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Abstract—Many important real-world applications—such as
social networks or distributed data bases—can be modeled as
hypergraphs. In such a model, vertices represent entities—such
as users or data records—whereas hyperedges model a group
membership of the vertices—such as the authorship in a specific
topic or the membership of a data record in a specific replicated
shard. To optimize such applications, we need an efficient and
effective solution to the NP-hard balanced k-way hypergraph
partitioning problem. However, existing hypergraph partitioners
that scale to very large graphs do not effectively exploit the hy-
pergraph structure when performing the partitioning decisions.
We propose HYPE, a hypergraph partitionier that exploits the
neighborhood relations between vertices in the hypergraph using
an efficient implementation of neighborhood expansion. HYPE
improves partitioning quality by up to 95% and reduces runtime
by up to 39% compared to streaming partitioning.
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I. INTRODUCTION

Many real-world applications model problems as hyper-

graphs where connections between vertices are multi-dimen-

sional, i.e., each vertex can directly communicate to n vertices

in a group (called “hyperedge”) and each vertex can be in

multiple groups. Hypergraph partitioning [1], [2], [3], [4], [5],

[6], [7], [8] deals with the problem of optimally dividing a hy-

pergraph into a set of equally-sized components. Applications

of hypergraph partitioning arise in diverse areas such as VLSI

design placement [9], optimizing the task and data placement

in workflows [10], minimizing the number of transactions in

distributed data placement [11], optimizing storage sharding

in distributed data bases [7], and as a necessary preprocessing

step in distributed hypergraph processing [12].

Formally, dividing the hypergraph is denoted as the bal-
anced k-way hypergraph partitioning problem. The goal is

to divide the hypergraph into k equally-sized partitions such

that the number of times neighboring vertices are assigned

to different partitions is minimal (this is denoted as the (k-1)

metric, as introduced later). The balanced k-way hypergraph

partitioning problem is NP-hard. Hence, a heuristic approach

is needed to solve the problem for massive hypergraphs.

In literature, a couple of heuristic hypergraph partitioning

algorithms have been proposed, but they have shortcomings.

Streaming hypergraph partitioning [8] considers one vertex at a

time from a stream of hypergraph vertices. Based on a scoring

function, it greedily assigns each vertex from the stream to the

partition that yields the best scoring. While this algorithm has

low run-time, it does not consider all relationships between all

vertices when deciding on the partitioning, so that partitioning

quality suffers. A recent hypergraph partitioning algorithm,

Social Hash Partitioner [7], considers the complete hypergraph

at once. It iteratively performs random permutations of the

current partitioning followed by a greedy optimization to

choose a better permutation over a worse one. While this

approach generally converges to some form of an improved

partitioning and is highly scalable, we argue that random

permutations may not be the most effective choice for the

partitioning heuristic.

In the related field of graph partitioning, a recently proposed

algorithm uses neighborhood expansion to exploit structural

properties of natural graphs [13]. Graphs can be regarded as

special cases of hypergraphs, where each hyperedge contains

only a single vertex. However, the original neighborhood

expansion algorithm for graphs cannot be directly applied to

hypergraphs. As hyperedges may contain a very large number

of vertices, the neighborhood of a single vertex can be huge,

rendering neighborhood expansion infeasible.

In this paper, we are the first researchers who successfully

apply neighborhood expansion to hypergraph partitioning. We

propose HYPE, a hypergraph partitioning algorithm specifi-

cally tailored to real-world hypergraphs with skewed degree

distribution. HYPE grows k partitions based on the neighbor-

hood relations in the hypergraph. We evaluate the performance

of HYPE on a set of real-world hypergraphs, including a novel

hypergraph data set consisting of authors and subreddits from

the online board Reddit. Reddit is, to the best of our knowl-

edge, the largest real-world hypergraph that has been con-

sidered in evaluating hypergraph partitioning algorithms up to

now. In our evaluations, we show that HYPE can partition very

large hypergraphs efficiently with high quality. HYPE is 39%

faster and yields 95% better partitioning quality than streaming
partitioning [8]. We released the source code of HYPE as an

open source project: https://github.com/mayerrn/HYPE.

II. PROBLEM FORMULATION

In this section, we formulate the hypergraph partitioning

problem addressed in this paper.

Problem Formulation: The hypergraph is given as G =
(V,E) with the set of vertices V and the set of hyperedges
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Fig. 1. A small extract of the global Reddit graph.

E ⊂ 2V . Given vertex v ∈ V , we denote the set of adjacent

vertices, i.e., the set of neighbors of v, as N(v) ⊆ V .

The goal is to partition the hypergraph into k partitions

P = {p0, p1, ..., pk−1} by assigning vertices to partitions. The

assignment function A : V → P defines for each vertex in

V to which partition it is assigned. We write A(v) = pi if

vertex v is assigned to partition pi. Each hyperedge spans

between 1 and k partitions. The optimization objective is

the (k − 1)-cut that sums over each hyperedge the number

of times it is assigned to more than one partition, i.e.,∑
e∈E |{p ∈ P |∃v ∈ E : A(v) = p}| − 1. We require

that the assignment of vertices to partitions is balanced in

the number of vertices assigned to a single partition, i.e.,

∀p0, p1 ∈ P : |{v ∈ V |A(v) = p0}| < λ|{v ∈ V |A(v) = p1}|
for a small balancing factor λ ∈ R. This problem is denoted

as balanced k-way hypergraph partitioning problem and it is

NP-hard [14].

Reddit Hypergraph Example: We give an example of the

Reddit hypergraph in Figure 1. The Reddit social network

consists of a large number of subreddits where each subred-

dit concerns a certain topic. For example, in the subreddit

/r/learnprogramming, authors write comments related

to the topic of learning to program. Each author writes com-

ments in an arbitrary number of subreddits and each subreddit

is authored by an arbitrary number of users. One way to build

a hypergraph out of the Reddit data set (see Section IV) is to

use subreddits as vertices and authors as hyperedges that con-

nect these vertices. This hypergraph representation provides

valuable information about the similarity of subreddits. For

instance, if many authors are active in two subreddits (e.g.

/r/Arduino and /r/ArduinoProjects), i.e., many hy-

peredges overlap significantly in two vertices, it is likely that

the two subreddits concern similar content.

The size of the hyperedges and the degree of the ver-

tices resemble a power law degree distribution for real-world

graphs such as Reddit, Stackoverflow, and Github. Hence,

most vertices have a small degree and most hyperedges have

a small size. These parts of the graph with small degrees

build relatively independent communities. In the reddit graph,

there are local communities such as people who write in

the /r/Arduino and /r/ArduinoProjects subreddits

but not in, say the /r/Baby subreddit. This property of

G Hypergraph G = (V,E)

V Set of vertices V ⊂ N ×N
E Set of hyperedges E ⊂ 2V

N(v) Set of adjacent vertices of vertex v ∈ V

N(X) Union of all sets N(x) for x ∈ X

P Set of partitions pi ∈ P with |P | = k

A Function assigning vertices V to partitions P

λ Balancing factor

C Current core set of vertices

F Current fringe

dext(u, S) External neighbors score of vertex u

s Maximal size of the fringe

r Number of fringe candidate vertices

TABLE I
NOTATION OVERVIEW.

strong local communities is well-observed for graphs [15]—

and it holds for real-world hypergraphs as well. Power law

distributions are long-tailed, i.e., there are some hub vertices

or edges with substantial sizes or degrees. In graph literature,

it has been shown that focusing on optimal partitioning of the

local communities at the expense of optimal placement of the

hubs is a robust and effective partitioning strategy [16], [17],

[18]. In Section III, we show how we exploit this observation

in the HYPE partitioner.

III. THE ALGORITHM

In the following, we first explain the idea of neighborhood

expansion in Section III-A. We introduce our novel hypergraph

partitioning algorithm HYPE in Section III-B and discuss the

balancing of hypergraph partitions in Section III-C. Finally,

we present a more formal pseudocode notation of the HYPE

algorithm in Section III-D and perform a complexity analysis

in Section III-E.

A. Neighborhood Expansion Idea

A practical method for high-quality graph partitioning is

neighborhood expansion [13]. The idea is to grow a core set

of vertices via the neighborhood relation given by the graph

structure. By exploiting the graph structure, the locality of

vertices in the partition is maximized, i.e., neighboring vertices

in the graph tend to reside on the same partition. The algorithm

grows the core set one vertex at a time until the desired

partition size is achieved. In order to partition the graph into k
partitions, the procedure of growing a core set Ci is repeated

k times for i ∈ {0, 1, ..., k − 1}.

We aim to adopt neighborhood expansion to hypergraph

partitioning. To this end, we have to overcome a set of

challenges which are related to the different structure of

hypergraphs when compared to normal graphs. In particular,

the number of neighbors of a vertex quickly explodes as

the hyperedges contain multiple neighboring vertices at once.

Before we explain in detail those challenges and our approach

to tackle them, we sketch the basic idea of neighborhood

expansion in the following.

Figure 2 sketches the general framework for growing the

core set Ci of partition pi ∈ P . There are three overlapping

sets: the vertex universe, the fringe, and the core set. The
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Fig. 2. High-level idea of neighborhood expansion.

vertex universe V ′ ⊆ V is the set of remaining vertices that

can potentially be added to the fringe Fi, i.e., V ′ = V \C0...\
Ci \ Fi. The fringe Fi is the set of vertices that are currently

considered for the core set. The core Ci is the set of vertices

that are assigned to partition pi ∈ P . The three sets are non-

overlapping, i.e., V ′ ∩ Fi = Fi ∩ Ci = Ci ∩ V ′ = ∅.

Initially, the core consists of seed vertices that are taken

as a starting point for growing the partition. Based on these

seed vertices, the fringe contains a subset of all neighboring

vertices. In graph partitioning [13], the fringe contains not

a subset but all vertices that are in a neighborhood relation

to one of the vertices in the core set. In the Figure 2, a

fringe candidate vertex, say vertex v, is moved from the vertex

universe to the fringe and then to the core set. In other words,

any strategy based on neighborhood expansion must define the

two functions upd8_fringe() and upd8_core().

As we develop a hypergraph partitioning algorithm based

on the neighborhood expansion framework, we define the

neighborhood relation and the three vertex sets accordingly.

However, migrating the idea of neighborhood expansion from

graph to hypergraph partitioning is challenging. The number

of neighbors of a specific vertex in a typical hypergraph is

much larger than in a typical graph. The reason is that the

number of neighbors is not only proportional to the number

of incident hyperedges but also to the size of these hyper-

edges. For example, suppose you are writing a comment in

the /r/Python subreddit. Suddenly, hundreds of thousands

other authors in /r/Python are your direct neighbors. In

other words, the neighborhood relation is group based rather

than bidirectional which leads to massive neighborhoods. The

large number of neighbors changes the runtime behavior and

efficiency of neighborhood expansion. For instance, in such a

hypergraph, the fringe would suddenly contain a large fraction

of the vertices in the hypergraph. But selecting a vertex

from the fringe requires O(|V |) comparisons. This leads to

high runtime overhead and does not scale to massive graphs.

HYPE alleviates this problem by reducing the search space

significantly as described next.

B. HYPE Algorithm

The HYPE algorithm grows the core set for partition pi ∈ P
one vertex at a time. We load one vertex from the fringe to

the core set and update the fringe with fresh vertices from the

vertex universe. The decision of which vertex to include into

the core and fringe sets is a critical design choice that has

impact on the algorithm runtime and partitioning quality.
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Fig. 3. Limiting the fringe size s to a small value (e.g. s = 10) keeps
partitioning quality intact while reducing runtime significantly (StackOverflow
hypergraph).

In this section, we explain the HYPE algorithm in detail,

including a discussion of the design choices. In doing so,

we first provide the basic algorithm in Section III-B1 and

then discuss optimizations of the algorithm in Section III-B2.

These optimizations tremendously reduce the algorithm run-

time without compromising on partitioning quality.

1) Basic Algorithm: The approach of growing a core set

Ci is repeated in a sequential manner for each partition pi for

i ∈ {1, 2, ..., k}. It consists of a four step process. We initialize

the computation with step 1., and iterate steps 2. and 3., until

the algorithm terminates as defined in step 4.

1) Initialize the core set.

2) Move vertex from vertex universe into fringe.

3) Move vertex from fringe into core set.

4) Terminate the expansion.

We now examine these steps in detail. A formal algorithmic

description is given in Section III-D.
1. Initialize the core set: The core set Ci must ini-

tially contain at least one vertex in order to grow via the

neighborhood expansion. In general, there are many different

ways to initialize the core set. This problem is similar to the

problem of initializing a cluster center for iterative clustering

algorithms such as K-Means [19]. Here, the defacto standard

is to select random points as cluster centers [20], [21]. In fact,

a comparison of several initialization methods for K-Means
shows that the random method leads to robust clustering

quality [22]. As the problem of selecting an initial “seed”

vertex from which the core set grows is similar to this problem,

we perform random initialization.
2. Move vertex to fringe: The function

upd8_fringe() determines which vertices move from the

vertex universe to the fringe Fi. The vertex universe consists

of all vertices that are neither in the fringe Fi, nor in the core

set Ci of any previous execution of the algorithm for any

partition pj ∈ P with j < i.
The standard strategy of neighborhood expansion is to fill

the fringe Fi with all vertices that are neighbors to any core

vertex, i.e., Fi ← N(Ci) \ C0 \ ... \ Ci. But for real-world

hypergraphs, this quickly overloads the fringe with a large

number of vertices from the vertex universe. To prevent this,

we restrict the fringe to contain only s vertices, i.e., |Fi| ≤ s.
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In Figure 3, we validate experimentally that setting s to a small

constant value, i.e., s = 10, keeps partitioning quality high

but reduces runtime by a large factor. For brevity, we omit the

discussion of similar results observed for other hypergraphs.

But how do we select the next vertex to be loaded into the

fringe? Out of the vertex universe V ′, we select a vertex to be

included to the fringe using a scoring metric as described in

the next paragraphs. The intuition behind this scoring metric

is to find the vertex that preserves the highest locality when

assigned to the core set.

To this end, we define locality as the frequency that for a

given vertex v ∈ V ′, a neighboring vertex v′ ∈ N(v) resides

on the same partition. High locality leads to low cut sizes

and good partitioning quality. To improve locality, our goal is

to grow the core set into the smaller local communities and

assign all vertices of these smaller communities to the same

partition. If a high proportion of neighbors of vertex v ∈ V ′

is already assigned to the core set, assigning vertex v to the

core set as well will improve locality.

In Figure 4, we see an example hypergraph that has the

typical properties of real-world hypergraphs: the size of the

hyperedges follows a power law distribution. To grow the

fringe, there are three options: include vertex v1, v2, or v3.

Intuitively, we want to grow the fringe towards the local

communities to preserve locality. We achieve this by selecting

vertices based on the external neighbors with respect to the

fringe F . In other words, we want to add vertices to the fringe

that have a high number of neighbors in the fringe or the core

set, and a low number of neighbors in the remaining vertex

universe. A vertex with low external neighbors score tends to

have high locality in the fringe and the core set. Formally, we

write dext(v, Fi) to denote the number of neighboring vertices

of v that are not already contained in the fringe as defined in

Equation 1.

dext(v, Fi) = |N(v) \ Fi| (1)

We denote the vertices for which we calculate the external

neighbors score as fringe candidate vertices. For each ex-

ecution of upd8_fringe(), we select r fringe candidate

vertices. The fringe Fi contains up to s vertices. Hence, after

assigning one vertex to the core set, we take the top s vertices

out of the s−1+r fringe candidate vertices as the new fringe.

In Section III-B2, we describe three optimizations on the

upd8_fringe() function that reduce the runtime while

keeping the partitioning quality intact.

3. Move vertex to core set: Next, we describe the function

upd8_core() that moves a vertex from the fringe Fi to

the core set Ci. The function simply selects the vertex with

smallest (cached) external neighbors score. This vertex v is

then moved to the core, i.e., Ci ← Ci ∪ {v}. This decision

is final. Once assigned to the core Ci, vertex v will never be

assigned to any other core Cj when considering a partition

j > i. Hence, we remove the vertex from the remaining set

of vertices in the vertex universe, i.e., V ′ ← V ′ \ {v}. In case

the fringe can not be filled with enough neighbors, we add

a random vertex from the vertex universe to the fringe and

proceed with the given algorithm.

4. Terminate the expansion: We terminate the algorithm

as soon as the core set contains
|V |
k vertices. This leads to

perfectly balanced partitions with respect to the number of

vertices. Upon termination, we release the vertices in the fringe

Fi and store the vertices in the core set Ci in a separate

partitioning file for partition i. After this, we restart expansion

for the next partition i ← i+1 or terminate if all vertices have

been assigned to partitions. In Section III-C, we discuss other

possible balancing schemes.

2) Optimization of Fringe Updates: When moving a vertex

from the vertex universe to the fringe, we have to be careful

in order to efficiently select a good vertex. Calculating a score

for all vertices in the vertex universe would be much too

expensive. For example, suppose we add vertex v2 to the fringe

in the example in Figure 4. Suddenly, all vertices in the huge

hyperedge e1 could become fringe candidate vertices for which

we would have to calculate the external neighbors score. Note

that to calculate the external neighbors score, we must perform

set operations that may touch an arbitrary large portion of the

global hypergraph.

Our strategy to address this issue involves three steps:

(a) select the best fringe candidate vertices from the vertex

universe in an efficient manner by traversing small hyperedges

first, (b) reduce the number of fringe candidate vertices r to

r = 2, and (c) reduce the computational overhead to calculate

the score for a fringe candidate vertex by employing a scoring

cache. These three optimizations help us to limit the overhead

per decision of which vertex to include into the fringe. Next,

we describe the optimizations in detail.

a) Maximize the chance to select r good fringe candidate
vertices: First, we describe how we maximize the chance to

select good fringe candidate vertices from the vertex universe.

The optimal vertex to add to the fringe has minimal external

neighbors score, i.e., argminv∈V ′dext(v, Fi). Vertices that

reside in large hyperedges (e.g. e1 in Figure 4) have a high

number of neighbors. Hence, it is unlikely that these vertices

have a low external neighbors score with respect to the fringe

F . For example, in Figure 4, vertices v1 and v2 have 18

neighbors, whereas vertex v3 has only 4 neighbors. Thus,

vertex v3 has a much higher chance of being the vertex



Dataset Vertices Hyperedges #Vertices #Hyperedges #Edges

Github [23] Users Projects 177,386 56,519 440,237

StackOverflow [23] Users Posts 641,876 545,196 1,301,942

Reddit Subreddits Authors 430,156 21,169,586 179,686,265

Reddit-L Comments Authors & Subreddits 2,862,748,675 21,599,742 5,725,497,350

TABLE II
REAL-WORLD HYPERGRAPHS USED IN EVALUATIONS.
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Fig. 5. Limiting the number of fringe candidate vertices r to r = 2 leads
to the best partitioning quality (StackOverflow hypergraph).

with the minimal external neighbors score. Based on this

observation, we optimize the selection of fringe candidate

vertices by ordering all hyperedges that are incident to the

fringe Fi with respect to their size and consider only vertices

in the smallest hyperedge for inclusion into the fringe (e.g.,

hyperedges e4, e3, e2 with |e4| ≤ |e3| ≤ |e2| results in the

initial selection of hyperedge e4). When we cannot retrieve

r vertices from the smallest hyperedge (because it does not

contain enough vertices that are not already in C or F ), we

proceed with the next larger hyperedge.

b) Reduce the number of fringe candidate vertices to
be selected: Next, we limit the number of fringe candidate

vertices to r = 2 vertices. From these r vertices, we select the

vertex with the smaller external neighbors score. The basic

principle of selecting the best out of two random choices is

known in literature as “the power of two random choices”
[24] and has inspired our design. We experimentally validated

that considering more than two options, i.e., r > 2, does

not significantly improve the decision quality, cf. Figure 5.

Clearly, the lower the number of fringe candidate vertices r is,

the lower is the runtime of the algorithm. Interestingly, using

two choices, i.e., r = 2 leads to better partitioning quality

than all other settings of r. Apparently, a higher value for

r forces the algorithm to consider fringe candidate vertices

from larger hyperedges which distracts the algorithm from the

smaller hyperedges.

c) Reduce the overhead to compute an external neighbors
score for fringe candidate vertices: The external neighbors

score requires calculation of the set intersection between

two potentially large sets (see Equation 1). This calculation

must be done for all fringe candidate vertices. To prevent

recomputation, we use a caching mechanism. The score is

calculated only when the vertex is accessed for the first time
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Fig. 6. The caching optimization for external neighbors score computation
keeps partitioning quality intact while reducing runtime by up to 20% on the
Stackoverflow hypergraph.

(lazy caching policy). While this means that the cached score

may change when including more and more vertices into the

fringe, our evaluation results show that partitioning quality

stays the same when using caching (see Figure 6). But the

benefit of reducing score computations improves runtime by

up to 20%.

C. Balancing Considerations

The default balancing objective of the HYPE algorithm

leads to a balanced number of vertices on each partition. For

n vertices and k partitions, the algorithm repeats the neighbor-

hood expansion, one vertex at a time, until there are exactly

max = n/k vertices per partition. Vertex balancing is the

standard method for distributed graph processing systems such

as Pregel [25]—considering that the workload per partition is

roughly proportional to the number of vertices per partition.

Therefore, many practical algorithms such as the popular

multilevel k-way hypergraph partitioning algorithm [1] focus

on vertex balancing.

However, some applications of hypergraph partitioning may

benefit from balancing the sum of vertices and hyperedges [8].

More precisely, for n vertices and m hyperedges, the algorithm

should partition the hypergraph in a way such that each

partition is responsible for n+m
k vertices or hyperedges. In

the following, we discuss two ideas how HYPE can achieve

this. First, we assign a weight w(v) to each vertex v, i.e., the

weight w(v) = 1 + |Ev| with Ev being the set of incident

hyperedges of vertex v. Then, we repeat the neighborhood

expansion algorithm by assigning vertices until each partition

has max = n+m
k total weight (or less). The rationale behind

this method is the law of large numbers: it is not likely

that a single vertex assignment will suddenly introduce a

huge imbalance in relation to the already assigned vertices.



Second, to achieve perfect edge balancing, we can flip the

hypergraph, i.e., viewing each original vertex as a hyperedge

and each original hyperedge as a vertex. When balancing the

number of vertices in the flipped graph, we actually balance the

number of hyperedges in the original graph. After termination

of the algorithm, we flip the hypergraph back to the original

representation. We leave an investigation of other balancing

constraints as future work.

D. HYPE Pseudocode

Algorithm 1 HYPE algorithm for hypergraph G = (V,E).

1: V ′ ← V
2: for i ∈ [0..k − 1] do
3: Ci ← {V ′.random()}
4: V ′ ← V ′ \ Ci

5: Fi ← {}
6: c =< key, val > {} � clear cache

7: while |Ci| < |V |
k

do
8: UPD8 FRINGE()
9: UPD8 CORE()

Algorithm 1 lists the main loop. We repeat the following

method for all partitions pi ∈ P . After some housekeeping

tasks such as filling the core set Ci of partition pi with a

random vertex (line 3), initializing the fringe (line 5), and

clearing the (key, value) cache (line 6), we repeat the main

loop (lines 7-8) until the core set has exactly
|V |
k vertices. The

loop body consists of the two functions upd8_fringe()
and upd8_core() that are described next.

Algorithm 2 The function upd8_fringe() updates the

fringe Fi with vertices from the vertex universe V ′.
1: function UPD8 FRINGE()
2:

3: #Determine r fringe candidate vertices
4: Fcand ← {}
5: X ← {e ∈ E|Ci ∩ e �= ∅}
6: X ′ ← [e0, e1, ...|ej ∈ X ∧ |ej | > |ej−1|]
7: for e ∈ X ′ do
8: for v ∈ e ∧ v �∈ Fi ∧ ∀j ≤ i : v �∈ Cj do
9: if |Fcand| < r then

10: Fcand ← Fcand ∪ {v}
11: else
12: break loop line 7

13:

14: #Update cache
15: for v ∈ Fcand ∧ v �∈ c.keys() do
16: c(v) ← dext(v, Fi)

17:

18: #Update fringe
19: F ′

i ← [v0, v1, ...|vj ∈ Fi ∪ Fcand ∧ c(vj−1) < c(vj)]
20: Fi ← {v|v ∈ F ′

i .subsequence(0..s− 1)}
21: if Fi = ∅ then
22: Fi ← {V ′.random()}

Algorithm 2 lists the upd8_fringe() function. The func-

tion consists of three steps: determine the r fringe candidate

vertices (lines 3-10), update the cache (lines 12-14), and

update the fringe (lines 16-20). The first step calculates the

fringe candidate vertices Fcand by first sorting the hyperedges

that are incident to the core set Ci by size (ascending) and

then traversing these hyperedges for vertices that can still be

added to the fringe (i.e., are not already assigned to the fringe

or any core set). The second step updates the cache with the

current external neighbors score with respect to the current

fringe Fi. The third step sets the fringe to the set of top s
vertices with respect to the external neighbors score. If the

fringe is still empty after these steps, we initialize it with a

random vertex.

Algorithm 3 The function upd8_core() updates the core

Ci with vertices from the fringe Fi.

1: function UPD8 CORE()
2: v ← argminv∈Fic(v)
3: Ci ← Ci ∪ {v}
4: Fi ← Fi \ {v}
5: V ′ ← V ′ \ {v}

Algorithm 3 lists the upd8_core() function. We load the

vertex with the minimal cached external neighbors score into

the core Ci and remove this vertex from the fringe Fi and the

vertex universe V ′.

E. Complexity Analysis

For the following analysis, we denote the number of vertices

as n = |V | and the number of hyperedges as m = |E|.
Algorithm 1 repeats for k partitions the procedure of moving
n
k vertices from the vertex universe to the fringe and from

the fringe to the core. Next, we analyze the runtime for those

procedures upd8_fringe() and upd8_core().

The function upd8_fringe() in Algorithm 2 consists of

three steps. First, it determines r fringe candidate vertices from

the vertex universe (lines 3-12). As we set r to a small constant

(r = 2), this step is very fast in practice with the following

caveat: The algorithm needs to sort the incident hyperedges

with respect to the hyperedge size (line 6). The computational

complexity of sorting all hyperedges is O(m ∗ log(m)). It is

sufficient to sort the hyperedges only once in the beginning

of the HYPE algorithm. Recap that the algorithm fills the

fringe with r = 2 new candidate vertices. In the worst case,

the fringe is incident to all hyperedges in the hypergraph.

Therefore, selecting the fringe candidate vertices is in O(m) to

iterate over all hyperedges. This is a pessimistic estimation—
in practical cases it is sufficient to check the first few
smallest hyperedges to find the r = 2 candidates. Second, the

algorithm updates the cache with fresh external degree scores

for new candidates vertices (lines 14-16). It calculates the

external degree score at most once for every candidate vertex

(it is just read from cache if needed again later). As there

are only r = 2 fringe candidate vertices in each execution of

upd8_fringe(), the total number of external degree score

calculations is limited to 2 ∗ n. The overhead of calculating

the external degree of a vertex with respect to a set of s fringe

vertices is O(s) (cf. Equation 1), but s is a constant (s = 10).



Hence, the total computational complexity of updating the

cache is O(n). Third, the algorithm updates the fringe with

vertices from the fringe candidates (lines 18-22). As both the

fringe and the fringe candidates have constant sizes r = 2 and

s = 10, the complexity of the third step is O(1).

The function upd8_core() in Algorithm 3 selects the

vertex with minimal cached external neighbors score from the

constant-sized fringe. Thus, the complexity is O(1) including

the housekeeping tasks in lines 3-5.

In total, the worst-case computational complexity of the

HYPE algorithm is O(m ∗ log(m) + k ∗ n
k ∗ m + n)) =

O(m ∗ log(m) + n ∗ m). As highlighted above, in practice

we observe that only a small, constant number of hyperedges

is checked in order to find the r candidate vertices, so that we

observe a complexity of O(m ∗ log(m) + n).

IV. EVALUATIONS

In this section, we evaluate the performance of HYPE on

several real-world hypergraphs.

Experimental Setup: All experiments were performed on

a shared memory machine with 4 x Intel(R) Xeon(R) CPU

E7-4850 v4 @ 2.10GHz (4 x 16 cores) with 1 TB RAM. The

source code of our HYPE partitioner is written in C++.

Hypergraph Data Sets: We perform the experiments on

different real-world hypergraphs, i.e., Github [23], StackOver-

flow [23], Reddit and Reddit-L1, as listed in Table II. All

of the hypergraphs show a power law distribution of vertex

and hyperedge degrees. In addition to the number of vertices

and hyperedges, we report the number of edges. An edge

represents an assignment of a vertex to a hyperedge.

We highlight that for this paper, we crawled two large real-

world hypergraphs from the Reddit dataset using the relations

between authors, subreddits and comments.

Benchmarks: We choose our benchmarks for evaluating

HYPE based on 3 categories.

Group (I) consists of a wide range of hierarchical par-

titioners such as hMetis [1], Mondriaan [2], Parkway [3],

PaToH [4], Zoltan [5], and KaHyPar [6]. As no partitioner

in group (I) consistently outperforms the other partitioners

in terms of partitioning quality, scalability and partitioning

time, we decided for the well-established and widely used

hypergraph partitioner hMETIS. Several recent papers show

that hMETIS leads to competitive partitioning performance

with respect to the (k − 1) metric [7], [26], [8]. Hence, we

chose hMETIS as the representative partitioner from group

(I) in this paper. We run hMETIS in two different settings:

with and without enforced vertex balancing. Due to the high

partitioning quality, hMETIS serves as the benchmark for

partitioning quality on small to medium hypergraphs. We used

hMETIS in version 2.0pre1 with the parameters -ptype=rb
-otype=soed -reconst. To enforce vertex balancing,

1https://www.reddit.com/r/datasets/comments/3bxlg7/i have every
publicly available reddit comment/

we set2 the parameter UB=0.1.

Group (II) consists of the recently proposed Social Hash

Partitioner (SHP) [7]. The authors released the raw source

code of SHP. Yet, we could not reproduce their results as nei-

ther configuration files and parameters, nor scripts, execution

instructions, or documentations were provided. However, in

our evaluations we partitioned hypergraphs of similar size as

SHP in a similar runtime, even though HYPE uses a purely

sequential partitioning algorithm.

Group (III) comprises multiple streaming partitioning strate-

gies proposed by Alistarh et al. [8]. The greedy MinMax

strategy constantly outperformed all other strategies according

to their paper3. Moreover, we designed a novel vertex-balanced

variant of MinMax that outperforms the original approach with

respect to the (k-1) metric4. We denote this variant as MinMax
NB (node balanced) in contrast to the standard MinMax EB
(edge balanced).

Experiments: In all experiments, we capture the follow-

ing metrics. (1) The (k-1) metric to evaluate the quality of

the hypergraph partitioning. This is the default metric for

partitioning quality [1], [5]. Other partitioning quality metrics

such as the hyperedge-cut and the sum of external degree
performed similar in our experiments5. (2) The runtime of

the algorithm to partition the whole input hypergraph in

order to evaluate the speed of the partitioning algorithms. (3)

The vertex imbalance as a metric to capture the fairness of

the hypergraph partitioning. We compute vertex imbalance

as the normalized deviation between the maximal and the

minimal number of vertices assigned to any partition, i.e.,
maxsize−minsize

maxsize .

For each experiment, we increase the number of partitions

from 2 up to 128 in exponential steps.

A. Performance Evaluations

The performance evaluations show the benefits of HYPE

when partitioning large hypergraphs. Its runtime is indepen-

dent of the number of partitions, so that it is faster than

streaming partitioning when the number of partitions is large.

Further, the hierarchical partitioning algorithm hMETIS does

not scale to very large hypergraphs, i.e., it cannot partition the

Reddit hypergraph, and takes orders of magnitude longer for

the smaller hypergraphs. We discuss the detailed results next.

Github: Figure 7a shows the partitioning quality on the

Github hypergraph. In the (k-1) metric, hMETIS performs best

(e.g., 47 % better than HYPE at k = 128). HYPE performs

up to 45% better than MinMax hyperedge-balanced, and up

to 34 % better than MinMax vertex-balanced.

2We determined the UB parameter experimentally such that the measured
imbalance is comparable to HYPE and MinMax. Schlag et al. [27] provide
an equation to set UB in order to enforce a specific imbalance constraint at
a given k.

3The optimization goal of MinMax is to minimize the maximum number
of hyperedges associated with a partition via the partition’s vertices. However,
both metrics MinMax and (k-1) are closely related: They measure the spread
of hyperedges across partitions.

4We allowed a slack parameter of up to 100 vertices, cf. [8].
5The close relationship between these metrics is described in literature [7].
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Fig. 8. Evaluations on the StackOverflow hypergraph (lower is better).

Partitioning runtime is depicted in Figure 7b. hMETIS took

70 to 338 seconds to partition the Github hypergraph, which

is orders of magnitude slower than MinMax and HYPE (up to

476 × slower than HYPE). The partitioning runtime of HYPE

is independent of the number of partitions, as each partition

is filled with vertices sequentially until it is full. Different

from that, in MinMax, the partitioning runtime depends on

the number of partitions, as MinMax works with a scoring

function that computes for each vertex a score for each

partition and then assigns the vertex to the partition where

its score is best. Hence, for up to 32 partitions, HYPE has a

higher runtime than MinMax, up to 2.7 × higher, whereas for

64 and 128 partitions, the runtime of HYPE is lower (up to

2.4 × lower).

In terms of balancing, cf. Figure 7c, HYPE shows per-

fect vertex balancing, while the MinMax vertex-balanced has

a slight imbalance of up to 5%. Unsurprisingly, MinMax

hyperedge-balanced has a poor vertex balancing. In hMETIS,

when vertex balancing is turned on, the maximum imbalance

was 3%, whereas without that flag, vertex imbalance was

tremedously higher (up to 55% imbalance). The balancing

results are similar for all other hypergraphs, so we will not

discuss balancing in the following results any more.

StackOverflow: Figure 8a shows the partitioning quality

on the StackOverflow hypergraph. In the (k-1) metric, hMETIS

performs best (e.g., 39 % better than HYPE at k = 128). HYPE

performs up to 47% better than MinMax hyperedge-balanced,

and up to 35% better than MinMax vertex-balanced.

Partitioning runtime is depicted in Figure 8b. hMETIS took

between 206 and 4374 seconds (i.e., 73 minutes) to partition

the StackOverflow hypergraph, which is orders of magnitude

(a) Quality: (K-1) Metric. (b) Runtime.

Fig. 9. Evaluations on the Reddit hypergraph (lower is better).

slower than MinMax and HYPE (up to 1,384 × slower

than HYPE). In numbers, HYPE takes 3 seconds to build

128 partitions, while hMETIS takes more than 1 hour! The

comparison between HYPE and MinMax on StackOverflow

leads to similar results as on the Github hypergraph: With

up to 32 partitions, MinMax is faster (up to 4.1 × faster),

but with 64 and 128 partitions, HYPE is faster (up to 1.8 ×
faster). Again, the reason for this is that the HYPE runtime is

independent of the number of partitions.

Reddit: Figure 9a shows the partitioning quality on the

Reddit hypergraph. For this hypergraph, we could not produce

results with the hMETIS partitioner, as it crashed or was

running for days without returning a result. Consistent to the

experiments reported in [7], many partitioners from group (I)

are not able to partition such large hypergraphs. Hence, in the

following, we only report results for MinMax and HYPE.

On the Reddit hypergraph, the advantage of exploiting local

communities in HYPE pays off to the full extent: HYPE

outperforms the streaming partitioner MinMax, that ignores

the overall hypergraph structure, by orders of magnitude. For

2, 4 and 8 partitions, HYPE achieved an improvement of 95%

compared to MinMax hyperedge-balanced, and 93% compared

to MinMax vertex-balanced in the (k-1) metric. Thus, HYPE

leads to a partitioning quality that is up to 20 × better
than when using MinMax. For 16 partitions, HYPE performs

93% and 91% better, for 32 partitions 91% and 88%, for 64

partitions 88% and 84%, and for 128 partitions 83% and 80%

better than MinMax hyperedge-balanced and MinMax vertex-

balanced partitioners, respectively.

Comparing the partitioning runtime of HYPE and MinMax

in Figure 9b, we see again that the runtime of HYPE is
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independent of the number of partitions, whereas MinMax has

a higher runtime with growing number of partitions because of

its scoring scheme. While at 2 partitions, MinMax is up to 4 ×
faster than HYPE, at 64 partitions HYPE becomes faster than

MinMax, by up to 36% at 128 partitions. As with the other

hypergraphs, MinMax vertex-balanced is slightly slower than

MinMax hyperedge-balanced as the hyperedge balance can

change significantly after assigning a single vertex. This often

forces assignment to a single partition (the least loaded) such

that the partitions remain balanced. In such cases, the forced

partitioning decisions for hyperedge-balanced partitioning can

be performed very quickly.

Reddit-L: In Figure 10, we compare partitioning quality

and runtime of HYPE against MinMax on the large Reddit-

L hypergraph with k = 128 partitions. MinMax requires

more than 31 hours to partition Reddit-L compared to the

19 hours of HYPE. Although being 39% faster than MinMax,

HYPE still outperforms MinMax in partitioning quality by

88%: MinMax has a (k-1) score of 68,709,969 compared to

HYPE’s 8,357,200. Note that MinMax already belongs to the

fastest high-quality partitioners. However, HYPE is able to

outperform MinMax because its runtime does not depend on

the number of partitions.

B. Discussion of the Results

We conclude that HYPE shows very promising performance

in hypergraph partitioning. First, it is able to partition very

large hypergraphs, which cannot be partitioned by algorithms

from group (I). Second, it consistently provides better parti-

tioning quality than streaming MinMax. On top of that, the

HYPE algorithm is comparably easy to implement and to

manage because all system parameters are fixed.

V. RELATED WORK

In the last decades, research on hypergraph partitioning was

driven by the need to place transistors on chips in Very-large-

scale integration (VLSI) design [9], as logic circuits can be

modeled as large hypergraphs that are divided among chips.

The most popular hypergraph partitioning algorithm from that

area is hMETIS [1] which is based on a multilevel contraction

algorithm and produces good partitioning quality for medium-

sized hypergraphs in the magnitude of up to 100,000 edges.

However, multilevel partitioning algorithms do not scale

to large hypergraphs, as shown in our evaluations. Parallel

implementations of multilevel partitioning have been proposed

[5], but the problem of high computational complexity and

memory consumption remains. For instance, Zoltan [5] is

a parallel multilevel hypergraph partitioning algorithm. The

evaluated graphs on Zoltan are relatively small—within a

magnitude of up to 30 million edges or less—while using up

to 64 parallel machines to process them. Other algorithms of

that group are Mondriaan [2], Parkway [3], PaToH [4], and

KaHyPar [6]. For hypergraphs with hundreds of millions of

edges, these algorithms are not practical as they take hours or

even days to complete, if they terminate at all.

The bad scalability of multilevel partitioning algorithms

led to the development of more scalable partitioners. Social
Hash Partitioner (SHP) achieves scalability to very large

hypergraphs (up to 10 billion edges) by means of massive

parallelization [7]. SHP performs random swaps of vertices

between partitions and greedily chooses the best swaps. Ran-

dom swaps fit well with the objective of parallelization and

distribution in SHP, but may not be the most efficient heuris-

tic. Investigating on the phenomenon of scalability versus

efficiency [28], we conceived the idea to devise an efficient

hypergraph partitioning algorithm.

Another approach to partition very large hypergraphs are

streaming algorithms. Streaming hypergraph partitioning takes

one vertex at a time from a stream of vertices, and calculates

a score for each possible placement of that vertex on each

of the partitions. The vertex is then placed on the partition

where its placement score is best, and cannot be removed any

more. Alistarh et al. [8] proposed different heuristic scoring

functions, where greedily assigning vertices to the partition

with the largest overlap of incident hyperedges is considered

best. There are two issues with the streaming approach. First,

by only taking into account a single vertex at a time and

placing it, information about the neighborhood of that vertex

is not exploited although available in the hypergraph. Second,

the complexity of the algorithm depends on the number of

partitions, as the scoring function is computed for each vertex

on each partition. For a large number of partitions, streaming

partitioning becomes slow.

A closely related problem is balanced k-way graph par-
titioning which faces similar challenges such as billion-scale

graph data and the need for fast algorithms. Multilevel graph

partitioners such as METIS [29] and ParMETIS [30] do

not scale very well. Spinner [31] is a highly scalable graph

partitioner that, like SHP, performs iterative random permu-

tations and greedy selection of the best permutation. There

is a large number of streaming graph partitioning algorithms,

such as HDRF [17], H-load [32], and ADWISE [33]. The

“neighborhood heuristic” by Zhang et al. [13] follows a

completely different approach by exploiting the graph structure

when performing partitioning decisions. The algorithm grows

a core set by successively adding neighbors of the core set to

a fringe set. However, the given heuristic can not be applied

directly to hypergraph partitioning as the calculation of scores

is way too expensive in hypergraphs (see Section III). While

hypergraphs can be transformed into bipartite graphs, graph

partitioning algorithms cannot be used to perform hypergraph



partitioning. First, the bipartite graph representations contain

one artificial vertex per hyperedge that destroys the vertex

balancing requirement of hypergraph partitioning. Second, the

(k-1) metric is ignored by graph partitioning algorithms.

In recent years, several distributed hypergraph systems

emerged that fueled the need for efficient massive hypergraph

partitioning. These systems are inspired from the area of dis-

tributed graph processing systems and apply the vertex-centric

programming model from graph processing to hypergraph

processing. For instance, HyperX [12] allows applications

to specify vertex and hyperedge programs which are then

executed iteratively by the system. Also, Mesh [34] builds

upon the popular GraphX system [35] and shows promising

performance. These systems show significant reduction of

processing latency with improved partitioning quality.

VI. CONCLUSIONS

In this paper, we propose HYPE, an effective and efficient

partitioner for real-world hypergraphs. The partitioner grows

k core sets in a sequential manner using a neighborhood

expansion algorithm with several optimizations to reduce the

search space. Due to the simplicity of the design and focus

on the hypergraph structure, HYPE is able to partition the

large Reddit hypergraph with billions of edges in less than a

day. This is the partitioning of one of the largest real-world

hypergraph reported in literature. HYPE not only improves

partitioning quality by up to 95% compared to streaming

hypergraph partitioning, but reduces runtime as well by 39%.

A promising line of future research on HYPE is to explore

how to grow the k core sets in parallel. In this scenario,

several core sets “compete” for inclusion of attractive vertices,

so the crucial questions are how to minimize the number of

“collisions” and how to deal with collisions when they happen.
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