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Abstract—Recently, mobile crowdsensing has become an ap-
pealing paradigm thanks to the ubiquitous presence of powerful
mobile devices. Indoor mapping, as an example of crowdsensing-
driven applications, is essential to provide many indoor location-
based services, such as emergency response, security, and track-
ing/navigation in large buildings. In this realm, 3D point clouds
stand as an optimal data type which can be crowdsensed—using
currently-available mobile devices, e.g. Google Tango, Microsoft
Hololens and Apple ARKit—to generate floor plans with different
levels of detail, i.e. 2D and 3D mapping. However, collecting
such bulky data from resources-limited* mobile devices can
significantly harm their energy efficiency. To overcome this
challenge, we introduce GreenMap, an energy-aware architec-
tural framework for automatically mapping the interior spaces
using crowdsensed point clouds with the support of structural
information encoded in formal grammars. GreenMap reduces
the energy overhead through projecting the point clouds to
several filtration steps on the mobile devices. In this context,
GreenMap leverages the potential of approximate computing to
reduce the computational cost of data filtering while maintaining
a satisfactory level of modeling accuracy. To this end, we propose
two approximation strategies, namely DyPR and SuFFUSION. To
demonstrate the effectiveness of GreenMap, we implemented a
crowdsensing Android App to collect 3D point clouds from two
different buildings. We show that GreenMap achieves significant
energy savings of up to 67.8%, compared to the baseline methods,
while generating comparable floor plans.

I. INTRODUCTION

Nowadays, location-based services enjoy ever-growing pop-
ularity thanks to their significant role in supporting various
Internet of things and mobile computing applications. In this
context, indoor modeling became an indispensable necessity
for providing indoor location-based services, e.g. emergency
response, or indoor navigation/routing in airports, universities,
hotels, and other public buildings. Collecting mapping data
using traditional manual techniques is an extremely time-
consuming and cumbersome task. Hence, several researchers
have harnessed the potential of crowdsensing [1] for automat-
ically mapping the interior spaces [2]-[6]. In this realm, we
introduced an automatic modeling approach for 2D floor plans
that relies on Markov chains to integrate a set of crowdsensed
motion traces and a formal indoor grammar [2]. Afterwards,
we proposed the crowdsensing of 3D point clouds for 3D in-
door modeling applications [5]. Literally, point clouds are 3D
data structures representing points in space where the points
usually represent the X, Y, and Z geometric coordinates of a
sampled surface. In fact, point clouds can broadly overcome
shortcomings of other data types, e.g. motion traces, images,

and WiFi footprints. These traditional data types are often
limited to the derivation of 2D maps together with requiring
large data sets to derive the mapping process, e.g. Jigsaw [4]
collects about 150 images for modelling a single landmark.
Alternatively, a small number of point clouds is typically
sufficient to generate a floor plan with several levels of detail
(i.e. 2D and 3D). For instance, one point cloud per room was
enough to derive an indoor model in [5].

Aside from being well-suited for indoor modeling, point
clouds are naturally bulky data to be processed and uploaded
by mobile devices to a crowdsensing server. In [5], the
participating mobile devices have to sample and report several
point clouds whose size rang from five MBytes to 50 MBytes.
Despite adopting Octree compression [7], the energy costs of
performing compression and reporting the results are relatively
high (cf. evaluations in Section VI). Thus, improving energy
efficiency is crucial for mobile users’ acceptance to participate
in crowdsensing indoor models. Accordingly, a challenge of
reducing this energy overhead while preserving the quality of
the generated indoor models emerges. To tackle this challenge,
this paper introduces the GreenMap approach for the automatic
derivation of 2D floor plans while increasing the energy
efficiency of crowdsensing for indoor modelling.

The basic idea of GreenMap is to reduce the energy over-
head of acquiring point clouds through filtering out irrelevant
points, e.g. furniture and noise. To minimize the processing
overhead of these filters, GreenMap exploits the potential of
approximate computing to reduce the amount of computations
at the expense of a tolerable loss in the accuracy of the results.
In general, approximate computing is a wide spectrum of
techniques that relaxes the accuracy of computation in order
to improve other performance metrics, e.g. energy efficiency
and latency. Practically speaking, approximate computing can
be implemented through: (1) reducing the precision of ap-
proximable parts via parameter tuning or substitution [8]; (2)
skipping tasks, memory accesses, or some iterations of a loop
(aka loop perforation) [9]; and/or (3) performing an operation
on inexact hardware [10].

In this context, we propose two different approximation
strategies, namely DyPR and SuFFUSION. The former strat-
egy relies on the concept of loop perforation, employing a
probabilistic model to skip the processing of a certain set
of data points. The latter strategy relies on substitution of
energy-intense elements and function fusion, where it smartly
integrates the down-sampling and the normals-based filters to
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skip unnecessary computations. To the best of our knowledge,
GreenMap represents the first work that exploits approximate
computing to improve the energy efficiency in crowdsensing-
driven applications for 2D/3D indoor modeling.

In detail, the paper makes the following contributions: (1)
We define an architectural framework—built upon a previous
work by our group [5]—for modeling indoor environments
using crowdsensed 3D point clouds. Our framework first
generates an initial model through processing the collected
point clouds. Subsequently, we exploit the design-time knowl-
edge, i.e. typical structural information of buildings encoded
in a formal grammar to refine the initial model to improve
the modeling accuracy. (2) We devise an energy efficient
processing pipeline on the mobile device to report only the
relevant parts of the point clouds. To this end, we employ
two filters, namely voxel grid and normals-based filtering. The
former filter down-samples a point cloud through restructuring
it onto a homogeneous grid before estimating the centroid in
each cell. Since we are interested only in the wall segments,
we use the eigenvectors obtained by the principal component
analysis (PCA) [11], i.e. orientation of each point, to filter
out the points which do not belong to the wall segments. (3)
We introduce two different approximation strategies, namely
DyPR and SuFFUSION, to significantly reduce the compu-
tational cost of data processing on the mobile devices via
identifying parts of the computation that can be approximated
without violating the quality of the results. (4) We present a
proof-of-concept implementation and evaluation of GreenMap
in a real-world scenario. We implemented an Android App to
collect more than 135 point clouds (circa 3 GBytes of collected
data). To overcome the localization errors, the Android App
integrates the main three features of Tango technology, namely
motion tracking, depth perception, and area learning [12]. The
results show that using GreenMap, we obtain a significant
improvement of the energy efficiency up to a reduction of
67.8% relative to the baseline approaches with a comparable
modeling accuracy.

The remainder of this paper is organized as follows: Sec-
tion II introduces the system model with describing the main
parts of our processing pipeline (cf. Figure 1). In Section III,
we describe the processing tasks implemented on the mobile
devices to filter out and to down-sample the point clouds. Be-
fore delving into the server-side processing, Section IV intro-
duces our approximation strategies which have been adopted to
reduce the energy burden on the participating mobile devices.
Section V discusses the processing steps required to generate
the final model, including the formal grammar integration
with the point clouds. Section VI presents our real-world
performance evaluations in terms of the modeling accuracy
and the energy consumption of the mobile devices. Finally,
Section VII discusses recent work in the realm of indoor
mapping and crowdsensing before Section VIII concludes the
paper with an outlook on future work.

II. SYSTEM OVERVIEW

Our system encompasses two primary components: (1) a
set of participating mobile devices D = dy,--- ,d, capable
of collecting 3D point clouds P = Py 1), , Pm,n) Where
P(yn,n) 18 the point cloud generated in response to the sensing
query ¢,, by the mobile device d,; (2) a set of back-end
servers, which send the sensing queries and receive the point
clouds P from the mobile devices D. A sensing query ¢ in
indoor modeling applications typically comprises the location
of the area to be scanned and the minimum quality require-
ments. In this paper, we assume a single back-end server com-
municating with the mobile devices via a WiFi network. The
system consists of three sequential processing blocks, namely
the point cloud acquisition, the initial model generation and
the grammar-based indoor modeling (cf. Figure 1). The mobile
device receives sensing queries from the back-end server to
scan specific areas. In this regard, we assume that the mobile
devices D are aware of their location in the building [6]. To
save the energy consumption of the mobile devices, two pro-
cessing tasks, i.e. down-sampling and normals-based filtering,
are to be implemented prior to the Octree compression. Once
received by the back-end server, the point clouds are processed
by the initial modeling block (cf. Figure 1) to generate a model
which still suffers from inaccuracies. In the grammar-based
modeling block, we exploit the floor plans of other buildings
to generate a formal grammar which is then used to refine the
initial model. The concept of an indoor grammar provides a
powerful mean to encode structural information for different
kind of architectural domains. The initial indoor model can be
highly improved through exploiting the grammar’s embedded
information, e.g. the dimensions of rooms, the number of
rooms, the relative room ordering, geometric constraints, etc.
To this end, we design a Hidden Markov model (HMM) to
integrate the formal grammar with the generated initial model.
The final output of our system is a highly-accurate 2D indoor
map of the scanned areas.
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Fig. 1: GreenMap processing pipeline
In general, point clouds are relatively bulky data with
thousands or even millions of 3D point, according to the size
of the scanned spaces. Once a sensing query ¢ is received by



a mobile device that is located in the sensing area, the depth
sensor generates a point cloud py,e,, Which contains N,,em,
points. If the point cloud p,;,enm, is directly compressed, its size
will be reduced to N,.; points at the expense of consuming
E,.; joule per point for performing compression. Despite
tuning the Octree compression, the communication energy
consumption is still relatively high compared with the energy
required to collect other data types, such as motion traces and
2D images (cf. [6]). Knowing that point clouds are mostly
redundant, we utilize a voxel grid filter to down-sample them
so that a subset of the points—which is still representative of
the original point cloud—can be further processed. Aside from
redundancy, we target the generation of 2D floor plans. Hence,
GreenMap uses a normals-based filter to avoid processing and
reporting the points which do not belong to the wall segments.

Adopting these two filters drastically reduces the size of
the point cloud p.,em, before the Octree compression that
eventually generates a lightweight point cloud p(,, ). Never-
theless, these filters incur relatively heavy computations, thus
the energy gain for communication obtained by reducing the
number of points can be simply compensated. To minimize
the computation costs of these two filters, we propose two
independent approximation strategies to trade-off the energy
cost of processing and the accuracy of the results. Accordingly,
our objective function can be expressed by

(Nmem X Evg) + (Nvg X EPCCL) )

voxel grid PCA-based filter (1)
subject to  Q(P(m,n)) — LUD(m,n)) < 0.

minimize

Equation 1 clearly expresses our objective in reducing the
computational energy costs of the filters where E,,, N,
and FE,., denote the voxel grid’s energy cost per point, the
dimension of the down-sampled point cloud pyg C Pmem and
the normals-based filter’s energy cost per point, respectively.
This objective is strictly governed by a quality constraint
which dictates that difference between the modeling accuracy
before the approximation Q(p(, n)) and after it Q(p(m,n))
must not exceed a tolerable margin §. The modelling accuracy
Q is defined in terms of the number of detected walls. In the
next section, we provide an overview of the online processing
pipeline, before explaining our approximation strategies in
Section IV.

III. ONLINE PROCESSING PIPELINE

In this section, we describe the processing tasks imple-
mented on the mobile devices including the voxel grid filter
and PCA-based normal estimation. Since point clouds are to
be collected by non-experts, the depth data may suffer from
low quality, i.e. being incomplete, inaccurate, and/or oblique.
To avoid repeating the sensing queries due to reporting low-
quality point clouds, GreenMap adopts a quality checkpoint
on the mobile devices. Specifically, we define an acceptance
probability as a conditional probability of the depth sensor to
generate a high quality point cloud. Afterwards, we adopt two
filters to reduce the data reported to the server. Both filters

are used to reduce the amount of redundant and irrelevant
points within a point cloud. Below, we discuss the idea behind
these two filters while highlighting their role in our online
processing pipeline.

A. Voxel Grid Filter

Generally, the depth sensors generates point clouds which
include spatial redundancy, i.e. existence of many points which
give no further information about the object’s shape. In this
context, the voxel grid filter [13] reduces the amount of points
m within a point cloud Pp,e, € R™ through redundancy
elimination. The basic idea is to subdivide the cloud into a set
of identical voxels (3D boxes) V = {v1,...,v;,...,v,} with
a resolution r where r < m, P,, € R". The resolution r
depends on the defined edge length ¢ of the boxes. At the
outset, all points are sorted to have neighboring points next
to each other and layer on layer bottom up. Subsequently,
all points that belong to a voxel v;, are then representgd by
one single point approximated by their centroid ¢; = Zy=1P3
where p is the number of points in v;. Figure 2a shows an
example of a voxel grid where the small grey dots represent the
points p; € Ppem. The big red dots denote their representing
centroids ¢; € Py,er, and hence the points p; € P,,. Despite
reducing the number of points in the recorded point clouds, the
voxel grid filter still keeps a considerable amount of irrelevant
points. Therefore, we adopt a second stage of filtration, re-
ferred to as normals-based filtering, through exploiting design-
time knowledge.
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Fig. 2: Visualizing the idea behind our online filters: (a) point
cloud P, aligned to a voxel grid, (b) nearest neighbour
search for normal estimation, and (c) estimated normal’s angle
¥ of p; € P,4 towards the ground plane

B. Normals-Based Filter

To further reduce the amount of points in P,,4, we exploit
the design-time knowledge which dictates that GreenMap
currently targets the 2D modeling of public buildings. Hence,
the crux behind our normals-based filter is to remove the
irrelevant points belonging to non-wall segments, e.g. floor,
ceiling or furniture. To this end. we estimate the normal
n; of each point p; € P,, before filtering out the points
describing the non-wall segments. Literally, a normal is a
vector orthogonal to a given object. For a point that belongs
to a wall, its normal is ideally parallel to the ground plane
and so ¥ = 0 where ¥ is the angle towards the xy-plane. As
depicted in Figure 2b, the normal n; at point p; is determined



by considering the surrounding points within a radius 7 < 2¢,
called nearest neighbors. By choosing a radius 1 < 2¢, the
amount of found neighbors would not be sufficient as ¢ is
the average distance between the points after applying the
voxel grid filter. The surface normal is then computed using
the principal component analysis (PCA) method [11].

For each point p; € P,4, the PCA method estimates
three eigenvector/eigenvalue pairs, where the eigenvector ¢
represents a direction and the corresponding eigenvalue A
denotes the variance in this direction. Therefore, a covariance
matrix Y for a set of points within the defined radius 7 is
estimated for all points € P, as described in Equation 2 [13],
where D is the centroid. The eigenvectors are determined by
solving det(X—A-T) = 0 where det is the determinant operator
and I is the identity matrix. By solving Equation 3 with the
given covariance matrix ¥ and eigenvalues A, the eigenvectors
are determined. Owing to inaccuracies while recording the
point clouds, the wall segments are often not perfectly parallel
to the ground plane. Hence, we consider a safety margin 6y,
while classifying the points to be part of a wall. Accordingly,
the points whose normal angle is larger than the safety margin,
i.e. ¥ > Oy, are filtered out (cf. Figure 2c).

k
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Y=\ 05,5 € {1,2,3} (3)

Despite being extremely effective in removing redundancy
and irrelevant points, both filters can still add an energy over-
head due to their computations (cf. evaluations in Section VI).
To minimize such an overhead, we introduce in the following
section two independent approximation strategies.

IV. APPROXIMATE FILTERING

In this section, we introduce two different approximation
strategies to approximate the computations of our online filters
on the mobile devices.

A. DyPR — Dynamic Probabilistic Rounding

In this section, we introduce DyPR, a dynamic probabilistic
rounding strategy inspired by Markov Chain Monte Carlo
(MCMC) [14] for approximating the normals-based filter.
Specifically, DyPR utilizes a probabilistic model to skip a few
iterations while estimating the normals. Figure 3 describes the
DyPR algorithm where the point cloud P, 4 is used as an input
to DyPR. We introduce a probability w of the next point to be
part of a wall. The algorithm begins with checking the status
of a point p; € P,g4, i.e. whether it belongs to a wall (line 5).
After detecting a point to belong to a wall, the algorithm
performs probabilistic rounding to determine whether the next
point p; 1 is also part of this wall (lines 7-9).

The probabilistic rounding is achieved by changing

the probability w in a logarithmic manner, ie. w; =
(2 X w) + Xz' . . .
———, where X; is a binary variable whose value

is set to one, i.e. increasing the probability, if p; belongs to
a wall and zero otherwise, i.e. decreasing the probability. To

prevent the prediction part of ending up in an infinite loop, the
probability w is deliberately bounded in the range [0.1, 0.9]. To
make a decision about the neighboring point, the probability w;
is compared to a randomly-generated number according to the
MCMC algorithm (lines 10,18). Despite achieving remarkable
savings in the energy overhead, DyPR does not consider the
voxel grid filter. Therefore, we investigated another approach
which integrates the function of both filters while approximat-
ing their computations.

Require: point cloud P,
Initialization: point cloud Pppr < 0 and w + 0.5
1: for all p; € P, do

2: nn < getNearestNeighbors(p;,n)

3: n; < getNormalO f Point(p;, nn)

4: 9 < getAngleTowardsXY (n;)

5: if ¥; < 6, then > p; is detected as part of a wall
6: Pppr < PpprUDp;

7: increase Probability(w) > to max. 0.9
8: Di < Dit1 > move to the next point
9: W; < w

10: while get Rand(0,1) < w; do

11: Pppr < PpprUDp;

12: w; +— w? > probability propagation
13: Di < Dit+1 > move to the next point
14: else > p; is detected as no part of a wall
15: decrease Probability(w) > to min. 0.1
16: Di < Dit1 > move to the next point
17: w; + (1 —w)

18: while getRand(0,1) < w; do

19: w; — w?
20: Di < Dit1 > move to the next point

21: return Pppp

Fig. 3: DyPR approximation strategy

B. SuFFUSION — Substitution and Function Fusion

The core idea behind SuFFUSION is to integrate the com-
putations of both filters to skip the computational-intensive op-
erations. From our experiments, we identified that the nearest
neighbor search operation—executed for normals estimation
within a radius 7 < 2¢ of the downsampled point cloud P, ;—
consumes on average 86% of the excessive time relative to
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Fig. 4: Visualizing the SuUFFUSION strategy: (a) Point cloud
Ppem aligned to a voxel grid, (b) normal estimation while
computing the centroid, and (c) normal’s angle ¥} of ¢; towards
the ground plane

—> normal n,



the other operations. As described in Section III-A, the basic
function of the voxel grid filter is to divide the recorded point
cloud P,,.,, into voxels and then represent each voxel using
its centroid. Accordingly, we have to estimate the centroid
through considering all points in each voxel. In this context,
SuFFUSION entirely skips the nearest neighbor search oper-
ation and instead considers the same points that are used for
the centroid calculation (cf. Figure 4b). Figure 5 describes the
SuFFUSION algorithm where the input is the recorded point
cloud P, ep,. SUFFUSION utilizes the voxel v; € V' as input
to normal estimation (line 4) while DyPR utilizes the nearest
neighbor nn.

In this way, the radius for normals estimation is reduced
from 2¢ to only about 0.5¢. Since the walls are typically made
of several not always perfectly overlapping segments, reducing
the radius makes the filter more prone to inaccuracies while
estimating the normals (cf. evaluations in Section VI-B). As
a workaround, we decided to dynamically change the angle
threshold as shown in Figure 4c based on the status of each
point, i.e. whether it belongs to a wall. To this end, we
introduce a tolerance factor f as an adaptive weight to the
angle threshold 6y, (line 6). The tolerance factor f—bounded
in the range [0.5, 2]—is continuously changed in a logarithmic

i T Y

manner where f; 1 = . The term Y; denotes a binary
variable whose value is set to one whenever the point p;
belongs to a wall and is set to zero otherwise (lines 8, 10).
This adaptive threshold broadly makes SuFFUSION less vul-
nerable to not perfectly overlapped segments. The subsequent
operations of the filter remain the same where points with

¥ < Oth - f are filtered out.

Require: point cloud P, radius
Initialization: point cloud Pg,r <+ 0

1: V « devideIntoVoxels(Pmem, €)

2: for all v; € V do

3: ¢; < getCentroid(v;)

4: n; < getNormalO f Point(c;,v;)> v; instead of nn

5: 9; < getAngleTowardsXY (n;)

6 if ¥; <0y, - f then > ¢; is detected as part of a wall

7 Psyr + PsyrUc;

8 increaseT oleranceFactor(f)

9 else

10: decreaseT oleranceFactor(f)

> to max 2

> to min 0.5
11: return Pg,p

Fig. 5: SuFFUSION approximation strategy
After explaining the online processing pipeline and our pro-
posed approximation strategies, the next section explains the
server-side processing pipeline developed to generate precise
indoor models.

V. SERVER-SIDE PROCESSING

At the back-end server, the point clouds collected from
different mobile users are decompressed before being divided
into a set of planar segments using the region growing seg-
mentation [15]. The crux behind segmentation is to filter out

any existent clutter, i.e. segments with non-planar surface rep-
resenting furniture or noise. In fact, we ran the region-growing
algorithm to divide a point cloud generated through scanning
a medium-sized room into a bundle of planar surfaces on our
mobile device. The mobile device took circa seven hours to
cluster the point cloud. Therefore, we selected to segment the
point clouds on the server. Subsequently, GreenMap projects
the segments onto the x/y-plane resulting in several disjoint
lines representing each wall. This fact occurs since some walls
which separate neighboring rooms are often scanned twice
from both sides. Accordingly, we refine these disjointed lines
to eventually obtain an initial indoor model [5].

Since it suffers from inaccuracies and incompleteness, the
initial model is then used as an input to the grammar-
enhanced modeling component. In this component, we exploit
the structural information encoded in formal grammars to
generate a highly-accurate floor plan. To this end, we employ
an indoor grammar which can be generated using the floor plan
of other similar buildings. In [16], we provide an overview on
how to generate the indoor grammar in more detail. Our indoor
grammar comprise a set of terminal and non-terminal symbols
which represent the rooms and hallways. Furthermore, it also
encompasses a set of derivation rules for splitting the non-
hallway areas into room sequence. To derive the final indoor
model, GreenMap extracts the room size from the initial model
to derive a hidden Markov model that generates the room
layout. In this case, the hidden state represents the rooms
located along the hallway areas. The room size—extracted
from the initial model—is then utilized to adjust the emission
probabilities of the different states. More details about the
grammar-enhanced modeling component can be found in our
previous paper [5].

VI. EVALUATION

To demonstrate the effectiveness of our GreenMap ap-
proach, we implemented and tested the entire processing
pipeline in a real-world scenario. We first describe the setup
of our evaluations, before discussing the results for DyPR and
SuFFUSION approximation methods using 3D data crowd-
sensed from two different buildings.

A. Experimental Setup

To sample point clouds from mobile devices, we utilized
Tango mobile devices which are equipped with a 2.3 GHz
quad-core CPU, 4 GB of RAM, 128 GB of internal flash
storage, a 120° front-facing camera, a 4 MP RGB-IR rear-
facing camera, and a 170° motion tracking camera [17]. To
generate the point clouds, the mobile users have to scan the
queried spaces using their Tango devices. To this end, we
developed an Android App which integrates several features,
such as depth perception and area learning, to generate point
clouds in the form of depth information localized relative to a
unique reference point. We integrated the point cloud library
(PCL) [13] library into our software to process the generated
point clouds. At the mobile devices, we implemented voxel



(a) IPVS floor plan

(b) ifp floor plan

Fig. 6: Combined point clouds

grid downsampling, normals estimation and Octree compres-
sion. Additionally, we implemented our proposed approxi-
mated filters, i.e. DyPR and SuFFUSION, before the Octree
compression on the mobile devices (cf. Section II). All other
components of the processing pipeline are implemented as a
backend-service on a Linux server. Table I summarizes the
parameters and their values which have been used throughout
the evaluations.
TABLE I: Evaluation parameters

| no approx. DyPR  SuFFUSION
edge length e | 4 4 4
radius n (cm) | 8 8 4)
angle 0y, | 30 30 15-60

To test our implementation, we collected data from two
floors from two different buildings at University of Stuttgart.
The intuition is to examine the performance of GreenMap for
mapping the indoor spaces in structurally-different environ-
ments (cf. Figure 6). During our evaluations, we collected
several point clouds for each area within two days. Specif-
ically, we generated 135 point clouds (i.e. approximately 3
GByte) from four volunteers in two floors belonging to two
different institute buildings (i.e. IPVS and ifp). The volunteers
were asked to freely move between the hallways and the
different rooms before reporting their data to the crowdsensing
server. Below, we first start with evaluating the impact of
our two approximation strategies implemented in the voxel
grid and the normals-based filter. As a comparative study,
we evaluate the performance of GreenMap relative to two
baseline methods: (1) the no-approx approach in which no
approximation is performed on the processing tasks executed
on the mobile device and (2) GraMap [5] in which the voxel
grid and normal-based filters are performed on the server side
at the cost of consuming more energy on the mobile device
for data communication. The comparative study is performed
in terms of the energy overhead on the mobile devices and the
modeling accuracy of the generated indoor models.

B. Filtering Quality

In this section, we discuss the performance of our approxi-
mated filters for reducing the redundancy and irrelevant points
by providing several examples.

1) DyPR: During our experiments, we found that DyPR
outperforms the GraMap approach where it has 42.7% less

processing time with 76.5% less data reported to the server.
To achieve those results, DyPR exploits the sorting process
performed by the voxel grid filter to have neighboring points
next to each other and layer on layer bottom up. Nevertheless,
this feature comes at the expense of some accuracy penalties
where few holes on the wall segments are caused by false
positives. To clarify this phenomenon, Figure 7 visualizes five
subsegments of a single wall to demonstrate the effect of
different filters. Through comparing Figures 7b and 7c which
show two parts of a wall segment, we found that DyPR has
a similar filtering behaviour as the non-approximated filter,
except for the presence of a horizontal cut in the wall segment.
These holes emerge due to the existence of furniture, e.g.
tables and chairs, that increases the probability w. Accordingly,
the prediction algorithm erroneously classifies the wall points,
located in the same height as the furniture’s horizontal surface,
as a non-wall points, i.e. false positives (cf. Figure 7d).

wall

floor

@ ) (0

(d) (e)

Fig. 7: Comparing the different filters, applied to different
parts of a wall segment: (a) original wall and floor segment,
(b) voxel grid and normals-based filters, (¢) DyPR, (d) false
positives in DyPR, and (e) SuFFUSION

2) SuFFUSION: In contrast to DyPR, SuFFUSION repre-
sents a deterministic approach that does not filter out points
without examining them. Figure 7e shows that SuFFUSION
has notably better results than DyPR with filtering behaviour
comparable to the non-approximated filter. To examine the
effectiveness of our adaptive threshold, Figure 8 compares
the result of adopting SuFFUSION with and without the
adaptive threshold. Obviously, Figure 8a comprises several
holes which disappear once the adaptive threshold is applied
while implementing the filter (cf. Figure 8b). Performing
several experiments with different point clouds have proven



the robustness of SuFFUSION to false positives. Compared
to GraMap, SuFFUSION achieves less processing time (at
least by 60.3%) with reporting less data (at least by 79%).
Furthermore, SUFFUSION outperforms the non-approximated
filter where it achieves less processing time (at least by 48%)
and less data is uploaded to the server (by at least 9%) without
considerable quality losses.

(a) Without threshold tolerance

Fig. 8: A wall segment filtered using SUFFUSION: (a) without
and (b) with threshold tolerance highlighting missing points.

(b) With threshold tolerance

C. Power Consumption

In this section, we evaluate the energy consumption of
data processing and communication on the mobile devices
using our proposed GreenMap approach and the baseline
methods. To measure the energy consumption on the mobile
devices, we used the Android smart battery interface for
energy consumption monitoring through logging the battery’s
current and voltage [18]. These values associated with their
timestamp were recorded every 100 ms while disabling WiFi,
and no other background activity existed. The screen energy
(at 50 % brightness level) has been subtracted from the total
energy consumption to consider only the energy overhead of
running the algorithms. Each run of these measurements were
repeated ten times and the resultant values are then averaged.

Figure 9a shows the cumulative power consumption con-
sumed while processing the IPVS data set using the four
compared approaches. The horizontal axis denotes the fraction
of data processed on the mobile devices where 22 point clouds
were sufficient to model the IPVS floor plan!. Obviously,
the No-Approximation approach consumes less power than
GraMap (at least by 37%). Our two approximation strate-
gies DyPR and SuFFUSION reduce the power consumption
relative to GraMap by 51% and 67.8%, respectively. Simi-
larly, Figure 9b depicts the cumulative power consumption of
communication. Again, GraMap consumes much more energy
than our proposals where the No-Approximation, DyPR, and
SuFFUSION consumed less energy by at least 55%, 58%, and
56%, respectively. We notice that our approximation strategies
have similar communication power consumption thanks to
their comparable filtering capabilities.

Finally, Figure 9c shows a comparison between the total
power consumption of adopting the proposed approaches
on several data bundles collected from both buildings. The
behaviour of the four approaches is similar in both data sets
where SUFFUSION has the lowest power consumption in both
cases (on average 3.5 Watt per bundle for the IPVS data set

ISeveral areas, e.g. maintenance rooms were overlooked during data
collection since they were not accessible
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Fig. 9: Comparison of the power consumption

and 2.2 watt per bundle for the ifp data set). From these
results, we conclude that SuFFUSION and DyPR broadly
improve the energy efficiency of the smart mobile devices
while participating in data acquisition.

D. Modeling Accuracy

In this section, we evaluate the accuracy of the generated
floor plan after adopting the server-side processing. Our pri-
mary objective is to examine the impact of approximation on
the modeling accuracy. To this end, we compare the initial
and final indoor models obtained using different point clouds
which have been processed using our two approximated filters
and the baseline methods. We begin the comparative study
with Figure 10, which depicts four initial indoor models of the
IPVS floor plan generated using the two proposed methods and
the two baseline methods. To generate these initial models, we
divided the point cloud into a set of segments before projecting
them onto the xy-plane (cf. Section V). As it can be seen in
the figure, DyPR and SuFFUSION generate similar models
compared to GraMap and the no-approximation approach.

To clearly quantify the difference between the compared
approaches, we estimate the room size error as the Euclidean
distance between the detected rooms size and the actual rooms
size obtained from the ground truth. Figure 11 compares the
error values of DyPR, SUFFUSION, and the GraMap approach
while generating the indoor model of the IPVS and the ifp
floor plans. For IPVS, we notice that SUFFUSION performs
approximately similar to the GraMap approach where the
average error of SuFFUSION is 0.51m compared to 0.46m
for the GraMap approach. In contrast, DyPR has relatively
higher modeling error than GraMap where its average error
is 0.96m. Apparently, around 50% of the detected rooms in
the three methods have an error value of less than 0.5m for
IPVS and one meter for ifp. In both buildings, DyPR results
in several outlier values above two meters, owing to the holes
problem mentioned in Section VI-B.
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Fig. 11: Modeling accuracy of the proposed approaches

Apparently, the four initial models still suffer from inac-
curacies and irregularities owing to the deficiencies of col-
lecting point clouds from non-experts, i.e. quick recording
with insufficient number of points and/or incorrect orientation
of the mobile devices while recording. Therefore, the server
utilizes the initial model as an input to a Hidden Markov
model together with the formal grammar to generate a highly-
accurate indoor model [5]. Figure 12 compares the generated
final indoor models of the IPVS and the ifp floor plans with
the ground truth. Thanks to the data extracted from the initial
models and the formal grammar, SUFFUSION and DyPR are
broadly similar to the ground truth except at the corner spaces
where our current implementation of the grammar overlooks
the generation of overlapping rooms, i.e. horizontal rooms
intersect with vertical ones. For IPVS, SuUFFUSION achieves a
detection accuracy—defined as the ratio of the detected rooms
relative to the actual number of rooms—of 90.5% while DyPR
achieves an accuracy of 76.2%, excluding the rooms missing
due to either the incomplete input data or the implementation
of our formal grammar. Similarly, SUFFUSION achieves a

detection accuracy of 91.3% relative to the ground truth while
DyPR has a slightly smaller accuracy of 89.5% owing to
the occurrence of several false positives and false negatives.
From these results, we conclude that SUFFUSION and DyPR
provide a similar accuracy as the GraMap approach even with
approximate processing on the mobile devices. However, the
results show that SUFFUSION outperforms DyPR owing to
the holes problem and the probabilistic nature of DyPR.
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Fig. 12: Final indoor models (with grammar)
VII. RELATED WORK

In this section, we review the most salient related work from
two relevant research disciplines—approximate computing and
indoor mapping based on crowdsensing, with highlighting the
novelty of our proposed solution.

A. Approximate Computing

In the past years, the potential of approximate computing
has been explored in several works to reduce the operational
costs via trading-off accuracy and other QoS metrics such as
energy consumption and latency [8], [19], [20]. For instance,
Li et al. [20] introduce MobiQoR, a system that jointly
optimizes the offloading decisions and the selection of edge
nodes’ QoS level. To this end, the multi-objective optimization
task is mapped onto a linear programming problem. Solving
this problem determines the assignment of workload and the
QoS level for each mobile edge node in terms of the energy
consumption and the latency. Other approximation approaches
focus on the computations performed on the mobile devices.
These approaches typically analyze the online processing steps
to identify the approximable parts. In this realm, Pandey
et al. [19] propose MobiDic, a generic framework based
on approximate computing for QoS-aware applications. To
simultaneously shorten the execution time and reduce the
energy consumption, Pandey et al. construct several workflows
that dynamically utilize substitution and/or discarding as the
approximation strategy. Alternatively, Dibak et al. [8] proposed
a dedicated approximate computing framework for mobile
simulations whose methods are specific to numeric simula-
tions. Along a similar line, GreenMap introduce two specific



approximation strategies to improve the energy efficiency of
mobile devices while crowdsensing 3D point clouds.

B. Indoor Mapping

Another line of related work is focusing on indoor models
using crowdsensed data. In fact, mobile devices have been
recently exploited to collect mapping data owing to being
ubiquitous and equipped with relevant sensors such as ac-
celerometers, magnetometers, and cameras [2]-[5]. In [2], we
introduce MapGENIE, an architectural framework for auto-
matically generating indoor maps supported by design-time
knowledge, i.e. structural information. MapGENIE follows a
two-stage approach. First, it adopts dead reckoning to derive
an initial floor plan from a set of inaccurate motion traces.
Afterwards, the inaccurate traces are refined using information
about the building exterior encoded in a formal grammar.
Similarly, Qiu and Mutka [3] present iFrame, an opportunistic
approach that uses crowdsensed motion traces, Bluetooth
fingerprints, and WiFi fingerprints to generate indoor maps.
The core idea behind iFrame is to rectify the deviations of
dead reckoning through curve fitting fusing. Alternatively,
GraMap [5] exploits a new wave of smartphones which are
capable of directly generating point clouds, such as Google
Tango and Apple ARKit. In GreenMap, we further improve
the energy efficiency of indoor modelling on mobile devices
through exploiting the potential of approximate computing.

VIII. CONCLUSION & FUTURE WORK

In this paper, we introduced GreenMap, an energy-aware
crowdsensing framework for collecting and processing point
clouds to automatically generate indoor models. To this end,
we proposed two approximation strategies, namely DyPR
and SuFFUSION, to reduce the energy consumption while
processing point clouds. The former strategy employs a prob-
abilistic model to decide which points to process. Alterna-
tively, SUFFUSION combines the operations of two filters
so that heavy computations are entirely sidestepped. The
results showed that DyPR and SuFFUSION reduce the energy
overhead by 51% and 67.8% relative to GraMap, respectively.
Considering the false positives problem of DyPR, we found
that SUFFUSION is the most efficient approximation strategy
thanks to its filtering behaviour. At the server side, we exploit
formal grammars together with a HMM model to generate
highly-accurate indoor models. Again, the results showed that
SuFFUSION has a similar modeling accuracy as the baseline
method. To sum up, the concepts used in SuFFUSION are
highly promising to be transferred to other applications in
order to optimize the online processing on mobile devices.

So far, we crowdsensed 3D point clouds to generate 2D
floor plans. In future work, we plan to extend the SUFFUSION
approach to be used for 3D models, especially for object
recognition, e.g. furniture. In contrast to DyPR, SuFFUSION
preserves all normals, and hence it does not limit the filter to
2D modeling. In this realm, SUFFUSION can be efficiently
applied along with machine learning algorithms to extract
useful information about the various 3D objects.
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