS lines L = L1, · · · ,Lu are used as a reference while cascading
the successive rooms r1, r2, · · · . We exploit a set of reference lines,
which are provided by the indoors grammar (cf. [5]). For each RLS
line Lk ∈ L, we iterate over the set of line segments — existing in
the initial indoor model — and then search for branches. A branch
represents a room’s wall where the distance between two consecu-
tive branches is used as the room’s size. In order for a line segment
to be recognized as a branch of the current RLS line, it has to satisfy
two conditions: (1) being orthogonally oriented to the RLS line, and
(2) intersecting with the RLS line or having an end point located in
the vicinity of the RLS line. The branches which overshoot or inter-
sect with an RLS line are recognized without problems. However,
some potential branches may not be connected to an RLS line due to
incomplete sampling data. Hence, we employ a distance threshold
as a safety margin to avoid overlooking possible branches.

5.2.2 HMM-Based Model Derivation. Initially, deriving indoor
models from the grammar G can be formulated as Markov chain
Monte Carlo (MCMC) problem [24]. Specifically, theMCMCmethod
generates several floor plans with random room sequences from
some probability distributions. However, the MCMC method dis-
cards the fact that we have real observations that can be used while
deriving the indoor model. In [16], we sequentially generate several
hypotheses of the floor plan using a constrained random walk on a
MCMCmodel. Afterward, a hypothesis —whichminimizes themod-
eling error — is selected as the indoor map. Alternatively, GraMap
formulates the problem of finding the probable room sequence for
each RLS line as a hidden Markov model (HHM). The reason is that
HMM models enable us to directly derive the indoor map rather
than selecting one from a set of hypotheses. To this end, the HHM
model exploits the extracted geometrical information while deriv-
ing the indoor map to adjust the probability distributions. Despite
being relatively not accurate, the initial model, derived from point
clouds is more rich of geometrical information than indoor models

generated from motion traces. Hence, these information, e.g. room
sizes, can be exploited to generate precise indoor models.

Generally, an HMM [19] is a statistical model in which the sys-
tem being modeled is assumed to be a Markov process with un-
known states, and the challenge is to determine the hidden states
Ψ = ψi | i = 1, 2 · · · ,n from a set of observables O = oj | j =
1, 2 · · · ,n. Each hidden state ψi emits an observable, whose likeli-
hood is given by a conditional emission probability Pe (Ot | qt =
ψi ) where qt denotes the current hidden state. An HMM model
Γ := ⟨Ψ,O,π , Pt , Pe ⟩ also permits transitions among its hidden
states, where π is the vector of initial state probabilities. These
transitions are governed by a different set of likelihoods called
transition probabilities Pt (qt+1 = ψj | qt = ψi ). In our scenario,
the rooms r1, r2, r3, · · · , rk represent the hidden states, while the
extracted geometrical information from the initial model denote
the observables (cf. Figure 4). The number of hidden states n in each
RLS line Lk depends on the number of extracted observations. The
initial probability vector π at t = 0 is set to the a priori probabilities,
π (ri ) = Pa (ri ). According to [24], the transition probability from
rule ri to rule r j is given by

Pt (r j | ri ) =
Pa (r j )

Pa (ri )
·
Pr (ri | r j )

Pr (r j | ri )
. (7)

Figure 4: HMM trellis of modeling the grammar rules

The emission probability Pe captures the likelihood of observing
a certain room size given the hidden states Ψ. To estimate the
emission probabilities, we map each rule ri onto a random variable
Xri which is normally-distributed, i.e. Xri ∼ N(µi ,σ 2). The mean
µi is set to the width of the grammar rule, i.e. µi = Wi , where
a variance σ of one meter is found to be sufficient for properly
inferring the rules. Consequently, the emission function Pe (Ot |qt =
ri ) can be simply estimated from the probability density function
of the rule random variable Xri as follows

Pe (Ot | qt = ψi ) =
1

√
2πσ 2

exp[
−1
2σ 2
· (Ot −Wi )

2]. (8)

Figure 5 depicts the HMM model-based rule sequence inference.
The sequence of observations is defined as the extracted room size
from the initial indoor model. These semantics have to be filtered
out before being applied to the HMM model (line 2). In particular,
there may exist two neighboring line segments si , si+1 representing
the same wall, but they have been scanned from different sides.
Accordingly, the Euclidean distance δ (si , si+1) between these seg-
ments is deliberately discarded given that the distance δ is less than
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Require: grammar rules ri ∈ T , line segments from the initial
model S, RLS lines L, threshold τ

1: for all RLS line Lk ∈ L do
2: B ← orthogonal lines si ∈ S with minimum distance to

the RLS line Lk
3: for all line bi ∈ B do
4: if δ (bi ,bi+1) > τ then
5: Ot ← δ (bi ,bi+1), where Ot ∈ O

6: else
7: skip the line bi ◃ lines filtering
8: end if
9: end for
10: compute the probabilities Pe (Ot | ri ), ri ∈ T
11: Γ ← Ψ,O,π , Pt , Pe ◃ HMM modeling
12: for allψt ∈ Ψ do ◃ modified Viterbi
13: for all ri ∈ ψt do
14: for all r j ∈ ψt−1 do
15: ifW t

i +W
t−1
j ≤ Lk then

16: α
j
i = ηt−1(r j ) · Pt (ri | r j ) · Pe (Ot | ri )

17: else
18: skip the path r j → ri
19: end if
20: end for
21: ηt (ri ) ← maxj

(
α
j
i

)
22: W t

i ←W t
i +W

t−1
j

23: end for
24: end for
25: estimate ϕ to get the optimal path ◃ backtracking
26: update the probabilities π and Pt
27: end for

Figure 5: HMM-based rule sequence inference

a threshold τ (lines 3-9). After defining the HMM model, we can
now find the best path (i.e. sequence of rules for each RLS line)
which has the maximum joint probability (plotted as a red dashed
line in Figure 4). To this end, we employ the Viterbi algorithm [9]
to compute the best path through the HMM trellis.

The Viterbi algorithm utilizes dynamic programming to quickly
find the path through the trellis that maximizes the product of
the emission probabilities and transition probabilities. For each
intermediate and terminating state ri ∈ ψt , there exists a most
probable path to that state, referred to as the partial best path.
Accordingly, the probability of the partial best path to a state ri is
recursively obtained by

ηt (ri ) = max
j

(
ηt−1(r j ) · Pt (ri | r j ) · Pe (Ot | ri )

)
. (9)

To find the overall best path, the Viterbi algorithm utilizes a back
pointer ϕ to the predecessor that optimally provokes the current
state, where ϕt (i) = argmaxj

(
ηt−1(j) · Pt (ri | r j )

)
. To simplify the

process of searching the best sequence, we filter out paths whose
accumulative length is greater than the length of the corresponding
RLS line (lines 15-19).

6 PERFORMANCE EVALUATION
Through a real-world scenario, we examine the effectiveness of
GraMap in deriving precise indoor models while reducing the en-
ergy overhead on the mobile devices due to participating in the
crowd-sensing system. We first describe the setup of our evalua-
tions. Subsequently, we discuss the obtained results.

6.1 System Setup
To collect point clouds, we designed an Android App to collect
point clouds and to check their quality. We utilized Tango mobile
devices which are equipped with 4 GB of RAM, 128 GB of internal
flash storage, a 120◦ front-facing camera, a 4 MP RGB-IR rear-facing
camera, and a 170◦ motion tracking camera [2]. Data acquisition
was mainly performed in two phases. In the offline phase, area
learning is employed to record a number of ADF models, i.e. the
visual landmarks of the entire floor. In the online phase, the ADF
models were distributed to the mobile devices to register all col-
lected point clouds relative to the same coordinate system. If a
user is queried to scan a certain area lq , the crowd-sensing App
continuously captures several snapshots. Once scanning is finished,
the App generates the point cloud Pq in xyz format via combining
several scene snapshots and performing several transformations to
properly align the snapshots.

At the server side, we integrated some C++ functions from the
point cloud library (PCL) [21] in our implementation, such as region
growing segmentation, Octree decompression, and geometric pro-
jection. Table 6 summarizes the parameters and their values which
have been used throughout the evaluations. In our evaluations, we
collected 107 point clouds, i.e. 2.5 GByte of depth data, from the sec-
ond floor of the Computer Science building in Stuttgart. To profile
the energy consumption of Tango devices, we logged the battery’s
current and voltage1. These current and voltage values associated
with timestamps were recorded every 100 ms while disabling WiFi,
and no other background activity existed. The screen energy (at
50 % brightness level) has been subtracted from the total energy
consumption to consider only the energy overhead of running the
algorithms. Each run of these measurements were repeated ten
times and the resultant values are then averaged.

System Parameter Value System Parameter Value

incompleteness threshold αp 5000 point normals filtering angle θth 10◦
curvature threshold Cth 1 m voxel grid size 2 cm
neighbor count k 50 distance threshold τ 1 m

Figure 6: parameters used in the evaluations

6.2 Initial Model Generation
As earlier explained, an initial indoor model is extracted through
projecting the collected point clouds to several filters (cf. Figure 1).
Figure 7a demonstrates a merged point cloud resultant from scan-
ning a quadrant of the floor plan. In fact, the floor has four identical
quadrants, hence the results received from one quadrant can be
simply applied to other quadrants. Accordingly, we selected to limit
1We used a software for logging sine we could not use hardware logging due to the
voltage limits of the measuring equipment.
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our evaluations to the quadrant which is easily accessible by the
volunteers. Figure 7b depicts the merged point cloud after down-
sampling and normals-based filtering. Voxel grid downsampling
is indeed a lightweight operation where it took circa 1.7 seconds
to significantly reduce size of the merged point cloud (at least 59%
reduction) at a grid size of 2 cm.

To remove clutter and keep only the wall segments, normals are
exploited to filter out all objects whose normals angle is outside
the range defined by the threshold θth = ±10◦. Figure 7c depicts
a cleaner version of the merged point cloud after region-growing
segmentation. As the figure shows, different colors are used to
identify the various wall segments. As explained earlier, segmenting
the point clouds enables us to remove the points which do not
belong to a valid segment. As observed during our experiments,
smaller values of the neighborhood count k create more boundaries
and thus yield smaller segments. In contrast, larger k values lead
to more widespread and consecutive segments with reducing the
algorithm’s execution time. Nevertheless, larger k values may result
in so-called overgrowing in which two perpendicular walls can be
detected as a single segment. As a compromise, we empirically
selected a moderate value, i.e. k = 50, which entirely avoids both
small segments and overgrowing.

When using a grid size of 2 cm, adjusting the curvature did
not yield notable improvements. Thus, the maximum curvature
was set to 1. This implies that, during region growing, as soon
as a neighbor gets added to the current region based on normals
disparity, it will also be considered as an additional seed point.
The final parameter of region growing is the minimum cluster
size, which can be used to set a lower boundary for the minimum
number of points a segment must contain for it to be considered a
valid segment. Such a boundary is very useful to dismiss segments
stemming from noise or clutter, i.e. small and/or undesired objects.
Note that this value highly depends on the model’s point density,
which in turn depends foremost on the voxel grid size and on
the amount of points filtered out by normals angle. Specifically, a
minimum cluster size of 100 points was considered while generating
the initial indoor model.

Figure 7d depicts the merged point cloud after projecting it onto
the x-y plane. Afterward, the wall segments are converted into
a set of line segments, as shown in Figure 7e. Finally, close and
parallel lines segments are turned into a single line segment which
identifies the wall location. Figure 7f demonstrates the initial model
after applying the processing pipeline. As it can be seen in the figure,
the initial model still suffers from incomplete parts and inaccurate
room sizes. Accordingly, we use this initial model to derive another
processing step which incorporates the indoor grammar as a model
fitting tool.

6.3 Enhanced Model Generation
Figure 7g depicts the final indoor model after constructing a HMM
model for each RLS line. By a quick comparison with the ground
truth shown in Figure 7h, we found that the final model is highly
accurate except at the corner areas. The reason is that our current
version of the grammar does not support mapping of overlapping
rooms, as is the case in the corners. In other words, the grammar
considers a fixed depth for all rooms. Accordingly, a reasonable

extension of this work involves the modification of the indoor
grammar to support such overlaps. Comparing the initial and the
final indoor model, we find that the indoor grammar filled in some
missing spaces (cf. top-left corner of the quadrant) due to the lack
of input data (inaccessible rooms).

6.4 QoS Metrics
In this section, we quantify the accuracy and energy overhead of
GraMap. We employ two grammars for the room layout generation:
(1) an accurate grammar derived from the floor plan of the 2nd floor,
and (2) a semi-accurate grammar derived from the 1st floor of the
same building. Although both floors are quite similar, there exist dif-
ferent room types, room units, and neighborhood relationships. The
intuition is to demonstrate the performance of GraMap when using
data obtained from a similar building. Figure 8a demonstrates the
fraction of detected rooms for different numbers of sensing queries.
In this set of experiments, we excluded the inaccessible mainte-
nance rooms — which account for 19 % of rooms in the quadrant
— since they cannot scanned by the volunteers. When consider-
ing only the collected point clouds (“No Grammar”) the percent
of detected rooms, i.e. identified via matching the wall segments
to the ground truth, sharply increases with adding more sensing
queries. For instance, 95% of rooms can be detected using only 20
point clouds. Nevertheless, we found the percentage goes beyond
the maximum value (i.e. 100%) due to several false positives. The
problem emerges from the displacement of neighboring walls due
to localization errors. Accordingly, the in-between gaps between
these walls are erroneously annotated as rooms (cf. bottom side of
Figure 7f). On the contrary, both of the semi-accurate grammar and
the accurate one detect less rooms (at least 86.3% for 22 sensing
queries) due to the aforementioned overlapping problem at the
corners. It is important to realize that both grammars sometimes fill
the gaps due to missing input data. Whenever the RLS line contains
a set of scanned rooms and an inaccessible room, the grammar can
simply anticipates the missing room.

Figure 8b depicts the average error in the size of rooms versus
the fraction of detected rooms for all indoor models built from
22 sensing queries. Although the “No Grammar” scenario detects
more rooms (i.e. after suppressing the false positives) than the two
other scenarios, the average error of rooms size is significantly
increased while considering only point clouds (on average 0.64 m).
As the figure shows, the “Accurate” and “Semi-Accurate” scenarios
nearly achieve the same performance while avoiding false positives
through filtering out all rooms whose size is less than one meter (cf.
Figure 5). The “Accurate” grammar has slightly smaller size error
(on average 0.16 m) than the “Semi-Accurate” scenario (on average
0.22 m). To sum up, adopting grammars highly improves detection
accuracy of the room layout.

To quantify the energy overhead, we compared the energy of
pre-processing and uploading point clouds to the crowd-sensing
server while enabling and disabling the probabilistic quality model
(PQM). We examined the amount of consumed power consump-
tion of the participating mobile devices to upload 22 point clouds
using different values of the quality margin Tq . For high values of
the quality margin, the consumed power is found relatively close
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(a) Merged point cloud (b) Filtered point cloud (c) Segmentation (d) 2D projection

(e) Line segments inscription (f) Initial indoor model (g) Grammar-based Model (h) Ground truth

Figure 7: Various steps toward deriving a highly-precise indoor model

to the naïve case in which the PQM model is disabled. When se-
lecting small values of Tq , several point clouds are immediately
rejected due to exceeding the quality margin. In the scanned quad-
rant, the probability Psum ranged from 20% up to 60% (two-sided
glass walls). For our next experiment, we adopted a quality margin
of 0.3 to minimize the energy overhead. Figure 8c compares the
power consumption with and without adopting the PQM model for
different number of sensing queries. As the figure shows, enabling
the PQM model reduces the power consumption (at least by 21%)
compared to the naïve case. It is important to mention here that the
energy gain can be significantly increased whenever the scanned
regions have a large number of glass walls or windows.

7 RELATEDWORK
In this section, we discuss related work in the realm of indoor
mapping, focusing on the automatic derivation of indoor models
using crowd-sensing. Afterward, we present some examples of qual-
ity models in crowd-sensing applications and explain the various
definitions of the quality metrics.

Indoor Mapping. The problem of automatically deriving in-
door models has been tackled in several research works, such as
MapGENIE [16], CrowdInside [1], JigSaw [10], and iFrame [18].
CrowdInside exploits the set of sensors in modern smartphones
to collect motion traces from the crowd. Specifically, CrowdIn-
side uses unique anchor points which are found in typical indoor
spaces for motion error resetting. Similarly, iFrame uses personal
devices to collect motion traces, Bluetooth, and WiFi footprints.
To compensate for the shortcomings of each technology, iFrame
adopts a matrix fusing mechanism. In this realm, we proposed in

[16] MapGENIE, a framework for automatically deriving floor plans.
MapGENIE relies on crowd-sensing 2Dmotion traces and it exploits
the buildings exteriors to refine the collected traces. Furthermore,
MapGENIE adopts formal grammars to increase the fraction of
detected rooms. Although these approaches showed promising re-
sults, they often acquire large datasets which turns crowd-sensing
into a cumbersome task. Moreover, energy efficiency of the mobile
devices in such approaches were entirely overlooked. Finally, the
collected data types, i.e. motion traces, WiFi footprints, pressure,
are hardly sufficient for the derivation of 2.5D or 3D indoor models.

Quality Models. In the literature, several definitions of quality
metrics were discussed. Wang et al. [25] define the quality of point
clouds in terms of noise and outliers presence. Alternatively, Feng
et al. [8] consider the spatial structure projection in coordinate
planes and positioning accuracy as metrics for assessing the quality
of point clouds. In fact, the quality models have been utilized for
several purposes, such as improving accuracy of the collected point
clouds and improving energy efficiency. For instance, Huang et al.
[7] introduce a semi-supervised learning method to automatically
assess the quality of indoor mapping data. Specifically, they employ
feature extraction on a subset of the available data to obtain a set of
optimal features. These features are later used to train the learning
process while predicting the labels of unlabeled data. Weinmann et
al. [26] present two approaches based on range reliability and local
planarity for filtering the point clouds in the light of their quality
measures.

In terms of energy efficiency in crowd-sensing, we developed a
quality model to probabilistically assess the sensing capabilities of
mobile users while distributing the sensing queries [3]. The model
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Figure 8: Evaluating the QoS metrics

defines the probability that a mobile device satisfies a given sensing
query. In this case, the quality model assists in reducing the set of
query recipients, which in turn conserves energy of other mobile
devices. Later, we proposed in [4] a quality model to annotate the
indoor environment as a set of accurately-modeled and inaccurately-
modeled areas. Accordingly, energy consumption of the mobile
devices can be reduced via deactivating their localization system
when passing through an accurately mapped area. In GraMap, we
alternatively implement quality models, on the mobile devices, to
reduce the energy costs of processing and uploading several point
clouds for each sensing query.

8 CONCLUSION & FUTUREWORK
In this paper, we introduced the GraMap approach that collects
point clouds from a crowd of mobile devices for the sake of deriv-
ing precise indoor models. First, we presented the data acquisition
phase including a probabilistic quality model to ensure the quality
of the reported point clouds. Afterward, we introduced a processing
pipeline for extracting an initial indoor model from the collected
point clouds. Finally, these initial models are refined through adopt-
ing a formal grammar as a model fitting tool. The results show that
GraMap significantly enhances the detection accuracy while reduc-
ing the overall energy overhead on the mobile devices. A logical
extension of this work involves the refinement of our grammar to
avoid the overlapping problem. Moreover, we seek to develop a 3D
grammar which can be used to derive detailed 3D indoor models.
To this end, we can use the current processing pipeline as the basis
for our 3D indoor mapping system.
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