
The TensorFlow Partitioning and Scheduling Problem:
It’s the Critical Path!

Ruben Mayer, Christian Mayer, Larissa Laich

{firstname.lastname}@ipvs.uni-stuttgart.de

Institute of Parallel and Distributed Systems

University of Stuttgart, Germany

ABSTRACT
State-of-the-art data flow systems such as TensorFlow impose it-

erative calculations on large graphs that need to be partitioned

on heterogeneous devices such as CPUs, GPUs, and TPUs. How-

ever, partitioning can not be viewed in isolation. Each device has

to select the next graph vertex to be executed, i.e., perform local

scheduling decisions. Both problems, partitioning and scheduling,

are NP-complete by themselves but have to be solved in combina-

tion in order to minimize overall execution time of an iteration. In

this paper, we propose several heuristic strategies to solve the par-

titioning and scheduling problem in TensorFlow. We simulate the

performance of the proposed strategies in heterogeneous environ-

ments with communication-intensive workloads that are common

to TensorFlow. Our findings indicate that the best partitioning and

scheduling heuristics are those that focus on minimizing the execu-

tion time of the critical path in the graph. Those strategies provide

a speed-up of up to 4 times in comparison to strategies that are

agnostic to the critical path, such as hash-based partitioning and

FIFO scheduling.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Computing methodologies→Machine learning;

KEYWORDS
TensorFlow, partitioning, scheduling, critical path

ACM Reference Format:
Ruben Mayer, Christian Mayer, Larissa Laich. 2017. The TensorFlow Par-

titioning and Scheduling Problem: It’s the Critical Path!. In Proceedings of
DIDL’17:Workshop on Distributed Infrastructures for Deep Learning (DIDL’17).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3154842.3154843

(c) Owner 2017. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.

The definitive version is published in Proceedings of DIDL ’17: Workshop on Distributed Infrastructure for Deep Learning,

https://doi.org/10.1145/3154842.3154843 .

1 INTRODUCTION
General-purpose distributed data processing systems for graph-

structured data have experienced a phenomenal growth in the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DIDL’17, December 11–15, 2017, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5169-0/17/12. . . $15.00

https://doi.org/10.1145/3154842.3154843

last decade. Because of their superior performance and scalability,

highly-optimized systems such as Google’s TensorFlow [1] have

created the foundation of the recent breakthroughs in the field of

machine learning - focusing on deep learning applications such as

image and video classification, natural language processing, and

world-class Go playing machines.

Distributed machine learning systems such as TensorFlow ex-

press the computation as a directed data flow graph where graph

vertices represent computational operations and edges transport

data between these operations. This abstraction empowers the data

scientist to harness the power of multi-core infrastructures while

expressing arbitrary complex computations. The major objective is

to minimize execution time of the given computational task. Deep

learning applications often require the graph to be executed in an

iterated fashion with many iterations of supervised learning algo-

rithms on huge data sets. Hence, graphs can be executed thousands

of times. For instance, training neural networks can take tens of

hours on dozens of devices [3]. Especially the choice of partitioning

the graph onto multiple devices and scheduling graph vertices for

execution on the devices has huge impact on the performance of

the data flow system in terms of execution time. Both problems, i.e.,

partitioning and scheduling, are NP-complete and, hence, are only

feasible if solved in a heuristic fashion.

However, although the problem of partitioning and scheduling is

a key challenge to minimize execution time of the data flow graphs,

we identified significant lack of research in the following areas.

First, there is no formal description of the TensorFlow partitioning

and scheduling problem and, as a consequence, no proof about the

NP-completeness. Second, existing partitioning heuristics focus on

minimizing the amount of communication rather the execution time

of the data flow graph, while existing scheduling approaches assume

global scheduling decisions only rather than pushing scheduling

logic to the devices.

The goal of this paper is to conduct a thorough study on a wide

spectrum of partitioning and scheduling algorithms as a basis to

decide which algorithms to use for distributed deep learning prob-

lems. In particular, our contributions are as follows. (1) We formu-

late the TensorFlow partitioning and scheduling problem (denoted

as TF) and prove NP-hardness by reducing from the well-known

NP-complete single execution time scheduling [6]. (2) We develop

several partitioning and scheduling heuristics specifically tailored

to TF that are based on intuitive ideas. (3) We evaluate the perfor-

mance of the proposed heuristics on different graphs in a simulation.

Results indicate that the best partitioning and scheduling heuristics

are based on minimizing the execution time of the critical path,

providing a speed-up of up to 4 times in comparison to strategies

https://doi.org/10.1145/3154842.3154843
https://doi.org/10.1145/3154842.3154843

DIDL’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣9

𝑣8

𝑣7

𝑣10
𝑣12

𝑣11

𝑑𝑑𝑑1

𝑑𝑑𝑑2

𝑑𝑑𝑑3

1. Global Partitioning

2. Local Scheduling

𝑑𝑑𝑑1

𝑑𝑑𝑑2

𝑑𝑑𝑑3

Collocation Constraint

Device Constraint

CPU GPU

Kernel

Send/Receive Aggregation

Common Subgraph Elimination

Figure 1: Problem Formulation.

that are agnostic to the critical path such as hash-based partitioning

and FIFO scheduling.

2 PROBLEM FORMULATION
In this section, we formulate the TensorFlow partitioning and sched-

uling problem (abbreviated TF).
Let graph G = (V ,E) be the directed, acyclic data flow graph

with vertices V = {v1, ...,vn } and edges E = {e1, ..., em } ∈ V ×V .
Edges transport data from source to target vertices, i.e., the output
of the source vertex serves as input to the target vertex. Associated

to each edge ei ∈ E is the amount of communication ti ∈ R. For
instance, in TensorFlow an edge is denoted as tensor, i.e., an array

of (primitive) data values. Vertices are denoted as schedulable if
data on all incoming edges is available. Associated to each vertex

vi ∈ V is its computational complexity ci ∈ R.
Let D be set of devices D = {dev1, ...,devk }. Each device devi ∈

D has computational speed si ∈ R. For example if vertex v1 with
computational complexity c1 = 10 (operations) is executed on de-

vice dev1 ∈ D with computational speed s1 = 10 (operations per

second), then the execution takes
c1
s1 = 1 second. Furthermore, de-

vice dev1 ∈ D has maximal memory capacity Ci ∈ R. For instance,
data leaving the source vertex of an edge consumes memory of the

device – that can have more or less severe memory restrictions.

Each two devices are connected via a (physical or virtual) network

link. The bandwidth is given by the bandwidth matrix B ∈ Rk×k .
For instance, devices dev1 and dev2 communicate with bandwidth

B1,2 bytes per second.
The set of collocation constraints C ∈ V ×V encodes the symmet-

ric relation of vertices that have to be placed on the same device. For

instance, stateful operations need to be placed on the same device

as their states [1]. Moreover, real-world data flow applications come

with implicit or explicit placement constraints of computational op-

erations denoted as device constraints D ∈ V × D. Examples are

restrictions of the kernel, i.e., the concrete implementation of an

operation, or of the hardware, e.g. GPU preferences.

In Figure 1, we give an example. The directed acyclic graph (DAG)

consists of twelve vertices that are partitioned onto three devices.

This partitioning is global, i.e., a logically centralized algorithm

selects vertices to be assigned to devices. After the partitioning,

each device contains a set of vertices to be executed. There may be

several schedulable vertices at each point in time, e.g., device dev1
could schedule vertices v1, v2, or v3.

The partitioning function p : V → D assigns vertices to devices

and the scheduling function f : V → N assigns vertices to time

slots in which the vertices are executed. The goal is to minimize

the execution time of the global schedule:

minf (maxv ∈V f (v)), (1)

Note that the function f returns the starting time of a vertex exe-
cution while we are interested in minimizing the maximal finishing
time. But we can overcome this problem easily by connecting all

vertices in the DAG with out-degree zero (i.e., sink vertices) via a

zero cost graph edge to an artificial final sink vertex with computa-

tion complexity zero. The starting time of the artificial sink vertex

relates to the finishing time of overall computation.

We have to ensure that the memory constraint is fulfilled (cf.

Equation 2), i.e., in each point in time l ∈ N and for each device

devj ∈ D the total memory usage for keeping data on all input

edges of not yet scheduled vertices does not exceed the maximal

capacity Cj . We denote the set of active edges on device devj at
time l as Eactive(l , j).

∀devj ∈ D, l ∈ N :

∑
ei ∈Eactive(l, j)

ti < Cj (2)

Additionally, we require the collocation constraints to hold, i.e.,

∀vi ,vj ∈ V : (vi ,vj) ∈ C→ p(vi) = p(vj). (3)

Finally, the device constraints have to hold, i.e.,

∀vi ∈ V ,devj ∈ D : (vi ,devj) ∈ D→ p(vi) = devj . (4)

2.1 NP-completeness
Theorem 2.1. TF is NP-complete

Proof. First, we reduce the NP-complete single execution time

scheduling [6], denoted as Scheduling, to Decision-TF , i.e.,
maxv ∈V (f (v)) < tmax (Lemma 2.2). This is the associated decision

problem to TF and therefore is in the same complexity class [6].

Second, we show that Decision-TF is in NP (Lemma 2.3).

Lemma 2.2. Scheduling can be reduced to Decision-TF in polyno-
mial time.

Proof. The NP-complete single execution time scheduling is

the following problem (cf. [6]): Given a set S of jobs that take

unit time on any device, a partial order ≺ on the set of jobs, k ′

processors, and a time limit tmax . Is there a scheduling function

д : S → {0, ..., tmax − 1} such that the following three properties

hold? (i) The scheduling function respects the ordering relation, i.e.,

v ∈ S ≺ v ′ ∈ S → д(v) < д(v ′). (ii) The time limit is not exceeded,

i.e., ∀v ∈ S : д(v) < tmax . (iii) There are at most k ′ active jobs at
each point in time, i.e., ∀i ∈ {0, ..., tmax − 1} : |{v ∈ S |д(v) = i}| ≤
k ′.

We reduce Scheduling to Decision-TF using the followingmethod.

The graphG = (V ,E) is given by the set of verticesV = S and the set
of edges E, where there is an edge (v1,v2) iff the ordering relation

defines v1 ≺ v2. We set the number of devices k = k ′. Furthermore,

we set ∀i, j ∈ {0, ..., |V |} to ti = Bi, j = 0, i.e., we ignore network

communication and data to be transported over edges. We set the

The TensorFlow Partitioning and Scheduling Problem: It’s the Critical Path! DIDL’17, December 11–15, 2017, Las Vegas, NV, USA

Hash BatchSplit

1 2 2 3 3 4 3 5

5 2 4 3 1 2 1 1
upward rank

downward rank
6 4 6 6 4 6 4 6

total rank
6 6 6 6 6 4 4 4

sorted

CP

find Critical Path

assign CP to
fastest device

MITE

best score

select randomly

DFS

DFS traversal

best score

random
traversal

Figure 2: Overview: partitioning strategies.

computational complexity ∀i, j ∈ {0, ..., |V |} to ci = 1 and the

device speeds ∀i ∈ {0, ...,k} to si = 1, such that processing each

vertex on each device takes unit time. There are no collocation and

device constraints, i.e., C = ∅ and D = ∅. Clearly, setting these

parameters to constants is a polynomial time reduction.

Next, we show: Decision-TF == true↔ Scheduling == true.
→ Let Decision-TF == true. This directly implies that there

exists a scheduling function f that satisfies the maximal exe-

cution time, i.e.,minf (maxv ∈V f (v)) < tmax . The schedule

given by the function f satisfies the three conditions of the

Scheduling problem: (i) the ordering is respected (the DAG di-

rectly encodes the required partial ordering ≺ as constructed
by the reduction), (ii) the time limit tmax is respected as

maxv ∈V f (v) < tmax → ∀v ∈ S : f (v) < tmax , and (iii)

there are at most k active jobs (there are only k devices).

Hence, Scheduling== true .
← Let Scheduling == true, i.e., the properties (i), (ii), and (iii)

are fulfilled for a scheduling function д. Because of (ii) the
time limit is kept, i.e., ∀v ∈ S : д(v) < tmax , and therefore

minf (maxv ∈V f (v)) < tmax . Hence, Decision-TF== true .

�

Lemma 2.3. Decision-TF is in NP.

Proof. In order to show that a problem is in NP, we have to find

an algorithm that decides whether a given problem instance solves

Decision-TF . This is achieved by the following two steps. First,

we calculate the maximal execution timemaxv ∈V (f (v)) and check

whether it is smaller than tmax . Second, we determine whether the

memory, collocation, and device constraints are fulfilled. Clearly,

these validation methods can be performed in polynomial time. �

AsDecision-TF is in NP and the NP-complete Scheduling problem
can be reduced to Decision-TF , Decision-TF and hence, TF , are NP-
complete. �

2.2 Challenges
Several specific challenges have to be addressed for TensorFlow

Partitioning and Scheduling:

Scalability: Existing scheduling algorithms globally select the

processor and the start time for each vertex [5]. We argue that this

might be feasible for task scheduling, where the tasks are relatively

coarse-grained computational units. However, for large numbers

of fine-grained graph vertices the time needed to calculate the

global schedule might be too high. Additionally, the potential for

stale schedules increases dramatically if millions of small errors

of estimating computational complexity accumulate. Therefore,

we propose to first partition the graph using scalable partitioning

heuristics and then solve the scheduling problem locally on the

machines. This is the de facto standard for TensorFlow partitioning.

Heterogeneity: In TensorFlow, there are heterogeneities on

every level: the computational complexity of vertices, the com-

munication volume of edges, the memory capacity of devices, the

computational speed of devices, and the bandwidth between de-

vices. All of these values can be highly heterogeneous in real-world

deployments as shown in [1].

3 PARTITIONING APPROACHES
In this section, we describe strategies to partition the graph such

that the local scheduling algorithms running on the devices can

exploit the locality and idle time is minimal. An overview of the

proposed strategies is depicted in Figure 2.

3.1 Hashing
The simplest strategy is to randomly assign vertices to devices pro-

portionally to the capacity of the devices by using a hash function.

Collocation constraints are considered by iteratively merging collo-

cated vertices into a collocation group and assigning this collocation

group randomly. Device constraints are fulfilled by restricting the

potential set of devices for each vertex to those devices to which

assignment is allowed and choosing a random device out of those.

Memory requirements are fulfilled in a similar manner by excluding

devices with insufficient spare capacity. Random assignment is very

simple and fast and requires minimal space and time complexity

leading to good scalability. However, hashing ignores locality of

the graph vertices, leading to high communication overhead and

slow execution of the DAG.

3.2 Path-Based Heuristics
Instead of randomly assigning vertices to devices, it might be better

to place the vertices that are on the critical path all on the fastest

device(s). The critical path is the path in the dataflow graph that has

the longest computation time from source to sink vertex. Speeding

up the processing of the critical path, hence, would speed up the

overall computation time of the dataflow graph.

We propose two different strategies that try to optimize the

assignment of the critical path. The first strategy, Batch Split, es-
timates the critical path by means of calculating the rank of each

DIDL’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

vertex and then assigns batches of vertices that have the highest

ranks to the fastest devices. The second strategy, Critical Path, is
also based on calculating the vertex ranks, but tries to assign the

complete critical path to the fastest device.

In particular, we define two ranks for each vertex, the upward
rank and the downward rank. The upward rank of vertex vi is the
summed computational complexity of vertices along the longest

path from vi to any sink vertex and defined as:

upRank(vi) = maxvj ∈succ(vi)(upRank(vj) + ci) (5)

The downward rank of vi is the summed computational com-

plexity of predecessor vertices along the longest path from any

source vertex to vi and defined as:

downRank(vi) = maxvj ∈pred(vi)(downRank(vj) + ci) (6)

3.2.1 Batch Split. The idea of the Batch Split strategy is to avoid
expensive critical path computation but still prioritize optimal place-

ment of vertices that are located on long paths.
First, we calculate the total rank for each vertexv that is the sum

of the upward rank and the downward rank. The total rank can

be calculated efficiently by traversing the whole graph similar to

Dijkstra’s algorithm and calculate upward and downward ranks on
the way. Then, we sort vertices by total rank in descending order

and assign them independently to the fastest feasible device. Due

to the sorting of vertices, the complexity of the Batch Split strategy

is in O(loд(n) × n) (the calculation of total rank can be performed

in linear runtime).

3.2.2 Critical Path. The Critical Path (CP) strategy tries to achie-
ve minimal execution time by assigning the complete critical path to

the fastest device. With this strategy, no additional communication

latency is added to the computation time of the critical path.

Hence, we first compute the critical path based on downward

ranks, which works as follows. (1) The algorithm starts at the source

vertices and computes for each vertex of the complete graph the

downward rank. (2) Choose the sink vertex with the maximum

downward rank. This vertex is on the critical path. (3) Follow the

predecessor relation from the chosen sink vertex to the source,

adding the visited vertices to the critical path. In case a vertex has

multiple predecessors, follow all such paths. (4) When reaching a

source vertex, a path is completed. Choose the longest path between

the chosen sink vertex and any of the connected sink vertices in

the predecessor relation of the sink vertex. This is the critical path.

The critical path is assigned to the fastest feasible device. If no

device can hold the complete critical path, it is divided among

the fastest devices. A vertex vk that is not on the critical path is

assigned to the device devi with minimal sum of execution times

of already assigned vertices plus the execution time of vk on devi
(cf. Equation 7).

min

devi ∈D

((∑
vj ∈V :p(vj)=devi

c j

si

)
+
ck
si

)
(7)

3.3 Multi-Objective Heuristics
Instead of only taking into account the critical path, we identify four

objectives in assigning vertexv to device dev : (i) introduce minimal

communication overhead, (ii) prefer fast devices, (iii) prefer devices

with high memory capacity, and (iv) prefer vertices on critical paths

to be assigned first. We propose two different heuristics that take

into account that broader set of optimization objectives.

3.3.1 MITE. The idea of theMITE (Memory, Importance, Traffic,

and Execution time) strategy is to consider all four optimization

objectives and use a heuristic function to assign the vertices to

devices. A vertex vi is assigned to the device devl such that the

following score is minimized:
mite(vi ,devl) =mem(devl) ×

imp(vi ,devl)×
traffic(vi ,devl) ×
execTime(vi ,devl)

(8)

The memory score is the percentage of memory utilization of

devl . Based on how many vertices are already assigned to devl by
the partitioning algorithm, the memory utilization will grow and

less loaded devices will be favored by the partitioning algorithm.

The importance score favors important vertices to be placed

on fast devices. An important vertex is a vertex with a high total

rank (total rank is defined in Section 3.2 as the sum of upward and

downward rank of a vertex). In the score computation, the total

rank of a vertex is normalized by the highest total rank among all

vertices, and the speed of a device is normalized by the speed of

the fastest device. Formally, the importance score is defined as:

imp(vi ,devl) = 1−(totalRank(vi)
maxvj ∈V {totalRank(vj)}

× sl
maxdevk ∈D {sk }

)

(9)

The traffic score is computed as follows. If a vertex v is placed

on device dev and a neighboring vertex v ′ , v is already assigned

to another device dev ′ , dev , additional traffic is introduced. We

define the traffic score as follows:

traffic(vi ,devl) =
∑

vj ∈V ,(vj ,vi)∈E

ti
Bp(vj),l

(10)

The execution time score is the predicted execution time ofvi on
devl as defined in Section 2, normalized by the maximum execution

time of vi on any device.

3.3.2 Depth First Search. The idea of Depth First Search (DFS)

partitioning is to traverse the graph with a DFS algorithm and

assign visited vertices using a multi-objective heuristic function. In

particular, the DFS algorithm starts at the source vertex with the

highest total rank (as defined in Section 3.2). Whenever a vertex is

visited, it is assigned to the device that minimizes the function

dfsScore(vi ,devl) = traffic(vi ,devl) × execTime(vi ,devl) (11)

with traffic and execution time score as defined in the MITE

heuristics in Section 3.3.1.

4 SCHEDULING
In this section, we describe the scheduling algorithm that runs on

each device (device is a broad term that can also refer to, e.g., a

CPU core). We assume that a partitioning algorithm has already

performed the partitioning decision, such that to device, a part of

the graph is assigned. Now, the scheduling algorithm decides the

execution order of the graph vertices on that device.

The TensorFlow Partitioning and Scheduling Problem: It’s the Critical Path! DIDL’17, December 11–15, 2017, Las Vegas, NV, USA

In particular, the function f : V → N assigns the device’s ver-

tices to numbers which define the order of execution. The following

criteria are set by the scheduling problem: (1) Each vertex is exe-

cuted exactly once in a scheduling cycle. (2) A device can execute

at most one vertex simultaneously. (3) Scheduling of a vertex is

non-preemptive, i.e., the running execution of a vertex on a device

cannot be interrupted. (4) A vertex v can only be executed when all

tensors of the predecessors in the graph are computed and trans-

ferred to the device of v . When all ingoing tensors are available,

the vertex is denoted executable. (5) A device can only schedule

vertices that are assigned to it by the partitioning algorithm. A

vertex cannot be assigned to multiple devices. (6) A device has to

remain idle when there are no executable vertices assigned to it.

Besides the classical non-preemptive scheduling algorithms such

as FIFO, we have devised two scheduling algorithms tailored to the

TensorFlow problem.

Highest Path Computation Time first (PCT) scheduling prefers the
execution of the vertex whose longest path of direct and indirect

successors takes most computation time. The rationale behind this

strategy is to minimize the execution time of the critical path on

the graph.

Maximum Successor Rank first (MSR) scheduling tries to mini-

mize idleness across all devices, by taking into account how many

downstream vertices on the global graph depend on a vertex (i.e., the
rank) and rewards vertices whose execution activate downstream

devices that are currently idle. The rationale behind this strategy is

to maximize the resource utilization of the devices.

4.1 PCT Scheduling
PCT schedules always the executable vertex whose longest path of

direct and indirect successors takes most computation time. The

upwards path computation time (PCT) is calculated from the sink

vertices as shown in Equation 12. The computation time of a sink

vertex v is the execution time of v on its assigned device. If v is

not a sink vertex, the maximal transfer time of a tensor to any of

the successor vertices as well as the path computation time of that

successor vertex are added. The transfer time is considered 0 if both

vertices are placed on the same device. Else, it is the edge weight

(size of the tensor) divided by the the transfer rate between the two

devices.

PCT (vi) = maxvj ∈succ(vi)
(
PCT (vj) + trans(vj , vi)

)
+

ci
sp(vi)

(12)

PCT is calculated once for each vertex, after the partitioning is

decided. The calculated schedule is used for every iteration of the

TensorFlow program.

4.2 MSR Scheduling
The drawback of PCT scheduling is that the interdependency of

vertices on different devices are not taken into account. However,

it could be beneficial to schedule vertices on one device a first that

are necessary to activate vertices on another device b in order to

avoid b’s idleness.
Our Maximum Successor Rank First (MSR) scheduling algorithm

takes into account such dependencies. Each vertex v on a device

is scored not only based on the number of successor vertices, but

Table 1: Properties of the evaluated neural networks.

Graph #nodes #edges

average

node degree

#colocated

nodes

convolutional_network 347 531 1.53 104

recurrent_network 3,069 5,533 1.8 533

dynamic_rnn 5,271 9,214 1.75 1,356

also on the number of successor devices (i.e., on how many devices

the successor vertices of v are distributed), and on the number of

successor devices that are idle and get activated when the vertex

has been executed. The idea is to minimize idleness over all devices,

such that throughput will be maximized.

The MSR scoring function is specified as follows:

MSR(vi) =
∑

vj ∈succ(vi)

(
α ∗ 1

+ β ∗
(
p(vj) , p(vi)

)
+ γ ∗ (|pred(vj)| = 1)

+ δ ∗
(
idle(p(vj)) ∧ (|pred(vj)| = 1)

))
(13)

The weights α , β , γ and δ can be used to balance the scoring

such that specific goals are emphasized. E.g., a relatively high value

of δ favors the scheduling of vertices that lead to the activation of

other idle devices.

5 EVALUATIONS
To evaluate the proposed partitioning and scheduling strategies,

we employ an event-based simulation. This allows us to evaluate

large real-world networks on a large simulated number of devices.

5.1 Experimental setup
Simulation Parameters. In the evaluations, we simulated 50 de-

vices. The simulated devices had assigned a speed in a random

range of 10 to 100 operations per time unit. The transfer rate be-

tween the devices is set to a random number in the range between

10 and 60 bytes per time unit. Tensor sizes were again randomly

set between 1 and 100 bytes. The number of operations to compute

a vertex function was randomly set between 1 and 100 operations.

The numbers are based on real tensor sizes and on devices available

from Amazon AWS.

TensorFlow Networks. Three real TensorFlow networks were

extracted from the TensorFlow examples on Github
1
. The properties

of these networks are listed in Table 1. The co-location constraints

were directly taken from the TensorFlow networks.

Baselines. The Heterogeneous Earliest Finish Time (HEFT) al-

gorithm [5] solves the related task scheduling problem but can not

be used directly for the TensorFlow partitioning and scheduling

problem. We modified the HEFT algorithm slightly in the processor

selection phase in order to ensure satisfaction of the TensorFlow

constraints. First, we consider only feasible devices for a vertex v ,
i.e., devices to which collocated vertices are already assigned and

that satisfy the device constraints of vertex v . In this phase the

earliest finish time of a vertex for each feasible device is computed

1
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_

NeuralNetworks

https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks

DIDL’17, December 11–15, 2017, Las Vegas, NV, USA Ruben Mayer et al.

Figure 3: Execution time of 1 iteration at different partitioning and scheduling strategies on 50 devices.

and assigned to the device with the lowest earliest finish time. If

the vertex is collocated, all collocated vertices are assigned but as

their predecessor vertices might be not assigned yet the earliest

finish time can not be computed. So their computing time slot is

only computed and added to the devices time schedule when it is

their turn due to the task prioritization list.

For scheduling, a second baseline we consider is FIFO scheduling,

i.e., the vertices are scheduled according to the time they become

executable. If two vertices become executable at the same time, the

FIFO scheduler chooses randomly which of them to schedule.

5.2 Experiments and Results
Six different partitioning strategies were executed in combination

with three different scheduling strategies on the three networks

on 50 simulated devices. For MSR scheduling, the weights were

set to α = 1, β = 1,γ = 1,δ = 5. Some of the strategies are non-

deterministic as, e.g., the order of vertices being assigned to devices

might differ.

The results of the simulation runs are depicted in Figure 3. The

visualized execution time is the average of 10 executions and the

standard mean deviation is shown as a gray line on each bar. The

results show that both partitioning and scheduling have a signifi-

cant impact on the TensorFlow performance. The best strategy (CP

partitioning + PCT scheduling) is up to 4 times as fast as the worst

strategy (i.e., Hash partitioning + FIFO scheduling). This was the

case throughout all tested TensorFlow networks.

The reason for the bad performance of Hash partitioning and

FIFO scheduling is that those strategies are agnostic to the charac-

teristics of the TF problem. Hash partitioning leads to good load

balancing, but this is not most important in reducing the data flow

computation time from source to sink. FIFO scheduling does not

favor the fast execution of the critical path either. It becomes clear

that the focus of both partitioning and scheduling strategies on

reducing the computation time of the critical path is of immense

importance.

6 RELATEDWORK
Graph partitioning has drawn a lot of attention as a preprocessing

step in large-scale graph processing [4, 7]. However, graph parti-

tioning strategies for graph processing focus on minimizing the

traffic between devices and keeping the load balanced. In contrast to

that, the TF problem deals with a data flow from source vertices to

sink vertices. Hence, partitioning strategies that are successful for

graph processing problems may not generalize to the TF problem.

The HEFT [5] scheduling algorithm evaluated in this paper has

shown good performance in comparison to 20 other heuristic sched-

uling strategies for data flow execution [2]. However, such schedul-

ing algorithms place vertices (or tasks) on devices (or processors)

dynamically at run-time. We do not consider a relocation of ver-

tices at run-time from one device to another as a promising way to

tackle the TF problem. Instead, the more intuitive approach is to

partition the graph first and then perform the scheduling locally

on the devices.

7 CONCLUSION
In this paper, we have formally defined the TensorFlow partitioning

and scheduling problem, proven the NP-completeness of the prob-

lem, and proposed a number of heuristics that solve the problem.

The evaluation results based on a simulation indicate that those

partitioning and scheduling strategies yield the best results that

focus on the minimization of the execution time of the critical path,

outperforming other strategies by up to a factor of 4.

In the future work, we plan to implement the proposed strategies

in the TensorFlow framework to verify the simulation results. In

particular, we aim to extend the tested deep learning networks to

other types and larger scales, to seewhether the findings generalize.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and oth-

ers. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA.

[2] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei Zheng. 2008.

Comparative Evaluation Of The Robustness Of DAG Scheduling Heuristics. Springer
US, Boston, MA, 73–84.

[3] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, and others. 2012. Large scale

distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[4] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel. 2016. GrapH: Heterogeneity-Aware

Graph Computation with Adaptive Partitioning. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). 118–128.

[5] H. Topcuoglu, S. Hariri, and Min-You Wu. 2002. Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE Transactions on
Parallel and Distributed Systems 13, 3 (2002), 260–274.

[6] J.D. Ullman. 1975. NP-complete scheduling problems. J. Comput. System Sci. 10,
3 (1975), 384 – 393.

[7] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta. 2017. An Experi-

mental Comparison of Partitioning Strategies in Distributed Graph Processing.

Proc. VLDB Endow. 10, 5 (Jan. 2017), 493–504.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 NP-completeness
	2.2 Challenges

	3 Partitioning Approaches
	3.1 Hashing
	3.2 Path-Based Heuristics
	3.3 Multi-Objective Heuristics

	4 Scheduling
	4.1 PCT Scheduling
	4.2 MSR Scheduling

	5 Evaluations
	5.1 Experimental setup
	5.2 Experiments and Results

	6 Related Work
	7 Conclusion
	References

