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ABSTRACT

The Internet of Things (IoT) envisions a huge number of net-
worked sensors connected to the internet. These sensors collect
large streams of data which serve as input to wide range of IoT
applications and services such as e-health, e-commerce, and au-
tomotive services. Complex Event Processing (CEP) is a powerful
tool that transforms streams of raw sensor data into meaningful
information required by these IoT services. Often these streams of
data collected by sensors carry privacy-sensitive information about
the user. Thus, protecting privacy is of paramount importance in
IoT services based on CEP.

In this paper we present a novel pattern-level access control
mechanism for CEP based services that conceals private informa-
tion while minimizing the impact on useful non-sensitive informa-
tion required by the services to provide a certain quality of service
(QoS). The idea is to reorder events from the event stream to conceal
privacy-sensitive event patterns while preserving non-privacy sen-
sitive event patterns to maximize QoS. We propose two approaches,
namely an ILP-based approach and a graph-based approach, calcu-
lating an optimal reordering of events. Our evaluation results show
that these approaches are effective in concealing private patterns
without significant loss of QoS.
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1 INTRODUCTION

With growing advancements in the Internet of Things (IoT), it is not
an exaggeration to say that new IoT applications are released every
day. The targets of these IoT applications are diverse ranging from
industrial applications such as process automation (Industry 4.0) or
smart power grids or e-health applications to consumer applications
such as fitness trackers or smart homes. Gartner estimates that by
2020, around 20.8 billion IoT devices will be installed [9], many
equipped with sensors to automatically capture huge amounts of
sensor data.

Typically, the captured raw sensor data needs to be processed
into meaningful information to be useful for applications. Complex
Event Processing (CEP) is a popular state of the art technology
for processing streams of basic events into meaningful “complex”
events based on a set of processing rules [17]. For instance, from the
basic events: speed > 10 km/h and heart rate > 120 bpm, a fitness
tracker can infer the activity “doing sports”.

The ability to automatically infer such meaningful information is
a doubled-edged sword. On the one hand, meaningful information
is required by the application to provide a certain quality of service
(Q0S). If a CEP system falsely detects non-existing events (false
positives) or does not detect some actually existing events (false
negatives), the QoS will degenerate. For instance, a fitness tracker
not detecting activities accurately might annoy and drive away the
user.

On the other hand, complex events might be highly privacy-
sensitive. For instance, researchers from the University of California,
San Francisco (UCSF) have shown recently in their Health eHeart
study that a heart irregularity (arrhythmia) can be detected with
97 % accuracy from sensor data collected by an Apple watch [23]
when it is paired with an Al algorithm. So although a user wants
some complex events to be detected accurately, he/she might not
want to share any other privacy-sensitive events. According to a
recent survey, 32 % of the survey participants would be willing to
measure and share fitness data with their health insurance provider,
e.g., to get a premium rebate [24]. However, 73 % are afraid that
their premiums would increase since the insurers could infer a
certain lifestyle or disease from the shared data. Consequently,
effective privacy protection mechanisms are needed to allow users
or owners of data to selectively control the sharing of information
by not sharing information about privacy-sensitive events while
preserving the QoS by sharing information about desired events.

Access control is one prominent technique for protecting pri-
vacy in event processing systems. However, classic access control
mechanisms protect privacy only at the level of single attributes
of data or events [3, 19, 22]. But, sensitive information is often re-
vealed through complex data patterns potentially spanning several
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attributes. For example, blood sugar level and heart rate might not
reveal any useful information when separately analyzed, but might
suggest a disease when combined. We call these privacy-sensitive
patterns that the user or data owner wants to protect from un-
trusted parties private patterns. In contrast public patterns are those
patterns that are non-privacy-sensitive and needed by CEP-based
services to deliver the offered services.

One trivial approach to protect private patterns is to share no
data whatsoever. However, this would also make public patterns
inaccessible, ruling out any service (zero QoS). Instead the event
stream should be selectively obfuscated before it is shared with
services such that private patterns are not detectable any more
from the obfuscated stream while public patterns are preserved as
much as possible (maximum QoS).

In this paper, we introduce a pattern-based access control mech-
anism for a CEP system concelaing private patterns while max-
imizing QoS by preserving as many public patterns as possible.
The first pattern-based access control mechanisms was proposed
by Wang et al.[26]. Their approach concealed private patterns by
suppressing events that are part of the private pattern. However,
suppressed events might also be part of public patterns, which re-
sults in complete loss of these public patterns, severely impacting
QoS.

Therefore, we propose a less intrusive technique, namely, event
reordering to conceal private patterns defined as sequences of events.
For an intuitive explanation of event reordering, consider a CEP
application for monitoring diabetes patients as described in [25].
On the one hand, the event stream consists of one private pattern
defined as the following event sequence: the patient eats food with
a high sugar content, leading to rise of blood-sugar level (BSL), fol-
lowed by insulin intake (SEQ(High Sugar Intake, BSL high, Insulin))
as shown in Fig. 1a. This private pattern indicating an unhealthy
lifestyle when revealed to the insurer might lead to an increase
of the insurance premium. On the other hand, the event stream
contains a public pattern, in which the patient does some sports
deduced from the smart bracelet leading to a drop in BSL and thus
eating food with high sugar content (SEQ(Sport, BSL low, High
Sugar Intake)). This second pattern should be revealed as positive
indication of a healthy lifestyle. Using event reordering, it is pos-
sible to conceal the private pattern while preserving the public
pattern as shown in Fig. 1b.

In detail, we make the following contributions in this paper: (1)
We define a formal utility metric that defines the quality of data
in terms of public and private patterns. This metric provides the
flexibility to specify individual importances for different kinds of
patterns. (2) We propose two approaches for reordering the event
stream, namely, an Integer Linear Programming (ILP) approach and
a graph-based approach, both striving to maximize the utility of the
reordered stream. (3) For the evaluation of these approaches, we de-
fine a strong adversary model that considers advanced background
knowledge of event distributions gained from event histories.

Our evaluations shows that the proposed reordering strategies
are better in terms of utility compared to the state-of-the-art sup-
pression strategy. Moreover our evaluations also shows that the
reordering strategies are robust against the above mentioned ad-
versary model.
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Figure 1: Event Stream Reordering

The rest of the paper is organized as follows. In Sec. 2 we discuss
related work followed by the system model and problem statement
in Sec. 3. In Sec. 4, we present reordering strategies that try to
maximize the utility of reordered streams. In Sec. 5, we describe in
detail how the adversary model uses the observations learned from
history data to reveal event reordering and describe the evaluation
results, before concluding the paper in Sec. 6.

2 RELATED WORK

Several access control mechanisms have been proposed to control
the flow of information in stream processing systems [2, 16] and
event processing systems [11, 19]. Most of these mechanisms are
attribute-based ensuring that certain attributes in the stream of
data are only visible to authorized processing operators [16, 19].
However, this is overly restrictive and simplifying at the same
time, since certain attributes are either always accessible or not at
all, independent of whether they contribute to private or public
patterns. Some stream processing systems such as ACStream [3]
provide context-based access control, however, still at the level
of attributes rather than patterns. Moreover, there exists a rich
literature on secure routing of information in event processing
systems using the publish/subscribe paradigm. Nevertheless, these
publish/subscribe systems [8] enforce access control only at the
level of individual events. Patterns of events originated from the
correlation of multiple streams are not considered.

In the area of data mining, hiding patterns in sequential databases
was considered in [1] and [10] where pattern concealing is per-
formed on a set of sequences that are independent of each other. In
contrast, in the context of CEP, pattern-based access control is to
be ensured on temporally related event streams. Therefore, their
strategies cannot be applied to solve our problem.

Another class of privacy protection in event stream processing
is differential privacy [5] and zero-knowledge privacy guarantees
[20]. Again most works consider privacy only at the level of single
attributes or events. Very few works consider pattern-level privacy.
Specifically [13] provides differential privacy guarantees at the
level of sequences (patterns). However, although these approaches
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provide strong and provable privacy guarantees, they strive to
protect the privacy of individual users whose data is part of a
dataset from a larger population of users. The altered dataset is
still useful for answering queries about the population, while it
should be impossible to derive information about individual users.
Our goal is fundamentally different. We consider the data of a
single user rather than a population of users, and want to preserve
uncritical information (public patterns) about this individual user,
while concealing privacy-sensitive information (private patterns).

Only few works [11, 26] have been published in the area of
pattern-based access control. In [11], He et al. studied the trade-off
between quality and privacy in complex event processing (CEP) and
analyzed the complexity of minimizing the corresponding degra-
dation in quality theoretically. Their work is very relevant to our
vision. However, they consider only suppression of events to con-
ceal patterns. Event suppression was also used by Wang et al. [26] in
their approach called Utility Maximizing Event Suppression Scheme.
This approach also conceals patterns by suppressing events that
are part of the private pattern while maximizing a given service
utility. In contrast, we use event reordering rather than suppression
resulting in higher QoS with respect to preserved public patterns
as shown in Sec. 5.

3 SYSTEM MODEL AND PROBLEM
STATEMENT

In this section, we introduce our system model, which also includes
our assumptions about the adversary who tries to detect private
patterns. Moreover, we define a utility metric defining the utility of
an obfuscated event stream, which is then used as an objective in
our problem statement.

3.1 System Model

Our system consists of the following components (cf. Fig. 2): produc-
ers, consumers, CEP middleware, and pattern-based access control.
Next, we will describe these components in more detail.

Producers act as data sources producing basic events as input to
the system. Producers can be any type of sensor or also (manual)
user input, e.g., entered through the GUI of an application. Basic
events generated by producers are typed and contain a set of at-
tributes, which are specified by the corresponding event type, as
well as a timestamp. For instance, a blood sugar level (BSL) sensor
produce events of type BSL, which contain a blood sugar level at-
tribute and a timestamp. There can be multiple producers but we
assume that the event streams of the different producers are merged
together into a single input event stream (sequence of events) in
timestamp order.

We assume that the user controls the producers. In particular,
he/she can control to which other component the producers send
their event stream and be sure that no information is “leaked” from
these streams. In other words, we do not consider sensors installed
somewhere in the environment under the control of an untrusted
third party such as a camera network observing pedestrians in
public places.

The CEP middleware processes basic events into complex events
which are then forwarded to the consumers, which could be an IoT
service provider for example. As CEP middleware, we utilize an
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Figure 2: Simplified Model of a CEP System with Pattern-
level Access Control component

unmodified standard CEP middleware, for instance, as described
in [7]. The CEP middleware is built from a set of interconnected
operators. An operator is one specific processing node in the CEP
middleware. Its job is to process and transform the incoming event
stream according to predefined rules into one or many outgoing
event streams. These outgoing event streams are connected either
to another processing operator or to a consumer. Typical operators
include sequence, aggregation, negation, conjunction, etc. [6]. In
this paper, we only consider the sequence operator. The cooperative
processing of the different operators results in a complex event.
For instance, a high BSL value and a high blood pressure value can
result in the complex event “critical health condition”.

Typically, operators do not consider the complete (theoretically
infinite length) event stream, but rather process the stream in frames
of limited duration or length called windows. We assume that private
patterns fit within windows of given maximum size—to prevent
private patterns spanning an arbitrary window size, we would need
to store and delay events potentially infinitely, which is not practical.
A window can either be time-based or count-based. A time-based
window considers all events arriving in a specified period, while
a count-based window considers a pre-defined number of events
for a match. New windows can also be opened by certain events, in
particular, the first event of a sequence of a pattern to be detected.
Multiple windows might be open at the same time, e.g., to detect
different instances of the same complex event type or different
types of complex events. In general, windows might overlap.

A query represents a request to the CEP system and defines the
type of a complex event that the consumer is interested in. In this
work we only consider—similar to related CEP privacy protection
mechanisms [26]—the sequence operator, which is one of the most
popular CEP operators. A sequence operator captures queries where
a set of events arrive in a specific order, thus, both, private and
public patterns, are defined as sequences of events. An exemplary
sequence denoting the unhealthy behaviour of a diabetes patient
(i.e., a private pattern that should be hidden from the untrusted
consumer and CEP middleware) could be:

Q = SEQ(Eating_Sugar,High_Blood_Sugar_Level,
Insulin_Intake (1)

This sequence query checks for three events: Eating_Sugar,
High_Blood_Sugar_Level, and Insulin_Intake. Moreover the
query also defines the ordering relations that the Eating_Sugar
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Figure 3: Reordering introducing false positive

event has to occur before the High_Blood_Sugar_Level event,
and also the High_Blood_Sugar_Level event has to occur before
the Insulin_Intake event. Such an unhealthy behaviour when
revealed to the insurance company for example would lead to an
increase of their premium rebate. In the following descriptions, we
use the following short notation to denote event types and events:
A, B, C, etc., denote event types, and A; denotes the i-th event
instance of type A in the event stream. If the type of event is not
relevant, we also denote generic events as e;.

We assume that the CEP middleware as well as the consumers
are untrusted and operated by another entity than the user (e.g.,
the IoT service provider). Moreover, we assume that the user wants
to hide certain private patterns expressed as sequences of events
from the non-trusted CEP middleware or consumer. Obviously,
feeding the unaltered event stream directly into the CEP middleware
would enable the middleware to detect all possible sequence events
including the private ones. Therefore, we place another component
called pattern-based access control (PAC) between the producers
and the CEP middleware and steer all producer events through the
PAC as shown in Fig. 2. The PAC performs event reordering to hide
private patterns from the CEP system. Both, producers and PAC,
run in a trusted execution environment. There are several options
to implement this environment: a trusted physical device, e.g., the
smart phone of the user or a trusted server such as a private fog node
controlled by the user; a trusted execution environment on a third-
party node, e.g., secure “enclaves” in a Cloud server implementing
Intel’s Software Guard Extensions (SGX) [15] technology where
only the authorized user-space process (deployed by the trusted
user) can access confidential data (neither other applications, nor
the operating system, nor the hypervisor).

It is also important to specify the assumptions about the adver-
sary who tries to compromise the privacy of users by detecting
private patterns. We assume a “honest-but-curious” adversary, a
common model in security. In our context, this adversary follows
all given protocols and does not attack trusted components, but
tries to identify private patterns that have been concealed by the
PAC. In other words, the adversary might be one of the non-trusted
components (CEP middleware or consumer). Consequently, the ad-
versary cannot observe the original event stream, but can observe
the complete reordered event stream as sent by the PAC. We also as-
sume that the adversary has some background knowledge including
causal and statistical knowledge about event arrivals, e.g., learned
from publicly available event streams. In the next sub-section, we
will describe the relevant adversary background knowledge in more
detail while defining the problem.

S.M. Palanisamy et al.
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3.2 Problem Statement

Informally, the problem solved by our approach is to reorder events
in the PAC such that private patterns are hidden from the CEP
system while maximizing the QoS of the service acting as complex
event consumer. This is a non-trivial problem since there might be
different options to reorder events to hide private patterns, each
with different impact on QoS. In general, QoS is impacted by false
positive events (public events introduced by reordering that never
happened) and false negative events (actual public events destroyed
by reordering). Fig. 3 and Fig. 4 show examples of a false positive
and false negative, respectively. In these examples, Q; = (B,C, D),
Q2 = (D, E), and Q3 = (E, A) are public patterns, and P; = (A,C, E)
is a private pattern. While concealing P1, the false positive public
pattern Q3 is introduced into the modified event stream. Moreover
public pattern Q; = (B, C, D), which is no longer present in the
modified event stream is a false negative since its ordering relation
(B, C) is no longer satisfied.

In order to define the impact of reordering more precisely, we
define the following utility metric:

# of matched public Patterns
i=1 Wi

M L
24 z:j:olf matched false posztlveswj

Utility[U) = X

_zi;){ matched private patternswk @)

Note that the number of matched public patterns (first term)
counts both, true and false positives. Therefore, we must subtract
two times the number of false positives in the second term, once to
remove false positives from the number of matched public patterns,
and once to introduce a negative effect for each false positive. Thus,
the first and second term increase utility for each true positive
match of a public pattern and decrease it for each false positive
or negative match of a public pattern. Moreover, we introduce
weights w; and wj to express the impact of different types of public
patterns onto the QoS. Matched private patterns are considered by
the third term. Including private pattern matches into the utility
metric rather than making it a hard constraint (“no private pattern
matches”) allows for trading off privacy against QoS, i.e., revealing
some private information for more public pattern matches. Here,
weight wy defines the weight of private pattern k according to the
following equation:

wr = (Swi+1)*cpr (3)

Tuning parameter cpy allows for trading off privacy against QoS
by specifying a criticality percentage for private pattern k. If we set
the private pattern criticality to 100 %, i.e., cpy = 1, then a single
match of that private pattern k would outweigh the effect of all
(true and false) public pattern matches such that effectively, no
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private patterns of that type will be revealed (100 % privacy). For
cpr = 0 that type of private pattern is always revealed.

The problem is now to find an event reordering strategy, maxi-
mizing the utility according to Equ. 2 and making it (ideally) im-
possible for the adversary to reveal private patterns that have been
concealed (otherwise the number of matched private patterns as
specified in Equ. 2 does not represent the private patterns actu-
ally revealed to the adversary). Solving this problem requires some
assumptions about the background knowledge of the adversary
to understand what possibilities the adversary has to detect and
reverse event reorderings [21]. We consider two kinds of attacks:
causal order constraint attacks and statistical attacks.

Causal order constraint attacks rely on knowledge about the
causal relationship between events. We say the order of two events
e1 and e is causally constrained if e must never happen before e;.
For instance, in our e-health scenario the event “insulin injection”
never happens before the event “high blood sugar level” but only
as a reaction to a high sugar level, i.e., afterwards. Reordering e;
and ez could be detected immediately as a violation of the causality
constraints known to the adversary.

Statistical attacks consider the inter-arrival time distribution of
events, either between the same type of events, or between different
types of events. For instance, through analyzing a publicly available
data set, an adversary might know that statistically for patients
carefully following their therapy plan, in only 5 % of all cases the
time between two insulin injections is smaller than 1h. In contrast
to causal order constraints, there is no “binary” violation here, but
only a certain probability that reordering has happened.

So besides maximizing the utility through reordering events, the
performed event reorderings need to be obfuscated such that an
adversary cannot detect and reverse reorderings from causal order
constraints or make it unlikely that he detects a reordering with
high probability ("confidence") for statistical attacks.

4 EVENT REORDERING APPROACHES

In this section, we describe our approaches to reorder event streams
executed by the PAC such that the utility is maximized while not
revealing concealed private patterns to adversaries. We present two
reordering approaches: one based on Integer Linear Programming
(ILP) and one based on graph processing. Both approaches share a
common two-phase execution model, which we will present first
in the next sub-section, before we describe the specific details of
the two approaches in subsequent sub-sections.

4.1 Overview

Event reordering is performed in two phases, namely the utility
maximization phase and the reorder obfuscation phase (cf. Fig. 5).

The goal of the utility maximization phase (Phase 1) is to find an
optimal set of pairs of events that have to be reordered to maximize
the utility metric, i.e., to conceal private patterns while also con-
sidering the negative effect of reordering on true and false positive
public patterns as defined by Equ. 2. Note that it is sufficient to
consider only all ordered event pairs that are part of private pat-
terns as candidates for reordering since reordering a single pair
of events in a sequence defining a private pattern is sufficient to
conceal it. In particular, it is not necessary to iterate over all events
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Figure 5: Overview of the Reordering Strategy

of a complete window and check a prohibitive large number of
permutations of ordered events. Besides maximizing the utility, the
PAC also counters causal order constraint attacks in Phase 1 by not
reordering pairs whose order is causally constrained.

In detail, Phase 1 is invoked on a full window of events, whenever
this window contains at least one private pattern—obviously, a
window without private patterns can be forwarded as it is. The
problem of finding an optimal set of event pairs to be reordered is
translated to an ILP formulation with the utility metric as objective
and exploring all ordered pairs of events of private patterns as
reordering candidates. Causally constrained pairs are excluded
from reordering by defining corresponding constraints in the ILP.
In case of two solutions providing maximum utility, the solution
with a smaller number of reordered event pairs is used to break
the tie. The output of Phase 1 are two sets of event pairs, where
each pair defines an event order: set N contains all pairs of events
whose order has to be changed (parts of private patterns), while R
includes all pairs of events whose order must be preserved (parts
of public patterns).

The set of pairs to be reordered is the input to the reorder obfus-
cation phase (Phase 2). In Phase 2, the PAC shifts the timestamps
of events in event pairs selected for reordering in Phase 1, i.e., it
actually performs the reordering defined in Phase 1. Since moving
event timestamps influences the inter-arrival time distribution of
events, the PAC shifts timestamps carefully to avoid statistical at-
tacks, i.e., it obfuscates reorderings such that an adversary cannot
detect and reverse them. To this end, we have developed two strate-
gies implementing Phase 2, one based on ILPs and another based
on graphs presented in detail in Sec. 4.2 and Sec. 4.3, respectively.

While executing Phase 2, it might turn out that for the selected
set of events to be reordered it is infeasible to effectively obfuscate
reorderings. In that case, the PAC starts another iteration of Phase 1
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and Phase 2, now selecting the second best set of events with respect
to utility to be reordered in Phase 1.

4.2 ILP-based Reordering

In this and the next sub-sections, we present two algorithms for
obfuscating event reorderings to counter statistical attacks, which
detect and reverse event reorderings through an analysis of the
event arrival distribution of the reordered event stream. Statistical
attacks might become feasible since reordering changes the time-
stamps of events and thus the inter-arrival time between events.If
the observed inter-arrival time between events deviates signifi-
cantly from the typical inter-arrival time (adversary background
knowledge), the adversary can infer with a certain probability ("con-
fidence") that the order of events has been changed.

Obviously, the means to influence the inter-arrival time of events
is the time distance x(e;) by which a reordered event e; has been
shifted. In general, smaller x(e;) influence the distribution less than
greater x(e;). Therefore, in Phase 2 the PAC strives to minimize the
sum of time distances 3, ¢ | x(e;) | by which all reordered events
have been shifted.

Minimizing the sum of time distances keeps the difference be-
tween the modified inter-arrival distribution after reordering and
the original inter-arrival distribution before reordering small (al-
though there is no hard bound on how much the distribution is
actually changed, thus, this remains a heuristic). However, although
on average events might not be shifted far, single events might still
be shifted by longer time distances. To avoid extreme shifts, which
could be detected easily as outliers, we introduce a maximum al-
lowed time distance ¢ that limits the maximum distance by which
each event can be shifted.

This concept can be formulated as ILP, leading to our first algo-
rithm for obfuscating event reorderings in Phase 2:

minimize Z | x(e;) | (4)
e;€E
subject to

Vor(ej,ex) € R: ej.time+ x(ej) < e.time + x(er)  (C1)

Vor(ej,e) € N: er.time+x(er) < ej.time+x(ej) (C2)

—e(e;) < x(ei) < e(e;) (C3)

wherei = 1,2,...,n

This ILP is executed on a window of events E. The objective is
the minimization of event shifts. Constraint 3 limits the maximum
shift of each event by ¢. Constraint 1 and 2 ensure the desired
order of events as defined by Phase 1 while shifting events by a
certain distance x(e;). Sets N and R contain pairs of events whose
order has to be changed to conceal private patterns, and pairs of
events whose order must be preserved as part of public patterns,
respectively (output of Phase 1).

This ILP can be solved by a standard ILP solver. If a feasible
solution cannot be found due to the constraints, Phase 1 and Phase 2
are repeated with the second best reordering w.r.t. the utility metric.
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4.3 Graph-based Reordering

The second algorithm for assigning timestamps to reordered events
and obfuscating reordering such that it cannot be detected is based
on a graph representation. Again, this algorithm receives the sets
N and R from Phase 1 containing pairs of events whose order is
to be changed and preserved, respectively. The algorithm then
first constructs a weighted directed acyclic graph (DAG) G =
(V,&, LY, £8) from N and R. The graph vertices V represent
events, and & denotes the order of events. Let v¢; and v, denote
the vertices of the events e; and e;, respectively. Then a directed
edge (vei, Vej) € & represents the event order (e;, e;). £V and £8
represent vertex and edge labelings based on event timestamps and
inter-arrival times, respectively.

The initial graph is constructed as follows. For all ordered event
pairs (e;, ej) € R—i.e., events whose order is to be preserved—an
edge (vei, vej) is added to &. For all ordered event pairs (ej, ej) €
N—i.e,, events whose order must be reversed—an edge (ve;, vei)
(reversed direction) is added to &. Each vertex v, is labeled with
the original timestamp ¢(e) of e, and each edge (ve;, ve;) is labeled
with the original inter-arrival time t(e;) — t(e;). Note that for event
pairs in N with reversed order, the initial edge weights are negative
since the timestamps have not been adjusted yet according to the
reversed order.

Fig. 6 shows an example with the following three public patterns
(Q1,Q2, O3) and one private pattern (P;) and the timestamps shown
in Fig. 6:

Q1 = SEQ(B,C, D) P; = SEQ(A,C,E)
Q2 = SEQ(B,E) ©)
Q3 = SEQ(A, D)

Assume that in Phase 1, sets N and R have been defined as
follows: R = {(B1, C1),(C1, D1), (A1, D1), (B1, E1)}, N = {(A1,C1}).
The initial graph for this example is shown in Fig. 7a.

The graph-based reordering algorithm shown in Alg. 1 takes the
generated graph as input and adjusts vertex weights (event times-
tamps) and edge weights (inter-arrival times) until all inter-arrival
times are positive, i.e., until timestamps are consistent with the
event order defined in Phase 1. To increase the weight of a negative
edge, we change both, the timestamp of the source and target vertex,
equally by adding and subtracting half the edge weight representing
the inter-arrival time between the two events, respectively. Equally
changing the timestamps of both events ensures that the maximum
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(c) Resulting Graph

Figure 7: Graph Transformation Algorithm

change of both timestamps is minimized to obfuscate performed
event reorderings.

Algorithm 1 Graph Transformation

procedure GRAPHTRANSFORMATION(g)
while ContainsEdgeWithNegativeOrZeroWeight(g) do
edge «— GetEdgeWithNegativeOrZeroWeight(g)
sNode « GetSourceNode(edge)
tNode « GetTargetNode(edge)
& — BoundCheck
sNode.Time « sNode.Time — | 3
tNode.Time < tNode.Time + [W‘l +1
UpdateEdgeWeights(g)
end while
end procedure

ledge.weight| |

Also in the graph-based approach we never change timestamps
by more than ¢ to obfuscate event reorderings. Before adjusting a
negative edge by shifting the timestamps of the source vertex and
target vertex, we check whether this would require a change greater
than e. If it is impossible to adjust timestamps without violating
the ¢ bound, we stop Phase 2 and go back to Phase 1 to calculate
another (second-best) order of events before repeating Phase 2.

Fig. 7b and Fig. 7c show how our initial example graph is trans-
formed in multiple iterations. In the first iteration, the edge (C1, A1)
with weight -59 is changed to weight 1 by shifting the timestamp of
the source vertex C; from 60 to 31 and the timestamp of the target
vertex A from 1 to 32 as shown in Fig. 7b. However, the change of
t(C1) introduces another negative edge between By and C1, which
is adjusted in the following iterations to finally get a graph with all
positive arrival times as shown in Fig. 7c.

4.4 Handling Overlapping Windows

Our two reordering approaches presented so far operate on win-
dows. Private or public patterns are only detected and considered
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by the algorithms if the complete pattern is within the window. Ex-
ecuting these algorithms is straightforward if patterns are defined
on disjoint windows such as tumbling windows. Note that similar to
any CEP system, the user has to define patterns to be concealed or
published together with a suitable windowing strategy. If patterns
are defined on disjoint windows, reordering events in one window
will not affect the next (disjoint) window.

However, if patterns are defined on overlapping windows such as
sliding or hopping windows, events that are part of patterns might
appear in different windows, and reordering in one window will
affect all other overlapping windows [18]. Overlapping windows
lead to a number of additional requirements, which are trivially ful-
filled for disjoint windows but pose new challenges for overlapping
windows:

o Consistent reordering: If events are reordered in one window,
they must be reordered in the same order in other overlap-
ping windows. Otherwise, inconsistent orders of the same
events in different windows would give hints to the adver-
sary that these events have been reordered.

o Stable reordering: Closely related to consistent reordering
is the restriction that once a sequence of events has been
forwarded, this order is stable, i.e., it cannot be reverted back
and changed again by another window, which would lead to
inconsistent event orders.

e Non-redundant/exactly-once event forwarding: If events are
consistently reordered in all windows and the order of events
is stable after forwarding, we forward each event exactly
once.

e Non-blocking forwarding of windows: A window of events
should be forwarded as soon as possible to support time-
sensitive CEP applications whose QoS depends on the timely
delivery of events. Although we do not strive for hard de-
lay bounds, we would like to avoid blocking of windows
by other windows, including (theoretically infinite) cascad-
ing blocking where window Wj cannot be forwarded until
the overlapping window W is forwarded, which cannot be
forwarded until the overlapping window W3 is forwarded,
etc..

Next, we explain how to meet these requirements with over-
lapping windows by using a greedy strategy that processes the
window first which closes first. In general, multiple open windows
{Wi, ..., Wy} with overlapping events might exist at a time. Fig. 8
shows an example with two overlapping open windows W; and Ws.
Whenever a window closes—e.g., after a certain time or reaching
the maximum event count—the PAC executes Phase 1 and 2 on the
closed window as described previously until a reordering is found.
Let W; be the window that closes first and Wl' = (e1,...,en) be the
reordered window with the reordered event sequence (e, . .., en)
(in the example, Wl' = (A1, B1, E1,C1, D1, F1, Az, B2)). Moreover, let
p = (e1,...,er) with max k < e, be the maximum prefix of events
from W/ that are not contained in any other open window from
{Wo, ..., Wi}, ie, YW € {Wy,...,Wp} : pNW = 0 (in the exam-
ple, p = (A1, B1)). Then we make p stable and forward p to the CEP
middleware, i.e., the stable part is not blocked by other open win-
dows. The remaining suffix s = W, \p of events from the closed win-
dow Wl' (in the example, s = (E1, D1, C1, F1, A2, B2)) contains events
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that are already part of other open windows ({E1, D1, F1, A2, B2})
and possibly also events that are not part of other open windows
({C1}). In order not to drop events, we add all events from s that are

not already part of the other open windows to these open windows.

For instance, we add event C; to window W, in our example. As
a last step, we also transfer ordering constraints that have been
defined in Phase 1 to conceal private patterns in W; to the other
open windows. This ensures that subsequent reorderings will not
accidentally reveal already concealed private patterns from W, or
contradict an already existing public pattern. In our example, we
reordered the pair (C1, E1) from Wj to (E1,C1) in Wl’ and preserved
the pair (Cy, D1). Thus ordered constraints to preserve the pairs
(E1,C1) and (C1, Dy) are added to subsequent executions of Phase 1
while processing W.

Since windows are greedily reordered with locally optimal utility
whenever a window closes, the constraints defined by already closed
windows on the order of events in still open windows might prevent
a globally optimal solution with maximum utility, which could
be achieved if the whole history of events were considered for
reordering. An example for such a sub-optimal reordering is shown
in Fig. 9. The public patterns Q; and the private pattern P; of this
example are shown in Equ. 6.

S.M. Palanisamy et al.

Q1 = SEQ(B,C, D)
Q2 = SEQ(B,C,E) ©)
Q3 = SEQ(B,C, F)

Q4 = SEQ(A, B)

In Wi, the ordered pair (By, Cy) is reordered to conceal P;. As a
consequence, three public patterns Q1, Q2, and Qs are lost in W.
If the ordered pair (Aj, B;) were reordered instead to conceal Py,
then only Q4 would be lost, i.e, providing greater global utility.

Thus, there is a trade-off between forwarding events with short
delay and increasing global utility by collecting and processing a
larger event history. Global utility can be increased by delaying the
forwarding of events. This forwarding delay can be defined differ-
ently, e.g., as real time, number of events, or percentage of window
size. In our evaluation we will show how the utility increases with
increasing forwarding delay.

Py = SEQ(A, B,C)

5 EVALUATION RESULTS

In this section, we evaluate our event reordering approach with
respect to its ability to conceal private patterns (preserving privacy)
with minimum impact onto public patterns (preserving QoS). More-
over, we evaluate the performance of our reordering algorithms
with respect to latency.

5.1 Evaluation Setup

For the performance evaluation, we ran our experiments on a com-
modity server with Intel Core i5-5300U processor (2 cores / 4 threads
at 2.3 GHz) and 12 GB of RAM. We implemented our reordering al-
gorithms in Python using the GNU Linear Programming Kit (GLPK)
as ILP solver in Phase 1 and for the ILP-based approach also in
Phase 2.

We used both, a real-world data set and—where the real-world
dataset could not be used—a synthetic dataset. As real-world dataset
(Dataset 1) we used the publicly available Online Retail dataset
from the UC Irvine Machine Learning Repository [4]. This dataset
contains all the transactions occurring between 01/12/2010 and
09/12/2011 (around 1 year) of a UK-based online retailer mainly
selling all-occasion gifts. It contains almost 500,000 purchased items
along with timestamps and customer ids with around 3,200 different
items spread over 20,000 transactions. To define patterns, we search
this dataset for all event sequences of length 2 to 4 among the trans-
actions (e.g., SEQ(Wooden Happy Birthday Garland, Wooden cake
stand, Party Invites Woodland)), and selected the 100 most popular
sequence patterns as private and public patterns of varying length.
We searched for patterns in windows of size 4-800 events. For the
evaluation of overlapping windows, we used hopping windows
with hopping intervals of 5 events. Note that such an e-commerce
dataset might seem less privacy-sensitive as, for instance, a health
dataset—which is hard to find and use for evaluations due to its
obvious criticality. However, by analyzing the shopping behavior
of customers, privacy-sensitive information can be revealed indeed,
for instance, the pregnancy of a customer [12].

For the synthetic dataset, we generated a sequence of 100,000
events with event instances generated from a set of 20 different
event types. The arrival times of each event-type are normally
distributed with mean and standard deviation of y and ¢ time units.
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The values of y1 and ¢ are defined as variables and can be changed
for each run. We selected 50 random public and private patterns
with varying lengths from 2 to 10. Each pattern contains event
types without repetition from the above mentioned set.

5.2 Adversary Model

For the evaluation of the effectiveness of protecting privacy, we
first need to elaborate on the adversary model. In our system model
presented in Sec. 3, we have made the assumption that the adversary
has background information about causal constraints on event
orders and statistical information about the true (typical) inter-
arrival time distribution of events to perform causal order constraint
attacks and statistical attacks, respectively. Since our approach by
design ensures that causal order constraints are never violated by
adding suitable constraints to the ILP in Phase 1, we focus here on
the ability to resist statistical attacks.

For statistical attacks, the adversary observes the reordered event
stream and calculates the probability that a certain private pattern
has been concealed by reordering. If the probability is higher than a
pre-defined threshold—i.e., the adversary has sufficient “confidence”
that he correctly revealed a private pattern—, the adversary assumes
that the pattern has occurred. So the basic question is, how can the
adversary calculate these probabilities?

To this end, we assume that from publicly available data the
adversary knows the true mean value y(A) and true standard devi-
ation o(A) of the interarrival time distribution for events of each
event type A, B, C, etc. Moreover, for each ordered pair of event
types (A, B), we assume that the adversary knows the true mean
value p((A, B)) and standard deviation o((A, B)) of the interarrival
time distribution of pairs of events of these types. From observ-
ing the reordered event stream, the adversary knows the observed
interarrival time between each pair of events, say (A;, Bj). With
this information, the adversary can calculate the so-called z-score
(s, By) = LA
tions by which the observed inter-arrival time is below or above
the true mean inter-arrival time [14]. Similarly, the individual z-

scores z((Aj-1,4;)) = w
individual events A; and B;. Intuitively, these z-scores quantify how
much the reordered stream deviates from the expectation of the
adversary defined by his background knowledge (“ground truth” of
the adversary).

When the adversary observes a potentially reordered sequence,
say (A;, Bj, ..., Zy), he calculates the reorder indicator (RI) for each
private pattern individually. RI((A;, Bj, Cy)) for a private pattern
(SEQ(A, B, 0)) is calculated as the combination of the probability
values (p;) corresponding to the z-scores of the individual events
as well as of the event pairs. Table 1 is called a z-table which shows
pz values corresponding to z-scores for a normal distribution. The
number of different z-scores can be varied depending on the re-
quired resolution. It is sufficient to calculate RI for ordered pairs
of private patterns individually and then combine them since re-
ordering is also done at the level of ordered pairs. Thus RI for an
ordered pair (A, B) is calculated as:

, i.e., the number of standard devia-

can be calculated for the

RI(A;, Bj) = 1 — (p2(Ai-1, Ai) * pz(Bj-1, Bj) * p-(Ai, Bj))
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Table 1: Z-table with probability values under a defined z-
score

Z-score Probability values (p;)
less than 1 68.27%
between 1 and 2 27.18%
between 2 and 3 4.28%
greater than 3 ~ 0%

If RI is above a pre-defined threshold, the adversary assumes
that the stream has been reordered. Note that Rl is just a hint to the
adversary that something has been reordered, but does not directly
tell which pair(s) of events have been reordered. Thus, even an RI
of 100 % will not suffice to provably reveal the true order, as, for
instance, might be required in legal cases (in dubio pro reo). Still,
high RI scores might have negative consequences for the producer.
For instance, a customer could be denied an insurance contract or
loan due to a negative risk assessment. Therefore, we even consider
such hints of reordering critical and explicitly consider the RI in
our evaluation.

5.3 Robustness to Statistical Attacks

We start our evaluation by evaluating the robustness to statistical
attacks of our reordering approaches. As already pointed out, pri-
vate patterns will never occur in the reordered event stream (unless
the utility metric deliberately defines a trade-off between privacy
and QoS). So the major viable attacks are statistical attacks, where
the adversary tries to calculate the probability that a private pattern
has been concealed through reordering. In the adversary model in
Sec. 5.2, we have already described how the adversary calculates
the Reordering Indicator (RI) indicating that a private pattern has
been reordered. If the Rl is above a pre-defined threshold thg;y, the
adversary assumes that a private pattern has been concealed. We
will now evaluate the effectiveness of this attack by evaluating the
precision (correctly identified private patterns divided by the overall
number of correctly or incorrectly identified private patterns) and
recall (correctly identified private patterns divided by total number
of concealed private patterns in the reordered stream) of the attack.
We set thgr = 0.9, i.e., 90 % “confidence” that a private pattern
has been concealed. We use the synthetic dataset with precisely
known mean values p and standard deviations o, and assume that
the adversary precisely knows the accurate values of ;i and o from
background knowledge to provide perfect attack conditions.

One important parameter of our algorithms is ¢, which limits
the maximum time distance by which each event can be shifted (cf.
Sec. 4.2). Small values of ¢ should lead to only minor changes of
inter-arrival times providing little evidence to the adversary about
reordering, however, too small values of ¢ will make it impossible
for our algorithms to find a reordering. Fig. 10a and Fig. 10b show
the influence of ¢ onto precision and recall. We see that smaller
values of ¢ indeed decrease both, precision and recall of attacks,
thus, making statistical attacks less effective.

We also see that the graph-based approach provides better pri-
vacy, i.e., smaller recall and precision for the same values of ¢, than
the ILP-based approach. For each event pair to be reordered, the
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Figure 10: Evaluations Results

reordering approaches, and compare the reordering strategy to its
closest competitor from related work, namely, the event supression
strategy as proposed in [26]. All approaches conceal private pat-
terns at the expense of potentially destroying some desired public
patterns, i.e., by negatively impacting QoS.

For evaluating the privacy-QoS trade-off, we use a setting where
the approaches do not reveal any private patterns, i.e., privacy takes
strict precedence over QoS. As performance metric, we use the util-
5.4 QoS Preservation ity metric defined in Equ. 2. We configure the utility metric such

o ) ) that a) no private patterns are revealed (strict privacy precedence
Next, we evaluate the negative impact of concealing private patterns of concealed private patterns); b) all public patterns are assigned
onto QoS. Here, we mutually compare our ILP- and graph-based

graph-based approach moves timestamps of both events equally.
This balanced shifting of events minimizes the maximum time dis-
tance of individual events. In contrast, the ILP-based approach is
not balancing shifts and might have to move events longer dis-
tances. Therefore, the graph-based approach in general impacts the
inter-arrival time distributions less than the ILP-based approach
making reordering harder to detect.
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uniformly random weights between 1 and 10 to express the impact
of different types of public patterns onto QoS; c) consequently false
positive and false negative public patterns get same weights in neg-
ative, corresponding to the public patterns. For a fair comparison,
we consider three different scenarios: the best-case, worst-case, and
average-case scenario from the point of view of the event reorder-
ing strategy. In the best case, public and private patterns do not
share any ordered pairs of events. Note that this does not mean
that private and public patterns do not share any individual events!
In the worst-case scenario, public patterns are chosen such that all
the ordered pairs of private patterns do have a match in the set of
all ordered pairs of public patterns. In the average-case scenario,
50% ordered pairs of public patterns match with ordered pairs of
private patterns. For this evaluation, we used the real-world dataset.
Fig. 10c show the results for all scenarios. It is evident from the
figure that event reordering is in all scenarios and for both reorder-
ing approaches superior to event suppression with respect to QoS,
even in the worst case scenario. This is because of the obvious
reason that suppression strategy introduces a greater number of
false negatives when compared to the reordering approaches.

Since it becomes harder to preserve privacy with an increasing
number of public patterns, because required changes in private pat-
terns have a higher chance of also hitting events of public patterns,
we furthermore show the impact on the reordering approaches with
respect to the number of public patterns. Fig. 10d show the results
for increasing number of public patterns with the number of private
patterns maintained constant. We see that the number of public pat-
terns indeed influences the QoS. We also see that the graph-based
approach impacts QoS slightly less than the ILP-based approach.
This is also because of the balanced shifting of events in the graph-
based approach which leads to lesser impact on public patterns.
Furthermore we show the impact of number of public patterns on
the number of false positives and false negatives introduced for the
same configuration in Fig. 10e.

It is also important to evaluate the impact of parameter ¢ onto
the utility. Since ¢ limits the time distance by which events can be
shifted to increase the robustness to statistical attacks as shown
in Sec. 5.3, at the same time it might make it impossible to find a
reordering within the given bounds. Thus, we expect the utility
to be lower for smaller values of ¢. Fig. 10f shows the change in
utility achieved for varying ¢, also in comparison to the suppression
strategy. If ¢ is very low such that reordering becomes impossible,
then the utility of the reordering strategy is less than the utility
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of the suppression strategy. However, note that the suppression
strategy does not consider additional constraints such as the ¢
restriction, making it vulnerable to statistical attacks. In particular,
suppressing event also impacts the inter-arrival time distribution
of events, again giving the adversary hints about changes of the
event stream.

So far, we only evaluated scenarios where privacy took strict
precedence over QoS, i.e., with 0 % revealed private patterns. Next,
we evaluate this privacy/QoS trade-off with our reordering ap-
proach. To define this trade-off, we introduced the criticality per-
centage cpy. in Equ. 3. Fig. 11a shows the number of revealed private
patterns over cp (privacy). Fig. 11b shows the number of false posi-
tives and negatives over cpi (QoS). As we can see, greater values
of cpy. increase privacy and at the same time decrease QoS.

5.5 Delay-QoS Trade-off

In Sec. 4.4, we have stated the requirement to forward events from
the PAC as soon as possible, i.e., to minimize the delay introduced
by processing (reordering) events in windows. We also have already
seen that overlapping windows are critical with respect to delay
since the reordering performed in one window has to be consid-
ered by other overlapping windows. In general, we expect that by
delaying events longer, we might be able to increase QoS (utility)
by making optimal reordering decisions, i.e., there is a trade-off
between delay and QoS. Next, we evaluate this trade-off. For these
experiments, we again use the real-world dataset.

As discussed in Sec. 4.4 a short delay in forwarding events could
provide a higher utility globally. Fig. 10h shows the utility over
varying forwarding delay. We see the expected trend of increasing
utility for longer delay. If a certain delay is reached, the utility does
not increase any further by delaying events longer since the chosen
delay is sufficient to cover the maximum overlap of windows—i.e.,
while processing one window, the pattern matches of the next
overlapping window are already known.

5.6 Runtime Efficiency

In this subsection, we evaluate the runtime efficiency of our ILP-
and graph-based reordering approaches. Computational overhead
is introduced by finding an optimal reordering during Phase 1
that maximizes utility (same Phase 1 implementation for ILP-based
and graph-based approach), and assigning timestamps such that
reordering cannot be identified in Phase 2 (implemented differently
for ILP-based and graph-based approach). Here, we want to quantify
this computational overhead for both reordering approaches and
also compare it to the overhead of the related suppression approach.

In this evaluation, we use the real-world dataset. With each ap-
proach, we processed 5000 windows and calculated the average
processing latency for processing (reordering/suppression) one win-
dow. Fig. 10i shows the results. First of all, we see that suppression is
the most efficient approach, followed by the graph-based reordering
approach, and then the ILP-based approach. Suppression requires
only about 40-50 % of the runtime of the graph-based reordering
strategy on average. This gap can be explained by the additional
overhead for maximizing utility—in particular, preserving more
public patterns as shown in the QoS evaluation in Sec. 5.4—and
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obfuscating changes made to the event stream to protect them from
statistical attacks.

With respect to the ¢ constraint, the suppression strategy is
obviously independent of this value since it does not know this con-
straint or a similar strategy to protect changes from being identified
by statistical attacks. For the ILP-based reordering approaches, in
Fig. 10i we can observe the expected influence of ¢ on runtime,
i.e,, longer runtime for smaller ¢ value. However, the influence is
not very much pronounced (max. 15% higher runtime), and the
runtime stabilizes quickly for greater ¢ values. For the graph-based
approach, the influence of ¢ on the runtime efficiency is negligible.

6 SUMMARY AND FUTURE WORK

In this paper, we presented a novel event reordering approach for
removing privacy-sensitive information, specified as sequences
of events, from CEP event streams. Besides protecting privacy by
concealing private event patterns through event reordering, our ap-
proach also preserves quality of services by preserving, as much as
possible, desired public patterns, which should not be concealed to
provide required input to CEP services. We defined a utility metric
that allows for specifying the desired privacy/QoS trade-off. More-
over, we presented two reordering algorithms based on Integer
Linear Programming and graph processing to find event reorder-
ings maximizing utility while also protecting from sophisticated
statistical attacks taking into account advanced background knowl-
edge of event inter-arrival time distributions. Finally, we showed
that the event reordering strategy is superior to the closest related
strategy using event suppression with respect to QoS. Moreover, we
showed that our event reordering approach is robust to advanced
statistical attacks and can be implemented efficiently to allow for
online processing of event streams.

As part of future work, further concepts for concealing private
patterns could be considered. For instance, while reordering is a
natural choice to conceal privacy-sensitive patterns defined as event
sequences, it does not protect from revealing private information
depending on values, e.g., a heart rate constantly greater than a
given threshold value for a certain amount of time. To strike a
balance between privacy and QoS in such scenarios would require to
filter and modify (obfuscate) events and data based on values (here
heart rate, duration) such that modifications cannot be recognized.
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