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ABSTRACT
The Internet of Things (IoT) envisions a huge number of net-

worked sensors connected to the internet. These sensors collect

large streams of data which serve as input to wide range of IoT

applications and services such as e-health, e-commerce, and au-

tomotive services. Complex Event Processing (CEP) is a powerful

tool that transforms streams of raw sensor data into meaningful

information required by these IoT services. Often these streams of

data collected by sensors carry privacy-sensitive information about

the user. Thus, protecting privacy is of paramount importance in

IoT services based on CEP.

In this paper we present a novel pattern-level access control

mechanism for CEP based services that conceals private informa-

tion while minimizing the impact on useful non-sensitive informa-

tion required by the services to provide a certain quality of service

(QoS). The idea is to reorder events from the event stream to conceal

privacy-sensitive event patterns while preserving non-privacy sen-

sitive event patterns to maximize QoS. We propose two approaches,

namely an ILP-based approach and a graph-based approach, calcu-

lating an optimal reordering of events. Our evaluation results show

that these approaches are effective in concealing private patterns

without significant loss of QoS.
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1 INTRODUCTION
With growing advancements in the Internet of Things (IoT), it is not

an exaggeration to say that new IoT applications are released every

day. The targets of these IoT applications are diverse ranging from

industrial applications such as process automation (Industry 4.0) or

smart power grids or e-health applications to consumer applications

such as fitness trackers or smart homes. Gartner estimates that by

2020, around 20.8 billion IoT devices will be installed [9], many

equipped with sensors to automatically capture huge amounts of

sensor data.

Typically, the captured raw sensor data needs to be processed

into meaningful information to be useful for applications. Complex

Event Processing (CEP) is a popular state of the art technology

for processing streams of basic events into meaningful “complex”

events based on a set of processing rules [17]. For instance, from the

basic events: speed > 10 km/h and heart rate > 120 bpm, a fitness

tracker can infer the activity “doing sports”.

The ability to automatically infer such meaningful information is

a doubled-edged sword. On the one hand, meaningful information

is required by the application to provide a certain quality of service
(QoS). If a CEP system falsely detects non-existing events (false

positives) or does not detect some actually existing events (false

negatives), the QoS will degenerate. For instance, a fitness tracker

not detecting activities accurately might annoy and drive away the

user.

On the other hand, complex events might be highly privacy-
sensitive. For instance, researchers from the University of California,

San Francisco (UCSF) have shown recently in their Health eHeart
study that a heart irregularity (arrhythmia) can be detected with

97 % accuracy from sensor data collected by an Apple watch [23]

when it is paired with an AI algorithm. So although a user wants

some complex events to be detected accurately, he/she might not

want to share any other privacy-sensitive events. According to a

recent survey, 32 % of the survey participants would be willing to

measure and share fitness data with their health insurance provider,

e.g., to get a premium rebate [24]. However, 73 % are afraid that

their premiums would increase since the insurers could infer a

certain lifestyle or disease from the shared data. Consequently,

effective privacy protection mechanisms are needed to allow users

or owners of data to selectively control the sharing of information

by not sharing information about privacy-sensitive events while

preserving the QoS by sharing information about desired events.

Access control is one prominent technique for protecting pri-

vacy in event processing systems. However, classic access control

mechanisms protect privacy only at the level of single attributes

of data or events [3, 19, 22]. But, sensitive information is often re-

vealed through complex data patterns potentially spanning several
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attributes. For example, blood sugar level and heart rate might not

reveal any useful information when separately analyzed, but might

suggest a disease when combined. We call these privacy-sensitive

patterns that the user or data owner wants to protect from un-

trusted parties private patterns. In contrast public patterns are those
patterns that are non-privacy-sensitive and needed by CEP-based

services to deliver the offered services.

One trivial approach to protect private patterns is to share no

data whatsoever. However, this would also make public patterns

inaccessible, ruling out any service (zero QoS). Instead the event

stream should be selectively obfuscated before it is shared with

services such that private patterns are not detectable any more

from the obfuscated stream while public patterns are preserved as

much as possible (maximum QoS).

In this paper, we introduce a pattern-based access control mech-

anism for a CEP system concelaing private patterns while max-

imizing QoS by preserving as many public patterns as possible.

The first pattern-based access control mechanisms was proposed

by Wang et al.[26]. Their approach concealed private patterns by

suppressing events that are part of the private pattern. However,

suppressed events might also be part of public patterns, which re-

sults in complete loss of these public patterns, severely impacting

QoS.

Therefore, we propose a less intrusive technique, namely, event
reordering to conceal private patterns defined as sequences of events.
For an intuitive explanation of event reordering, consider a CEP

application for monitoring diabetes patients as described in [25].

On the one hand, the event stream consists of one private pattern

defined as the following event sequence: the patient eats food with

a high sugar content, leading to rise of blood-sugar level (BSL), fol-

lowed by insulin intake (SEQ(High Sugar Intake, BSL high, Insulin))

as shown in Fig. 1a. This private pattern indicating an unhealthy

lifestyle when revealed to the insurer might lead to an increase

of the insurance premium. On the other hand, the event stream

contains a public pattern, in which the patient does some sports

deduced from the smart bracelet leading to a drop in BSL and thus

eating food with high sugar content (SEQ(Sport, BSL low, High

Sugar Intake)). This second pattern should be revealed as positive

indication of a healthy lifestyle. Using event reordering, it is pos-

sible to conceal the private pattern while preserving the public

pattern as shown in Fig. 1b.

In detail, we make the following contributions in this paper: (1)

We define a formal utility metric that defines the quality of data

in terms of public and private patterns. This metric provides the

flexibility to specify individual importances for different kinds of

patterns. (2) We propose two approaches for reordering the event

stream, namely, an Integer Linear Programming (ILP) approach and

a graph-based approach, both striving to maximize the utility of the

reordered stream. (3) For the evaluation of these approaches, we de-

fine a strong adversary model that considers advanced background

knowledge of event distributions gained from event histories.

Our evaluations shows that the proposed reordering strategies

are better in terms of utility compared to the state-of-the-art sup-

pression strategy. Moreover our evaluations also shows that the

reordering strategies are robust against the above mentioned ad-

versary model.

Sport BSL Sugar BSL Insulin

Private Pattern: SEQ(Sugar, BSL, Insulin)

Public Pattern: SEQ(Sport, BSL, Sugar)

(a) Input Event Stream

Sport BSL BSL Insulin

Private Pattern: SEQ(Sugar, BSL, Insulin)

Public Pattern: SEQ(Sport, BSL, Sugar)

SugarSugar

(b) Reordered Event Stream

Figure 1: Event Stream Reordering

The rest of the paper is organized as follows. In Sec. 2 we discuss

related work followed by the system model and problem statement

in Sec. 3. In Sec. 4, we present reordering strategies that try to

maximize the utility of reordered streams. In Sec. 5, we describe in

detail how the adversary model uses the observations learned from

history data to reveal event reordering and describe the evaluation

results, before concluding the paper in Sec. 6.

2 RELATEDWORK
Several access control mechanisms have been proposed to control

the flow of information in stream processing systems [2, 16] and

event processing systems [11, 19]. Most of these mechanisms are

attribute-based ensuring that certain attributes in the stream of

data are only visible to authorized processing operators [16, 19].

However, this is overly restrictive and simplifying at the same

time, since certain attributes are either always accessible or not at

all, independent of whether they contribute to private or public

patterns. Some stream processing systems such as ACStream [3]

provide context-based access control, however, still at the level

of attributes rather than patterns. Moreover, there exists a rich

literature on secure routing of information in event processing

systems using the publish/subscribe paradigm. Nevertheless, these

publish/subscribe systems [8] enforce access control only at the

level of individual events. Patterns of events originated from the

correlation of multiple streams are not considered.

In the area of datamining, hiding patterns in sequential databases

was considered in [1] and [10] where pattern concealing is per-

formed on a set of sequences that are independent of each other. In

contrast, in the context of CEP, pattern-based access control is to

be ensured on temporally related event streams. Therefore, their

strategies cannot be applied to solve our problem.

Another class of privacy protection in event stream processing

is differential privacy [5] and zero-knowledge privacy guarantees

[20]. Again most works consider privacy only at the level of single

attributes or events. Very few works consider pattern-level privacy.

Specifically [13] provides differential privacy guarantees at the

level of sequences (patterns). However, although these approaches
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provide strong and provable privacy guarantees, they strive to

protect the privacy of individual users whose data is part of a

dataset from a larger population of users. The altered dataset is

still useful for answering queries about the population, while it

should be impossible to derive information about individual users.

Our goal is fundamentally different. We consider the data of a

single user rather than a population of users, and want to preserve

uncritical information (public patterns) about this individual user,

while concealing privacy-sensitive information (private patterns).

Only few works [11, 26] have been published in the area of

pattern-based access control. In [11], He et al. studied the trade-off

between quality and privacy in complex event processing (CEP) and

analyzed the complexity of minimizing the corresponding degra-

dation in quality theoretically. Their work is very relevant to our

vision. However, they consider only suppression of events to con-

ceal patterns. Event suppression was also used byWang et al. [26] in

their approach called UtilityMaximizing Event Suppression Scheme.

This approach also conceals patterns by suppressing events that

are part of the private pattern while maximizing a given service

utility. In contrast, we use event reordering rather than suppression

resulting in higher QoS with respect to preserved public patterns

as shown in Sec. 5.

3 SYSTEM MODEL AND PROBLEM
STATEMENT

In this section, we introduce our system model, which also includes

our assumptions about the adversary who tries to detect private

patterns. Moreover, we define a utility metric defining the utility of

an obfuscated event stream, which is then used as an objective in

our problem statement.

3.1 System Model
Our system consists of the following components (cf. Fig. 2): produc-

ers, consumers, CEP middleware, and pattern-based access control.

Next, we will describe these components in more detail.

Producers act as data sources producing basic events as input to

the system. Producers can be any type of sensor or also (manual)

user input, e.g., entered through the GUI of an application. Basic

events generated by producers are typed and contain a set of at-

tributes, which are specified by the corresponding event type, as

well as a timestamp. For instance, a blood sugar level (BSL) sensor

produce events of type BSL, which contain a blood sugar level at-

tribute and a timestamp. There can be multiple producers but we

assume that the event streams of the different producers are merged

together into a single input event stream (sequence of events) in

timestamp order.

We assume that the user controls the producers. In particular,

he/she can control to which other component the producers send

their event stream and be sure that no information is “leaked” from

these streams. In other words, we do not consider sensors installed

somewhere in the environment under the control of an untrusted

third party such as a camera network observing pedestrians in

public places.

The CEP middleware processes basic events into complex events

which are then forwarded to the consumers, which could be an IoT

service provider for example. As CEP middleware, we utilize an

EVENT DEFINITION 
RULES

PRODUCERS
PATTERN LEVEL 

ACCESS 
CONTROL

CONSUMERS

TRUSTED ENVIRONMENT

ω1

ω3

ω2

ω4

ω5

CEP MIDDLEWARE

Figure 2: Simplified Model of a CEP System with Pattern-
level Access Control component

unmodified standard CEP middleware, for instance, as described

in [7]. The CEP middleware is built from a set of interconnected

operators. An operator is one specific processing node in the CEP

middleware. Its job is to process and transform the incoming event

stream according to predefined rules into one or many outgoing

event streams. These outgoing event streams are connected either

to another processing operator or to a consumer. Typical operators

include sequence, aggregation, negation, conjunction, etc. [6]. In

this paper, we only consider the sequence operator. The cooperative

processing of the different operators results in a complex event.

For instance, a high BSL value and a high blood pressure value can

result in the complex event “critical health condition”.

Typically, operators do not consider the complete (theoretically

infinite length) event stream, but rather process the stream in frames

of limited duration or length calledwindows. We assume that private

patterns fit within windows of given maximum size—to prevent

private patterns spanning an arbitrary window size, we would need

to store and delay events potentially infinitely, which is not practical.

A window can either be time-based or count-based. A time-based

window considers all events arriving in a specified period, while

a count-based window considers a pre-defined number of events

for a match. New windows can also be opened by certain events, in

particular, the first event of a sequence of a pattern to be detected.

Multiple windows might be open at the same time, e.g., to detect

different instances of the same complex event type or different

types of complex events. In general, windows might overlap.

A query represents a request to the CEP system and defines the

type of a complex event that the consumer is interested in. In this

work we only consider—similar to related CEP privacy protection

mechanisms [26]—the sequence operator, which is one of the most

popular CEP operators. A sequence operator captures queries where

a set of events arrive in a specific order, thus, both, private and

public patterns, are defined as sequences of events. An exemplary

sequence denoting the unhealthy behaviour of a diabetes patient

(i.e., a private pattern that should be hidden from the untrusted

consumer and CEP middleware) could be:

Q = SEQ(Eatinд_Suдar ,Hiдh_Blood_Suдar_Level ,

Insulin_Intake (1)

This sequence query checks for three events: Eating_Sugar,
High_Blood_Sugar_Level, and Insulin_Intake. Moreover the

query also defines the ordering relations that the Eating_Sugar
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A1 B1 C1 E1D1 B1 C1 E1D1

P1

Q2

Q1

A1

Q2

A1

false-positive Q3

Q3

Reordering

Figure 3: Reordering introducing false positive

event has to occur before the High_Blood_Sugar_Level event,

and also the High_Blood_Sugar_Level event has to occur before

the Insulin_Intake event. Such an unhealthy behaviour when

revealed to the insurance company for example would lead to an

increase of their premium rebate. In the following descriptions, we

use the following short notation to denote event types and events:

A, B, C , etc., denote event types, and Ai denotes the i-th event

instance of type A in the event stream. If the type of event is not

relevant, we also denote generic events as ei .
We assume that the CEP middleware as well as the consumers

are untrusted and operated by another entity than the user (e.g.,

the IoT service provider). Moreover, we assume that the user wants

to hide certain private patterns expressed as sequences of events

from the non-trusted CEP middleware or consumer. Obviously,

feeding the unaltered event stream directly into the CEPmiddleware

would enable the middleware to detect all possible sequence events

including the private ones. Therefore, we place another component

called pattern-based access control (PAC) between the producers

and the CEP middleware and steer all producer events through the

PAC as shown in Fig. 2. The PAC performs event reordering to hide

private patterns from the CEP system. Both, producers and PAC,

run in a trusted execution environment. There are several options

to implement this environment: a trusted physical device, e.g., the

smart phone of the user or a trusted server such as a private fog node

controlled by the user; a trusted execution environment on a third-

party node, e.g., secure “enclaves” in a Cloud server implementing

Intel’s Software Guard Extensions (SGX) [15] technology where

only the authorized user-space process (deployed by the trusted

user) can access confidential data (neither other applications, nor

the operating system, nor the hypervisor).

It is also important to specify the assumptions about the adver-

sary who tries to compromise the privacy of users by detecting

private patterns. We assume a “honest-but-curious” adversary, a

common model in security. In our context, this adversary follows

all given protocols and does not attack trusted components, but

tries to identify private patterns that have been concealed by the

PAC. In other words, the adversary might be one of the non-trusted

components (CEP middleware or consumer). Consequently, the ad-

versary cannot observe the original event stream, but can observe

the complete reordered event stream as sent by the PAC. We also as-

sume that the adversary has some background knowledge including

causal and statistical knowledge about event arrivals, e.g., learned

from publicly available event streams. In the next sub-section, we

will describe the relevant adversary background knowledge in more

detail while defining the problem.

A1 B1 C1 E1D1 B1 C1 E1D1

Reordering

P1

Q2

Q1

A1C1

Q2

false-negative Q1

Figure 4: Reordering introducing false negative

3.2 Problem Statement
Informally, the problem solved by our approach is to reorder events

in the PAC such that private patterns are hidden from the CEP

system while maximizing the QoS of the service acting as complex

event consumer. This is a non-trivial problem since there might be

different options to reorder events to hide private patterns, each

with different impact on QoS. In general, QoS is impacted by false

positive events (public events introduced by reordering that never

happened) and false negative events (actual public events destroyed

by reordering). Fig. 3 and Fig. 4 show examples of a false positive

and false negative, respectively. In these examples, Q1 = (B,C,D),
Q2 = (D,E), and Q3 = (E,A) are public patterns, and P1 = (A,C,E)
is a private pattern. While concealing P1, the false positive public

pattern Q3 is introduced into the modified event stream. Moreover

public pattern Q1 = (B,C,D), which is no longer present in the

modified event stream is a false negative since its ordering relation

(B,C) is no longer satisfied.

In order to define the impact of reordering more precisely, we

define the following utility metric:

Utility(U ) = Σ
# of matched public Patterns
i=1 wi

−2 ∗ Σ
# of matched f alse posit ives
j=1 w j

−Σ
# of matched pr ivate patterns
k=1 wk (2)

Note that the number of matched public patterns (first term)

counts both, true and false positives. Therefore, we must subtract

two times the number of false positives in the second term, once to

remove false positives from the number of matched public patterns,

and once to introduce a negative effect for each false positive. Thus,

the first and second term increase utility for each true positive

match of a public pattern and decrease it for each false positive

or negative match of a public pattern. Moreover, we introduce

weightswi andw j to express the impact of different types of public

patterns onto the QoS. Matched private patterns are considered by

the third term. Including private pattern matches into the utility

metric rather than making it a hard constraint (“no private pattern

matches”) allows for trading off privacy against QoS, i.e., revealing

some private information for more public pattern matches. Here,

weightwk defines the weight of private pattern k according to the

following equation:

wk = (Σwi + 1) ∗ cpk (3)

Tuning parameter cpk allows for trading off privacy against QoS

by specifying a criticality percentage for private pattern k . If we set
the private pattern criticality to 100 %, i.e., cpk = 1, then a single

match of that private pattern k would outweigh the effect of all

(true and false) public pattern matches such that effectively, no
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private patterns of that type will be revealed (100 % privacy). For

cpk = 0 that type of private pattern is always revealed.

The problem is now to find an event reordering strategy, maxi-

mizing the utility according to Equ. 2 and making it (ideally) im-

possible for the adversary to reveal private patterns that have been

concealed (otherwise the number of matched private patterns as

specified in Equ. 2 does not represent the private patterns actu-

ally revealed to the adversary). Solving this problem requires some

assumptions about the background knowledge of the adversary

to understand what possibilities the adversary has to detect and

reverse event reorderings [21]. We consider two kinds of attacks:

causal order constraint attacks and statistical attacks.

Causal order constraint attacks rely on knowledge about the

causal relationship between events. We say the order of two events

e1 and e2 is causally constrained if e2 must never happen before e1.
For instance, in our e-health scenario the event “insulin injection”

never happens before the event “high blood sugar level” but only

as a reaction to a high sugar level, i.e., afterwards. Reordering e1
and e2 could be detected immediately as a violation of the causality

constraints known to the adversary.

Statistical attacks consider the inter-arrival time distribution of

events, either between the same type of events, or between different

types of events. For instance, through analyzing a publicly available

data set, an adversary might know that statistically for patients

carefully following their therapy plan, in only 5 % of all cases the

time between two insulin injections is smaller than 1h. In contrast

to causal order constraints, there is no “binary” violation here, but

only a certain probability that reordering has happened.

So besides maximizing the utility through reordering events, the

performed event reorderings need to be obfuscated such that an

adversary cannot detect and reverse reorderings from causal order

constraints or make it unlikely that he detects a reordering with

high probability ("confidence") for statistical attacks.

4 EVENT REORDERING APPROACHES
In this section, we describe our approaches to reorder event streams

executed by the PAC such that the utility is maximized while not

revealing concealed private patterns to adversaries. We present two

reordering approaches: one based on Integer Linear Programming

(ILP) and one based on graph processing. Both approaches share a

common two-phase execution model, which we will present first

in the next sub-section, before we describe the specific details of

the two approaches in subsequent sub-sections.

4.1 Overview
Event reordering is performed in two phases, namely the utility

maximization phase and the reorder obfuscation phase (cf. Fig. 5).

The goal of the utility maximization phase (Phase 1) is to find an

optimal set of pairs of events that have to be reordered to maximize

the utility metric, i.e., to conceal private patterns while also con-

sidering the negative effect of reordering on true and false positive

public patterns as defined by Equ. 2. Note that it is sufficient to

consider only all ordered event pairs that are part of private pat-

terns as candidates for reordering since reordering a single pair

of events in a sequence defining a private pattern is sufficient to

conceal it. In particular, it is not necessary to iterate over all events

ILP/Graph
Based Reordering

Select the 
ordered pairs to 

be reordered that 
maximizes utility

Constraints
1. constraint Ɛ 
   2. Preserving 

maximal ordered 
pairs of public 

patterns

If no solution 
possible 

Select next set of 
ordered pairs 

with maximum utility 

Figure 5: Overview of the Reordering Strategy

of a complete window and check a prohibitive large number of

permutations of ordered events. Besides maximizing the utility, the

PAC also counters causal order constraint attacks in Phase 1 by not

reordering pairs whose order is causally constrained.

In detail, Phase 1 is invoked on a full window of events, whenever

this window contains at least one private pattern—obviously, a

window without private patterns can be forwarded as it is. The

problem of finding an optimal set of event pairs to be reordered is

translated to an ILP formulation with the utility metric as objective

and exploring all ordered pairs of events of private patterns as

reordering candidates. Causally constrained pairs are excluded

from reordering by defining corresponding constraints in the ILP.

In case of two solutions providing maximum utility, the solution

with a smaller number of reordered event pairs is used to break

the tie. The output of Phase 1 are two sets of event pairs, where

each pair defines an event order: set N contains all pairs of events

whose order has to be changed (parts of private patterns), while R
includes all pairs of events whose order must be preserved (parts

of public patterns).

The set of pairs to be reordered is the input to the reorder obfus-
cation phase (Phase 2). In Phase 2, the PAC shifts the timestamps

of events in event pairs selected for reordering in Phase 1, i.e., it

actually performs the reordering defined in Phase 1. Since moving

event timestamps influences the inter-arrival time distribution of

events, the PAC shifts timestamps carefully to avoid statistical at-

tacks, i.e., it obfuscates reorderings such that an adversary cannot

detect and reverse them. To this end, we have developed two strate-

gies implementing Phase 2, one based on ILPs and another based

on graphs presented in detail in Sec. 4.2 and Sec. 4.3, respectively.

While executing Phase 2, it might turn out that for the selected

set of events to be reordered it is infeasible to effectively obfuscate

reorderings. In that case, the PAC starts another iteration of Phase 1
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and Phase 2, now selecting the second best set of events with respect

to utility to be reordered in Phase 1.

4.2 ILP-based Reordering
In this and the next sub-sections, we present two algorithms for

obfuscating event reorderings to counter statistical attacks, which

detect and reverse event reorderings through an analysis of the

event arrival distribution of the reordered event stream. Statistical

attacks might become feasible since reordering changes the time-

stamps of events and thus the inter-arrival time between events.If

the observed inter-arrival time between events deviates signifi-

cantly from the typical inter-arrival time (adversary background

knowledge), the adversary can infer with a certain probability ("con-

fidence") that the order of events has been changed.

Obviously, the means to influence the inter-arrival time of events

is the time distance x(ei ) by which a reordered event ei has been
shifted. In general, smaller x(ei ) influence the distribution less than

greater x(ei ). Therefore, in Phase 2 the PAC strives to minimize the

sum of time distances

∑
ei ∈E | x(ei ) | by which all reordered events

have been shifted.

Minimizing the sum of time distances keeps the difference be-

tween the modified inter-arrival distribution after reordering and

the original inter-arrival distribution before reordering small (al-

though there is no hard bound on how much the distribution is

actually changed, thus, this remains a heuristic). However, although

on average events might not be shifted far, single events might still

be shifted by longer time distances. To avoid extreme shifts, which

could be detected easily as outliers, we introduce a maximum al-

lowed time distance ε that limits the maximum distance by which

each event can be shifted.

This concept can be formulated as ILP, leading to our first algo-

rithm for obfuscating event reorderings in Phase 2:

minimize
∑
ei ∈E

| x(ei ) | (4)

subject to

∀ or (ej , ek ) ∈ R : ej .time + x(ej ) < ek .time + x(ek ) (C1)

∀ or (ej , ek ) ∈ N : ek .time + x(ek ) < ej .time + x(ej ) (C2)

− ε(ei ) ≤ x(ei ) ≤ ε(ei ) (C3)

where i = 1, 2, ...,n

This ILP is executed on a window of events E. The objective is
the minimization of event shifts. Constraint 3 limits the maximum

shift of each event by ε . Constraint 1 and 2 ensure the desired

order of events as defined by Phase 1 while shifting events by a

certain distance x(ei ). Sets N and R contain pairs of events whose

order has to be changed to conceal private patterns, and pairs of

events whose order must be preserved as part of public patterns,

respectively (output of Phase 1).

This ILP can be solved by a standard ILP solver. If a feasible

solution cannot be found due to the constraints, Phase 1 and Phase 2

are repeated with the second best reordering w.r.t. the utility metric.

A1 E1

Q1

Q2

Q3

P1

B1 C1 D1

WindowWindow

1 55 60 78 100

Figure 6: A window of Input event streamwith arrival times

4.3 Graph-based Reordering
The second algorithm for assigning timestamps to reordered events

and obfuscating reordering such that it cannot be detected is based

on a graph representation. Again, this algorithm receives the sets

N and R from Phase 1 containing pairs of events whose order is

to be changed and preserved, respectively. The algorithm then

first constructs a weighted directed acyclic graph (DAG) G =

(V, E,LV ,LE ) from N and R. The graph vertices V represent

events, and E denotes the order of events. Let vei and ve j denote
the vertices of the events ei and ej , respectively. Then a directed

edge (vei ,ve j ) ∈ E represents the event order (ei , ej ). L
V

and LE

represent vertex and edge labelings based on event timestamps and

inter-arrival times, respectively.

The initial graph is constructed as follows. For all ordered event

pairs (ei , ej ) ∈ R—i.e., events whose order is to be preserved—an

edge (vei ,ve j ) is added to E. For all ordered event pairs (ei , ej ) ∈
N—i.e., events whose order must be reversed—an edge (ve j ,vei )
(reversed direction) is added to E. Each vertex ve is labeled with

the original timestamp t(e) of e , and each edge (vei ,ve j ) is labeled
with the original inter-arrival time t(ej ) − t(ei ). Note that for event
pairs in N with reversed order, the initial edge weights are negative

since the timestamps have not been adjusted yet according to the

reversed order.

Fig. 6 shows an example with the following three public patterns

(Q1,Q2,Q3) and one private pattern (P1) and the timestamps shown

in Fig. 6:

Q1 = SEQ(B,C,D) P1 = SEQ(A,C,E)
Q2 = SEQ(B,E)
Q3 = SEQ(A,D)

(5)

Assume that in Phase 1, sets N and R have been defined as

follows: R = {(B1,C1), (C1,D1), (A1,D1), (B1,E1)}, N = {(A1,C1}).

The initial graph for this example is shown in Fig. 7a.

The graph-based reordering algorithm shown in Alg. 1 takes the

generated graph as input and adjusts vertex weights (event times-

tamps) and edge weights (inter-arrival times) until all inter-arrival

times are positive, i.e., until timestamps are consistent with the

event order defined in Phase 1. To increase the weight of a negative

edge, we change both, the timestamp of the source and target vertex,

equally by adding and subtracting half the edge weight representing

the inter-arrival time between the two events, respectively. Equally

changing the timestamps of both events ensures that the maximum
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Figure 7: Graph Transformation Algorithm

change of both timestamps is minimized to obfuscate performed

event reorderings.

Algorithm 1 Graph Transformation

procedure GraphTransformation(д)
while ContainsEdдeW ithNeдativeOrZeroW eiдht (д) do

edдe ← GetEdдeW ithNeдativeOrZeroW eiдht (д)
sNode ← GetSourceNode(edдe)
tNode ← GetTarдetNode(edдe)
ε − BoundCheck
sNode .T ime ← sNode .T ime − ⌊ |edдe .weiдht |

2
⌋

tNode .T ime ← tNode .T ime + ⌈ |edдe .weiдht |
2

⌉ + 1

UpdateEdдeW eiдhts(д)
end while

end procedure

Also in the graph-based approach we never change timestamps

by more than ε to obfuscate event reorderings. Before adjusting a

negative edge by shifting the timestamps of the source vertex and

target vertex, we check whether this would require a change greater

than ε . If it is impossible to adjust timestamps without violating

the ε bound, we stop Phase 2 and go back to Phase 1 to calculate

another (second-best) order of events before repeating Phase 2.

Fig. 7b and Fig. 7c show how our initial example graph is trans-

formed in multiple iterations. In the first iteration, the edge (C1,A1)

with weight -59 is changed to weight 1 by shifting the timestamp of

the source vertex C1 from 60 to 31 and the timestamp of the target

vertex A1 from 1 to 32 as shown in Fig. 7b. However, the change of

t(C1) introduces another negative edge between B1 and C1, which

is adjusted in the following iterations to finally get a graph with all

positive arrival times as shown in Fig. 7c.

4.4 Handling Overlapping Windows
Our two reordering approaches presented so far operate on win-

dows. Private or public patterns are only detected and considered

by the algorithms if the complete pattern is within the window. Ex-

ecuting these algorithms is straightforward if patterns are defined

on disjoint windows such as tumbling windows. Note that similar to

any CEP system, the user has to define patterns to be concealed or

published together with a suitable windowing strategy. If patterns

are defined on disjoint windows, reordering events in one window

will not affect the next (disjoint) window.

However, if patterns are defined on overlapping windows such as

sliding or hopping windows, events that are part of patterns might

appear in different windows, and reordering in one window will

affect all other overlapping windows [18]. Overlapping windows

lead to a number of additional requirements, which are trivially ful-

filled for disjoint windows but pose new challenges for overlapping

windows:

• Consistent reordering: If events are reordered in one window,

they must be reordered in the same order in other overlap-

ping windows. Otherwise, inconsistent orders of the same

events in different windows would give hints to the adver-

sary that these events have been reordered.

• Stable reordering: Closely related to consistent reordering

is the restriction that once a sequence of events has been

forwarded, this order is stable, i.e., it cannot be reverted back

and changed again by another window, which would lead to

inconsistent event orders.

• Non-redundant/exactly-once event forwarding: If events are
consistently reordered in all windows and the order of events

is stable after forwarding, we forward each event exactly

once.

• Non-blocking forwarding of windows: A window of events

should be forwarded as soon as possible to support time-

sensitive CEP applications whose QoS depends on the timely

delivery of events. Although we do not strive for hard de-

lay bounds, we would like to avoid blocking of windows

by other windows, including (theoretically infinite) cascad-

ing blocking where windowW1 cannot be forwarded until

the overlapping windowW2 is forwarded, which cannot be

forwarded until the overlapping windowW3 is forwarded,

etc..

Next, we explain how to meet these requirements with over-

lapping windows by using a greedy strategy that processes the

window first which closes first. In general, multiple open windows

{W1, . . . ,Wm } with overlapping events might exist at a time. Fig. 8

shows an example with two overlapping open windowsW1 andW2.

Whenever a window closes—e.g., after a certain time or reaching

the maximum event count—the PAC executes Phase 1 and 2 on the

closed window as described previously until a reordering is found.

LetW1 be the window that closes first andW ′
1
= (e1, . . . , en ) be the

reordered window with the reordered event sequence (e1, . . . , en )
(in the example,W ′

1
= (A1,B1,E1,C1,D1, F1,A2,B2)). Moreover, let

p = (e1, . . . , ek ) with maxk ≤ en be the maximum prefix of events

fromW ′
1
that are not contained in any other open window from

{W2, . . . ,Wm }, i.e., ∀W ∈ {W2, . . . ,Wm } : p ∩W = ∅ (in the exam-

ple, p = (A1,B1)). Then we make p stable and forward p to the CEP

middleware, i.e., the stable part is not blocked by other open win-

dows. The remaining suffix s =W ′
1
\p of events from the closed win-

dowW ′
1
(in the example, s = (E1,D1,C1, F1,A2,B2)) contains events
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that are already part of other open windows ({E1,D1, F1,A2,B2})
and possibly also events that are not part of other open windows

({C1}). In order not to drop events, we add all events from s that are
not already part of the other open windows to these open windows.

For instance, we add event C1 to windowW2 in our example. As

a last step, we also transfer ordering constraints that have been

defined in Phase 1 to conceal private patterns inW1 to the other

open windows. This ensures that subsequent reorderings will not

accidentally reveal already concealed private patterns fromW ′
1
or

contradict an already existing public pattern. In our example, we

reordered the pair (C1,E1) fromW1 to (E1,C1) inW
′
1
and preserved

the pair (C1,D1). Thus ordered constraints to preserve the pairs

(E1,C1) and (C1,D1) are added to subsequent executions of Phase 1

while processingW2.

Since windows are greedily reordered with locally optimal utility

whenever awindow closes, the constraints defined by already closed

windows on the order of events in still open windowsmight prevent

a globally optimal solution with maximum utility, which could

be achieved if the whole history of events were considered for

reordering. An example for such a sub-optimal reordering is shown

in Fig. 9. The public patterns Qi and the private pattern P1 of this
example are shown in Equ. 6.

Q1 = SEQ(B,C,D) P1 = SEQ(A,B,C)
Q2 = SEQ(B,C,E)
Q3 = SEQ(B,C, F )
Q4 = SEQ(A,B)

(6)

InW1, the ordered pair (B1,C1) is reordered to conceal P1. As a
consequence, three public patterns Q1, Q2, and Q3 are lost inW2.

If the ordered pair (A1,B1) were reordered instead to conceal P1,
then only Q4 would be lost, i.e, providing greater global utility.

Thus, there is a trade-off between forwarding events with short

delay and increasing global utility by collecting and processing a

larger event history. Global utility can be increased by delaying the

forwarding of events. This forwarding delay can be defined differ-

ently, e.g., as real time, number of events, or percentage of window

size. In our evaluation we will show how the utility increases with

increasing forwarding delay.

5 EVALUATION RESULTS
In this section, we evaluate our event reordering approach with

respect to its ability to conceal private patterns (preserving privacy)

with minimum impact onto public patterns (preserving QoS). More-

over, we evaluate the performance of our reordering algorithms

with respect to latency.

5.1 Evaluation Setup
For the performance evaluation, we ran our experiments on a com-

modity server with Intel Core i5-5300U processor (2 cores / 4 threads

at 2.3GHz) and 12GB of RAM. We implemented our reordering al-

gorithms in Python using the GNU Linear Programming Kit (GLPK)

as ILP solver in Phase 1 and for the ILP-based approach also in

Phase 2.

We used both, a real-world data set and—where the real-world

dataset could not be used—a synthetic dataset. As real-world dataset
(Dataset 1) we used the publicly available Online Retail dataset

from the UC Irvine Machine Learning Repository [4]. This dataset

contains all the transactions occurring between 01/12/2010 and

09/12/2011 (around 1 year) of a UK-based online retailer mainly

selling all-occasion gifts. It contains almost 500,000 purchased items

along with timestamps and customer ids with around 3,200 different

items spread over 20,000 transactions. To define patterns, we search

this dataset for all event sequences of length 2 to 4 among the trans-

actions (e.g., SEQ(Wooden Happy Birthday Garland, Wooden cake

stand, Party Invites Woodland)), and selected the 100 most popular

sequence patterns as private and public patterns of varying length.

We searched for patterns in windows of size 4–800 events. For the

evaluation of overlapping windows, we used hopping windows

with hopping intervals of 5 events. Note that such an e-commerce

dataset might seem less privacy-sensitive as, for instance, a health

dataset—which is hard to find and use for evaluations due to its

obvious criticality. However, by analyzing the shopping behavior

of customers, privacy-sensitive information can be revealed indeed,

for instance, the pregnancy of a customer [12].

For the synthetic dataset, we generated a sequence of 100,000

events with event instances generated from a set of 20 different

event types. The arrival times of each event-type are normally

distributed with mean and standard deviation of µ and σ time units.
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The values of µ and σ are defined as variables and can be changed

for each run. We selected 50 random public and private patterns

with varying lengths from 2 to 10. Each pattern contains event

types without repetition from the above mentioned set.

5.2 Adversary Model
For the evaluation of the effectiveness of protecting privacy, we

first need to elaborate on the adversary model. In our system model

presented in Sec. 3, we havemade the assumption that the adversary

has background information about causal constraints on event

orders and statistical information about the true (typical) inter-

arrival time distribution of events to perform causal order constraint

attacks and statistical attacks, respectively. Since our approach by

design ensures that causal order constraints are never violated by

adding suitable constraints to the ILP in Phase 1, we focus here on

the ability to resist statistical attacks.

For statistical attacks, the adversary observes the reordered event

stream and calculates the probability that a certain private pattern

has been concealed by reordering. If the probability is higher than a

pre-defined threshold—i.e., the adversary has sufficient “confidence”

that he correctly revealed a private pattern—, the adversary assumes

that the pattern has occurred. So the basic question is, how can the

adversary calculate these probabilities?

To this end, we assume that from publicly available data the

adversary knows the true mean value µ(A) and true standard devi-

ation σ (A) of the interarrival time distribution for events of each

event type A, B, C , etc. Moreover, for each ordered pair of event

types (A,B), we assume that the adversary knows the true mean

value µ((A,B)) and standard deviation σ ((A,B)) of the interarrival
time distribution of pairs of events of these types. From observ-

ing the reordered event stream, the adversary knows the observed

interarrival time between each pair of events, say (Ai ,Bj ). With

this information, the adversary can calculate the so-called z-score
z(Ai ,Bj ) =

t (Bj )−t (Ai )−µ((A,B))
σ ((A,B)) , i.e., the number of standard devia-

tions by which the observed inter-arrival time is below or above

the true mean inter-arrival time [14]. Similarly, the individual z-

scores z((Ai−1,Ai )) =
t (Ai )−t (Ai−1)−µ(A)

σ (A) can be calculated for the

individual eventsAi and Bj . Intuitively, these z-scores quantify how
much the reordered stream deviates from the expectation of the

adversary defined by his background knowledge (“ground truth” of

the adversary).

When the adversary observes a potentially reordered sequence,

say (Ai ,Bj , . . . ,Zk ), he calculates the reorder indicator (RI) for each
private pattern individually. RI((Ai ,Bj ,Ck )) for a private pattern
(SEQ(A,B,C)) is calculated as the combination of the probability

values (pz ) corresponding to the z-scores of the individual events
as well as of the event pairs. Table 1 is called a z-table which shows

pz values corresponding to z-scores for a normal distribution. The

number of different z-scores can be varied depending on the re-

quired resolution. It is sufficient to calculate RI for ordered pairs

of private patterns individually and then combine them since re-

ordering is also done at the level of ordered pairs. Thus RI for an
ordered pair (A,B) is calculated as:

RI(Ai ,Bj ) = 1 − (pz (Ai−1,Ai ) ∗ pz (Bj−1,Bj ) ∗ pz (Ai ,Bj ))

Table 1: Z-table with probability values under a defined z-
score

Z-score Probability values (pz )
less than 1 68.27%

between 1 and 2 27.18%

between 2 and 3 4.28%

greater than 3 ≈ 0%

If RI is above a pre-defined threshold, the adversary assumes

that the stream has been reordered. Note that RI is just a hint to the

adversary that something has been reordered, but does not directly

tell which pair(s) of events have been reordered. Thus, even an RI

of 100 % will not suffice to provably reveal the true order, as, for

instance, might be required in legal cases (in dubio pro reo). Still,

high RI scores might have negative consequences for the producer.

For instance, a customer could be denied an insurance contract or

loan due to a negative risk assessment. Therefore, we even consider

such hints of reordering critical and explicitly consider the RI in

our evaluation.

5.3 Robustness to Statistical Attacks
We start our evaluation by evaluating the robustness to statistical

attacks of our reordering approaches. As already pointed out, pri-

vate patterns will never occur in the reordered event stream (unless

the utility metric deliberately defines a trade-off between privacy

and QoS). So the major viable attacks are statistical attacks, where

the adversary tries to calculate the probability that a private pattern

has been concealed through reordering. In the adversary model in

Sec. 5.2, we have already described how the adversary calculates

the Reordering Indicator (RI) indicating that a private pattern has

been reordered. If the RI is above a pre-defined threshold thRI, the

adversary assumes that a private pattern has been concealed. We

will now evaluate the effectiveness of this attack by evaluating the

precision (correctly identified private patterns divided by the overall
number of correctly or incorrectly identified private patterns) and

recall (correctly identified private patterns divided by total number

of concealed private patterns in the reordered stream) of the attack.

We set thRI = 0.9, i.e., 90 % “confidence” that a private pattern

has been concealed. We use the synthetic dataset with precisely

known mean values µ and standard deviations σ , and assume that

the adversary precisely knows the accurate values of µ and σ from

background knowledge to provide perfect attack conditions.

One important parameter of our algorithms is ε , which limits

the maximum time distance by which each event can be shifted (cf.

Sec. 4.2). Small values of ε should lead to only minor changes of

inter-arrival times providing little evidence to the adversary about

reordering, however, too small values of ε will make it impossible

for our algorithms to find a reordering. Fig. 10a and Fig. 10b show

the influence of ε onto precision and recall. We see that smaller

values of ε indeed decrease both, precision and recall of attacks,

thus, making statistical attacks less effective.

We also see that the graph-based approach provides better pri-

vacy, i.e., smaller recall and precision for the same values of ε , than
the ILP-based approach. For each event pair to be reordered, the
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Figure 10: Evaluations Results

graph-based approach moves timestamps of both events equally.

This balanced shifting of events minimizes the maximum time dis-

tance of individual events. In contrast, the ILP-based approach is

not balancing shifts and might have to move events longer dis-

tances. Therefore, the graph-based approach in general impacts the

inter-arrival time distributions less than the ILP-based approach

making reordering harder to detect.

5.4 QoS Preservation
Next, we evaluate the negative impact of concealing private patterns

onto QoS. Here, we mutually compare our ILP- and graph-based

reordering approaches, and compare the reordering strategy to its

closest competitor from related work, namely, the event supression

strategy as proposed in [26]. All approaches conceal private pat-

terns at the expense of potentially destroying some desired public

patterns, i.e., by negatively impacting QoS.

For evaluating the privacy-QoS trade-off, we use a setting where

the approaches do not reveal any private patterns, i.e., privacy takes

strict precedence over QoS. As performance metric, we use the util-

ity metric defined in Equ. 2. We configure the utility metric such

that a) no private patterns are revealed (strict privacy precedence

of concealed private patterns); b) all public patterns are assigned
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Figure 11: Evaluation for criticality of private patterns

uniformly random weights between 1 and 10 to express the impact

of different types of public patterns onto QoS; c) consequently false

positive and false negative public patterns get same weights in neg-

ative, corresponding to the public patterns. For a fair comparison,

we consider three different scenarios: the best-case, worst-case, and

average-case scenario from the point of view of the event reorder-

ing strategy. In the best case, public and private patterns do not

share any ordered pairs of events. Note that this does not mean

that private and public patterns do not share any individual events!
In the worst-case scenario, public patterns are chosen such that all

the ordered pairs of private patterns do have a match in the set of

all ordered pairs of public patterns. In the average-case scenario,

50% ordered pairs of public patterns match with ordered pairs of

private patterns. For this evaluation, we used the real-world dataset.

Fig. 10c show the results for all scenarios. It is evident from the

figure that event reordering is in all scenarios and for both reorder-

ing approaches superior to event suppression with respect to QoS,

even in the worst case scenario. This is because of the obvious

reason that suppression strategy introduces a greater number of

false negatives when compared to the reordering approaches.

Since it becomes harder to preserve privacy with an increasing

number of public patterns, because required changes in private pat-

terns have a higher chance of also hitting events of public patterns,

we furthermore show the impact on the reordering approaches with

respect to the number of public patterns. Fig. 10d show the results

for increasing number of public patterns with the number of private

patterns maintained constant. We see that the number of public pat-

terns indeed influences the QoS. We also see that the graph-based

approach impacts QoS slightly less than the ILP-based approach.

This is also because of the balanced shifting of events in the graph-

based approach which leads to lesser impact on public patterns.

Furthermore we show the impact of number of public patterns on

the number of false positives and false negatives introduced for the

same configuration in Fig. 10e.

It is also important to evaluate the impact of parameter ε onto
the utility. Since ε limits the time distance by which events can be

shifted to increase the robustness to statistical attacks as shown

in Sec. 5.3, at the same time it might make it impossible to find a

reordering within the given bounds. Thus, we expect the utility

to be lower for smaller values of ε . Fig. 10f shows the change in
utility achieved for varying ε , also in comparison to the suppression

strategy. If ε is very low such that reordering becomes impossible,

then the utility of the reordering strategy is less than the utility

of the suppression strategy. However, note that the suppression

strategy does not consider additional constraints such as the ε
restriction, making it vulnerable to statistical attacks. In particular,

suppressing event also impacts the inter-arrival time distribution

of events, again giving the adversary hints about changes of the

event stream.

So far, we only evaluated scenarios where privacy took strict

precedence over QoS, i.e., with 0 % revealed private patterns. Next,

we evaluate this privacy/QoS trade-off with our reordering ap-

proach. To define this trade-off, we introduced the criticality per-

centage cpk in Equ. 3. Fig. 11a shows the number of revealed private

patterns over cp (privacy). Fig. 11b shows the number of false posi-

tives and negatives over cpk (QoS). As we can see, greater values

of cpk increase privacy and at the same time decrease QoS.

5.5 Delay-QoS Trade-off
In Sec. 4.4, we have stated the requirement to forward events from

the PAC as soon as possible, i.e., to minimize the delay introduced

by processing (reordering) events in windows. We also have already

seen that overlapping windows are critical with respect to delay

since the reordering performed in one window has to be consid-

ered by other overlapping windows. In general, we expect that by

delaying events longer, we might be able to increase QoS (utility)

by making optimal reordering decisions, i.e., there is a trade-off

between delay and QoS. Next, we evaluate this trade-off. For these

experiments, we again use the real-world dataset.

As discussed in Sec. 4.4 a short delay in forwarding events could

provide a higher utility globally. Fig. 10h shows the utility over

varying forwarding delay. We see the expected trend of increasing

utility for longer delay. If a certain delay is reached, the utility does

not increase any further by delaying events longer since the chosen

delay is sufficient to cover the maximum overlap of windows—i.e.,

while processing one window, the pattern matches of the next

overlapping window are already known.

5.6 Runtime Efficiency
In this subsection, we evaluate the runtime efficiency of our ILP-

and graph-based reordering approaches. Computational overhead

is introduced by finding an optimal reordering during Phase 1

that maximizes utility (same Phase 1 implementation for ILP-based

and graph-based approach), and assigning timestamps such that

reordering cannot be identified in Phase 2 (implemented differently

for ILP-based and graph-based approach). Here, wewant to quantify

this computational overhead for both reordering approaches and

also compare it to the overhead of the related suppression approach.

In this evaluation, we use the real-world dataset. With each ap-

proach, we processed 5000 windows and calculated the average

processing latency for processing (reordering/suppression) one win-

dow. Fig. 10i shows the results. First of all, we see that suppression is

the most efficient approach, followed by the graph-based reordering

approach, and then the ILP-based approach. Suppression requires

only about 40-50 % of the runtime of the graph-based reordering

strategy on average. This gap can be explained by the additional

overhead for maximizing utility—in particular, preserving more

public patterns as shown in the QoS evaluation in Sec. 5.4—and
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obfuscating changes made to the event stream to protect them from

statistical attacks.

With respect to the ε constraint, the suppression strategy is

obviously independent of this value since it does not know this con-

straint or a similar strategy to protect changes from being identified

by statistical attacks. For the ILP-based reordering approaches, in

Fig. 10i we can observe the expected influence of ε on runtime,

i.e., longer runtime for smaller ε value. However, the influence is
not very much pronounced (max. 15% higher runtime), and the

runtime stabilizes quickly for greater ε values. For the graph-based
approach, the influence of ε on the runtime efficiency is negligible.

6 SUMMARY AND FUTUREWORK
In this paper, we presented a novel event reordering approach for

removing privacy-sensitive information, specified as sequences

of events, from CEP event streams. Besides protecting privacy by

concealing private event patterns through event reordering, our ap-

proach also preserves quality of services by preserving, as much as

possible, desired public patterns, which should not be concealed to

provide required input to CEP services. We defined a utility metric

that allows for specifying the desired privacy/QoS trade-off. More-

over, we presented two reordering algorithms based on Integer

Linear Programming and graph processing to find event reorder-

ings maximizing utility while also protecting from sophisticated

statistical attacks taking into account advanced background knowl-

edge of event inter-arrival time distributions. Finally, we showed

that the event reordering strategy is superior to the closest related

strategy using event suppression with respect to QoS. Moreover, we

showed that our event reordering approach is robust to advanced

statistical attacks and can be implemented efficiently to allow for

online processing of event streams.

As part of future work, further concepts for concealing private

patterns could be considered. For instance, while reordering is a

natural choice to conceal privacy-sensitive patterns defined as event

sequences, it does not protect from revealing private information

depending on values, e.g., a heart rate constantly greater than a

given threshold value for a certain amount of time. To strike a

balance between privacy andQoS in such scenarios would require to

filter and modify (obfuscate) events and data based on values (here

heart rate, duration) such that modifications cannot be recognized.
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