Noname manuscript No.
(will be inserted by the editor)

Load-Balancing and Spatial Adaptivity for
Coarse-Grained Molecular Dynamics Applications

Steffen Hirschmann - Michael Lahnert -
Carolin Schober - Malte Brunn -
Miriam Mehl - Dirk Pfliiger

Received: date / Accepted: date

Manuscript. The final publication is available at Springer through:

https://dz. doi. org/ 10. 1007/ 978-3-030-13325-2:

Hirschmann, S.; Lahnert, M.; Schober, C.; Brunn, M.; Mehl, M. and Pfliger, D.: Load-
Balancing and Spatial Adaptivity for Coarse-Grained Molecular Dynamics Applications. In:
High Performance Computing in Science and Engineering ’'18. Springer, 2018.

Abstract We present our approach for a scalable implementation of coupled
soft matter simulations for inhomogeneous applications based on the simula-
tion package ESPResSo and an extended version of the adaptive grid frame-
work pdest. Our main contribution in this paper is the development and im-
plementation of a joint partitioning of two or more distinct octree-based grids
based on the concept of a finest common tree. This concept guarantees that,
on all grids, the same process is responsible for each point in space and, thus,
avoids communication of data in overlapping volumes handled in different par-
titions. We achieve up to 85 % parallel efficiency in a weak scaling setting. Our
proposed algorithms take only a small fraction of the overall runtime of grid
adaption.

1 Introduction

Many scientifically relevant systems are composed of several different subsys-
tems, each representing a different physical mechanism that is governed by
different sets of equations. In case of particles subjected to a background flow,
we need to model the fluid, the interaction of the particles, and the interac-
tion between particles and fluid. Interactions between particles may include

S. Hirschmann

University of Stuttgart, Institute for Parallel and Distributed Systems, Universitatsstr. 38,
70569 Stuttgart, Germany

Tel.: +49-(0)711-685-88223

Fax: +49-(0)711-685-78413

E-mail: steffen.hirschmann@ipvs.uni-stuttgart.de

2 Steffen Hirschmann et al.

long-range electrostatic interactions, bonding, and electrokinetic influences by
an ionic fluid. To model the complete system, each individual component in-
teracts with all the other subsystems, thus, forming a challenging coupled
problem across multiple time and length scales.

The underlying simulation package of our work is ESPResSo [18, 2], the ex-
tensible simulation package for research on soft matter systems. ESPResSo is
a flexible multi-physics simulation software for soft matter simulations. They
can have up to four different, distinct physics components that are all im-
plemented and coupled with each other: Short-range MD, long-range MD,
hydrodynamics, and electrokinetics.

A common approach to reduce the computational cost and, thus, runtime
of grid-based simulations is to use tree-structured adaptive grids for the grid-
based part of our simulations. In this context, space-filling curves (SFC) are a
well-known way for grid traversal and linearization, see, e.g., [6, 28]. Partition-
ing a simulation domain with a space-filling curve is usually done by leveraging
the linearization defined by the SFC and performing a so-called chain-on-chain
partitioning [22], i.e., basically cutting the pieces of the linearized list of grid
cells into equal pieces. This approach is found to be efficient in terms of runtime
and memory consumption and of good quality compared to other methods [20,
4]. A ready-to-use implementation of parallel algorithms for adaptive mesh re-
finement and dynamic load-balancing along a space-filling curve is provided by
the pdest framework [5, 14]. It provides scalable algorithms for grids composed
of several octrees (forest-of-octrees) based on Morton ordering [21] (Z-curve).

We provide dynamic spatial adaptivity for hydrodynamics using the lattice-
Boltzmann method as well as a way to dynamically load-balance MD sim-
ulations in ESPResSo. This is based on grids implemented in an extended
version of the p4est library [17, 16]. As the basis for the current work, we
implemented each of the four subsystems to use a p4est-based grid: Load-
balanced short-range MD [11] as well as spatially adaptive and load-balanced
long-range MD [27], the lattice-Boltzmann method (LBM) [17, 16], and elec-
trokinetics [27]. Coupling a grid-based system and a particle system with spa-
tially adaptive grids on the one hand and dynamic load-balancing on the other
hand is a challenging problem. If the respective partitions of both subsystems
are not congruent, very high communication cost is generated due to the need
to exchange data not only at partition surfaces but in overlapping volumes.
Therefore, we propose a method for jointly partitioning two octree grids.

Our algorithms support an arbitrary number of pdest instances (subsys-
tems). The only requirement is that they must share the same “macroscopic”
setup, i.e., the number and mutual arrangement of trees must be the same for
all instances. In this paper, we focus on the coupled simulation of short-range
molecular dynamics (non-charged particles) with a background flow calculated
with the lattice-Boltzmann method. These systems serve as a template for fu-
ture extensions.

Title Suppressed Due to Excessive Length 3

Fig. 1: Simulation setup and agglomeration formation over time.

2 Cabin Air Filter Simulation: an Application Example

One of our applications of interest using a fully coupled system as described
above is the simulation of particulate flow through cabin air filters. The aim
is to model the separation behavior of highly electrostatically charged dust
particles at the surface of complex filter media structures. The interaction of
dust particles due to electrostatics and other inter-particle forces has been
neglected in simulation approaches so far. Laboratory experiments, however,
suggest these interactions are likely to play a decisive role in the particle collec-
tion process of the fibrous structures. In order to investigate the agglomeration
rate of particles, we can focus on the inflow area of the filter, as illustrated in
Fig. 1. Since the greatest influence of particle-particle interactions is assumed
to be in this area, the development of particle size distributions is investigated
there omitting the filter structure. Figure 1 shows the simulation setup as well
as the formation of agglomerates for particle whose sizes and charges have
been chosen at random. All necessary steps for the parallel simulation of this
scenario with the default version of ESPResSo have been completed [25].

For a more detailed analysis, the particle charge as well as the size distribu-
tion have been adapted to more realistic values based on published data from
literature [9, 10, 15]. From these data, several samples were drawn randomly
for fixed domain sizes until the target concentration of 75 =& (laboratory test-
ing conditions) was reached.

We measured the runtime of 100 fluid time steps in a strong scaling setup.
The MD time step is 1000 times smaller than the fluid time step. All simu-
lations were performed with 16 processes per node in order to facilitate the
equal distribution of LB cells to the subdomains. Note that a time step consists
of updating the individual physical subsystems (short-range MD, long-range
MD, and hydrodynamics every 1000*" time step) as well as a coupling step.

To achieve realistic simulations in a reasonable simulation time, certain
parameters have been altered: 1. number of particles (stochastically drawn
distributions), 2. domain sizes, 3. resolution for LB grid, 4. boundary condi-
tions for LB flow field (constant initial flow field vs. fix inflow and outflow
velocities). As shown in Fig. 2 and Fig. 3, there is an optimal number of nodes
in terms of runtime for each simulation setup. The optimal number of nodes
depends on the ratio of the respective LB and MD efforts.

4 Steffen Hirschmann et al.

domain size: (64x64x64) [x]°, agrid: 0.1 [x], 34 particles domain size: (128x128x128) [x]?, agrid: 0.1 [x], 34 particles
22

n
)

Time / 10%s
©
Time / 10%s
IS
g

o
»
=)
3

28 2¢ 25 24 25 26
Number of Nodes / 1 Number of Nodes / 1

Fig. 2: Strong scaling measurement of 100 fluid time steps for different domain
sizes. A single time step consists of updating the individual subsystems (short-
range MD, long-range MD, and hydrodynamics every 1000 time step) as well
as a coupling step.

d in size: (320x320x320) [x]* id: 2.0 623 particl
omflsn size: (x320x320) [x]°, agri [x], particles input: 623 particles
- u=0.019,0=0.013
output: 550 particles
0 60 ZZ || Z0.022,0=0.017
€ g
- 53
s 35 z 4
£ o
= o
3.0 2
22 23 24 25 0000 002 004 006 008 010 042 014

Number of Nodes / 1 (Particle Weight)'/3 / [m]"/3

Fig. 3: Runtime of 100 fluid time steps for a larger domain size in a strong
scaling scenario (left). Again, a single time step consists of updating the in-
dividual subsystems (short-range MD, long-range MD, and hydrodynamics
every 1000*" time step) as well as a coupling step. The particle weight distri-
butions on the right indicate the importance of particle-particle interactions
for different rates. The mean values p and the respective standard deviations
o demonstrate the shift towards larger/heavier particles.

The resulting particle weight /size distribution, also plotted in Fig. 3, shows
the importance of taking the particle-particle interactions into account and jus-
tifies the use of the cost intensive fully coupled system. In the case of larger
particles, other collection mechanisms become effective. The increasingly ef-
fective inertial effects are presumably responsible for improved measurements
in filtration efficiency. The latter statement, however, has to be verified with
larger simulation setups as well as the additional simulation of the particulate
air flow through the filter medium. In order to keep the computational effort
for these extended scenarios feasible, we need efficient algorithms for parti-
tioning and dynamic load-balancing as well as adaptive mesh refinement (to
accurately resolve the regions around the filter structure and the particles).

Title Suppressed Due to Excessive Length 5

3 Soft Matter Simulations using ESPResSo

To understand the challenges and the implementation of coupled load-balancing,
we briefly sketch the different subsystems of ESPResSo and their current spa-
tially adaptive and/or load-balanced implementation in this section.

3.1 Molecular Dynamics

Molecular Dynamics traces the trajectories of particles. Accordingly, these
particles’ positions and velocities represent the quantities of interest. Particles
interact through inter- and intra-molecular force fields. The trajectories are
given by solving Newton’s translational and rotational equations of motion.

In this work, we focus on short-range intra-molecular interactions described
by a pair-potential U. Intra-molecular forces are derived from U via

F(Xz) = —VZ U(Xi,Xj),

J#i

where F(x;) is the force acting on particle ¢ at position x;. U is classified as
short-range if and only if

/ U(x)dx <=2 0.
lIxlI>re

In this case, linear complexity of the force calculations is achieved by cutting
off U at a constant radius r., i.e., neglecting interactions with particles at dis-
tances larger than r.. Given such a cut-off radius, the Linked-Cell method [13]
can be used which discretizes the domain with a Cartesian grid with mesh
width r.. Particles are assigned to cells of this grid such that potential inter-
action partners of each particle can be detected with O(1) cost by searching
in neighboring grid cells only.

In ESPResSo the Linked-Cell method is implemented via a so-called cell
system [18]. In parallel simulations, this grid is subdivided evenly among the
respective ranks. This subdivision is strictly Cartesian, i.e., partitions are
rectangular sub-volumes. In [11] we introduce a new cell system in a min-
imally invasive way which is able to leverage arbitrary domain decomposi-
tions. This in particular requires new communication algorithms as there is
no strict ‘upper-lower-left-right-front-back’ relation between neighboring par-
titions anymore, and as the number of neighbor partitions becomes variable.
For short-range MD, we do not port the algorithm itself to pdest but rely
on the partitioning and communication functionality of pdest to generate
information to fill ESPResSo’s internal data-structures. This implementation
supports dynamic re-partitioning of the grid and the associated numerical pay-
load (particle data). As we left the internal algorithms untouched, the grid of
our implemented Linked-Cell method remains regular.

6 Steffen Hirschmann et al.

3.2 Hydrodynamics

The molecular ensemble simulated by ESPResSo can be subject to a back-
ground flow. This background flow is realized using a thermalized D3Q19
implementation of the lattice-Boltzmann method (LBM) as described in [8,
24, 7]. The LBM simulates fluid-flow based on probability densities of vir-
tual particles with discrete velocities associated to the centers of grid cells.
Each time step consists of two steps: 1. collision, a cell-local interaction of
probability densities driving those densities towards their local equilibrium,
and 2. streaming, propagating these effects to the respective neighbor cells
according to the chosen stencil.

Extending the LBM to adaptive grids according to [23] requires that the
time step is proportional to the local spatial resolution. Thus, grid adaptivity
in space automatically induces local time step adaptivity, which is desirable
from an application point of view as it reduces the computational costs of
coarser grid regions further. The scheme transmits information between cells
of different discretization levels by embedding virtual cells in coarse quadrants
neighboring finer regions. Simply spoken, this allows to stream between fine
cells and coarser neighbors through their virtual children, whereas streaming
between coarse cells and their equally coarse neighbors happens at the coarse
level. In this sense, streaming can be decomposed into level-wise steps, each of
which only visits cells of the same refinement level. To transfer data from the
finer virtual cells to their parent cells and vice versa, virtual cells are populated
by evenly distributing the fluid mass among them, and, conversely, the fluid
mass of virtual cells is agglomerated within the real quadrant. This scheme
is used by multiple applications, e.g. [19, 26]. We have implemented it in [17,
16].

3.3 Coupling MD and LBM

ESPResSo uses a bidirectional, frictional coupling between particles and fluid
adapted from [7, 1]. The force acting on a particle ¢ that stems from the fluid
is given as
fﬂ,i = —C (Vi — u(xi, t)) + fst,ia

where v; is the particle velocity, u(x;,t) the interpolated fluid velocity at the
particle’s position and (the friction coefficient. An additional stochastic force
f:; is added to each particle. The force —fgq ; is transferred back to the fluid
cell particle 7 resides in. As regions around particles are areas of interest, we
refine the fluid grid around particles to the maximum refinement level. This
also improves the accuracy of the coupling.

4 Dynamic Adaptivity and Load-Balancing

As described above, the coupling between the different physical subsystems is
realized through a bi-directional force-coupling. Particles in the short-range

Title Suppressed Due to Excessive Length 7

Fig. 4: Two differently discretized grids which are both partitioned indepen-
dently based on their number of cells among three processes. This leads to a
volume-to-volume mapping problem.

MD reside in a regularly discretized grid—technically realized as a p4est
octree—while the fluid uses a dynamically adaptive grid. In the following,
we describe our common tree partitioning approach for the different grids. In
a first part, however, we shortly introduce the underlying mapping between
particles and fluid cells that define the technical coupling requirements.

4.1 Mapping Data Between Grids

To pass information between both grids, the regular Linked-Cell grid and
the adaptive fluid grid, the coupling method needs to find the corresponding
fluid cell (in the adaptive grid) for a given particle position. The respective
algorithm consists of two steps: 1. We calculate the cell containing the particle
in a (virtual) grid that is regularly refined according to the finest grid level
present in the adaptive fluid mesh; 2. we calculate the Morton index of the
respective cell, i.e., its position in a linearized ordering of all grid cells of this
regular grid along the Morton curve; 3. we perform a binary search in the list
of real cells of the adaptive fluid grid to determine the correct fluid cell (either
the calculated cell of the virtual regular grid or a father/grandfather/. .. cell).
If possible, we use intrinsics for calculating Morton indices, which includes
interleaving bits of integers corresponding to a three-dimensional cell index
(PDEP, parallel bit deposit on x86 Bit Manipulation Instruction Set 2).

If each of the two involved grids were partitioned (load-balanced) indepen-
dently, a particle might be handled by different processes in the Linked-Cell
partitioning than in the fluid partitioning, c.f. Fig. 4. When exchanging infor-
mation between grids in such a partitioning scheme, this inevitably results in
communication not only at partition surfaces, but also in overlapping subvol-
umes of the computational domain between processes. To avoid this kind of
volume-volume mapping, we partition both grids jointly in such a way that
volume overlap over partitions assigned to different processes is avoided and,
as a result, process-local coupling between MD and LBM is ensured. Of course,

8 Steffen Hirschmann et al.

i

M A

Fig. 5: Two arbitrary, adaptive, two-dimensional grids and their finest common
tree on the right. Colors indicate the level of a quadrant. The finest common
tree consists of all quadrants which have an equivalent quadrant in both grids
or a refined version of it. The tree view below the grid illustrates why we speak
of an “intersection”: A node in the corresponding tree exists if and only if it
exists in the two original grids (image from [3]).

AN

this comes at the cost of not partitioning the involved grids optimally in terms
of their own respective objective function (minimizing the time to solution).

4.2 Finest Common Tree and Joint Partitioning

We base the joint partitioning on the finest common tree (FCT) which is
effectively an intersection of both grids. This means that an octant in the
finest common tree is refined if it is refined in both grids, see Fig. 5. Each
of the two input grids is given by a corresponding octree. The finest common
tree is an “intersection” of both input-octrees in terms of the nodes of the
tree. A node in the finest common tree exists if and only if it exists in both
input-octrees.

The intersection between two grids is well-defined if both grids use the
same space-filling curve and the same macro-structure, i.e., the number and
position of trees in the forest of octrees. We realize this by using the same
p4est_connectivity structure for both grids, the regularly discretized grid
for short-range MD and the dynamically adaptive grid for the background
flow. The number of trees in the forest of octrees is chosen to be minimal
given a required mesh width [11].

We calculate the FCT as shown in Algorithm 1. As an initial guess for the
FCT, we copy one of the trees. On the resulting initial FCT guess, we call
pdest’s coarsening function (line 9). This performs a depth-first post-order
traversal of the FCT?. For every set of children of a tree node it calls a user-

1 The callback is called for child cells before it is called on a cell itself.

Title Suppressed Due to Excessive Length 9

defined callback function (which is defined for the FCT generation in lines 12
ff.). The callback function looks for overlapping quadrants in the other tree
by linearly traversing its quadrant list. This is valid due to the equal order in
both trees: If we have two quadrants with indices ¢ and j in tree FCT with
i < j, also the corresponding overlapping quadrants’ ids i and j’ in the other
tree fulfill +/ < j'. It is important to note that the post-order traversal induces
a non-monotony in the quadrant search: If we have a set of sibling quadrants
0,1,...,7 and one of the siblings 1, ..., 7 has been coarsened before, the index
of q[0] (line 13, 26) will be smaller than in the last call. We detect this case
and reduce the index (i') of the concurrently traversed tree (line 20-22).

Furthermore, the algorithm assumes that the partitioning of both trees is
aligned. Although this can be done manually [3], our approach is different:
After creating two p4est instances with the same connectivity as mentioned
above on the same number of processes, the partitioning of the initial (coarse
and regular) grid is aligned once. Since it is the sole purpose of our joint
partitioning scheme to conserve this property, from there on we simply never
let the partitionings diverge.

4.3 Joint Partitioning

Instead of partitioning both grid separately, we partition the finest common
tree and transfer the resulting partitioning back to both input grids. This
results in a joint partitioning in which a unique process is responsible for
every point in space on both grids, see Fig. 6.

Based on the FCT, we implement the joint partitioning scheme as shown
in Algorithm 2. Given two trees, it constructs the finest common tree. Then it
linearly combines given repartitioning weights per quadrant for the input trees
to obtain repartitioning weights for the FCT and performs the repartitioning
of the FCT using chain-on-chain partitioning [22]. After that, it determines
the partitioning of quadrants for the input trees such that these adhere the
partitioning boundaries of the finest common tree. Finally, it asks pdest to
repartition the trees using the newly determined boundaries.

Note that the finest common tree and our combined partitioning method
does not require one of the two involved grids to be regularly discretized. As
one can see in the algorithms and in Fig. 5, it works for arbitrary octree grids.
Also note that the method is not constrained to two grids. It generalizes to an
arbitrary number of grids. However, the penalty with respect to the quality of
the partitioning is assumed to get worse if more grids are involved.

5 Results
We evaluate our approach of a joint partitioning for MD simulations with back-

ground flow in a weak scaling experiment. The setup is as follows: We consider
a rectangular domain of size 2a X a X a with a given unit length a. The left

10 Steffen Hirschmann et al.

Algorithm 1 Finest common tree creation via PAEST_COARSEN. The coarsen
callback finds a corresponding quadrant in the other tree and marks a quad-
rant for coarsening if its level is higher (more refined). While P4EST_COARSEN
traverses one tree, the callback uses a global state to traverse the second
tree concurrently. For the sake of brevity we omit pointers. The function
VIRT_MORTON_IDX_OF_QUAD implements the mentioned virtual Morton index
calculation.

1: old_tree + L > Global state for concurrent tree traversal
2: qid < 0
3: old_-morton_idx < 0

: function CREATE_FCT(p4est_t t1, pdest_t ¢2)
fet < PAEST_COPY(¢1)

fet.user_pointer < ta

old_tree <+ L

old_morton_idz < 0

P4EST_COARSEN(fct, COARSEN_CALLBACK)
return fct

: end function

e IR A

_ =

12: function COARSEN_CALLBACK(p4est_t ¢1, int {ree_no, p4est_quadrant_t gs[])
13: q <+ gs[0]

14: to < t1.user_pointer

15: tree <— PAEST_TREE_ARRAY_INDEX(t2.trees, tree_no)

16: if tree # old_tree then > Reset state if prior call had different tree
17: old_tree < tree

18: qid <+ 0

19: end if

20: if VIRT_MORTON_IDX_OF_QUAD(q) < old_morton_idz then > Handle recursive calls
21: gid + max{0, gid — (PAEST_CHILDREN — 1)}

22: end if

23: old_morton_idz < VIRT_MORTON_IDX_OF_QUAD(q)

24: while qid < tree.quadrants.elem_count do

25: p < PAEST_QUADRANT_ARRAY_INDEX(tree.quadrants, qid)

26: if PAEST_-QUADRANT_OVERLAPS(p, ¢) then

27: return p.level < g.level

28: end if

20: qid « qid + 1

30: end while
31: end function

half of this domain is filled with 24,000 particles interacting via Lennard-
Jones potentials. Initially, the particles are randomly distributed across the
domain (uniform probability distribution) and we prescribe an initial flow in
z-direction. Particles and flow interact as described in Section 3.3. Particles
are transported in flow direction, which induces a dynamically changing and
non-uniform particle distribution. The lattice-Boltzmann grid is dynamically
refined around the particles, meaning that the refinement is also changed if
the particles move. We keep the difference between minimum and maximum
refinement level constant at three. Fig. 7 shows the setup and visualizes the
effect of a joint partitioning with the FCT: The LBM grid is distributed in

Title Suppressed Due to Excessive Length 11

Algorithm 2 Joint repartitioning function. Calculates the FCT and weights
for its quads, then repartitions it. Afterwards, this partitioning is trans-
ferred into partitionings for ¢; and t¢5, respectively. The inputs of this func-
tion are the trees t; and ty as well as weights for their quadrants returned
by the REPART_WEIGHTS and the factors a; and as for the linear combi-
nation of them. The function for performing the chain-on-chain partitioning
(DETERMINE_PARTITIONS) is not shown here, refer to [12, 22| for details.

1: function PARTITION_JOINTLY (a1, t1, a2, t2)
2: fet <— CREATE_FCT(t1, t2)

3: for all (Sf, $1,82) € fet.trees X ty.trees X ta.trees do > Calculate weights for FCT

4: for all q € sy.quadrants do

5: Q1 < {p € s1 : p overlaps ¢}

6: Q2 + {p € s2 : p overlaps ¢}

T w1 4= >0, ¢, REPART_-WEIGHTS(1, p)

8: w2 4 >, ¢, REPART_WEIGHTS(t1, p)

9: Wlql + arwi + agws > Combined repart weight for FCT quad
10: Nilql + |Q1] > Number of quads in ¢; for given FCT quad
11: N2 [q] « |Q2]

12: end for

13: end for

14: P <~ DETERMINE_PARTITIONS(W)

15: for all (r, P) € P do > Calculate the number of quadrants per proc. r for t1,t2
16: quadsy [r] < 3° cp N1[q]

17: quadsy [r] < 37 o p N2lq]

18: end for

19: P4EST_PARTITION_GIVEN(%1, quads,)

20: P4EST_PARTITION_GIVEN(t2, quads,)

21: end function

- 0\ _ -
\ T —— \
~] — — P~ -\ —
\\ - | \ \\]
=) = Y AN
[- ~ ~ 1 N
]]
_ N — — A
- \
(a) Adaptive grid (b) Regular grid (c) Finest common tree

Fig. 6: Intersecting both grids leads to the resulting grid on the right. This grid
is partitioned (here: based on the number of cells per process on three different
processes as indicated by the colors). The obtained partition boundaries are
projected back to the original grids.

quadratic chunks of several quadrants. For visualization purposes, we deliber-
ately reduced the FCT level.

We perform the weak scaling experiment on “Hazel Hen” at the High Per-
formance Computing Center Stuttgart (HLRS). We start with 24 processes
(1 node) and, then, scale the domain volume and the number of particles
successively up by a factor of 8. Simultaneously, we increment the minimum

12 Steffen Hirschmann et al.

Fig. 7: Setup similar to the one we use in the experiment: For visualization
purposes it has been reduced significantly. This figure shows the z-z plane at
y = 0 with particles on the left and the LBM grid. Colors indicate subdomains.
The LBM grid is refined around particles (minimum level: 4, maximum level:
7).

and maximum refinement level of the LBM grid by 1. We present two scaling
studies: 1. case 3-6: going from levels 3 (min) and 6 (max) on 24 cores over 4
(min) and 7 (max) on 192 cores to 5 (min) and 8 (max) on 1536 cores; 2. case
4-7: going from from levels 4 (min) and 7 (max) on 24 cores up to 6 (min)
and 9 (max) on 1536 cores. In each experiment, we perform 160 time steps
and average over three distinct runs. Every 16 time steps, we perform a grid
adaptation and a joint repartitioning. We choose the number of particles as
weights for MD cells and a uniform weighting for LBM cells. These weights
are linearly combined, both with a factor of one.

The resulting runtimes can be found in Fig. 8. The individual runtimes
of LBM and MD can naturally vary since we randomly generate particles.
The results show a good weak scaling. The total runtime is largely dominated
by the runtime of the LBM, so the combined scaling reflects LBM scaling.
Overall, we loose 50 % performance from 24 to 1536 processes in case 3-6 and
only 13.5 % performance in case 4-7. These losses are basically induced by the
non-perfect scaling of the subcomponents.

To assess the quality of load-balancing, we inspect the imbalance I be-
tween all processes based on the maximum and average of the runtimes rs as:
I = max{rs}/avg{rs}. For all cases, the imbalance of our jointly partitioned
simulations is between 1.0 and 1.16 for the individual components (MD and
LBM). We assess the runtime of Algorithms 1 and 2 in the context of grid
adaption. This includes dynamic refinement around particles, repartitioning,
payload migration (particles and LBM populations) and the necessary adap-
tions of ESPResSo’s internal data structures. In this context, the runtime of
Algorithms 1 and 2 for the largest test case (case 4-7 on 1536 processes, i.e.,

Title Suppressed Due to Excessive Length 13

Case 3-6 Case 4-7
103 F ! L] 103 F |
F le MD time F
In LBM time
¥ | . i
Total runtime
= =,

2 [. 10° | =
g S z
g F] gs) L]
= r]]

3 L]] F]
~ L] ~ b g
10 g 100]
24.20 2423 24.26 24 .20 2423 24.26
Number of processes Number of processes

Fig. 8: Runtimes of the two test cases case 3-6 (left) and case 4-7 (right) in a
weak scaling experiment. The z-axis shows the number of processes (24, 192,
1536) and the y-axis the runtime. Both plots also list the individual times for
MD (green) and LBM (blue).

about 120 million quadrants in the LBM grid) is with about 0.053 seconds
well below 2% of the total runtime for grid adaption.

6 Conclusion and Future Work

We have presented a scheme to jointly partition octree grids and evaluated
it for an application example, where we perform a lattice-Boltzmann flow
simulation on one (adaptive) grid and short-range molecular dynamics calcu-
lations on the other (regular Linked-Cell) grid within the simulation package
ESPResSo. Our partitioning is based on the finest common tree which is an in-
tersection of two (or more) octrees. Our algorithm naturally limits interactions
in sub-volumes of the domain to process-local interactions.

We have demonstrated that the combined repartitioning scheme scales in
a dynamic, inhomogeneous, spatially adaptive and coupled MD-LBM setting.
The runtime of the algorithm is good and so is the partitioning quality it
produces. We have also reported on one of our target applications, a real-world
cabin air filtration scenario. We plan to use the joint repartitioning scheme to
simulate this scenario dynamically adaptive in the future as reported on in
Section 2.

Using our joint repartitioning scheme in a way that minimizes the overall
runtime is subject to future work. Weighting factors in all involved grids have
to be optimized and the number of time steps between two re-balancing steps
needs to be chosen in an optimal and adaptive way. This is a traditional
problem in load-balancing. However, this problem gets a third dimension in our
case, namely the factors for combining the weights of the different subsystems.

14

Steffen Hirschmann et al.

Acknowledgements

The authors gratefully acknowledge funding provided by the German Research
Foundation (DFG) as part of the Collaborative Research Center (SFB) 716
(projects D.8 and D.9), the support of our cooperation partners within SFB
716, computing resources provided by the High Performance Computing Cen-
ter Stuttgart (HLRS), and the support by Carsten Burstedde concerning ques-
tions regarding the grid framework p4est.

References

[1]

P. Ahlrichs and B. Diinweg. “Simulation of a single polymer chain in
solution by combining lattice Boltzmann and molecular dynamics”. In:
The Journal of chemical physics 111.17 (1999), pp. 8225-8239.

A. Arnold et al. “ESPResSo 3.1: Molecular Dynamics Software for Coarse-
Grained Models”. In: Meshfree Methods for Partial Differential Equa-
tions VI. Ed. by M. Griebel and M. A. Schweitzer. Vol. 89. Lecture Notes
in Computational Science and Engineering. Springer Berlin Heidelberg,
Sept. 2012, pp. 1-23.

M. Brunn. “Coupling of Particle Simulation and Lattice Boltzmann
Background Flow on Adaptive Grids”. MA thesis. University of Stuttgart,
Germany, June 2017.

M. Buchholz. “Framework zur Parallelisierung von Molekulardynamik-
simulationen in verfahrenstechnischen Anwendungen”. PhD thesis. 2010.
C. Burstedde et al. “pdest: Scalable Algorithms for Parallel Adaptive
Mesh Refinement on Forests of Octrees”. In: SIAM Journal on Scientific
Computing 33.3 (Jan. 2011), pp. 1103-1133.

P. M. Campbell et al. “Dynamic octree load balancing using space-filling
curves”. In: Williams College Department of Computer Science, Techni-
cal Report (2003), pp. 1-26.

B. Diinweg and A. J. C. Ladd. “Lattice Boltzmann Simulations of Soft
Matter Systems”. In: (2009), pp. 89-166.

B. Diinweg et al. “Statistical mechanics of the fluctuating lattice Boltz-
mann equation”. In: Physical Review E 76.3 (Sept. 2007).

B. Forsyth et al. “Particle charge distribution measurement for com-
monly generated laboratory aerosols”. In: Aerosol Science and Technol-
ogy 28.6 (1998), pp. 489-501.

C. Helsper and W. Molter. “Determination and neutralization of the
charge produced by the dispersion of powders”. In: Journal of Aerosol
Science 18.6 (1987), pp. 877-880.

S. Hirschmann et al. “Load Balancing with p4est for Short-Range Molec-
ular Dynamics with ESPResSo”. In: ed. by S. Bassini et al. Vol. 32.
Advances in Parallel Computing. I0S Press, 2017, pp. 455-464.

Title Suppressed Due to Excessive Length 15

[12]

S. Hirschmann et al. “Towards Understanding Optimal Load-Balancing
of Heterogeneous Short-Range Molecular Dynamics”. In: Workshop on
High Performance Computing and Big Data in Molecular Engineering
2016. Hyderabad, India, Dec. 2016.

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Par-
ticles. Bristol, PA, USA: Taylor & Francis, Inc., 1988.

T. Isaac et al. “Recursive Algorithms for Distributed Forests of Octrees”.
In: STAM J. Sci. Comput. 37.5 (Jan. 2015), pp. C497-C531.

A. M. Johnston et al. “Electrical charge characteristics of dry aerosols
produced by a number of laboratory mechanical dispensers”. In: Aerosol
science and technology 6.2 (1987), pp. 115-127.

M. Lahnert et al. “Minimally-Invasive Integration of p4est in ESPResSo
for Adaptive Lattice-Boltzmann”. In: The 30th Computational Fluid Dy-
namics Symposium. Japan Society of Fluid Mechanics, 2016.

M. Lahnert et al. “Towards Lattice-Boltzmann on Dynamically Adap-
tive Grids — Minimally-Invasive Grid Exchange in ESPResSo”. In: VII
European Congress on Computational Methods in Applied Sciences and
Engineering. Ed. by M. Papadrakakis et al. ECCOMAS, June 2016.

H. J. Limbach et al. “ESPResSo — An Extensible Simulation Package for
Research on Soft Matter Systems”. In: Computer Physics Communica-
tions 174.9 (May 2006), pp. 704-727.

M. Mehl et al. “Navier-Stokes and Lattice-Boltzmann on octree-like grids
in the Peano framework”. In: International Journal for Numerical Meth-
ods in Fluids 65.1-3 (Nov. 2010), pp. 67-86.

W. F. Mitchell. “A Refinement-tree Based Partitioning Method for Dy-
namic Load Balancing with Adaptively Refined Grids”. In: J. Parallel
Distrib. Comput. 67.4 (Apr. 2007), pp. 417-429.

G. M. Morton. A computer Oriented Geodetic Data Base; and a New
Technique in File Sequencing. Tech. rep. IBM Ltd., 1966.

A. Pmar and C. Aykanat. “Fast optimal load balancing algorithms for
1D partitioning”. In: Journal of Parallel and Distributed Computing 64.8
(2004), pp. 974-996.

M. Rohde et al. “A generic, mass conservative local grid refinement tech-
nique for lattice-Boltzmann schemes”. In: International Journal for Nu-
merical Methods in Fluids 51.4 (2006), pp. 439-468.

U. D. Schiller. “Thermal fluctuations and boundary conditions in the lat-
tice Boltzmann method”. PhD thesis. Johannes Gutenberg-Universitat,
Mainz, 2008.

C. Schober et al. “Simulating The Interaction of Electrostatically Charged
Particles in the Inflow Area of Cabin Air Filters Using a Fully Coupled
System”. In: Coupled Problems in Science and Engineering VII. Ed. by
M. Papadrakakis et al. June 2017.

F. Schornbaum and U. Riide. “Massively Parallel Algorithms for the
Lattice Boltzmann Method on NonUniform Grids”. In: SIAM Journal
on Scientific Computing 38.2 (Jan. 2016), pp. C96-C126.

16 Steffen Hirschmann et al.

[27] 1. Tischler. “Implementing adaptive Electrokinetics in ESPResSo”. MA
thesis. University of Stuttgart, Germany, Apr. 2018.

[28] C. Xiaolin and M. Zeyao. “A New Scalable Parallel Method for Molec-

ular Dynamics Based on Cell-Block Data Structure”. In: Parallel and
Distributed Processing and Applications. Ed. by J. Cao et al. Vol. 3358.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,
pp. 757-764.

