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ABSTRACT

We present SIBIA (Scalable Integrated Biophysics-based Image
Analysis), a framework for coupling biophysical models with medi-
cal image analysis. It provides solvers for an image-driven inverse
brain tumor growth model and an image registration problem, the
combination of which can eventually help in diagnosis and progno-
sis of brain tumors. The two main computational kernels of SIBIA
are a Fast Fourier Transformation (FFT) implemented in the library
AccFFT to discretize differential operators, and a cubic interpolation
kernel for semi-Lagrangian based advection. We present efficiency
and scalability results for the computational kernels, the inverse
tumor solver and image registration on two x86 systems, Lones-
tar 5 at the Texas Advanced Computing Center and Hazel Hen at
the Stuttgart High Performance Computing Center. We showcase
results that demonstrate that our solver can be used to solve regis-
tration problems of unprecedented scale, 4096° resulting in ~ 200
billion unknowns—a problem size that is 64X larger than the state-
of-the-art. For problem sizes of clinical interest, SIBIA is about 8x
faster than the state-of-the-art.
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1 INTRODUCTION

Advances in physiology and medical imaging have been essential
tools in prognosis, diagnosis and therapy fostering the develop-
ment of increasingly sophisticated and tightly coupled imaging
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algorithms and computational biophysical models that target clini-
cal applications. Examples include cardiovascular diseases [14, 15,
43, 57, 58, 67], oncology [12, 26, 27, 34, 39, 68], and surgical plan-
ing [19, 21, 32, 65]. Typical image analysis tasks are segmentation,
feature extraction for statistical inference (e.g., outlier detection,
population statistics, prognosis), and image registration (for seg-
mentation and surgical planing). Such tasks benefit from an inte-
gration with biophysical models that introduce pathology-specific
prior information. Conversely, development and calibration tasks
for tissue- and organ-level biophysical models are driven by imag-
ing data.

Both biophysically-augmented image analysis and image-driven
biophysical model development are essentially data-assimilation in-
verse problems that involve nonlinear partial differential equations
(PDEs). Physics and imaging need to be tightly integrated (both
in terms of software and algorithms), and need to be reliable and
scalable in order to be useful in analyzing clinical data. The need
for scalability is due to the increasing scanner resolution. In the
clinical practice, routine modalities are approaching 5123 voxels
per channel, and most protocols involve several channels. In small-
animal imaging, volumentric images can reach the 10, 0003 resolu-
tion range or higher [62]. In the clinical setting, we target strong
scaling. For modeling and animal imaging, we target weak scaling.
But let us remark that human clinical images may also require high-
resolution to capture the detailed brain (and other tissues) structure,
which is decisive in tumor growth. High performance computing
in the clinic offers the potential for patient-specific models. Many
hospitals have in-house HPC clusters or access to cloud resources
and there is a need for HPC image analysis and data assimilation
software.

In this paper, we present a framework that can be used for a large
class of data assimilation problems. We consider two inverse prob-
lems, image registration and parameter identification/data assimi-
lation in brain tumor imaging. The target application is atlas-based
image segmentation [12, 27, 56] of magnetic resonance images
(MRI) of glioblastomas (GBM), a type of high-grade primary brain
tumor [13, 49, 66]. First, the patient MRI is co-registered (see §2)
to an already segmented normal-brain MRI and then, the labels
from the normal image are transferred to the patient (through the
registration map). Since the atlas doesn’t have a tumor (whereas
the patient does), a fictitious tumor needs to be grown in the atlas
before the registration. The overall inverse problem is to find the
tumor and registration parameters such that the atlas segmentation
can be transferred to the patient [27, 35].
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Figure 1: Brain tumor simulation results. The progression of the reaction-diffusion tumor model is shown. The leftmost image shows the initial
condition; the rightmost image the solution of the forward problem att = 1. The bottom row shows a 3D illustration and the top row an axial slice
cut through the center of the tumor. White areas are locations of high tumor cell density and black areas locations of low density.

The significance of our approach is threefold: automatic segmen-
tation of patient images using normal subject images to create spa-
tial (shape) priors; mapping of functional information from atlases
to patients (critical in neurosurgery); and parameter calibration of
biophysical models. Variants of algorithms similar to SIBIA that
integrate biophysics with imaging (in low resolution) are already
used in clinical settings [26, 51, 68].

In this paper, we focus on two subproblems: identifying initial
conditions for a reaction-diffusion tumor growth model (inverse
tumor parameter identification problem) and seeking a velocity
that advects the atlas image to the patient image so that their L?-
distance is small (image registration).

Contributions. We introduce SIBIA, a framework that supports
the solution of coupled image analysis and biophysical models.
SIBIA provides solvers for various PDEs and their adjoints (for PDE
constrained optimization), regularization operators, interfaces for
medical images, and coupling between the different subproblems.
The overall formulation follows closely several other approaches in
biophysical modeling that opt for a simple but relatively versatile
method using a pseudo-spectral fast Fourier-transform (FFT) for
spatial differential operators and a semi-Lagrangian method for
advection (to avoid time-step restriction). Our framework closely
resembles our previous work in [47], where we introduced an algo-
rithm for the image registration problem (only), described a semi-
Lagrangian formulation, and discussed the use of FFTs and how to
scale the overall methodology on distributed-memory architectures
using the Message Passing Interface (MPI). In this paper, we follow
the overall spirit of that formulation but with several novel contribu-
tions summarized below. Inverse tumor scalability: We scale the
formulation for an inverse tumor growth problem described in [25]
(MATLAB-based) and study its algorithmic and parallel scalability
on real clinical data. A significant challenge is that the biophysical
model involves PDEs with variable coefficients (due to spatially-
varying tissue material properties). We discuss our preconditioner
for the elliptic diffusion operator, and the inversion operator, the
Hessian. Interpolation operator: The semi-Lagrangian advection
requires interpolation from a regular grid to a grid of irregularly
scattered points. In [47], we focused on the MPI implementation. As
a result, the interpolation was a significant bottleneck consuming
60% to 75% of the runtime. Here we present an interpolation kernel
that it is nearly 10X faster. It employs a reordering of points, block-
ing, and vectorization. We have ported our C++ implementation to

Intel Haswell architectures. Switching to single precision: Given
the level of noise and imaging artifacts in the data, the modeling
errors in the biophysical simulations, and the target levels of ac-
curacy, double precision is not justified; we implement our solver
in single-precision. This reduces the communication volume and
the memory footprint for the adjoint solves (which require storing
the time history). The work in [47] used one MPI task per socket
(without OpenMP) and thus, in some sense, wasted resources. With
SIBIA we can use 12 cores per node (for the largest runs) and 24
cores for the smallest runs with no problems.

The two main computational kernels in SIBIA are FFT and
interpolation. Our FFT is based on our open source library Ac-
cFFT [23, 24] but with a twist: we have implemented a faster field
gradient computation, which halves the communication of the FFT-
based PDE operators that we encounter frequently in our formula-
tion. In §2, we discuss the different formulations. In §5, we present
a detailed strong and weak scaling analysis for the tumor and reg-
istration solvers, the performance of the interpolation kernel, and
comparisons with [47]. Another difference to [47], is that we use a
more effective regularization functional [45]. Overall, SIBIA’s reg-
istration is 3 to 8 times faster than our previous work [47], supports
stand-alone reaction-advection-diffusion solvers for biophysical
inverse problems, and their coupling with registration.

Limitations. SIBIA is limited to regular grids, like most software
for MRI and CT images. If one needs non-uniform grids, other ap-
proaches are much more appropriate. Although the brain geometry
is quite complicated, we use a penalty method to enforce boundary
conditions. For image analysis, this is sufficient—given the large
errors in the brain tumor model.

Related work. To our knowledge, the most scalable deformable
image registration algorithm is the one reported in [47]. For a
detailed review on image registration algorithms see [47, 53, 59].
There are many scalable solvers for biophysical simulation but not
much work for problems that are tightly coupled with MRI. In
the latter area, most work is done on single node systems [12, 57].
For brain tumor applications, a good review of related work can
be found in [5, 27]. The tumor model we are using is not pre-
dictive but it is quite standard in medical image analysis for tu-
mors [34, 39, 48, 60, 61]. More sophisticated models [31, 36] have a
large number of unknown parameters and are difficult to calibrate.
Minimal models are preferable for medical image analysis [68].
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However, one important piece is missing in our model, the defor-
mation of the brain parenchyma due to the tumor growth [34]. This
is ongoing work.

Regarding the numerical scheme for the tumor and registration,
our formulation is motivated by the need for compatibility between
imaging and biophysics and the need to accommodate different
elliptic operators and fast solvers. We have to tackle three main
elliptic-like operators: the diffusion step (with variable coefficients)
for the tumor problem, the Hessian for the tumor inverse problem,
and the Hessian for the registration inverse problem (Stokes-like
operator). For these reasons we opted for an FFT-based solver due to
its simplicity and robustness. Regarding fast FFT-based PDE solvers
the literature is vast. For a review on parallel 3D FFT see [24].

2 MATHEMATICAL FORMULATION

We present the mathematical formulations for the considered prob-
lems next. We will see that both inverse problems are formulated
as PDE constrained optimization problems. We use the method
of Lagrange multipliers to solve them. We refer to [7, 9, 33] for
excellent surveys on the theory and algorithmic developments in
PDE constrained optimization.

Data Assimilation in Brain Tumor Imaging. Our formulation for
modeling the spatio-temporal spread of cancerous cells within brain
parenchyma is widely adopted in the literature [1, 12, 25, 38, 48, 51,
60]. Our formulation captures the rate of change of cancerous cells
represented as a population density c(x, t) based on two phenom-
ena: proliferation and net migration of cells.! The proliferation
model is logistic, and the net migration of cancerous cells is mod-
eled using an inhomogeneous (potentially anisotropic) diffusion
operator (see below). This is the forward model, a non-linear par-
abolic PDE, for the tumor concentration? ¢ € [0, 1] defined on the
non-dimensionalized space-time interval Qg x [0, 1]:

0rc—V-KVe—pc(l—c¢c)=0 in Qg % (0, 1], (1a)
c=cop in Qg x {0} (1b)

with homogeneous Neumann boundary conditions prescribed on
dQp, where Qg c Q, Q := [0,27)3 c R3, is the spatial domain
occupied by brain parenchyma and ¢ € [0, 1]. We remove all units
from (1) by non-dimensionalization. We follow [25] and parameter-
ize the initial condition co(x) := ¢(x,t = 0) in an n,-dimensional
space spanned by a Gaussian basis, i.e., cg = ®p with the parameter
vector p € R . The tensor K(x) € R3*3 controls the net migration
of cancerous cells c. The parameter p > 0 controls the proliferation.
This simple reaction-diffusion model is by no means predictive on
its own, but has been successfully used in conjuction with imaging
information [26]. Its usefulness is in segmentation and registration
algorithms that use normal atlas information, and in producing
features (e.g., tumor parameters) to augment image-based features
for tumor staging and prognosis.

The inputs to our problem are probability maps of tissue types ob-
tained from the patient’s imaging data [27, 50], in particular white
matter myy(x), gray matter zg(x), cerebrospinal fluid z¢(x), and
77(x). Figure 2 shows an exemplary dataset in the patient space.3 In

1We note that this model is an approximation of the complex phenomena associated
with cancer progression. More complicated models have appeared in the past [31].
Increasing the complexity of our model results in an excessive number of parameters
(irrespective of the numerical strategy, optimize-then-discretize or discretize-then-
optimize), which have to be estimated from data or determined heuristically.

2We interpret ¢ as probability to encounter cancerous tissue at location x at time .

3This is a synthetic result based on a forward simulation on real brain imaging data.
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Figure 2: Illustration of the probability maps for different types of
brain tissue. We display (from left to right) the probability maps for
white matter vy (x), gray matter ng(x), and the tumor concentration
71 (x) for an exemplary forward simulation.

many existing approaches the probability maps 7y (x) (white mat-
ter) and wg(x) (gray matter) control weights that enter K(x) with
the common assumption that the cell diffusivity is larger in white
matter than in gray matter [12, 38, 48, 60]. In our inverse tumor
problem, we assume that we know K and p from experimental data;
we only invert for the initial condition p. We consider isotropic
diffusion, for which K(x) = (kwrw(x) + kgng(x)) diag(1,1,1),
parameterized by ky and kg.

Given 7j(x), j € {T,C,W,G}, K, and p in the patient space, our
task is to find the initial tumor density ¢g = ®p for (1) that best
explains the tumor cell distribution 77(x) observed in the imaging
data at ¢t = 1; i.e., we seek to minimizes the L%-distance between
model output ¢; and patient observation 7t. It is well known from
inverse problem theory that the solution p is neither stable nor
unique [29, 37]. One remedy is to stably compute the solution to a
nearby problem by augmenting our formulation with a Tikhonov
regularization model. The resulting inverse problem for recovering
p (i.e., the initial condition ¢g) from 7T reads:

1 2 Y 2
- - dx + =||Ppll5 d. 2
min g [ er=nn? e s Flapl ax @

subject to ¢; being given by the forward modelin (1); y > 0 balances
regularity of p against the mismatch between c; and 7.

To solve the inverse tumor problem, probability maps and pa-
rameters have to be given for the healthy brain without tumor.
Because we do not have an estimate for the patient’s image without
tumor, we use a standardized brain atlas template. To derive patient
specific results, one approach is to couple image registration with
the tumor problem [1, 27, 35, 69]. The main idea here is to use
registration as a tool to minimize the differences between patient
and atlas anatomies. We need to couple these processes, because a
simple registration between the patient anatomy with tumor and
the atlas anatomy is not possible due to ill-defined correspondences
(i.e., presence of the tumor in only one image). We will address the
coupling of our two approaches in future work. In the following
section, we present the formulation for image registration.

Diffeomorphic Image Registration. We refer to [20, 52, 59] for an
introduction into the field of image registration and its applications.
Image registration is a correspondence problem. The basic assump-
tion is that there exists a geometric transformation that relates
each point in one image, the so called reference image mp(x), to its
corresponding point in another image, the so called template image
mr(x). We illustrate this in Figure 3. We introduce a pseudo-time
variable t € [0, 1] and model this geometric transformation based
on a transport equation for the intensity values of mr. The for-
ward model of our problem is: Given a stationary velocity field v(x)
and a template image mr(x) compute the transported intensities
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mi(x) := m(x,t = 1) at t = 1 by solving

atm+v.Vm:O inQX(O,l], (38.)

m=mr in Q x {0}, (3b)

with periodic boundary conditions on dQ forward in time.

We again formulate the inverse problem as a PDE constrained
optimization problem. The task is to find a plausible * velocity field
ov(x) so that the transported intensities of mr at t = 1 (i.e., the
solution m1(x) := m(x, t = 1) of (3)) are similar to mg(x) for all x.
Related formulations can, e.g., be found in [6, 8, 10, 30, 41, 44, 47, 64].
We search for a minimizer

minl/‘(ml—mR)de+ﬁ—v/Vv:Vvdx 4)
v 2 Q 2 Q
subject to the forward model in (3). The second term in (4) enforces
smoothness for v with the regularization parameter f, > 0
(where “:” denotes the matrix dot product®) . To be able to guar-
antee the existence and uniqueness of a solution of both, the for-
ward and the optimization problem, one has to impose appropriate
smoothness requirements on the images and the velocity.® A key
requirement in medical imaging is that the solution of (3) does not
introduce any foldings, i.e., a volume element does not collapse to
a single point, and characteristics traced by v do not cross. This
is ensured by the regularization operator in (4). In this work, we
additionally control the volume change by introducing a penalty
on the divergence of v, i.e., we add the constraint V- v = w and
penalize variations in w by introducing an addition regularization
norm with regularization weight f,, > 0 [45]. Setting w to zero
yields an incompressible diffeomorphism [10, 44, 47].7

3 ALGORITHMS

In this section, we discuss the discretization in space and time, the
solvers, the computational kernels, and the parallel implementation
of the optimization problems in §2. We use a globalized, precon-
ditioned, inexact, reduced space Gauss—Newton method for both
problems. Based on the derivation of the optimality conditions, we
describe the individual numerical building blocks of our scheme.

Optimality Conditions. We use the method of Lagrange multipli-
ers [42] in an optimize-then-discretize approach. That is, we first
compute variations of the Lagrangian functional with respect to
the state, adjoint, and control variables, and then discretize them.
We will see that the resulting equations are complex multi-physics
operators that are challenging to solve in an efficient way.

Tumor. The Langrangian function for the tumor reads

1
Ly == /(Cl — ) dx + LllaplZdx + /aO(CO — ®p)dx
2 Qp 2 Qp

1
+[)/Qa(atc—V-KVc—pc(l—c))dxdt (5)

B

with the Langrange multiplier function ¢, and a¢(x) = a(x,t = 0).
We invert for the parametrization p for ¢g in (1a). The gradient of

4The notion of plausibility depends on the application (see, e.g., [53, 59]). We define a
deformation map to be plausible if it is a diffeomorphism.

SA:B= 2, AijBij.

6 We refer to [4, 6, 8, 10, 45, 64] for a theoretical discussion about uniqueness and
well-posedness of the forward and inverse registration problem for our and related
formulations.

7 The penalty on the divergence of » is controlled by controlling f,,. This allows us
to control the determinant of the deformation gradient (i.e., local volume change). This
is different to the regularization parameter f3,,, which solely controls the smoothness
of ©. See [45] for more details.
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L7 in terms of p is given by
gp =y @p - d'ag ©)
This defines the non-linear problem we have to solve for p. To

obtain ag, we have to solve the adjoint equation stemming from
the gradient of L7 in terms of c:

—-dta -V -KVa—ap(l1—2c)=0
a—(mr—¢c)=0

in Qp x[0,1), (7a)
inQpx {1}, (7b)

with Neumann boundary conditions on dQp, backward in time.
Note that the final condition in (7a) at t = 1 depends on ¢, which is
the solution of the forward problem (1).

Registration. The Lagrangian function of the image registration
problem reads®

£R=l/(m1—mR)2dx+ﬁ—v‘/Vv:Vvdx
2 Jao 2 Jo

1
+/ /A(atm+v~Vm)dxdt+/Ao(mo—mT)dx (8)
0 Q Q

with the Lagrangian multiplier function A and Ao(x) = A(x, t = 0).
We invert for the transformation velocity ». The gradient of Lg
in terms of v is given by

1
9o = —PoAv + K[ /0 AVm]dt, ©)

where K is a pseudo-differential operator that enforces additional
constraints on the divergence of v (see [45]; for (8), K is simply an
identity operator). To evaluate g, in (9) for a candidate velocity
field v, we need to find the state and adjoint variable m(x, t) and
A(x, t), respectively. We obtain them from setting the gradients of
LR in terms of A and m to zero, i.e., by solving (3a) forward in
time and using m at t = 1 as an initial condition for the adjoint
equation:

—-0iA-V-Av=0

A=mrp—-m

in QxJ[o,1), (10a)
in Qx{1} (10b)

with periodic boundary conditions on dQ, backward in time. Having
found A(x, t), we can evaluate (9). In our actual implementation,
we do not store A. We integrate the second term in (9) directly
when solving (10), instead. This allows us to make the memory
requirements of our solver almost independent of n;; we only have
to store the transported intensities m (to be able to evaluate the
Hessian matvec). Finally we remark that both problems are non-
convex, and our methods target a local minimum.

Spatial Discretization. We use regular grids to discretize the
space-time interval Q x [0, 1], Q := [0, 27)® c R3. The spatial grid
consists of Ng x N1 X Np, N; € N grid points x; = (xg,;, x1,4, X2,i) €
R3, xj,i = 2mij/Nj,0 <i; < Nj—1,j=0,1,2. We follow [47] and
use a spectral projection scheme for all spatial operations.

Our formulations (including images) are periodic and contin-
uously differentiable. We apply appropriate filtering operations
and periodically extend or mollify the discrete data to meet these
requirements.

The tumor problem in (1) requires Neumann boundary condi-
tions on the surface of the brain dQpg. We follow [25, 35] and use a
penalty approach to approximate these boundary conditions. We
apply periodic boundary conditions on dQ2 and set the diffusion
coefficient outside of Qp equal to a small penalty parameter K€.

8We neglect the incompressibility constraint for clarity.



A Framework for Scalable Biophysics-based Image Analysis

reference image

template image deformed template image

SC17, November 12-17, 2017, Denver, CO, USA

‘/ before ‘ ‘E‘

residual differences

Figure 3: Image registration. The inputs to this inverse problem are scalar intensity values of two images of the same object (left). The deformed
template image is illustrated in the middle. The residual between the images before and after registration is shown on the right. The images
depicted here are a 2D illustration (axial slice) of the 3D image registration problem solved in §5.

Numerical Time Integration. Fulfilling the first order optimality
conditions, i.e., zero gradients of the Lagrange formulation, requires
a repeated solution of parabolic or hyperbolic PDEs. In the follow-
ing, we sketch our time integration schemes for these systems.

Parabolic PDEs. We follow [25, 35] and use an unconditionally
stable, second-order Strang-splitting method to solve the parabolic
equations (1) and (7). We explain this for the forward problem (1).
Let ¢/ € RN denote the tumor distribution at time # = jAt, At =
1/n¢. We apply an implicit Crank-Nicolson method for diffusion
and solve the reaction part analytically:

(1-0.25AtD)c’ = (14 0.25AtD)e/ (11)
d:c = pe(1—c) in ¢, ¢ (12)

c(t)) =ct (13)
(I-0.25AtD)c/*! = (I + 0.25A¢D)e(t/ ). (14)

We use a PCG method with a fixed tolerance of 1e—6 to solve (11)
and (14). The preconditioner is based on a constant coefficient ap-
proximation of D given by D = I — 0.25AtKA, where K > 0 is the
average diffusion coefficient. The inversion and construction of
this preconditioner has vanishing computational cost due to our
spectral scheme; it only requires one Hadamard product in the
frequency domain and one forward and backward FFT. This precon-
ditioner can be shown to result in a mesh independent condition
number as long as the mesh is fine enough to resolve the diffusion
coeflicient. Since, for medical images, we can have large contrast
and sharp transitions, the grid to resolve the operator can become
prohibitively large; a lack in resolution manifests in an increase in
the number of Krylov iterations, as we increase the mesh size.

Hyperbolic PDEs (Transport Equations). We employ a semi-
Lagrangian scheme [18] to solve the hyperbolic transport equations.
The use of semi-Lagrangian schemes in the context of image regis-
tration is not new; see [6, 10, 46, 47] for details. Semi-Lagrangian
schemes are unconditionally stable, which allows us to keep the
number of time-steps small. This is critical for large-scale 3D ap-
plications. The solution algorithm for one time step of a transport
equation (3), e.g., consists of two steps:

solve d;y = v(y) backward in [#/, /1) (15)
y('*h) =x (16)

m(x, /1) = m(y(t/), #). 17)

The scheme requires evaluating v and m along y, i.e., at locations
that do not coincide with grid points. Both steps involve interpo-

lation. It is critical to design a fast interpolation operator (see §4).
Our ODE solver for (15) is a second-order explicit Runge-Kutta

scheme. Note that, since we invert for a stationary velocity field
ov(x), (15) needs to be solved only once during each Newton step.

Inversion. We use a matrix-free, globalized, inexact Gauss-Newton
algorithm for numerical optimization. The update rule for a control
variable uy at iteration k reads

Upyq = U — akalg, ay >0, (18)

where H™! is a Gauss-Newton approximation of the inverse of
the Hessian’, g a discrete representation of the gradient of the
optimization problem. For the tumor case, the control variable uj
is given by p € R™ and for the registration by v € R3" with
N = NoN1Ns. The step length a > 0 is determined by an Armijo
line search and is chosen such that we decrease the value of the
objective function in every iteration. Storing and inverting H using
a direct solver is prohibitively expensive. We use an iterative PCG
method instead, which only requires an expression for the action
of the Hessian on a vector (Hessian matvec). We further reduce
computational cost by inverting H only inexactly [17, 55]. Our
solver uses PETSc’s TAO module [3, 54]. Our code implements the
operations for evaluating the objective functions, the gradient, and
the Hessian matvec.

Despite the complexity of the whole formulation, it turns out
the main computational bottlenecks are FFTs and interpolations.
We will see in §5 that these computations make up 80% to 90% of
the entire time spent in the solver. We will describe the parallel
implementation of these kernels and present dedicated strategies
to significantly speed up their single core performance next.

4 PARALLEL ALGORITHMS AND
COMPUTATIONAL KERNELS

The main computational kernels of SIBIA are the FFT used for
spatial differential operators in our spectral approach and the inter-
polations in the semi-Lagrangian scheme for advection. Below, we
discuss specific performance optimizations for each of these two.

FFT for Spectral Operators. Spatial differential operators such as
gradient or divergence can be computed in our spectral approach
by first transforming the input field into the frequency domain
(FFT), followed by a Hadamard transform and an inverse FFT. We
use a 2D pencil decomposition for 3D FFTs [16, 28] to distribute the
data among processors and support parallel FFT on CPU/GPU for
both single and double precision computations. Exemplarily, we
consider computing the x derivative of a scalar field f:

fr = T (ioxFx(f), (19)
where ¥, denotes the FFT transform in x direction. Note that, to
compute the x derivative, we only need a batched 1D FFT instead

9We can derive the Hessian from the second variations of the Lagrangian functional
of our problem. We omit these details and refer to related work [2, 25, 44, 45, 47].
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Table 1: Experiment to evaluate the efficiency of the binning method in the interpolation. We use N fixed departure coordinates and compare the
results with those for random departure coordinates within each processor’s domain. In the random test, different grid values have to be loaded per
departure point, but in the fixed point test they are loaded only once. The first two columns show the total interpolation time and GFLOPS for
the fixed test. The rest of the columns show the resutls for the random points experiemnt for with/without binning and vectorization. For large
problem sizes, the main speedup is achieved by the binning. The experiment was performed on 1 Haswell node with 24 MPI tasks. The reported
GFlops include the time needed to reshuffle the interpolated values in the binning method.

Fixed Point

643 1.8e—4 356 1.4e-3 45 1.4e-3
1283 1.4e-3 347 1.2e=2 42 1.1e-2
2563 1.4e—2 287 1.5e—1 28 8.8e—2
5123 1.1e—1 287 2.6 13 8.1e—1

Random Departure Points

No Bin, No SIMD Bin, No SIMD No Bin + SIMD Bin + SIMD
N Interp Time = GF | Interp Time = GF Interp Time

GF Interp Time @GF Interp Time = GF Speedup
45 2.2e—4 280 2.1e—4 295 6.56x
44 3.4e-3 146 2.0e-3 256 6.1x
45 3.4e-3 54 2.3e-2 173 6.18x
40 1.7 19 2.9e-1 112 8.62x

Algorithm 1: Fast algorithm for computing x derivative, which only requires
two global transposes as opposed to four.

Input :Data in spatial domain.
Layout: Ny/Py X N1/P; X Ny
Output:x derivative

Layout: No/Py x N1 /Py x Ny
No X Ny /Py X Ny /Py «—— No/Py X Ni/Py X Ny: // input data
No % Ny /Py X No /Py 2L Ny 3 Ni/Py X Ny /Py; // adanard and #FT
No/Po x Ny X No /Py ——— No % Ny /Py X No/Py; // x derivative

of a 3D FFT. This saves a large amount of communication since no
repartitioning of data for the pencil decompositions in y direction
is required. However, we still have to perform a global transpose to
establish the pencil decomposition in x direction. This is followed
by a forward FFT transform in x direction, a Hadamard product,
a local inverse FFT, and another global transpose to redistribute
the data. Parallel FFT libraries such as P3DFFT or AccFFT allow
the user to specify which directions the local forward/inverse FFT
is needed but there is no way to avoid unnecessary global trans-
poses in y direction (or x when computing y derivative). We have
enhanced AccFFT such that it avoids all unnecessary global trans-
poses, which for the x derivative reduces 4 global transposes to just
2 (as shown in Algorithm 1). This new implementation reduces the
total global transposes to 4 for the gradient (as opposed to 8), and 4
for the divergence operator (as opposed to 8) '°. This reduces the
communication volume by a factor of two.

Interpolation. As explained in §3, the transport equations in the
registration are solved using Semi-Lagrangian scheme that requires
costly interpolation of velocities and image data along backward
characteristics. The value of a scalar (or vector) field f, at an off-grid
point (x, y, z) (departure coordinate) can be computed as:

d d d
fy.2) =Y > > @G (), (20)
i=0 j=0 k=0
li(x) = [i[ X (21)
l n=0;i#n Xi = Xn ’

where f; is the function value at grid point i, £; is the i Lagrange
basis polynomial, and d is the interpolation order, which is cubic
in our algorithm. Using a higher order method would lead to bet-
ter hardware performance, but in practical applications with real
data, the use of higher order interpolation does not improve the

1ONjote that we do not need 8 global transposes since the z direction is owned locally
by each process, and we only need to perform local FFTs to compute the gradient in z
direction.

registration quality. Therefore, we focus on optimizing cubic order
interpolation, which requires the computation of 12 Lagrange basis
polynomials and the evaluation of Eq. 20 for each departure point.
Note that each departure point requires a different set of 64 f;;
grid values, which creates a significant number of cache misses that
cannot be hidden by the few floating point computations. However,
it is possible to alleviate this problem by a novel approach: There is
no reason to process the departure points based on the order that
they were received. Instead, we can group the departure coordi-
nates that are close to each other. We achieve this by sorting the
departure points during the scatter phase using morton sort (which
is a space filling sort). We optimized this sorting by partitioning the
domain and the departure points into bins, i.e., patches of 16xX16x16
grid cells. Instead of sorting all departure points, we just sort the
bin ids to determine offline which bin has to be processed first.
This phase can actually be performed offline analytically since it
does not depend on the departure point coordinates (only depends
on the grid and bin size). Our experimental results show that this
approach is very effective in reducing cache misses. In addition,
we use SIMD vectorization for the interpolation kernel (based on
AVX2 on Haswell). The effect of each of these optimization is tested
on Lonestar5, results are presented in Table 1.

The second focus for optimization in parallel interpolation is the
scatter phase, i.e., sending all points on the backward characteristics
that land in another processor’s domain to the respective MPI rank.

These communications are costly and affect the scaling. How-
ever, since the velocity field is stationary, we need to only scat-
ter the coordinates of the off-grid interpolation points once for
each advection problem. We use a sparse point-to-point alltoallv
for communicating these data. In summary, our optimizations for
the interpolation kernel include a novel approach to reduce cache
misses by using a binning method, AVX vectorization of the kernel,
and OpenMP support resulting in a significantly better interpo-
lation kernel than the one presented in the work of [45]. We are
now bound by the communication time instead of the time spent
in interpolation kernel.

5 RESULTS

We report results for the tumor inversion and for the registration.
We report the overall runtime,!! execution and communication
times for the computational kernels, and the total time spent to eval-
uate these kernels.!? We always report the maximum time across
all MPI tasks. We will also discuss the algorithmic scalability of
the tumor diffusion solver, i.e., the number of PCG iterations as we

"The runtime is the time spent on the entire inversion (excluding setup and I/O times).
12The overall kernel evaluation time includes execution, communication, and shuffling
of the data.
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increase the problem size. We also discuss parallel scalability of the
different kernels, and report the overall scalability.

Setup, Implementation, and Hardware. We execute runs on Lon-
estar 5 (2-socket Xeon E5-2690 v3 (Haswell) with 12 cores/socket,
64 GB memory per node) and Hazel Hen (same node as Lonestar
but with 128 GB memory per node). Our code is written in C++
and uses MPI for parallelism. It is compiled with the default In-
tel compilers available on the systems (Intel 16). We use PETSc’s
implementations for linear algebra operations and PETC’s TAO
package for the nonlinear optimization [3, 54], AccFFT for Fourier
transforms [23, 25], and PnetCDF for I/O [63].

Data assimilation in brain tumor imaging. In this section, we
study the computational performance and parallel scalability of the
tumor inversion solver for real brain data as illustrated in Figure 1.
We use resampled medical brain image data with a spatial resolu-
tion N € {643, 1283, 2563, 5123} and present scalability results for
up to 16,384 MPI tasks on Hazel Hen.

Setup. For all tumor inversion experiments, we set the regulariza-
tion parameter y = 1073, the number of time steps n; = 4 and use
double precision. We perform three Gauss-Newton iterations for
the inversion and limit the number of Hessian matvecs in the PCG
solver to three. This setup results in an overall gradient reduction
by one order of magnitude and 13% relative mismatch for the re-
constructed tumor. Using n; = 4 is not sufficient to resolve the
dynamics accurately but it puts pressure on the forward solver and
allows us to monitor its algorithmic scalability. We report the time
to solution as well as the percentage and absolute time spent in the
Hessian matvec, the PCG solver and the FFT, which is the main
computational kernel in the tumor inversion. For all the strong
scaling runs, we use 12 MPI tasks per node.

Strong Scaling. We report scaling results for different spatial res-
olutions N € {643,1283, 2563,5123} and different numbers of MPI
tasks P € {21, e, 214}. The results are reported in Table 2. For
N = 256%, we observe excellent strong scaling performance with a
parallel efficiency of 98 %, going from 32 to 2048 MPI tasks (runs #13—
#19). The time consumed by the FFT accumulates to approximately
82 % of the overall runtime. Thus, the tumor inversion scalability
is mainly inherited from the AccFFT. Similar conclusions can be
drawn from the N = 1283 and N = 64° experiments, yielding a
slightly lower but still acceptable parallel efficiency of 67 % from
4 to 256 MPI tasks and 52 % from 2 to 32 MPI tasks, respectively
The ideal runtime (assuming 100% parallel efficiency) along with
the actual runtime and the amount of time spent in the FFT are
summarized in Figure 4 for the strong scaling experiments given in
Table 2. Considering the N = 5123 runs, we observe a degradation
of the parallel scalability for more than 2048 MPI tasks (runs #24-
#27). Our analysis showed that MPI routines generate an increasing
overhead using more than 2048 MPI tasks with 12 tasks per node.
Increasing the MPI buffer size and the maximum message size for
the MPI eager messaging protocol improved the performance of run
#25 by around 30 % (run #26). Usually, the diffusion solve consumes
up to 98 % of the overall runtime, which, drops down to 50 % for the
runs that show poor scalability, indicating that performance is lost
due to non-optimized MPI settings. Summarizing, for up to a total
number of 2048 MPI tasks, we get almost optimal strong scaling
results with a parallel efficiency from 60 % up to 100 %, cf. Figure 4.
We encounter some MPI related communication issues going be-
yond 2048 MPI tasks. Using hybrid parallelism with OpenMP is
expected to resolve the issue.
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Weak Scaling. For the same setting, we analyze algorithmic and
parallel weak scaling, indicated by efty, and effyy, respectively, in
Table 2 (exemplarily highlighted, runs #3, #10, #17, #24, #26). We
observe an algorithmic weak scaling efficiency of around 30 %, in-
creasing both, the number of unknowns in space and the number of
MPI tasks by a factor of eight. Since the grid is not sufficiently large
to resolve the diffusion operator, we observe a mesh-dependent
number of iterations with increasing resolution—from 10 iterations
per diffusion solve (on average) for N = 64° to 50 per diffusion
solve for N = 10243, For the parallel weak scaling efficiency effyy,
where we keep the number of PCG iterations constant yielding an
efficiency of about 45 %, again increasing the number of unknowns
and the number of tasks by a factor of eight. With respect paral-
lel efficiency, the weak scaling performance perfectly correlates
with the FFT, which in turn deteriorates due to the communication.
Using only two MPI tasks per node (one per socket), the (parallel)
weak scaling efficiency increases to 80 % going from resolution 64°
to 1283 (runs #29-#32), which is acceptable considering the over-
head for memory allocation and increasing communication time.
We solve the inverse tumor problem for realistic brain geometries
with a 2563 resolution up to a relative gradient of 1.20e—4 in 22
minutes using 512 MPI tasks on Hazel Hen. This corresponds to a
reduction of the objective function by three orders of magnitude
and a relative reconstruction mismatch of 0.2 %.

Diffeomorphic registration. We consider an open-access data
repository that has been widely used in the medical image com-
puting community to study the performance of diffeomorphic im-
age registration algorithms—the Non-rigid Registration Evaluation
Project (NIREP) [11]. This data is illustrated in Figure 3. The orig-
inal resolution of the data is (Np, N1, N2) = (256, 300, 256).13 We
also consider a simple test example to demonstrate large-scale
results for grid sizes of up to 4096%. This results in an inversion
for ~ 200 billion unknowns (if we just count the velocity field v
and ignore the state and adjoint fields). This synthetic problem
(SYN) is generated by solving the forward problem. We set the
template image to my(x) = (sin(x1)? + sin(x2)? + sin(x3)?))/3 and
transport it with the velocity velocity v(x) = (v1(x), va(x), v3(x),
v1(x) = sin(x3) cos(x2) sin(x2), v2(x) = sin(x3) cos(x3) sin(x3), and
v3(x) = sin(xz) cos(x1) sin(xq).

Setup. We fix several parameters across all runs: We use twelve MPI
tasks per node. We set the number of time steps to n; = 4. We use
an H! regularization model with a penalty on the divergence of v to
control volume change (regularization weight f,, = 1e—4). We use
a quadratic forcing sequence. We report a strong scaling analysis
using the NIREP datasets with resolution levels «; - (256, 300, 256),
Ky € {1/4,1/2,1,2}. We empirically set the regularization parame-
ter for the velocity v to f, = 1e—2. We limit the number of Newton
iterations to three and the number of PCG iterations to five. The
relative tolerance for the gradient is set to 1le—1 (we do not reach
this tolerance for these runs). We limit the Newton iterations to five
and the Krylov iterations to ten for the synthetic large scale runs
(N = 10243, N = 20483, and N = 40963), The relative tolerance for
the gradient is 1e—2. We also report a run for the entire inversion.
We set the relative tolerance for the gradient to le—1. This run is
performed on the same images we used in [45].

Results. We report the strong scaling analysis for the NIREP datasets
as well as the synthetic large scale run in Table 3. We illustrate the

13We transfer the images to a finer or coarser grid based on a cubic interpolation
model. We band-limit the data by applying a Gaussian smoothing operator with a
spatial bandwidth of h;, i = 1, 2, 3.



SC17, November 12-17, 2017, Denver, CO, USA A. Gholami et al.

Table 2: Computational performance of the tumor solver for real brain data, illustrated in 1 on HLRS’s Hazel Hen. We perform three Gauss-Newton
iterations with a regularization parametery = 1073, and limit the number of Hessian matvecs in the PCG solver to a maximum of three. We report
time to solution, time spent in the Hessian matvec, in the FFT, and in the diffusion solver, respectively (in seconds). We show the strong scaling
efficiency effs and the algorithmic weak scaling efficiency effy, . For the parallel weak scaling efficiency effy,, the number of PCG iterations for
the diffusion solver is fixed for all spatial resolutions. Timings are reported as a function of the number of unknowns (in space), and the number of
nodes and tasks. For runs marked with + we encountered MPI problems due to non-optimal settings. Performance could be improved by increasing
the MPI buffer and the maximum message size for the MPI eager protocol (run marked ).

N nodes tasks runtime effg effyy  (effy) FFT ([%]) H-matvec ([%]) diffusion ([%])

#1 643 1 2 4.07e+1 100.0 100.0 (100.0) 3.23e+1 (79.5) 2.57e+1  (63.2) 3.98e+1  (97.8)

#2 1 4 2.60e+1 78.2 100.0 (100.0) 2.12e+1 (81.7) 1.64e+1  (63.3) 2.55e+1  (98.1)

#3 1 8 133+l 76.6 100.0 (100.0) 9.92 (74.7)  8.38 (63.1) 1.30e+1  (97.9)

#4 2 16  6.05 84.0  100.0 (100.0) 5.05 (83.5) 3.82 (63.2) 5.89 (97.4)

45 3 32 4.81 52.8  100.0 (100.0) 4.14 (86.1) 3.02 (62.8) 4.68 (97.3)

#6 1283 1 4 49le+2  100.0 4.24e+2 (86.3) 3.14e+2  (63.9) 4.87e+2  (99.2)

#7 1 8 3.07e+2  80.0 2.56e+2 (83.2) 1.96e+2  (63.9) 3.04e+2  (99.1)

#8 2 16  1.37e+2 89.6 29.7 (43.7) 1.12e+2 (81.5) 8.77e+1  (64.0) 1.36e+2  (99.2)

#9 2 32 8.46e+l 72.6 307 (45.2) 6.72e+1 (79.5) 5.4le+l  (63.9) 8.38e+1  (99.1)

#10 6 64 4.15e+1 73.9 32.0 (46.8) 3.2de+1 (78.1) 2.65e+1  (63.9) 4.1le+l  (99.0)
#11 11 128 | 2.08e+1 73.7 29.0  (42.0) 1.7le+1 (82.2) 1.33e+1  (63.8) 2.06e+1 (98.7)
#12 22 256 1.13e+1 67.7 425  (60.9)  9.49 (83.7) 7.20 (63.5) 1.1le+1  (98.0)
#13 2563 3 32 | 1.58e+3  100.0 1.31e+3  (82.9) 1.02e+3  (64.4) 1.57e+3  (99.1)
#14 6 64 8.06e+2 98.2 6.75e+2  (83.7) 5.19e+2 (64.4) 7.99e+2 (99.1)
#15 11 128  3.63e+2 109.0 11.2 (22.9) 3.0le+2 (82.9) 2.35e+2 (64.7) 3.6le+2 (99.5)
#16 22 256 1.81e+2 109.6 14.4 (29.3) 1.49e+2 (82.6) 1.16e+2 (64.4) 1.80e+2 (99.5)
#17 43 512 1.00e+2 98.9 13.3  (26.6) 8.26e+1 (82.5) 6.45e+1  (64.4) 9.95e+1  (99.3)
#18 86 1024 4.03e+1 123.0 15.0 (31.0) 3.45e+1 (85.7) 2.55e+1 (63.4) 3.97e+1 (98.6)
#19 172 2048 2.50e+1 98.9 19.2 (38.5) 2.17e+1 (86.9) 1.59e+1  (63.5) 2.38e+1  (95.0)
#20 5123 22 256  2.52e+3  100.0 2.15e+3 (85.2) 1.65e+3  (65.5) 2.50e+3  (99.4)
#21 43 512 1.32e+3 95.8 1.13e+3  (86.2) 8.6le+2  (65.5) 1.31e+3  (99.4)
#22 86 1024 7.54e+2 83.5 54  (13.6) 6.24e+2 (82.8) 4.93e+2  (65.4) 7.52e+2  (99.7)
#23 172 2048  3.47e+2 90.7 7.5  (19.0) 2.87e+2 (82.8) 2.32e+2  (66.9) 3.45e+2  (99.4)
#24 342 4096 2.57e+2 61.2 52  (11.6) 1.98e+2 (77.1) 1.66e+2  (64.6) 2.50e+2  (97.3)
#257 683 8192 2.00e+2 39.3 3.0  (5.6)  1.30e+2 (65.1) 1.32e+2  (65.9) 1.7le+2  (85.5)
4267 683 8192 1.43e+2 551 4.2  (7.8)  9.20e+1 (64.4) 8.96e+1  (62.7) 1.15e+2  (80.7)
w27t 1366 16384 3.8%e+2 10.1 1.2 (2.0)  2.16e+2 (55.6) 2.3de+2  (60.2) 2.69e+2  (69.2)
#28 10243 2732 32768 1.6le+3 100.0 0.8  (1.2)  6.58e+2 (40.9) 9.25e+2  (57.5) 8.19e+2  (50.8)
#29 643 2 4 2.20e+1 100.0 (100.0) 1.85e+1 (84.2) 1.40e+1  (63.5) 2.15e+1  (97.7)
#30 1283 16 32 4.00e+1 55.0  (80.7) 3.49e+1 (87.2) 2.56e+1  (64.1) 3.94e+1  (98.6)
#31 2563 128 256  6.96e+1 31.6  (64.8)  6.05e+1 (87.0) 4.52e+1  (65.0) 6.90e+1  (99.1)
#32  512° 1024 2048 1.39%+2 15.9  (37.5) 1.14e+2 (82.3) 8.82e+1  (63.7) 1.36e+2  (98.2)

Figure 4: Summary of strong scaling efficiency of tumor inversion for real data. See Table 2 for exact timings. We display time to solution and
time spent in the FFT (in seconds) as a function of the number of unknowns (in space) and the number of tasks.
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Table 3: Image registration scaling performed on TACC’s Lonestar 5 (runs #1 to #28; NIREP datasets; see Figure 3) and HLRS’ Hazel Hen (SYN
datasets). We use 12 MPI tasks per node. We set the upper limit for the Gauss—Newton iterations to three/five and the number of PCG iterations to
five/ten for NIREP/SYN. We report (from left to right) the total time spent in the inversion (runtime/time-to-solution), the strong scaling efficiency,
and the time spent in the computational kernels (spectral operations/FFT and interpolation), respectively (in seconds) as a function of the number
of unknowns N (in space), and the number of nodes and tasks. Here “total FFT” corresponds to the time spent in all spectral operations; “FFT
comm.” is the communication time; “total interp.” is the overall time spent in the interpolation; “interp. kernel” is the time spent on the execution
of the interpolation operator, and “interp. comm” is the communication time for the interpolation. We also report the strong scaling efficiency and
the percentage of the total interpolation and FFT time with respect the overall runtime.

N nodes tasks runtime eff. total FFT ([%]) FFT comm. total interp. ([%]) interp. kernel interp. comm.

#1 1 2 2.07 100.0 8.2le-1  (39.7) 9.31e—2 1.05 (51.0) 7.18e—1 6.71e=2
2 3 1 4 113 914 4.83e-1 (42.7) 7.36e—2 5.30e—1 (46.8)  3.70e—1 3.68e—2
43 3 1 8 6.26e—1 82.6 2.67e—1 (42.7) 4.44e-2 2.87e—1 (45.9) 1.95e—1 1.78e—2
#4 g 2 16 + 3.70e—-1 69.9 1.72e-1 (46.6) 6.88e—2 1.5%-1 (43.1) 9.84e-2 9.95e-3
#5 3 32 2.47e-1 523 1.27e-1 (51.3) 7.51e-2 9.28e-2 (37.5) 5.00e-2 5.54e-3
#6 1 2  2.15e+1 100.0 9.35 (43.4) 5.07e-1 9.91 (46.0) 6.83 8.22e—1
#7 6;0\ 1 4 1.13e+1 954 5.06 (44.9) 6.73e—-1 5.05 (44.7) 3.42 4.28e—1
#8 1 8 6.19 86.9 2.79 (45.0) 3.89%e-1 2.78 (44.9) 1.82 2.32e-1
#9 g 2 16 3.30 81.6 1.59 (48.2) 5.52e-1 1.44 (43.6) 9.24e-1 1.14e-1
#10 3 32 1.79 75.2 8.94e—1 (50.0) 3.86e—1 7.50e—1 (41.9) 4.63e-1 5.93e-2
#11 g 6 64  1.04 65.0 5.61e—1 (54.2) 3.68e—1 4.22e—-1 (40.8) 2.32e-1 3.05e-2
#12 11 128  6.49e—1 51.8 3.69e—1 (56.9) 2.64e—1 2.47e-1 (38.1) 1.22e-1 1.90e—-2
#13 1 2 2.36e+2 100.0 1.13e+2 (48.0) 6.40 1.02e+2 (43.4) 5.88e+1 1.05e+1
#14 > 1 4  1.22e+2 96.4 6.04e+1 (49.3) 8.33 5.25e+1 (42.9) 2.95e+1 5.51

#15 9 1 8  6.73e+1 87.6 3.23e+1 (48.0) 4.58 2.99e+1 (44.5) 1.56e+1 3.95

#16 8“ 2 16  3.59e+1 82.1 1.82e+1 (50.7) 7.80 1.55e+1 (43.2) 7.82 2.69

#17 3 32  1.8le+1 81.4 9.38 (51.8) 3.60 7.48 (41.3) 3.92 1.18

#18 E 6 64  9.70 76.0 5.57 (57.5) 3.30 3.93 (40.5) 1.99 7.07e-1
#19 ~— 11 128  4.63 79.5 2.72 (58.6) 1.50 1.69 (36.5) 9.98e—1 1.4%e-1
#20 22 256  2.66 69.2 1.63 (61.1) 1.21 9.81e—1 (36.9) 4.98e—1 8.26e—2
#21 43 512  1.52 60.5 8.09¢e—1 (53.1) 6.15e—1 6.43e—1 (42.2) 2.54e-1 6.80e—2
#22 2 16 3.28e+2 100.0 1.81e+2  (55.0) 4.8de+1 1.35e+2 (41.2)  6.33e+1 2.50e+1
#23 3 32 1.73e+2 947 9.57e+1  (55.2) 2.85e+1 6.86e+1 (39.6) 3.17e+1 1.15e+1
#24 6 64 8.66e+1 94.7 5.04e+1 (58.2) 2.42e+1 3.48e+1 (40.2) 1.59e+1 6.31

#25 8 11 128 4.32+1 949 2.46e+1  (56.9) 1.10e+1 1.63e+1 (37.8) 7.95 2.84

#26 & 22 256 2.36e+1 87.0 1.56e+1 (66.3) 1.08e+1 8.83 (37.5) 4.03 1.64

#27 5 43 512  1.31le+1 78.1 8.92 (67.9) 6.56 4.41 (33.6) 2.03 7.27e—1
#28 86 1024  6.35 80.7 4.35 (68.5) 3.52 2.02 (31.9) 1.02 2.08e—1
#29 10243 11 128  1.97e+2 100.0 1.20e+2 (60.9) 3.30e+1 6.90e+1 (35.0) 2.35e+1 2.23e+1
#30 22 256  9.88e+1 99.7 6.17e+1 (62.5) 2.15e+1 3.4%e+1 (35.4) 1.16e+1 1.16e+1
#31 20483 86 1024 2.10e+2 100.0 1.37e+2 (65.0) 4.33e+1 7.21e+1 (34.3) 2.73e+1 2.40e+1
#32 171 2048 1.1le+2 94.8 7.17e+1 (64.7) 2.63e+1 3.64e+1 (32.8) 1.35e+1 1.05e+1
#33 40963 342 4096 4.42e+2 100.0 3.22e+2 (72.8) 1.31e+2 1.17e+2 (26.4) 4.20e+1 3.97e+1
#34 684 8192 2.38e+2 93.1 1.73e+2 (72.9) 8.27e+1 6.25e+1 (26.3) 2.10e+1 2.30e+1

strong scaling results for the real data also in Figure 5. We report
accumulated timings for the max values across all MPI tasks in
seconds as well as the strong scaling efficiency. The timings are
as follows: (i) “total FFT”: time spent in all spectral operations; (ii)
“FFT comm.” communication time for the FFT, (iii) “total interp.”:
overall time spent in the interpolation, (iv) “interp. kernel”: time
spent on the execution of the interpolation operator, and (iv) “in-
terp. comm”: communication time for the interpolation. We also
report the percentage of the total interpolation and FFT time with
respect to the overall runtime.

Observations. We spend almost all time (~90%) in the execution
of the FFT and the interpolation (see Table 3 and Figure 5). We
achieve excellent strong scaling results for clinically relevant prob-
lem sizes, with an almost perfect scaling for the execution of our

computational kernels (application of the FFT and evaluation of
the interpolation operator locally). We can fit conically relevant
problems on one a single node with 64GB of memory (see, e.g., run
#13). The number of MPI tasks for a specific problem size is, in our
current implementation, limited by the support of the interpolation
kernel/the size of the ghost layer; for a cubic interpolation model,
we need at least 3 X 3 X Ny points on each MPI task.

We showcase results that demonstrate that our solver can be
used to solve registration problems of unprecedented scale (40963
resulting in ~ 200 billion unknowns—a problem size that is 64x
bigger than the state-of-the-art that we presented at SC16 [45].
The weak scaling efficiency for these runs is 62.7%, 44.6%, and
32.6% when comparing the runtime for run #1 to the runs #9, #19,
through #28. The communication time for the FFT increases as we
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Figure 5: Strong scaling performance for diffeomorphic image registration. The results correspond to Table 3. We report the time to solution and
the time spent in the computational kernels (summarized), respectively (in sec.) as a function of the number of unknowns (in space), and the

number of MPI tasks.

increase the problem size. We expect to see this behavior, since
the FFT is communication bound. This negatively affects our weak
scaling results (the total FFT time is for run #28 almost exclusively
dominated by the FFT communication time; 80%). This observation
is consistent with the results we report for the tumor case. The
weak scaling performance for the interpolation is very good (50%
in total when comparing runs #1 and #28). Having good strong
scaling performance is important in image registration, as the time
to solution can be prohibitive in 3D. We can see that we achieve a
quite good strong scaling for our runs (between 52.1% (run #5) and
80% (run #28); this is in particular visible in Figure 5. The execution
times for our computational kernels show excellent strong scaling
results. The efficiency eventually deteriorates as we increase the
number of cores. The amount of data we have to communicate
in the interpolation phase essentially depends complexity of the
characteristic. In a worst case scenario (which we do not expect
in practical applications) all departure points may end up on one
node. Semi-Lagrangian schemes can help us to alleviate potential
imbalances (in contrast to purely Lagrangian schemes [6]). If the
characteristic becomes to complex, we can introduce more time
points to our problem. However, this will negatively affect the
time-to-solution, as we have to perform more interpolations.'4

We analyze our results for original resolution of the NIREP
data sets in more detail: For these experiments, we can reduce
the gradient by a factor of 3.17e—1 and the mismatch between the
transported template image and the reference image by a factor of
1.89e—11.

The balance of the runtime spent on the individual components
of our scheme is the same throughout all runs. We perform 32
PDE solves. The PDE solves is where the entire runtime goes. For
instance, for run #13 we spend 87% of the total runtime (2.36e+2
sec. of 2.06e+2 sec.) on solving the transport equations of our sys-
tem. These solves are done in the evaluations of (i) the objective
functional (four evaluations.; 1.85e+1 sec.), the gradient (four evalu-
ations.; 2.69e+1 sec.), and the Hessian matvec (twelve evaluations.;
1.78e+2 sec.). As we can see from this analysis, we spend most of
the time runtime on the Hessian matvec. When we switch from two
MPI tasks to 512 we can reduce the run time by a factor of about 150
(1.52 sec.; 60.5% efficiency). For the synthetic case we can solve our
problem (reduce the gradient by two orders of magnitude) within

14 An analysis of the number of interpolations we have to perform can be found in §3.
15Note that we discussed convergence rates for further mismatch reduction in [46]
such that we focus on weak/strong scaling for different images and less for convergence
rates, here. The tolerances and mismatch values chosen here allow for comparison of
timings that we reported in [47]. Thus, we limited the number of Newton and PCG
iterations. In addition, with fixed iterations is how most registration codes are used in
clinical practice. Further reducing the gradient may improve the mismatch slightly but
not significantly. For inter-subject registration the mismatch cannot be reduced to zero
due to intensity variations and incompatible topology (e.g., gray matter gyrations).

2 iterations (14 PDE solves; 4 Hessian matvecs; relative change in
the gradient: 9.66e—3; relative change of the mismatch: 7.18e—2;
run#30). The overall weak scaling efficiency for these runs is 82.9%
(128 MPI tasks for 10243 versus 8192 MPI tasks for 40963). For an
entire registration solve on 256 MPI tasks on 32 nodes, the new
formulation requires 14 Hessian matvecs for the same problem
that we reported in Table 5 in [47] and similar registration quality.
Bringing everything together (formulation and fast computational
kernels), we can reduce the runtime by a factor of 8x over the our
previous work.

Conclusions. We presented SIBIA, a computational framework
for coupling biophysical models with image registration for medical
images. To the best of our knowledge, SIBIA is the first work on
scalable algorithms for an integrated approach for biophysics-based
image analysis in brain tumor imaging. Our major accomplishments
and observations are the following: we achieve excellent strong
scaling performance on clinically relevant problem sizes for both
algorithms (from 60% up to 100% parallel efficiency). Moreover, 80%
to 90% of the runtime is spent in the computational kernels (FFT
and interpolation). We were able to improve the performance of
these kernels by a factor of roughly 8 (interpolation) and 2 (FFT)
over the state of the art. For the tumor problem, we saw that the
scalability is inherited from AccFFT [23, 25]. The preconditioner
for the tumor solver is not mesh-independent for real data at this
resolution levels. For the registration, we solved an inverse problem
with ~200 billion unknowns on up to 8192 cores—a problem size
that is 64X larger than [47], rendering our solver applicable to, e.g.,
the registration of high-resolution CLARITY imaging data [40, 62],
and we could improve the time-to-solution by a factor of about 8
compared to [47].

We simulate brain tumor growth using a simple reaction-diffusion
model that can be applied to other types of tumors in both humans
and animals. To be predictive, one has to use a more complex model
that can capture phenomenas such as deformation of the brain
(mass-effect) [22, 35] and presence of multi-species tumor cells [31].
However, we emphasize that more complex models will include
more patient-specific unknowns that have to be inverted for with
the limited data available. This can create potential overfitting is-
sues.

To couple tumor growth and image registration, there are two
basic ways for which we have first results that will be presented
in a follow-up paper: 1) Picard iteration between the two inverse
problems (somewhat similar to [26]) for the registration velocity
and tumor parameters; 2) a domain decomposition-like approach in
the optimality conditions of the coupled problem, where one block
is physics (tumor model) and the other registration.
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6 ARTIFACT DESCRIPTION APPENDIX

All of the code used for strong/weak scaling tests can be download
from http://padas.ices.utexas.edu/sc17sibia.tgz (We have also made
this available as external data in our submission). This includes all
the source codes used for generating the simulations and parallel
scalings presented. Specifically the tarball includes the tumor and
the registration codes. All these binaries include a helper function
that can be invoked by running executable --help.
The tumor code includes the following drivers:

e bin/bench: Benchmarks the forward, adjoint, and the Hes-
sian operators for the tumor code. The input size N, the
number of time steps, the number of processors, etc. can be
varied. The driver outputs the maximum MPI time spent
over 10 iterations, and reports the timing breakdown in
terms of communication, local FFT, local transposes, etc.

e bin/Forward This driver performs a forward simulation
and writes the results in NetCDF format in the results
directory, and reports the timing statistics.

e bin/itp_tao This driver performs an inverse tumor solve
and reports the reconstruction error along with the tim-
ing statistics. The outputs for the ground truth and recon-
structed results are written into results directory.

The registration code includes a single binary to run the regis-
tration on synthetic and real data: bin/claire. We have included
two python scripts:

e runclaire-nirep.py, and
e runclaire-synthetic.py

that have been used to perform the strong and weak scaling runs for
the registration software. These scripts will generate an exemplary
job submission file, claire-job-submission. sh, in the user spec-
ified output directory and submit the job (call to sbatch or gsub).
Running these scripts will also generate an exemplary command
line for bin/claire. General instructions on how to compile and
run the registration code can be found in the doc subdirectory, in
particular

e doc/README-INSTALL.md, and
e doc/README-RUNME.md

To run the registration for a synthetic test problem of size 32x32x32
one can simply call the binary bin/claire without arguments. The
problem size can be increased by setting the -nx option (e.g., -nx
64 for 64 X 64 X 64 or -nx 64x128x64 for 64 X 128 X 64). Additional
command line options can be found by running bin/claire -help.
The NIREP datasets can be downloaded from http://nirep.org. The
original data is in *.nii.gz format. We ran the weak and strong
scaling results using * . nc format (features parallel I0). The data can
be converted using Matlab; we note that we also support x.nii.gz
format. The original resolution of the data is 256 X 300 x 256. We
resampled the data using Matlab’s interp3 function using the
’spline’ option.

Hardware: We execute the scaling tests on two supercomputing
systems: The Lonestar 5 system at the Texas Advanced Computing
Center in Austin, TX, US (system specifications: dual socket Xeon®
E5-2690 v3 (Haswell) with 12 cores per socket (24 cores/node) at
2.6GHz with 64 GB memory per node) and Hazel Hen at the High-
Performance Computing Center in Stuttgart, DE (system specifica-
tions: dual socket ® Xeon® E5-2680 v3 (Haswell) with 12 cores per
socket (24 cores/node) at 2.5GHz with 128 GB memory per node).
Our code is written in C++ and uses MPI for parallelism. It is com-
piled with the default Intel compilers available on the systems (Intel
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16). We use PETSc’s implementations for linear algebra operations,
PETC’s TAO package for the nonlinear optimization, AccFFT for
Fourier transforms [23, 25], and PnetCDF for I/O [63].

Third Party Software. We use PETSc’s implementations for linear
algebra operations, PETC’s TAO package for the nonlinear opti-
mization [3], AccFFT for Fourier transforms [23, 25], and PnetCDF
for I/O [63]. We use FFTW version 3.3.4 for building the AccFFT
library with the following flags:

--enable-threads --enable-openmp --enable-mpi
--enable-avx CFLAGS=-03

Data Sets: We use McGill BrainWeb data set for the brain geom-
etry as an Atlas. For the registration we consider an open-access
data repository that has been widely used in the medical image
computing community to study the performance of diffeomorphic
image registration algorithms—the Non-rigid Registration Evalua-
tion Project (NIREP) [11].16 For the interpolation tests (in Table 1)
we create random points generated with drand48() function in c++,
in the local domain of each process. For the fixed departure point
case, we set all the departure points to be half the grid size.

Modules Used: On Lonestar 5 machine we used “intel16.0.1,
“cray_mpich/7.3.0”, and “TACC1.0” modules. On Hazel Hen ma-
chine we used “intel/16.0.3.210”, “craype-haswell”, “craype-network-
aries”, “cray-mpich/7.5.3”, “cray-petsc/3.7.4.0”, “PrgEnv-intel/5.2.82”,
and “cray-parallel-netcdf/1.7.0”.

We compile all of our codes with “-O3 -xhost” flags. The external
libraries are linked statically.

Interpolation Experiments. The interpolation experiment of Table
1 is performed on a single node of Lonestar5 using an interactive
session. The data was collected by setting OMP_NUM_THREADS=1
and the binary was run using tacc_affinity script which sets the
NUMA control options. We used intel 16 compiler to build the
code. The timings were collected as the average of 100 repetitions.
Before collecting the data we perform 10 warmup interpolation
calls which are not timed. The GFlops are computed by considering
the total execution time rather than just the local interpolation
time to account for the time needed to reshuffle the departure
points. This is necessary since in the binning approach the points
are processed in a different order. The non-vectorized version of
the code was optimized. We checked that the compiler does not
incorrectly assume any dependencies in the code by creating a
gopt-report=5 flag when compiling the code.

Tumor Inversion Experiments. The tumor inversion experiments
were conducted on Hazel Hen machine using double precision. For
all runs we use 12 MPI tasks per node. For run #26 we additionally
set the environment variables

MPICH_GNI_MAX_EAGER_MSG_SIZE=131072
MPICH_GNI_NUM_BUFS=1024

in order to improve the MPI performance by increasing the MPI’s
local buffer size. For all the times reported, we use the maximum
timings over all MPI tasks.

16The data can be downloaded from http://nirep.org; We consider the datasets
na@1 and na02 for our experiments.


http://padas.ices.utexas.edu/sc17sibia.tgz
http://nirep.org
http://nirep.org
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