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Abstract. We apply the POD-DEIM model order reduction to the propagation of the
transmembrane potential along 1D muscle fibers. This propagation is represented using
the monodomain partial differential equation. The monodomain equation, which is a
reaction-diffusion equation, is coupled through its reaction term with a set of ordinary
differential equations, which provide the ionic current across the cell membrane. Due to
the strong coupling of the transmembrane potential and ionic state variables, we reduce
them all together proposing a total reduction strategy. We compare the current strategy
with the conventional strategy of reducing the transmembrane potential. Considering
the current approach, the discrete system matrix is slightly modified to adjust for the
size. However, size of the precomputed reduced system matrix remains the same, which
means the same computational cost. The current approach appears to be four orders of
magnitude more accurate considering the equivalent number of modes on the same grid
in comparison to the conventional approach. Moreover, it shows a faster convergence in
the number of POD modes with respect to the grid refinement. Using the DEIM ap-
proximation of nonlinear functions in combination with the total reduction, the nonlinear
functions corresponding to the ionic state variables are also approximated besides the
nonlinear ionic current in the monodomain equation. For the current POD-DEIM ap-
proach, it appears that the same number of DEIM interpolation points as the number of
POD modes is the optimal choice regarding stability, accuracy and runtime.

1 Introduction

The neuro-muscular system is a complex multiscale coupled system, for which chemo-
electromechanical models are proposed as e.g. in [1, 2, 3]. Realistic simulations of such
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models are computationally extremely demanding. One challenging part of the model is
the partial differential equation (PDE) describing the propagation of the transmembrane
potentials along muscle fibers. The PDE is coupled with a set of nonlinear ordinary
differential equations (ODEs), which resemble ionic currents at the cell membrane. To
reduce the computational costs, one could apply model order reduction techniques. For
spiking neurons, the model order reduction is applied in [4], where the proper orthogonal
decomposition (POD) is used together with the proposed discrete empirical interpolation
method (DEIM) to approximate the nonlinear ionic current resulting from the Hodgkin
and Huxley (1952) model [5]. For parameter identification in cardiac electrophysiology,
the POD approach is used to build a reduced basis for the extracellular and transmem-
brane potentials [6]. The POD-DEIM approach is used in [7] to estimate the cardiac
conductivities and in [8] to study electromyographic signals for skeletal muscles.
The usual reduction approach as used in the above mentioned studies, is to consider snap-
shots of the transmembrane potential and nonlinear ionic current to build the POD bases.
However, as the transmembrane potential and ionic state variables are strongly coupled,
we focus on a reduction strategy to reduce them all together. We call this strategy and
the usual approach as total and partial reduction strategies, respectively, which we intro-
duce in section 4. In sections 2 and 3, we show the monodomain equation and its discrete
version, respectively. The introduced partial and total reduction strategies are compared
in section 5 for the POD approach. The POD-DEIM approach using the total reduction
is studied in section 6.

2 Propagation of the transmembrane potentials along muscle fibers

Considering skeletal muscles, the propagation of transmembrane potentials along mus-
cle fibers are well approximated as 1D problems using the monodomain equation. The
monodomain equation comprises the diffusion of the transmembrane potentials along 1D
muscle fibers in domain Γ ⊂ R and the microscopic reactions existing at the cell mem-
brane,

∂Vm

∂t
=

1

AmCm

(
∂
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(
σeff

∂Vm
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)
− AmIion

(
y, Vm, Istim

))
in Γ, (1a)

∂y

∂t
= G (y, Vm) , (1b)

where Vm is the transmembrane (action) potential, Cm is the capacitance of the muscle
fiber transmembrane (sarcolemma), Am is the fiber’s surface to volume ratio and σeff is
the effective conductivity. x denotes the spatial coordinate along the fiber. Iion is the
ionic current flowing over the ion-channels and -pumps. Further state variables are sum-
marized in y, e. g. the states of different ion-channels, which depend on Vm, as well. Istim

is an externally applied stimulation current due to a stimulus from the nervous system. G
summarizes the right-hand-side of all nonlinear ODEs associated with the state variables
y. Here, we consider the biophysically motivated model of Hodgkin and Huxley (1952)
[5], which is the base model to describe the ionic mechanism in the cell membrane. For
this model, y ∈ R3 represent the three gating variables related to activation/inactivation
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of potassium and sodium ion-channels. We apply homogeneous Neumann boundary con-
ditions for Vm at both ends of the 1 cm long fiber. The initial values for Vm and y are set
according to the Hodgkin and Huxley model. The stimulation current is applied at the
middle of the fiber.

3 Discrete system

For the time integration of the monodomain equation (1a), we apply the Godunov
splitting scheme, where we integrate the reaction and diffusion terms in two steps. The
reaction term is integrated together with (1b) using the explicit Euler scheme and the
diffusion terms is integrated using the implicit Euler scheme.
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V ∗
m denotes an intermediate transmembrane potential. After the spatial discretization

using the FEM method, we have the following discrete system of equations, which define
our full order model,[

v∗
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F(v
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, (3a)

v(n+1)
m = v∗

m + Av(n+1)
m , (3b)

where vm, Bu ∈ Rn and A ∈ Rn×n. y ∈ R3n, F : I 7→ Rn and G : I 7→ R3n for I ⊂ R4n.

Bu implements the stimulation current as an input term, which is adjustable linearly
with the number of nodes in the grid.

4 Reduction strategy

To study the potential for model order reduction, the singular value decomposition
(SVD) is applied on the snapshot (sample of trajectory) matrix S = [s1, ..., sns ],

S = VΣWT.

Here we follow the notation in [9], where Σ = diag(σ1, ..., σr) ∈ Rr×r, with σ1 ≥ σ2 ≥
... ≥ σr > 0. The rank of S is r ≤ min(n, ns). ns is the number of snapshots. The
snapshots are gathered every time step 0.0005 ms for 10 ms (ns = 20000) for grids of
n = 10, 20, 40, 80, 160 and 320 nodes. We consider two strategies with respect to the
snapshots. First, for a partial reduction, we choose the snapshots of the transmembrane
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potential to have the snapshot matrix,
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Second, for a total reduction, we consider the snapshots of the transmembrane potential
and the three state variables,
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Note that V, which contains the left singular vectors of S, has the dimensions n× r and
4n × r considering the partial and total reduction strategies, respectively. The singular
values are shown in Figures 1 and 2 for the two strategies. There are jumps in the singular
values, at which one can set a threshold for the reduction. A convergence with respect
to grid refinement could be observed for both strategies. We consider a threshold of 10−5

for the singular values and show the number of singular values, which are greater than
this threshold in Table 1. Number of the modes k shows to converge by grid refinement
for both strategies. The k/r ratio shows the ratio of the modes corresponding to the
transmembrane potential for both strategies. The small ratios show that the reduction is
more effective using fine grids. Using the total reduction, a faster convergence in k by the
grid refinement and much smaller ratios k/r on the same grid are achieved in comparison
to the partial reduction.

Table 1: Comparison of the singular values considering the partial and total reduction strategies for
different grids. k/r shows the ratio of the number of singular values greater than 10−5 to the rank of
snapshot matrix.

Partial reduction Total reduction

n 10 20 40 80 160 320 10 20 40 80 160 320
r 10 20 40 80 160 320 40 80 160 320 640 1280
k 8 18 38 78 120 124 32 72 121 135 157 160
k/r 0.8 0.9 0.95 0.98 0.75 0.39 0.8 0.9 0.76 0.42 0.245 0.16
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0 50 100 150 200 250 300

10−11

10−8

10−5

10−2

101

104

Number of singular values

S
in

g
u

la
r

va
lu

es

0.0 0.2 0.4 0.6 0.8 1.0

10−11

10−8

10−5

10−2

101

104

Relative number of singular values

S
in

g
u

la
r

va
lu

es

10 nodes
20 nodes
40 nodes
80 nodes
160 nodes
320 nodes

Figure 1: Singular value decomposition of the snapshot matrix containing the transmembrane potentials
using the partial reduction strategy.
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Figure 2: Singular value decomposition of the snapshot matrix containing the transmembrane potential
and three ion-channel state variables using the total reduction strategy.

5 POD-Galerkin approach

The set of left singular vectors of the snapshot matrix provides the basis for the POD
approximation of the snapshots, where the minimum L2-norm error of the approximation
is given by

ns∑
j=1

∣∣∣∣∣∣∣∣sj − k∑
i=1

(sT
j vi)vi

∣∣∣∣∣∣∣∣2
2

=
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σ2
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5



N. Emamy, P. Litty, T. Klotz, M. Mehl and O. Röhrle

We use the KerMor1 [10] library and apply the Galerkin projection of the system (3)
above. Using the partial reduction, we have the following reduced system to solve,[
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where vm = Vkṽm. The reduced transmembrane potential ṽm ∈ Rk and Vk is the

matrix of k left singular vectors of the snapshot matrix with k < r. Considering the total
reduction, we have[
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]
.

As mentioned before, by the total reduction, Vk has the dimension 4n × k. Therefore,
matrix A is modified by adding extra lines of zeros to adjust its size in the following form,

A4n×4n =


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...

... . . .
...

an1 an2 . . . ann
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0 0 . . . 0



.

However, the reduced system matrix Ã = VT
k AVk has the same dimension k×k for both

partial and total reduction strategies and could be precomputed. Bu is also modified for
the total reduction, accordingly. In Figure 3, we compare the two strategies for the errors
of the transmembrane potential vs. runtime using a grid of 80 nodes. The relative L2-norm
errors are computed with respect to the full order model (3) and averaged over the whole

1http://www.ians.uni-stuttgart.de/MoRePaS/software/kermor/
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computational time. Using the total reduction rather than the partial reduction, more
accurate solutions are achieved in smaller runtimes. Considering 30 modes for projecting
vm, the error is four orders of magnitude smaller with a runtime of approximately 24 s.
Therefore, we continue with the total reduction strategy for the following studies using
the same grid and intervals of 5 modes for vm. In Figure 4, we show the errors of vm vs.
runtime and speedup for different grids. As expected the speedups become considerable
for finer grids.
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Figure 3: Comparison of the partial and total reduction strategies. Errors of the transmembrane
potential with respect to the full order model are shown. A grid of 80 nodes is employed. Each point
on the plot resembles 5 modes for the partial and 20 modes for total reduction (5 relevant modes for the
transmembrane potential), respectively.
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Figure 4: Errors of the transmembrane potential vs. runtime and speedup with respect to the full order
model. The POD approach with the total reduction strategy is applied. A grid of 80 nodes is employed.
Each point on the plot resembles 5 modes of the transmembrane potential.

6 POD-DEIM approach

Besides the total reduction strategy in equation (6a), we apply the discrete empirical
interpolation method (DEIM) [9] to the nonlinear functions F and G,[
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=
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m (7b)

where Um,Pm ∈ R4n×m contain the projection basis and interpolation points, respectively.
The basis Um = [u1, ...,um] is found by applying POD, where the SVD is performed on
the snapshots,
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The matrix Pm = [e℘1, ..., e℘m] contains columns of the identity matrix, where indices
{℘1, ..., ℘m} are found through the DEIM algorithm with respect to the basis {u1, ...,um}.
Applying the above, the computational complexity of the nonlinear functions are inde-
pendent of n. Because the functions must be evaluated only at the m interpolation
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points, PT
m

[
F
G

]
∈ Rm×1. Therefore, the matrix vector multiplication of size (k × 4n)

times (4n × 1) in equation (6a) is replaced by (k × m) times (m × 1). The matrix
VT

k Um(PT
mUm)−1 ∈ Rk×m is precomputed. We show the errors of the transmembrane

potential vs. runtime for the POD-DEIM approach in Figure 6. A grid of 80 nodes is
used as before. Each point on the plot resembles 20 POD modes (5 relevant modes for
the transmembrane potential). m/4n = 0.4, ..., 1 is the ratio of the interpolation points.
Using the DEIM approximation, the runtime could be reduced considerably for the same
level of accuracy as expected. As one may also find out from the figure, the number
of the DEIM interpolation points should be chosen equal or greater than number of the
POD modes, m ≥ k. The optimal number would be m = k for the minimum runtime.
A smaller number of interpolation points, would mean missing parts of the basis for the
snapshots of the nonlinear functions, which are already included in the snapshots of the
solution. According to our simulations, if m < k while having less than 60 percent of the
interpolation points, the solution is not stable when adding more POD modes by increas-
ing k. If more than 60 percent of the points are used, the solution is stable but the error
is not reduced further and is dominated by the error of the DEIM approximation. Our
finding of the optimal choice is in agreement with [4], where they also found empirically
the equal number of POD and DEIM modes as the best choice.
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Figure 5: POD-DEIM approach for model order reduction. Errors of the transmembrane potential with
respect to the full order model are shown. Ratios m/4n for DEIM show the ratio of interpolation points
used for evaluating the nonlinear functions. A grid of 80 nodes is employed. Each point on the plot
resembles 20 modes (5 relevant modes for the transmembrane potential).
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7 Conclusion and outlook

Due to the strong coupling between the transmembrane potential and ionic state vari-
ables, we propose a total reduction of them all together to build the POD basis. Com-
paring to the conventional partial reduction, where only the transmembrane potential is
reduced, three ionic state variables resulting from the Hodgkin and Huxley (1952) model
are additionally considered to build the snapshot matrix. The SVD decompositions of
snapshot matrices using both reduction strategies show jumps in the singular values on
different grids. However, using finer grids, the jumps disappear, which could be used as
a sign for grid convergence. Considering a grid of 80 nodes and a threshold of 10−5 for
the singular values, only 42 percent of the modes are above the threshold using the total
reduction, while that would be 98 percent of the modes using the partial reduction. The
effectiveness of the total reduction is approved by comparing the mean relative L2-norm
errors of transmembrane potential for both strategies. Using 30 modes, the errors are
four orders of magnitude smaller for the total reduction. To efficiently evaluate the non-
linear ionic current, we use the DEIM approximation. To adjust for the total reduction,
the nonlinear functions corresponding to the state variables on the right-hand side of the
nonlinear ODEs are approximated as well. Varying the number of DEIM interpolation
points for a fixed number of POD modes could reduce the runtime for the same accuracy
as expected. However, if the number of points is smaller than the modes, the solution is
either unstable (using less than 60 percent of the points) or the errors are dominated by
the DEIM approximation error. This could be understood as missing DEIM points be-
cause the snapshots of the nonlinear functions are present in and influence the snapshots
of the solution. The equal number of DEIM points and POD modes appears to be the
optimal choice, which is stable and accurate with considerably reduced runtime.
Our overall conclusion is that the potential for model order reduction lies mainly in re-
duction of the reaction term of the monodomain equation. This should be verified by
considering more complicated models for chemical reactions such as the Shorten model
[11], which contains more than 50 state variables.
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