The TensorFlow Partitioning and Scheduling Problem:
It’s the Critical Path!

Ruben Mayer, Christian Mayer, Larissa Laich
{firstname.lastname}@ipvs.uni-stuttgart.de
Institute of Parallel and Distributed Systems

University of Stuttgart, Germany

ABSTRACT

State-of-the-art data flow systems such as TensorFlow impose it-
erative calculations on large graphs that need to be partitioned
on heterogeneous devices such as CPUs, GPUs, and TPUs. How-
ever, partitioning can not be viewed in isolation. Each device has
to select the next graph vertex to be executed, i.e., perform local
scheduling decisions. Both problems, partitioning and scheduling,
are NP-complete by themselves but have to be solved in combina-
tion in order to minimize overall execution time of an iteration. In
this paper, we propose several heuristic strategies to solve the par-
titioning and scheduling problem in TensorFlow. We simulate the
performance of the proposed strategies in heterogeneous environ-
ments with communication-intensive workloads that are common
to TensorFlow. Our findings indicate that the best partitioning and
scheduling heuristics are those that focus on minimizing the execu-
tion time of the critical path in the graph. Those strategies provide
a speed-up of up to 4 times in comparison to strategies that are
agnostic to the critical path, such as hash-based partitioning and
FIFO scheduling.

CCS CONCEPTS

+ Computer systems organization — Distributed architec-
tures; - Computing methodologies — Machine learning;

KEYWORDS
TensorFlow, partitioning, scheduling, critical path

ACM Reference Format:

Ruben Mayer, Christian Mayer, Larissa Laich. 2017. The TensorFlow Par-
titioning and Scheduling Problem: It’s the Critical Path!. In Proceedings of
DIDL’17: Workshop on Distributed Infrastructures for Deep Learning (DIDL’17).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3154842.3154843

1 INTRODUCTION

General-purpose distributed data processing systems for graph-
structured data have experienced a phenomenal growth in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5169-0/17/12...$15.00
https://doi.org/10.1145/3154842.3154843

last decade. Because of their superior performance and scalability,
highly-optimized systems such as Google’s TensorFlow [1] have
created the foundation of the recent breakthroughs in the field of
machine learning - focusing on deep learning applications such as
image and video classification, natural language processing, and
world-class Go playing machines.

Distributed machine learning systems such as TensorFlow ex-
press the computation as a directed data flow graph where graph
vertices represent computational operations and edges transport
data between these operations. This abstraction empowers the data
scientist to harness the power of multi-core infrastructures while
expressing arbitrary complex computations. The major objective is
to minimize execution time of the given computational task. Deep
learning applications often require the graph to be executed in an
iterated fashion with many iterations of supervised learning algo-
rithms on huge data sets. Hence, graphs can be executed thousands
of times. For instance, training neural networks can take tens of
hours on dozens of devices [3]. Especially the choice of partitioning
the graph onto multiple devices and scheduling graph vertices for
execution on the devices has huge impact on the performance of
the data flow system in terms of execution time. Both problems, i.e.,
partitioning and scheduling, are NP-complete and, hence, are only
feasible if solved in a heuristic fashion.

However, although the problem of partitioning and scheduling is
a key challenge to minimize execution time of the data flow graphs,
we identified significant lack of research in the following areas.
First, there is no formal description of the TensorFlow partitioning
and scheduling problem and, as a consequence, no proof about the
NP-completeness. Second, existing partitioning heuristics focus on
minimizing the amount of communication rather the execution time
of the data flow graph, while existing scheduling approaches assume
global scheduling decisions only rather than pushing scheduling
logic to the devices.

The goal of this paper is to conduct a thorough study on a wide
spectrum of partitioning and scheduling algorithms as a basis to
decide which algorithms to use for distributed deep learning prob-
lems. In particular, our contributions are as follows. (1) We formu-
late the TensorFlow partitioning and scheduling problem (denoted
as TF) and prove NP-hardness by reducing from the well-known
NP-complete single execution time scheduling [6]. (2) We develop
several partitioning and scheduling heuristics specifically tailored
to TF that are based on intuitive ideas. (3) We evaluate the perfor-
mance of the proposed heuristics on different graphs in a simulation.
Results indicate that the best partitioning and scheduling heuristics
are based on minimizing the execution time of the critical path,
providing a speed-up of up to 4 times in comparison to strategies

(c) Owner 2017. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version is published in Proceedings of DIDL ’17: Workshop on Distributed Infrastructure for Deep Learning,

https://doi.org/10.1145/3154842.3154843 .

https://doi.org/10.1145/3154842.3154843
https://doi.org/10.1145/3154842.3154843

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

Collocation Constraint

Device Constraint

Kernel .

CPU GPU
Send/Receive Aggregation

=8oess

1. Global Partitioning Common Subgraph Elimination
PEACIOIOIO10[0 M) :X::C>M
dev O)
dev, I D OO®

2. Local Scheduling

Figure 1: Problem Formulation.

that are agnostic to the critical path such as hash-based partitioning
and FIFO scheduling.

2 PROBLEM FORMULATION

In this section, we formulate the TensorFlow partitioning and sched-
uling problem (abbreviated TF).

Let graph G = (V, E) be the directed, acyclic data flow graph
with vertices V = {v1,...,v,} and edges E = {e1,,.em} € VX V.
Edges transport data from source to target vertices, i.e., the output
of the source vertex serves as input to the target vertex. Associated
to each edge e; € E is the amount of communication t; € R. For
instance, in TensorFlow an edge is denoted as tensor, i.e., an array
of (primitive) data values. Vertices are denoted as schedulable if
data on all incoming edges is available. Associated to each vertex
v; € V is its computational complexity c¢; € R.

Let D be set of devices D = {devy, ...,devy }. Each device dev; €
D has computational speed s; € R. For example if vertex v; with
computational complexity ¢; = 10 (operations) is executed on de-
vice dev; € D with computational speed s; = 10 (operations per
second), then the execution takes % = 1 second. Furthermore, de-
vice dev; € D has maximal memory capacity C; € R. For instance,
data leaving the source vertex of an edge consumes memory of the
device — that can have more or less severe memory restrictions.
Each two devices are connected via a (physical or virtual) network
link. The bandwidth is given by the bandwidth matrix B € Rkxk,
For instance, devices dev; and devy communicate with bandwidth
Bi,2 bytes per second.

The set of collocation constraints C € V X V encodes the symmet-
ric relation of vertices that have to be placed on the same device. For
instance, stateful operations need to be placed on the same device
as their states [1]. Moreover, real-world data flow applications come
with implicit or explicit placement constraints of computational op-
erations denoted as device constraints D € V x D. Examples are
restrictions of the kernel, i.e., the concrete implementation of an
operation, or of the hardware, e.g. GPU preferences.

In Figure 1, we give an example. The directed acyclic graph (DAG)
consists of twelve vertices that are partitioned onto three devices.
This partitioning is global, i.e., a logically centralized algorithm
selects vertices to be assigned to devices. After the partitioning,
each device contains a set of vertices to be executed. There may be

Ruben Mayer et al.

several schedulable vertices at each point in time, e.g., device devy
could schedule vertices vy, v9, or vs.

The partitioning function p : V. — D assigns vertices to devices
and the scheduling function f : V' — N assigns vertices to time
slots in which the vertices are executed. The goal is to minimize
the execution time of the global schedule:

ming(maxyey f(v)), (1)

Note that the function f returns the starting time of a vertex exe-
cution while we are interested in minimizing the maximal finishing
time. But we can overcome this problem easily by connecting all
vertices in the DAG with out-degree zero (i.e., sink vertices) via a
zero cost graph edge to an artificial final sink vertex with computa-
tion complexity zero. The starting time of the artificial sink vertex
relates to the finishing time of overall computation.

We have to ensure that the memory constraint is fulfilled (cf.
Equation 2), i.e., in each point in time I € N and for each device
devj € D the total memory usage for keeping data on all input
edges of not yet scheduled vertices does not exceed the maximal
capacity C;. We denote the set of active edges on device dev; at
time [as Eqctive(l, j).

Vdevj € D,l e N : ti <Cj (2)
e; €Eqcive(l,)
Additionally, we require the collocation constraints to hold, i.e.,

Youi,vj € Vi (v1,05) € C — p(vi) = p(vj). (3
Finally, the device constraints have to hold, i.e.,

Yv; € V,dev; € D : (v;,devj) € D — p(v;) = dev;. (4)

2.1 NP-completeness
THEOREM 2.1. TF is NP-complete

Proor. First, we reduce the NP-complete single execution time
scheduling [6], denoted as Scheduling, to Decision-TF, i.e.,
max, ey (f(v)) < tmax (Lemma 2.2). This is the associated decision
problem to TF and therefore is in the same complexity class [6].
Second, we show that Decision-TF is in NP (Lemma 2.3).

LEMMA 2.2. Scheduling can be reduced to Decision-TF in polyno-
mial time.

Proor. The NP-complete single execution time scheduling is
the following problem (cf. [6]): Given a set S of jobs that take
unit time on any device, a partial order < on the set of jobs, k’
processors, and a time limit 5,45 . Is there a scheduling function
g:S — {0, ..., tmax — 1} such that the following three properties
hold? (i) The scheduling function respects the ordering relation, i.e.,
veS<v €S — g(v) <g®). (ii) The time limit is not exceeded,
ie, Yu € S : g(v) < tmax. (iii) There are at most k’ active jobs at
each point in time, i.e., Vi € {0, ..., tmax — 1} : [{v € S|g(v) = i}| <
K.

We reduce Scheduling to Decision- TF using the following method.
The graph G = (V, E) is given by the set of vertices V = S and the set
of edges E, where there is an edge (vy, vy) iff the ordering relation
defines v; < vy. We set the number of devices k = k’. Furthermore,
we set Vi,j € {0,...,[V|} to t; = B; j = 0, i.e, we ignore network
communication and data to be transported over edges. We set the

The TensorFlow Partitioning and Scheduling Problem: It’s the Critical Path!

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

X ; \ ‘ ' |
' : r S T [. . o N o !
N Vs §8 886 &% & | find critical Path L N A
N 12233435 | | o fendem) DEstraversal !
A n \ y i e
i arran | e e | 6 evesal | g TETEEEE
selectrandomly | 55 4371 211 | [I AR ! ,’¥$\ R
A downward rank " Lo TURRY BRI VI 1y
VAL 64664646 assign CP to RN 9‘} l \\{‘, / S,/ Rl
' AR total rank fastest device " Ve Lo & %
A i 666 rf g 444 | i best score S best score
% w ~ .. S0 s, ! W = el i S/
¥ ¥ \‘I!?g_‘ g’ y - L% VAN
T\M >0 »0 0—0
=0 | 2T s
Hash BatchSplit cP MITE DFs

Figure 2: Overview: partitioning strategies.

computational complexity Vi,j € {0,...,|V|} to ¢; = 1 and the
device speeds Vi € {0,...,k} to s; = 1, such that processing each
vertex on each device takes unit time. There are no collocation and
device constraints, i.e., C = 0 and D = 0. Clearly, setting these
parameters to constants is a polynomial time reduction.

Next, we show: Decision-TF == true < Scheduling == true.
— Let Decision-TF == true. This directly implies that there
exists a scheduling function f that satisfies the maximal exe-
cution time, i.e., ming(maxyey f(v)) < tmax. The schedule
given by the function f satisfies the three conditions of the
Scheduling problem: (i) the ordering is respected (the DAG di-
rectly encodes the required partial ordering < as constructed
by the reduction), (ii) the time limit t,,4x is respected as
maxyev f(V) < tmax — Yv € S ¢ f(v) < tmax, and (iii)
there are at most k active jobs (there are only k devices).
Hence, Scheduling== true.
Let Scheduling == true, i.e., the properties (i), (ii), and (iii)
are fulfilled for a scheduling function g. Because of (ii) the
time limit is kept, i.e., Yo € S : g(v) < tmax, and therefore
ming(maxyey f(v)) < tmax. Hence, Decision-TF== true.
|

LEMMA 2.3. Decision-TF is in NP.

Proor. In order to show that a problem is in NP, we have to find
an algorithm that decides whether a given problem instance solves
Decision-TF. This is achieved by the following two steps. First,
we calculate the maximal execution time max, ¢y (f(v)) and check
whether it is smaller than t,,,4x. Second, we determine whether the
memory, collocation, and device constraints are fulfilled. Clearly,
these validation methods can be performed in polynomial time. O

As Decision-TF is in NP and the NP-complete Scheduling problem
can be reduced to Decision-TF, Decision-TF and hence, TF, are NP-
complete. O

2.2 Challenges

Several specific challenges have to be addressed for TensorFlow
Partitioning and Scheduling:

Scalability: Existing scheduling algorithms globally select the
processor and the start time for each vertex [5]. We argue that this
might be feasible for task scheduling, where the tasks are relatively
coarse-grained computational units. However, for large numbers
of fine-grained graph vertices the time needed to calculate the
global schedule might be too high. Additionally, the potential for

stale schedules increases dramatically if millions of small errors
of estimating computational complexity accumulate. Therefore,
we propose to first partition the graph using scalable partitioning
heuristics and then solve the scheduling problem locally on the
machines. This is the de facto standard for TensorFlow partitioning.

Heterogeneity: In TensorFlow, there are heterogeneities on
every level: the computational complexity of vertices, the com-
munication volume of edges, the memory capacity of devices, the
computational speed of devices, and the bandwidth between de-
vices. All of these values can be highly heterogeneous in real-world
deployments as shown in [1].

3 PARTITIONING APPROACHES

In this section, we describe strategies to partition the graph such
that the local scheduling algorithms running on the devices can
exploit the locality and idle time is minimal. An overview of the
proposed strategies is depicted in Figure 2.

3.1 Hashing

The simplest strategy is to randomly assign vertices to devices pro-
portionally to the capacity of the devices by using a hash function.
Collocation constraints are considered by iteratively merging collo-
cated vertices into a collocation group and assigning this collocation
group randomly. Device constraints are fulfilled by restricting the
potential set of devices for each vertex to those devices to which
assignment is allowed and choosing a random device out of those.
Memory requirements are fulfilled in a similar manner by excluding
devices with insufficient spare capacity. Random assignment is very
simple and fast and requires minimal space and time complexity
leading to good scalability. However, hashing ignores locality of
the graph vertices, leading to high communication overhead and
slow execution of the DAG.

3.2 Path-Based Heuristics

Instead of randomly assigning vertices to devices, it might be better
to place the vertices that are on the critical path all on the fastest
device(s). The critical path is the path in the dataflow graph that has
the longest computation time from source to sink vertex. Speeding
up the processing of the critical path, hence, would speed up the
overall computation time of the dataflow graph.

We propose two different strategies that try to optimize the
assignment of the critical path. The first strategy, Batch Split, es-
timates the critical path by means of calculating the rank of each

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

vertex and then assigns batches of vertices that have the highest
ranks to the fastest devices. The second strategy, Critical Path, is
also based on calculating the vertex ranks, but tries to assign the
complete critical path to the fastest device.

In particular, we define two ranks for each vertex, the upward
rank and the downward rank. The upward rank of vertex v; is the
summed computational complexity of vertices along the longest
path from v; to any sink vertex and defined as:

upRank(v;) = maXy; Esucc(vi)(upRank(Uj) +c¢i) (5)

The downward rank of v; is the summed computational com-
plexity of predecessor vertices along the longest path from any
source vertex to v; and defined as:

downRank(v;) = max., epred(v;)(downRank(vj) + c;) 6)

3.2.1 Batch Split. The idea of the Batch Split strategy is to avoid
expensive critical path computation but still prioritize optimal place-
ment of vertices that are located on long paths.

First, we calculate the total rank for each vertex v that is the sum
of the upward rank and the downward rank. The total rank can
be calculated efficiently by traversing the whole graph similar to
Dijkstra’s algorithm and calculate upward and downward ranks on
the way. Then, we sort vertices by total rank in descending order
and assign them independently to the fastest feasible device. Due
to the sorting of vertices, the complexity of the Batch Split strategy
is in O(log(n) X n) (the calculation of total rank can be performed
in linear runtime).

3.2.2 Critical Path. The Critical Path (CP) strategy tries to achie-
ve minimal execution time by assigning the complete critical path to
the fastest device. With this strategy, no additional communication
latency is added to the computation time of the critical path.

Hence, we first compute the critical path based on downward
ranks, which works as follows. (1) The algorithm starts at the source
vertices and computes for each vertex of the complete graph the
downward rank. (2) Choose the sink vertex with the maximum
downward rank. This vertex is on the critical path. (3) Follow the
predecessor relation from the chosen sink vertex to the source,
adding the visited vertices to the critical path. In case a vertex has
multiple predecessors, follow all such paths. (4) When reaching a
source vertex, a path is completed. Choose the longest path between
the chosen sink vertex and any of the connected sink vertices in
the predecessor relation of the sink vertex. This is the critical path.

The critical path is assigned to the fastest feasible device. If no
device can hold the complete critical path, it is divided among
the fastest devices. A vertex vy that is not on the critical path is
assigned to the device dev; with minimal sum of execution times
of already assigned vertices plus the execution time of vy on dev;
(cf. Equation 7).

min ((9 + C—k) (7)
devieD v;eV:ip(vj)=dev; S Si

3.3 Multi-Objective Heuristics

Instead of only taking into account the critical path, we identify four
objectives in assigning vertex v to device dewv: (i) introduce minimal
communication overhead, (ii) prefer fast devices, (iii) prefer devices
with high memory capacity, and (iv) prefer vertices on critical paths

Ruben Mayer et al.

to be assigned first. We propose two different heuristics that take
into account that broader set of optimization objectives.

3.3.1 MITE. The idea of the MITE (Memory, Importance, Traffic,
and Execution time) strategy is to consider all four optimization
objectives and use a heuristic function to assign the vertices to
devices. A vertex v; is assigned to the device dev; such that the
following score is minimized:

mite(v;, dev;) =mem(devy) X
imp(v;, devy)X
8
traffic(v;, devy) X ®)

execTime(v;, devy)

The memory score is the percentage of memory utilization of
dev;. Based on how many vertices are already assigned to dev; by
the partitioning algorithm, the memory utilization will grow and
less loaded devices will be favored by the partitioning algorithm.

The importance score favors important vertices to be placed
on fast devices. An important vertex is a vertex with a high total
rank (total rank is defined in Section 3.2 as the sum of upward and
downward rank of a vertex). In the score computation, the total
rank of a vertex is normalized by the highest total rank among all
vertices, and the speed of a device is normalized by the speed of
the fastest device. Formally, the importance score is defined as:

totalRank(v;) S|
maxy, ey {totalRank(vj)} ~ maxgeo, ep{sk}

©)

The traffic score is computed as follows. If a vertex v is placed

on device dev and a neighboring vertex v’ # v is already assigned

to another device dev’ # dev, additional traffic is introduced. We
define the traffic score as follows:

imp(v;, devy) = 1—(

ti

traffic(vi, devy) = (10)
Bpwy.1
UjEV,(vj,’U,’)EE 77
The execution time score is the predicted execution time of v; on
dev; as defined in Section 2, normalized by the maximum execution

time of v; on any device.

3.3.2 Depth First Search. The idea of Depth First Search (DFS)
partitioning is to traverse the graph with a DFS algorithm and
assign visited vertices using a multi-objective heuristic function. In
particular, the DFS algorithm starts at the source vertex with the
highest total rank (as defined in Section 3.2). Whenever a vertex is
visited, it is assigned to the device that minimizes the function

dfsScore(vi, devy) = traffic(v;, dev;) X execTime(vi,devy) (11)

with traffic and execution time score as defined in the MITE
heuristics in Section 3.3.1.

4 SCHEDULING

In this section, we describe the scheduling algorithm that runs on
each device (device is a broad term that can also refer to, e.g., a
CPU core). We assume that a partitioning algorithm has already
performed the partitioning decision, such that to device, a part of
the graph is assigned. Now, the scheduling algorithm decides the
execution order of the graph vertices on that device.

The TensorFlow Partitioning and Scheduling Problem: It’s the Critical Path!

In particular, the function f : V — N assigns the device’s ver-
tices to numbers which define the order of execution. The following
criteria are set by the scheduling problem: (1) Each vertex is exe-
cuted exactly once in a scheduling cycle. (2) A device can execute
at most one vertex simultaneously. (3) Scheduling of a vertex is
non-preemptive, i.e., the running execution of a vertex on a device
cannot be interrupted. (4) A vertex v can only be executed when all
tensors of the predecessors in the graph are computed and trans-
ferred to the device of v. When all ingoing tensors are available,
the vertex is denoted executable. (5) A device can only schedule
vertices that are assigned to it by the partitioning algorithm. A
vertex cannot be assigned to multiple devices. (6) A device has to
remain idle when there are no executable vertices assigned to it.

Besides the classical non-preemptive scheduling algorithms such
as FIFO, we have devised two scheduling algorithms tailored to the
TensorFlow problem.

Highest Path Computation Time first (PCT) scheduling prefers the
execution of the vertex whose longest path of direct and indirect
successors takes most computation time. The rationale behind this
strategy is to minimize the execution time of the critical path on
the graph.

Maximum Successor Rank first (MSR) scheduling tries to mini-
mize idleness across all devices, by taking into account how many
downstream vertices on the global graph depend on a vertex (i.e., the
rank) and rewards vertices whose execution activate downstream
devices that are currently idle. The rationale behind this strategy is
to maximize the resource utilization of the devices.

4.1 PCT Scheduling

PCT schedules always the executable vertex whose longest path of
direct and indirect successors takes most computation time. The
upwards path computation time (PCT) is calculated from the sink
vertices as shown in Equation 12. The computation time of a sink
vertex v is the execution time of v on its assigned device. If v is
not a sink vertex, the maximal transfer time of a tensor to any of
the successor vertices as well as the path computation time of that
successor vertex are added. The transfer time is considered 0 if both
vertices are placed on the same device. Else, it is the edge weight
(size of the tensor) divided by the the transfer rate between the two
devices.

L (12)
Sp(vi)

PCT is calculated once for each vertex, after the partitioning is
decided. The calculated schedule is used for every iteration of the
TensorFlow program.

PCT(v;) = maxvj€succ(vi)(PCT(Vj) + trans(vj, v,—)) +

4.2 MSR Scheduling

The drawback of PCT scheduling is that the interdependency of
vertices on different devices are not taken into account. However,
it could be beneficial to schedule vertices on one device a first that
are necessary to activate vertices on another device b in order to
avoid b’s idleness.

Our Maximum Successor Rank First (MSR) scheduling algorithm
takes into account such dependencies. Each vertex v on a device
is scored not only based on the number of successor vertices, but

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

Table 1: Properties of the evaluated neural networks.

Graph #nodes | #edges average #colocated
node degree nodes
convolutional_network 347 531 1.53 104
recurrent_network 3,069 5,533 1.8 533
dynamic_rnn 5,271 9,214 1.75 1,356

also on the number of successor devices (i.e., on how many devices
the successor vertices of v are distributed), and on the number of
successor devices that are idle and get activated when the vertex
has been executed. The idea is to minimize idleness over all devices,
such that throughput will be maximized.

The MSR scoring function is specified as follows:

MSR(v)= Y (a*l

vjesucc(v;)
+ ﬁ * (p(Uj) ;&p(vi)) (13)
+y = (|pred(vj)| = 1)

+ 8« (idle(p(v))) A (|pred(vj)| = 1)))

The weights a, f, y and § can be used to balance the scoring
such that specific goals are emphasized. E.g., a relatively high value
of § favors the scheduling of vertices that lead to the activation of
other idle devices.

5 EVALUATIONS

To evaluate the proposed partitioning and scheduling strategies,
we employ an event-based simulation. This allows us to evaluate
large real-world networks on a large simulated number of devices.

5.1 Experimental setup

Simulation Parameters. In the evaluations, we simulated 50 de-
vices. The simulated devices had assigned a speed in a random
range of 10 to 100 operations per time unit. The transfer rate be-
tween the devices is set to a random number in the range between
10 and 60 bytes per time unit. Tensor sizes were again randomly
set between 1 and 100 bytes. The number of operations to compute
a vertex function was randomly set between 1 and 100 operations.
The numbers are based on real tensor sizes and on devices available
from Amazon AWS.

TensorFlow Networks. Three real TensorFlow networks were
extracted from the TensorFlow examples on Github!. The properties
of these networks are listed in Table 1. The co-location constraints
were directly taken from the TensorFlow networks.

Baselines. The Heterogeneous Earliest Finish Time (HEFT) al-
gorithm [5] solves the related task scheduling problem but can not
be used directly for the TensorFlow partitioning and scheduling
problem. We modified the HEFT algorithm slightly in the processor
selection phase in order to ensure satisfaction of the TensorFlow
constraints. First, we consider only feasible devices for a vertex v,
i.e., devices to which collocated vertices are already assigned and
that satisfy the device constraints of vertex v. In this phase the
earliest finish time of a vertex for each feasible device is computed

!https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_
NeuralNetworks

https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks

DIDL’17, December 11-15, 2017, Las Vegas, NV, USA

Ruben Mayer et al.

10°

10?

Execution time in time units

%

10t

ERERERERCRCRCRCRCRCRERERE|

10°

102

ERERER R R R R R CS |

#

convolutional_network
F==1 BatchSplit + FIFO
[~ BatchSplit + MSR
[BatchSplit + PCT
[==1 CP + FIFO

dynamic_rnn
E=7J CP + MSR
Essd CP + PCT
XA DFS + FIFO
[==] DFS + MSR

recurrent_network
E= Hash + PCT
MITE + FIFO
[MITE + MSR
== MITE + PCT

DFS + PCT
00 HEFT

Hash + FIFO
V2 Hash + MSR

Figure 3: Execution time of 1 iteration at different partitioning and scheduling strategies on 50 devices.

and assigned to the device with the lowest earliest finish time. If
the vertex is collocated, all collocated vertices are assigned but as
their predecessor vertices might be not assigned yet the earliest
finish time can not be computed. So their computing time slot is
only computed and added to the devices time schedule when it is
their turn due to the task prioritization list.

For scheduling, a second baseline we consider is FIFO scheduling,
i.e., the vertices are scheduled according to the time they become
executable. If two vertices become executable at the same time, the
FIFO scheduler chooses randomly which of them to schedule.

5.2 Experiments and Results

Six different partitioning strategies were executed in combination
with three different scheduling strategies on the three networks
on 50 simulated devices. For MSR scheduling, the weights were
settoa =1, = 1,y = 1,8 = 5. Some of the strategies are non-
deterministic as, e.g., the order of vertices being assigned to devices
might differ.

The results of the simulation runs are depicted in Figure 3. The
visualized execution time is the average of 10 executions and the
standard mean deviation is shown as a gray line on each bar. The
results show that both partitioning and scheduling have a signifi-
cant impact on the TensorFlow performance. The best strategy (CP
partitioning + PCT scheduling) is up to 4 times as fast as the worst
strategy (i.e., Hash partitioning + FIFO scheduling). This was the
case throughout all tested TensorFlow networks.

The reason for the bad performance of Hash partitioning and
FIFO scheduling is that those strategies are agnostic to the charac-
teristics of the TF problem. Hash partitioning leads to good load
balancing, but this is not most important in reducing the data flow
computation time from source to sink. FIFO scheduling does not
favor the fast execution of the critical path either. It becomes clear
that the focus of both partitioning and scheduling strategies on
reducing the computation time of the critical path is of immense
importance.

6 RELATED WORK

Graph partitioning has drawn a lot of attention as a preprocessing
step in large-scale graph processing [4, 7]. However, graph parti-
tioning strategies for graph processing focus on minimizing the
traffic between devices and keeping the load balanced. In contrast to
that, the TF problem deals with a data flow from source vertices to

sink vertices. Hence, partitioning strategies that are successful for
graph processing problems may not generalize to the TF problem.

The HEFT [5] scheduling algorithm evaluated in this paper has
shown good performance in comparison to 20 other heuristic sched-
uling strategies for data flow execution [2]. However, such schedul-
ing algorithms place vertices (or tasks) on devices (or processors)
dynamically at run-time. We do not consider a relocation of ver-
tices at run-time from one device to another as a promising way to
tackle the TF problem. Instead, the more intuitive approach is to
partition the graph first and then perform the scheduling locally
on the devices.

7 CONCLUSION

In this paper, we have formally defined the TensorFlow partitioning
and scheduling problem, proven the NP-completeness of the prob-
lem, and proposed a number of heuristics that solve the problem.
The evaluation results based on a simulation indicate that those
partitioning and scheduling strategies yield the best results that
focus on the minimization of the execution time of the critical path,
outperforming other strategies by up to a factor of 4.

In the future work, we plan to implement the proposed strategies
in the TensorFlow framework to verify the simulation results. In
particular, we aim to extend the tested deep learning networks to
other types and larger scales, to see whether the findings generalize.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and oth-

ers. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings

of the 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI). Savannah, Georgia, USA.

Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei Zheng. 2008.

Comparative Evaluation Of The Robustness Of DAG Scheduling Heuristics. Springer

US, Boston, MA, 73-84.

[3] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, and others. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223-1231.

[4] C.Mayer, M. A. Tariq, C. Li, and K. Rothermel. 2016. GrapH: Heterogeneity-Aware

Graph Computation with Adaptive Partitioning. In 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS). 118-128.

H. Topcuoglu, S. Hariri, and Min-You Wu. 2002. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE Transactions on

Parallel and Distributed Systems 13, 3 (2002), 260-274.

[6] J.D. Ullman. 1975. NP-complete scheduling problems. J. Comput. System Sci. 10,
3 (1975), 384 - 393.

[7] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta. 2017. An Experi-
mental Comparison of Partitioning Strategies in Distributed Graph Processing.
Proc. VLDB Endow. 10, 5 (Jan. 2017), 493-504.

[2

[5

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 NP-completeness
	2.2 Challenges

	3 Partitioning Approaches
	3.1 Hashing
	3.2 Path-Based Heuristics
	3.3 Multi-Objective Heuristics

	4 Scheduling
	4.1 PCT Scheduling
	4.2 MSR Scheduling

	5 Evaluations
	5.1 Experimental setup
	5.2 Experiments and Results

	6 Related Work
	7 Conclusion
	References

