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Abstract—Recently, crowd-sensing has rapidly been evolved
thanks to the technological advancement in personal mobile
devices. This emerging technology opens the door for numerous
applications to collect sensory data from the crowd. To provide
people with a motive for participating in data acquisition, the
crowd-sensing systems have to sidestep burdening the resources
allocated to the mobile devices, i.e. computing power and energy
budget. In this paper, we propose iSense, a novel framework for
reducing the energy costs of participating in crowd-sensing. We
mainly target the superfluous energy overhead on the mobile
devices to sense and report their position information to the
back-end servers. To relieve such an overhead, iSense entirely
offloads the localization burden to the crowd-sensing servers.
In this manner, iSense enables the utilization of advanced
localization approaches thanks to the high resources of the crowd-
sensing servers. To this end, iSense opportunistically exploits
the ‘“already-existent” network signaling exchanged frequently
between the mobile devices and the WiFi networks or the
cellular networks. To collect the localization data, we implement
a lightweight data collection algorithm on a set of off-the-
shelves access points. As a case study, we implement a two-
step localization method, including a coarse- and a fine-grained
localization. In this regard, compressed sensing is employed to
estimate the fine-grained solution. To assess the effectiveness
of iSense, we implemented a testbed to evaluate the energy
consumption and the localization accuracy with different mobility
and usage patterns. The results show that using iSense, compared
to some baseline methods, we can identify up to 95% savings in
the consumed energy.

I. INTRODUCTION

In the recent decade, crowd-sensing has been introduced
to inexpensively build low-cost wireless networked sensors.
The core idea behind crowd-sensing is to exploit the powerful
features of modern mobile devices which became an indis-
pensable part of our daily routine [1]. Nowadays, most mobile
devices are equipped with a large variety of sensors such
as accelerometers, proximity sensors, microphones, magnetic
field sensors, GPS sensors, and cameras. The sensed data is
usually uploaded to a set of crowd-sensing servers by means of
the existing wireless infrastructure such as WiFi and cellular
networks. Realizing the potential of crowd-sensing, numerous
applications have been developed, including indoor mapping
[2], air quality monitoring, and smart transportation [3].

One important aspect of crowd-sensing systems is to moti-
vate the mobile users to participate in data acquisition. Gen-
erally speaking, the mobile users are tremendously concerned
with their own resources such as battery and computing power.
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Hence, reducing the energy overhead of participating in the
crowd-sensing systems becomes a major design principle.
In this regard, a rational design strategy commences with
identifying the superfluous sources of energy consumption.
In a typical crowd-sensing system, the servers distribute their
sensing queries to a set of mobile devices whose location
overlaps with the sensing area. Accordingly, the servers have
to be broadly aware of the location of the participating
mobile devices. To this end, the mobile devices continually
sense and update the servers with their location. These two
tasks typically consumes a considerable amount of energy.
Consequently, a challenge of reducing this energy overhead
on each mobile device while simultaneously keeping track of
all the participating devices emerges.

To tackle this challenge, we propose iSense, an energy-
aware crowd-sensing framework that principally targets re-
lieving the energy burden of localizing the mobile devices
and reporting the position information. Specifically, iSense
moves this burden from the mobile devices to the back-end
servers. The intuition behind iSense is to opportunistically
exploit the already-existent traffic between the mobile de-
vices and the surrounding infrastructure, i.e. WiFi or cellular
networks. Considering an indoor environment, each mobile
device frequently sends probe messages to connect or to
ensure connectivity to the WiFi access points. Throughout
this paper, we focus on exploiting the already-existent WiFi
signals, i.e. probe requests and normal traffic generated by the
various applications. Nevertheless, the presented concepts can
be easily adopted to other communication networks. Another
advantage of iSense is enabling the utilization of advanced
localization methods which can be hardly implemented on the
mobile devices due to their limited resources. Accordingly,
better localization can be mostly achieved thanks to the high
computing power of the crowd-sensing servers. As a use case,
we present a compressive sensing-based localization method
that relies on convex optimization to provide a precise position
estimation. To the best of our knowledge, iSense represents
the first work that utilizes the already-existent wireless traffic
to reduce the energy costs of participating in crowd-sensing
applications.

In detail, we provide the following contributions: (1) We
define a crowd-sensing framework in which the servers proac-
tively localize the participating mobile devices. (2) We provide
an experimental study of the WiFi traffic in four scenarios
comprising different mobility patterns and mobile usage. The
traffic analysis confirmed that plenty of WiFi messages are
frequently exchanged between the mobile devices and the
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WiFi access points (APs). (3) We present a WiFi packets
detection and collection method implemented on a set of off-
the-shelves APs to detect the existing mobile devices within
their coverage area and to collect the localization data. (4)
We introduce a two-step position estimation algorithm which
runs on the server side to aggregate the localization data and
then calculates the current location of the mobile devices.
In this realm, we adopt fingerprinting as our position fixing
method. In the offline phase of fingerprinting, we adopt affinity
propagation to cluster the collected RSSI measurements. Such
clustering highly simplifies the positioning task via solely
selecting the most relevant RSSI clusters. For the online phase,
we provide a comparative study between adopting K-nearest
neighboring and compressive sensing. (5) We present a proof-
of-concept implementation and evaluation via a real-world
scenario. To assess the performance of iSense, we consider
two QoS measures, including the energy consumption of the
mobile devices and the positioning accuracy. To this end, we
constructed a testbed and several experiments were carried
out in which iSense has been compared to three different
position update protocols, namely dead-reckoning, time-based
protocol, and distance-based protocol. The findings show a
significant reduction in the energy overhead (up to 95%) on
the mobile devices when participating in the crowd-sensing
systems. Moreover, adopting the two-step localization method
highly improves the position accuracy.

The remainder of this paper is structured as follows:
Section II defines the tackled problem and formalizes our
objectives. Section III presents the system model and the archi-
tectural framework of our system. Moreover, we introduce the
WiFi traffic study through which we confirm the applicability
of iSense in different scenarios. Section IV describes the
device detection and data collection algorithm. The two-
step localization approach is presented in Section V, before
discussing the evaluation results in Section VI. Section VII
reviews the related work in the realm of energy efficiency
in crowd-sensing applications. Finally, Section VIII concludes
the paper with an outlook on future work.

II. PROBLEM STATEMENT

In this section, we discuss the energy overhead on the
mobile devices due to sensing and reporting their position
information to the crowd-sensing servers. It is worth to men-
tion here that this paper deals with the latter setting, where
localization and position update messages dominate all other
contributions to energy dissipation, such that techniques like
adaptive sampling, compression, or piggybacking have limited
impact. To distribute the sensing queries in crowd-sensing
applications, the servers have to be aware of the mobile devices
in the sensing area. This position knowledge is typically
acquired by the mobile devices through continuously sensing
their location and then sending position update messages to
the corresponding servers. However, the task of frequently
turning on the navigation system is inefficient in terms of the
consumed energy. Additionally, reporting this information to
the server has many drawbacks, including: (1) significantly

increasing the energy consumption of the mobile devices, (2)
these reports may be superfluous when the devices are outside
the sensing area, and (3) frequently reporting the position
information subjects the mobile devices to third-party attacks
which may reveal the users identity.

Figure 1 depicts the energy overhead of activating the in-
ertial measurement unit (IMU), i.e. accelerometer, gyroscope,
and gravity sensors, and of sending the position updates via
a WiFi network. A Monsoon power monitor tool has been
connected to a Galaxy Nexus 4 mobile device to record the
power consumption every 100 ms. Figures la and 1b depict
the power peaks due to activating the IMU sensors and the
WiFi module, respectively. Figure 1c shows the cumulative
power for both tasks, i.e. sensing and reporting the position.
It is obvious that continuously performing these two tasks add
significant energy overhead on the mobile device. Whereas,
Figure 1d show the cumulative distribution function (CDF)
of the average power consumed while performing these two
tasks. The figure demonstrates that activating the IMU module
nearly consumes a similar amount of energy to that required
for communication. Hence, reducing the number of updates
while continuously sensing the position burdens the mobile
devices. In this paper, we seek to reduce this overhead via
adopting the iSense framework.
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Fig. 1: Power consumption of position estimation and update
reports

Formally, the tackled problem can be formulated as denoted
by Equation 1. The main objective is to minimize the overall
energy overhead of each participating mobile device m € M
where the symbols E, E., and E, are the energy consumption
required to perform data acquisition, positioning computations,
and reporting the position information to the servers, respec-
tively. This objective is governed by a quality condition which
dictates that the geographic position of a mobile device P;
stored at the server as x—y coordinate has to be approximately



similar to the actual position P.y...; Of this mobile device.

minimize Y (Ey(i) + E.(i) + Ey(i)) N
=1
Ps = Pcurrent

subject to vV meM

III. SYSTEM OVERVIEW

This section introduces the system architecture along with
our assumptions. Assume an indoor environment equipped
with N WiFi access points (AP), each covering an area
of radius R meters. These areas are deliberately overlapped
to guarantee full coverage. For simplicity, we assume a
single crowd-sensing server which is physically connected
to the scattered APs. We assume that these APs support a
lightweight embedded Linux distribution such as OpenWRT'
and DD-WRT?. Accordingly, we can easily run an application
on each AP to monitor the surrounding area. The monitoring
involves: (1) detecting all mobile devices that can be seen
by the APs, (2) recording the RSSI measurements, and (3)
forwarding an update to the back-end server. The building
has M mobile users who are freely traversing the various
floors. Figure 2 depicts the architecture of the proposed crowd-
sensing framework.
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Fig. 2: System Architecture

On receiving a sensing query ¢ from the client, the query
manager forwards the query ¢ to the mobile devices that are
located in the sensing area. As soon as the query manager
receives the required sensor data from some mobile devices, it
sends a termination message to all mobile devices that initially
received ¢ to stop the execution of the query. At the mobile
devices, the sensing engine component is mainly responsible
for reading the sensors data and reporting these readings to
the back-end server. To distribute the query g, the query

Uhttps://openwrt.org/
2http://www.dd-wrt.com/site/index

distribution component identifies a subset of mobile devices
whose locations overlap with the sensing area. To this end, the
server employs a two-step localization method, namely coarse
and fine position sensing.

Before delving into the technical details of iSense, we have
to examine the existence of sufficient WiFi traffic for position
sensing. In fact, we conducted a series of experiments to
collect the wireless traffic between a mobile device and a
set of APs in different scenarios. For this study, we used
the Wireshark® tool installed on an Apple MacBook. The
MacBook laptop was configured to work in the monitoring
mode. We employed a Google Nexus 4 smart phone as the
targeted mobile device. The MacBook acts as a third party
device which listens to the traffic between the mobile device
and the various APs. We classified the collected signals into:
(1) probe request messages, and (2) normal traffic from the
typical mobile Apps such as Youtube and Facebook. To cap-
ture and analyze the network traffic in the low-level layer, the
IEEE radiotap header—which provides information about
the various IEEE802.11 frames such as the MAC timestamp
and RSSI values—has been parsed. In order to capture the
radiotap header, the IEEE 802.11 wireless card has to
be adjusted into the monitoring mode which allows sniffing
all the packets in the surround area. The monitoring mode is
inherently supported in some wireless network interface cards
where a machine that operates in the monitoring mode runs
as a listener.

During the experiments, several scenarios were examined
involving different mobility patterns and different workloads,
i.e. activities running on the mobile device. Specifically,
four scenarios were considered under different conditions: (1)
Scenario 1, mobility without activities (i.e. only background
services); (2) Scenario 2, mobility with activities (i.e. web
browsing, video streaming); (3) Scenario 3, stationary without
activities; and (4) Scenario 4, stationary with activities. The
first two scenarios consider collecting WiFi packets during the
movement of the mobile device. Whereas, the latter scenarios
were achieved via keeping the mobile device on a table. For
each data sampling, we ran the experiment for ten minutes.
Subsequently, the collected traffic has been filtered out based
on the MAC address of the smart phone. This filtering step is
crucial to solely consider the traffic from/to our mobile device
under test while discarding signals from other sources.

Figure 3a depicts the probe requests (aka association pack-
ets) while the mobile device was moving and no activities were
running. As the figure shows, there exist plenty of wireless
packets thanks to the device movement which intrinsically
imposes a continuous handover between the neighboring APs
to maintain the wireless connectivity. Figure 3b delineates the
normal uplink traffic in the first scenario. Despite disabling
the mobile applications, we found tens of packets are still
transmitted to the APs owing to the background services.
Nevertheless, there exist silence periods with no traffic, as
depicted in Figures 3a-3b. To summarize the results of the four

3https://www.wireshark.org/
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scenarios, Figure 3c delineates the fraction of recorded WiFi
bundles, where a bundle comprises 20 WiFi packet per second.
Due to enabling some activities, the traffic size is highly
increased in the second scenario. In the third scenario, we
noticed a periodic behavior of the probe requests. Although the
number of probe requests are dropped due to the connection
to a single AP, there still exists a sufficient traffic volume
thanks to the background services of the mobile device (cf.
Figure 3c). In iSense, the APs trigger the mobile devices to
send forced probe requests when silence periods are detected
(cf. Section IV). In the fourth scenarios, the traffic volume
is tremendously increased while running the various mobile
applications. It is important to mention here that the amount
of the probe request frames varies based on the setting and
the state of the mobile devices, i.e. their mobility pattern. To
conclude, the already-existent WiFi traffic can sufficiently be
utilized for position sensing at the back-end server.

IV. DETECTION & DATA COLLECTION

In this section, we explain the processing steps—performed
on each AP—to detect the mobile devices and to record
the required positioning data. In fingerprinting, sensing the
position of a mobile device using a single AP may negatively
affect the positioning accuracy. Hence, the algorithm has been
designed to handle two classes of the mobile devices in each
AP, namely (1) the associated devices which are already
in direct connection with the AP, and (2) the unassociated
devices which exist in the coverage area of the AP but are
connected to neighboring APs. In the former class, a handler
has been implemented to frequently read the associated mobile
devices list on each AP. To handle the latter class, iSense
analyzes the flight packets in the surround area to extract
the MAC address and the RSSI value of each packet. To
aggregate the readings from different handlers, a measurement
pool is constructed. Figure 4 describes the detection and
data collection algorithm. This algorithm takes the MAC
addresses A of the participating mobile devices as an input.
At the outset, two parallel threads are thrown to capture the
RSSI values which are then stored in two lists, namely the
associated mobile devices list (AML) and the unassociated

Require: MAC address list of the participating devices A =
{A1, -+, Ap}, threshold ¢, time threshold ¢,

: UML « 0 > Initialization
- AML « ()
. instantiate a wireless interface > UML preparations
. instantiate a PCAP interface & a network filter
: while true do

AML <+ readAssociatedList(A)

UML <« filterPCAP(A)

pool < klamanFilter(AML U UML) > updating the
measurement pool

I IS

9: for all MAC address A; € AN pool do

10: if |04 < 4, or Tf,;' > 1); then

11: trigger a probe request

12: else > reducing the redundancy
13: 04 « centroid(O%¢, 1))

14: end if

15: end for

16: forward pool to the crowd-sensing server

17: end while

Fig. 4: Detection and data collection algorithm

mobile devices list (UML). As an initialization, the AML and
the UML lists are set to (), i.e. null value (1. 1).

The AML handler uses the iw configuration utility* to
extract the RSSI values and the MAC addresses (1. 6). Sub-
sequently, it forwards this data to the measurement pool for
further processing. For the unassociated mobile devices, the
existing hardware does not support the direct recording of their
RSSI values. As a workaround, the entire network traffic is
dumped to extract the required information. The RSSI values
are typically placed in the RadioTap header’ which exists in
the lower sub-layers of the MAC layer. To capture this header,
a new wireless network interface has been created and is
configured to work in the monitoring mode (1. 3, 4). Then, the
UML handler utilizes the PCAP analyzer which provides APIs
for capturing and filtering the network traffic (1. 7). The PCAP

“https://wireless.wiki.kernel.org/en/users/Documentation/iw
Shttp://www.radiotap.org/



APIs belong to the 1ibpcap library® in the Unix system.
Such a library provides two types of capturing, including: (1)
capturing the network traffic and then saving it into a file in
the pcap format for later filtering and analysis, and (2) online
capturing and analyzing which provides a packet handler for
each captured packet.

To improve the quality of the collected readings, iSense
pre-processes them in a measurement pool before being sent
to the crowd-sensing server. In this regard, a Kalman filter
[4] is employed to eliminate the noise along with tracking
the position changes of the mobile devices in the light of the
preceding readings (1. 8). To overcome the silence periods in
which the received observations O“i for each MAC address
A; € A are less than a packet threshold ,, the APs
deliberately trigger the mobile devices to send probe requests
to ensure connectivity (I. 11). Furthermore, the algorithm
checks whether the time 74¢ between two observations 0,
Oy, does not exceed a time threshold v;. Otherwise, the mobile
devices are also triggered to obtain fresh observations (1. 11).
To reduce the redundancy of the observations for each MAC
address, the algorithm determines the centroid point within a
time window specified by the threshold ;. Finally, each AP
forwards the collected data as a JSON object to the crowd-
sensing server. To improve the position accuracy obtained
by fingerprinting, iSense considers observations from at least
two associated/unassociated APs (cf. Section V). Figure 5
visualizes the data flow between the various processing steps.
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V. POSITION ESTIMATION

In this section, we discuss the implementation details of the
two-step position sensing method. It is important to mention
that this method is inspired from the work done in [5].
Feng et al. [5] propose a compressive sensing-based local-
ization method through solving an ¢;-minimization problem.
However, solving these convex optimization problems on the
mobile devices is hardly viable owing to the limited computing
power and energy budget. In contrast to [5], iSense provides a
realistic implementation of the approach on the crowd-sensing
servers. Figure 6 shows the processing steps performed on
the crowd-sensing server to localize the participating mobile

Shttp://www.tcpdump.org/

devices. To estimate the position information, we utilize the
fingerprinting approach which comprises two phases, includ-
ing: (1) an offline phase in which a radio map is constructed
and is clustered to reduce the search space while matching the
online observations to the radio map, and (2) an online phase
in which the recorded observations are matched to a certain
cluster (i.e. coarse localization), before the geographic position
is precisely determined through formulating the localization
task as a compressive sensing problem (i.e. fine localization).
Below, we explain each component of the localization method.
Offline
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Fig. 6: Architecture of the position sensing method

A. Offline Phase

In this section, we discuss the radio map construction in
more detail, before we describe the radio map clustering using
the affinity propagation method.

1) Radio Map Construction: In fingerprinting, localization
occurs through matching the captured RSSI readings with
a radio map of the indoor environment. In iSense, the APs
measure the RSSI values and forward them to the crowd-
sensing server. For the crowd-sensing server to construct a
reliable radio map, the geographic area of the indoor envi-
ronment has to be divided into a set of small cells. Each
cell has a reference point (RP) which is identified by its z-y
coordinates. For each RP i, the AP j collects data samples
1/)53) (r),7 ={1,---,t},t > 1 by pointing the mobile device
to different orientations 0 € O = {0°,90°,180°,270°} where
t denotes the number of collected samples. The collected RSSI
values in each RP are then averaged 1/)1(3) = % S wz(f’j) (1)
forming a training record. The data collection procedure is
repeated till all RPs in the radio map are visited. Accordingly,
the radio map—for each orientation o—is constructed as a set
of training records denoted by

vl w %
o | ,
e ?

(0) (0) (o)

L1 Lj " L,N

where 7,/153) is the average RSSI value collected from AP j
at RP i, j € R”, L is the number of RPs in the radio map, and



N is the total number of APs connected to the crowd-sensing
server.

2) Data Clustering: Clustering the radio data is primarily
achieved to improve the positioning accuracy as well as to
reduce the number of RPs and RSSI values required for
sensing the position in the online phase. In this regard, we
utilize the affinity propagation method [6] which exchanges
update messages between the data points to identify a set of
“exemplars”, i.e. center points of the RPs that are representa-
tive of clusters. Initially, the algorithm calculates a similarity
matrix S € R(MM) between all RPs in the radio map V.

S(i,k) = —||RP; —RP.||*> V ike{1,2,---,M} (3)

Equation 3 denotes the Euclidean distance used for measur-
ing the similarity between a candidate exemplar and the other
RPs in the radio map. Subsequently, the algorithm considers
all the RPs as potential exemplars through assigning them a
preference value estimated as the median of the similarity
matrix S. To select a probable exemplar, the data points
recursively exchange two types of update messages, namely
(1) the responsibility messages R € R(“L) and (2) the avail-
ability messages A € R(“L)_ First, the responsibility message
R(i, k) quantifies how well-suited RP k is to be selected as
an exemplar for RP ¢ relative to other candidate exemplars.
Second, the availability matrix A(i, k) that represents how
“appropriate” it would be for RP i to pick RP £ as its exemplar
is updated. These update messages are continuously exchanged
till the cluster boundaries remain unchanged over a number of
iterations. The exemplars are extracted from the final matrices
as those whose self-responsibility plus self-availability is pos-
itive (i.e. (i, 1) +a(i,4) > 0). After identifying the exemplars,
each RP in the radio map is assigned to a cluster via measuring
its Euclidean distance to all available exemplars. Accordingly,
the output of this algorithm is a set of exemplars H € R"
plus their corresponding clusters C = ¢y, - - - , ¢, that are to be
used in the online phase.

B. Online Phase

In this phase, the server collects the RSSI values from each
AP and then it calculates the exact location. Below, we discuss
the two-step localization algorithm implemented on the crowd-
sensing server.

1) Coarse Localization: The core idea behind splitting the
positioning task into two steps is to reduce the search space
while matching the online RSSI values with the various radio
map clusters. Since fewer RPs are considered, the coarse
localization limits the maximum error to the selected subset.
In the coarse localization step, we compute the similarity
s(¢r,10;) between the online RSSI ¢, and each exemplar
©; € H to decide which cluster it belongs to. In lieu of
selecting one cluster, we keep the best-matched clusters that
have the highest similarities. In this manner, the algorithm
improves the accuracy by considering the cases in which the
mobile device is close to the cluster boundaries. Accordingly, a
new clusters set C C C is produced along with their exemplars

H. Hence, the final output of this step represents a partial radio
map matrix given by

¥ =9 V(50 eC. 4)

2) Fine Localization: As an example of the advanced
methods which can be implemented on the crowd-sensing
server, we utilize Compressive Sensing (CS) for providing a
fine-grained position sensing. The core idea behind CS is to
enable sampling below the Nyquist rate while offering precise
recovery [7]. Generally, CS relies on two main principles:
sparsity of the signals of interest, and incoherence which
pertains to the sensing modality. A signal X € R® is said
to be K-sparse, if it consists of K non-zero elements where
k < s. Fortunately, the localization problem has sparse nature
where the RSSI values at a given RP are unique in the discrete
spatial domain. Hence, if we assume that the mobile device
is ideally located at one of the RPs, the position sensing task
can be formulated as a CS problem by

y=®xUxz+e (5)

where y is the online RSSI vector, ® is a binary sparse
measurement matrix, ¥ € R%" is the partial RSSI matrix that
is generated in the coarse localization phase given that L <
L, N < N. The term ¢ is the measurement noise due to RSSI
deviations and x = [0,---,1,0,---,0]7 is a 1-sparse vector
representing the device location. The measurement matrix ¢
enables the crowd-sensing server to select k& APs which are
closer to the mobile devices. Consequently, the k-sparse matrix
® can be estimated once the indices of the k-nonzero elements
are found. To this end, we descendingly sort the online RSSI
vector .., and then consider only the APs corresponding to
the least indices. Generally, applying the CS theory requires
the matrices ® and ¥ to be incoherent, i.e. columns of these
matrices have to be nearly orthogonal. Once the incoherence
condition is satisfied, the devices position can be precisely
estimated by solving the CS problem using ¢;-minimization
solvers. If the recovered vector Z is a 1-sparse vector, it means
the mobile device is exactly located at this RP. Otherwise, the
position can be determined as the centroid point of the selected
RPs in 7.

VI. PERFORMANCE EVALUATION

To demonstrate the effectiveness of iSense, we tested our
system in a real-world scenario. The goal behind our exper-
iments is to obtain a real radio map from a geographic area
that reflects a typical setting of indoor environment. Then, we
collect a set of test points in order to study the performance of
iSense in various scenarios. We first describe the setup of our
evaluation, before we discuss the evaluation results in various
scenarios. The performance is assessed in terms of the energy
consumption of the mobile devices participating in the crowd-
sensing framework. Furthermore, we evaluate the localization
accuracy of the CS approach relative to a K-nearest neighbors
(K-NN) approach.
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Fig. 7: Energy performance of iSense relative to various position update protocols

A. System Setup

To collect the required data samples, several experiments
were carried out on the second floor of the IPVS institute,
University of Stuttgart, Germany. We utilized a commercial
off-the-shelf hardware that can execute C/C++ code and also
supports the monitoring mode. The testbed consists of five
APs (Linksys WRT 54GL) which were connected together
with a back-end server via an Ethernet LAN 8-ports switch. In
each AP, the detection and data collection algorithm has been
implemented to collect RSSI values from a Galaxy Nexus (GT-
19250) smart phone with a dual-core CPU running at 1.2 GHz.
To run our algorithm on the APs, we utilized the OpenWRT
firmware, which is an open source Linux distribution for
embedded devices. We installed all the packages that are
required to run the application such as pthread, libstd,
and libpcap.

To construct the radio map, we divided the area into a set
of cells where each cell comprises a single RP. The distance
between the neighboring RPs were set to two meters. The
mobile device was carried by a volunteer who freely moved
between the RPs. The radio map has been generated at 35
RPs from different orientations (i.e. 0°,90°,180°,270°). We
set the packet threshold 1, to 20 and the time threshold 1,
to 10 second. The data collection procedure was repeated
four times for each RP till all RPs in the geographical area
were scanned. After constructing the radio map, a set of 17
test points were selected at random locations to evaluate the
localization accuracy. The RSSI samples at such test points
were collected by capturing the probe request packets and the
normal traffic, i.e. web browsing.

B. Energy Consumption

In this section, we quantify the energy consumption of
the mobile devices participating in an indoor crowd-sensing
application. As baseline methods, we compare the energy per-
formance of iSense to three position update protocols namely
time-based protocol (TBP), distance-based protocol (DBP),
and dead-reckoning (DR) [8]. The former protocol relies on
periodically updating the servers with the current position. The
main shortcoming of this approach emerges from the lack
of updated position information at the servers during these

periods. Alternatively, the distance-based protocol triggers a
new position update if the Euclidean distance between the
current location and the last reported location exceeds a certain
threshold J;. However, the profit of adopting this method
highly depends on the mobility pattern of the mobile devices.
Finally, the dead-reckoning approach is an optimization of
the distance-based protocol where the position at the server
evolves with time. In other words, the servers estimate the
current position of the mobile devices based on their old
positions, speed, and direction. Alternatively, iSense entirely
sidesteps the need to continuously active the sensors to collect
the position information.

For the energy measurements, we adopted two strategies
while considering the aforementioned four scenarios, i.e. two
mobile (S1, S2) and two stationary (S3, S4). In the stationary
scenarios, we utilize our Monsoon power monitor tool’ to
collect the energy data of the Nexus smart phone. In the
mobile scenarios, it was hard to connect the device to the
power monitor tool. Therefore, the energy measurements were
achieved through logging the battery’s current and voltage.
During the execution of each method, these current and
voltage values associated with timestamps were recorded every
100 ms. The energy measurements were performed while no
other background activity existed. The screen energy (at 50%
brightness level) has been subtracted from the total energy
consumption to consider only the energy overhead of running
the algorithms. We ran each experiment for 30 minutes with
repeating them four times and the resultant values are then
averaged.

In the three baseline methods, we measure the energy
consumption of sensing the position and sending the update
messages. In iSense, we measure the energy consumption
of sending probe requests during the silence periods. Fig-
ure 7a depicts the energy consumption due to localization
while adopting iSense and the TBP approach. Since the TBP
approach solely relies on the time difference, we selected to
perform the comparative study in the two stationary scenarios,
i.e. S3 and S4. It is worth to mention that the TBP approach
schedules the position sensing task directly before sending the
updates. As it can be seen in the figure, iSense consumes much

7https://www.msoon.com/LabEquipment/PowerMonitor/



less energy than the TBP approach (at least by 55.5% for S3
and 86% for S4) with a maximum variance of 0.65. We also
note that iSense in S4 consumes on average 68% less energy
than its consumption in S3 due to the existence of large WiFi
traffic in S4.

Figure 7b depicts a comparison between the energy con-
sumed by iSense and the DBP approach in S1 and S2. For
the DBP approach, we selected to sense the position every 10
seconds and then check the violation of the distance threshold
d4. Due to frequently sensing the position, the DBP approach
consumes on average 91.8% more energy than iSense with
a maximum variance of 1.15. In fact, iSense in S1 and S2
exploits the device mobility which increases the WiFi traffic
thanks to the continuous handover between the neighboring
APs. Similarly, Figure 7c compares the energy consumption
for iSense and the DR approach. In the DR approach, the mo-
bile device senses its position whenever the difference between
the predicted position and the last measured position exceeds
a threshold ¢,. Again, iSense outperforms the DR approach
where it significantly reduces the energy consumption (by at
least 82.5% in S1 and 94% in S2) with a maximum variance
of 0.8.

Finally, Figure 8 depicts the fraction of forced probe re-
quests which were triggered by the APs during the silence
periods. The figures show these forced requests in the four
tested scenarios. As expected, the APs did not request many
probe requests in S1 and S2 due to the mobility of the mobile
devices as well as running the activities. Alternatively, the APs
triggered more probe requests in S3 and S4 due to maintaining
the connection to a single AP. However, we notice that even
the worst case in S3 and S4 has a minor impact on the energy
consumption, as depicted in Figures 7b and 7c.
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C. Localization Accuracy

In this section, we evaluate the two-step position sensing
algorithm in terms of the average localization drift estimated
as the Euclidean distance between the actual location of the
volunteer and the estimated position. To clearly understand the
results, we compare the CS-based method with a localization
method based on the k-nearest neighbors (K-NN) algorithm
[9]. In the K-NN algorithm, the mobile device location is
determined by matching the online RSSI vector ¢, to K
RPs in the partial radio map W. Specifically, the location is
estimated as the centroid point between K RPs which have

the minimum Euclidean distance. Figure 9a demonstrates the
localization drift obtained while adopting various K values.
This figure serves as a calibration step to obtain the most
“well-suited” number of nearest neighbors K. Furthermore,
the figure also compares the performance of the naive K-
NN algorithm and a weighted (WK-NN) version in which
higher weights are given to the closest RPs. As it can be seen
in the figure, both K-NN and WK-NN have approximately
similar performance. The figure also shows that setting K = 4
achieves—in our settings—a stable performance with small
localization error.
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Fig. 9: Localization accuracy

Figure 9b quantifies the accuracy of the CS-based position
sensing method relative to the K-NN method for a different
number of radio clusters. The figure shows that increasing the
number of clusters reduced the localization drifts till v = 4.
After this value, the localization drift steadily remains stable
in both adopted methods. In addition, the figure demonstrates
that the CS method reduces the average error by at least 18%.
Specifically, the CS-based method achieves a localization error
of 2.5 m when the number of cluster increases beyond 4. It is
also important to mention that increasing the number of APs
highly improves the localization performance. To summarize,
we found that the CS method achieves better localization
relative to the K-NN method for different numbers of APs.

D. Discussion

Apparently, the evaluation results show that iSense outper-
forms the baseline methods in terms of the energy overhead
on the mobile devices. It is important to also mention that
iSense keeps the position information up-to-date at the crowd-
sensing servers. Alternatively, the servers have to wait for the
position updates in the baseline methods. The main short-
coming of iSense emerges owing to detecting and tracking
the MAC address of the participating mobile devices. In this
paper, we assumed that the crowd-sensing servers are trusted.
However, this assumption may not hold in other situations. To
overcome such a challenge, the user identity can be protected
via increasing the time between subsequent data sampling.
In other words, adopting an on-demand strategy to solely
sample the WiFi data whenever a sensing query is to be
distributed. Furthermore, modern devices will utilize MAC
address randomization techniques to frequently change their



MAC addresses [10]. Once these randomization techniques
become popular, the task of data sampling in iSense will not
contradict with users’ privacy.

VII. RELATED WORK

In this section, we review the recent efforts for tackling
the energy efficiency problem in crowd-sensing applications.
In this realm, the previous efforts can be classified into two
main categories: (1) reducing the update messages, and (2)
reducing the energy waste of position sensing on the mobile
devices. In the first category, the position updates can be
reduced through piggybacking them with other processes or
via adopting predictors [11]-[13]. In [11], we propose an
opportunistic update protocol that appends the update mes-
sages with other messages exploiting the tail time of the
cellular network interfaces. Although this approach showed
a significant reduction in the energy burden, it is still limited
to delay-tolerant crowd-sensing applications. Chen et al. [12]
propose a simulation-based prediction model to reduce the
update frequency. To this end, they model the road networks by
graphs of cellular automata to predict the objects movements.
Based on these predictions, the objects are grouped and
only the central object in each group reports its position to
the server. In contrast, iSense entirely moves this burden to
the crowd-sensing server while maintaining nearly up-to-date
position information.

In the second category, the ideas mostly revolve around
adopting low-power sensors as well as deactivating the sensors
in unnecessary situations. In [14], we propose—in an indoor
mapping application—a framework that enables the mobile
devices to deactivate their localization sensors, i.e. inertial
navigation system, in areas that have been mapped already
with high quality. Kjergaard et al. [15] introduce a sensor
management strategy that continuously utilizes low-power sen-
sors, i.e. compass measurements, to sense the trajectory. Based
on these measurements, the system evaluates the necessity to
use high-power sensors, i.e. the GPS sensor. However, running
the low-power sensors continuously consumes a considerable
amount of energy. For instance, the gyroscope sensor embed-
ded in IPhone 4 consumes, on average, 175.6 mW [16]. In
contrast to all these approaches, iSense thoroughly moves the
positioning burden to the back-end servers. Hence, the mobile
devices avoid wasting their energy while being involved in
crowd-sensing tasks.

VIII. CONCLUSION & FUTURE WORK

In this paper, we presented iSense, an energy-aware frame-
work that relieves the energy burden on the mobile devices
participating in crowd-sensing applications. To this end, iSense
exploits the already-existent wireless traffic to enable the
crowd-sensing servers from detecting the available mobile
devices in the sensing area. We demonstrated the applicability
of iSense through several traffic analysis experiments. We
discussed how iSense improves the localization accuracy by
detecting both associated and unassociated mobile devices
even if the mobile devices are inactive. Furthermore, sensing

the position at the crowd-sensing servers allowed the adoption
of complex localization methods like the CS-based localiza-
tion. The experimental results showed a significant reduction
of the energy consumption of the mobile devices while limiting
the localization error below 2.5 meter. So far, we investigated
some QoS measures such as energy consumption and localiza-
tion accuracy. In the future, we will analyze the privacy issues
to sidestep revealing the users identity. Furthermore, we plan
to investigate other localization methods to further improve the
positioning accuracy. Finally, we will extend our evaluations
via considering the outdoor scenarios.
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