
Skipping Unused Events to Speed Up Rollback-Recovery in
Distributed Data-Parallel CEP

Guilherme F. Lima and Markus Endler
Department of Informatics

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

{glima,endler}@inf.puc-rio.br

Ahmad Slo, Sukanya Bhowmik, and Kurt Rothermel
Institute of Parallel and Distributed Systems

University of Stuttgart
Stuttgart, Germany

{ahmad.slo,sukanya.bhowmik,kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract—We propose two extensions for a state-of-the-art
method of rollback-recovery in distributed CEP (complex event
processing). In CEP, an operator network is used to search for
patterns in events streams. Sometimes these operators fail and
lose their state. Rollback-recovery is a method for dealing with
such state losses. The type of rollback-recovery we consider
is upstream backup, where the state of a failed operator is
recovered by replaying to it the input events that led it to that
state. These events are kept in upstream operators’ memory
buffers, which are trimmed continuously as the downstream
operator progresses. The first extension we propose saves
memory and speeds up recovery by avoiding to store and
retransmit unnecessary events. The second extension makes
the base method of upstream backup compatible with data-
parallel CEP, allowing that the windows into which operators
partition their input be processed in parallel. We evaluated
the proposed extensions through experiments that showed a
significant reduction in memory usage and recovery time at
the expense of a negligible processing overhead during normal
operation.

Keywords-complex event processing; fault-tolerance; reliabil-
ity; recovery;

I. INTRODUCTION

Complex event processing (CEP) is an efficient and
scalable method for searching for patterns in event streams.
In CEP, events are processed while they traverse an operator
graph. Each operator (node in the graph) takes primitive
events as input, looks for a given pattern, and, if any
matches are found, produces complex events as output. By
interconnecting operators, one can specify the detection
of complex patterns in a structured manner. Moreover, as
operators do not share state, the operator graph can be easily
distributed across multiple machines in an arrangement called
distributed CEP.

Distributed CEP is adopted by applications that need to
process large volumes of events as fast as possible, with
events originating from geographically dispersed sources.
Examples of such applications include financial stream anal-
ysis, intrusion detection, and sensor-network monitoring [1].

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Recently, distributed CEP has also been applied to IoT
(Internet of Things) [2] and cyber-physical systems [3].

In many applications of distributed CEP, a critical require-
ment is that the operator graph behave reliably even in the
presence of operator failures. That is, the outputs produced by
the operator graph as a whole must be consistent and correct
at all times, even if during the processing some operators of
the graph lose their state and need to be recovered.

There are two basic design options for constructing reliable
distributed CEP systems: replication and rollback-recovery.
In replication, reliability is obtained by running replicas of
the original operators in background. The replicas are fed
with the same inputs as the original operators and updates
are coordinated so that if an operator fails one of its replicas
takes over [4], [5]. Although this design minimizes recovery
time, it imposes a high resource utilization and message
overhead—every operator must be replicated and the events
send to an operator must also be streamed to the replicas.

The alternative, less resource intensive design option for
reliable distributed CEP is rollback-recovery. In rollback-
recovery, there are no replicas; if an operator fails, its state is
recovered from a previous backup. The nature of the backups
gives rise to two strategies for rollback-recovery:

1) In classical rollback-recovery, checkpoints of the whole
state of the operator are saved to persistent storage at
regular intervals. If the operator crashes, its state is
retrieved from the latest checkpoint [6].

2) In upstream backup, the input events that led the
operator to its current state are kept in the operators that
precede it in the graph (its upstream neighbors). If the
operator crashes, its state is reconstructed by replaying
to it the events saved in the upstream neighbors [7].

The main problem of classical rollback-recovery concerns
the computation of state checkpoints. The operator state can
be large and writing it to persistent storage is slow. Moreover,
it is often necessary to interrupt the operator to capture its
state, which introduces latency during normal processing.

In upstream backup, in contrast, there are no state captures;
only events and lightweight recovery data are saved, and
these are are kept in primary memory in the upstream

Accepted for publication in Proceedings of 2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT),
Zurich, Switzerland, December 17, 2018.

© 2018 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

neighbors. A drawback of upstream backup, however, is
that the saved events and recovery data must be retransmitted
during recovery, which introduces latency (but only during
recovery). Besides, the technique assumes that the operator
state can be reconstructed from its input, which is often (but
not always) the case.

In this paper, we aim at reducing the memory usage and
recovery time of the upstream backup strategy in distributed
CEP. We do so by avoiding to save and retransmit events
that play no role in reconstructing the operator state during
recovery, namely, those events that were ignored by the
operator during normal processing. Such ignored, or skipped,
events are common in CEP, especially when some of the
incoming events are noise to the pattern searched.

We adopt as a base the method for upstream backup
introduced in [8], and extend it to collect and distribute
information about skipped events. We have chosen this
particular method for two reasons. First, because it has
a general operator model which is expressive enough to
accommodate most features of modern CEP engines. Second,
because it guarantees the correct and complete recovery of
failed operators while minimizing the amount of recovery
data that is transmitted during normal processing.

One drawback of the method described in [8], however,
is that it does not support data-parallel CEP—a common
approach for parallelizing the internal processing of CEP
operators [9]. In [8], each operator splits its input into
overlapping segments, called windows, which are then
processed in sequence, one after another. As an additional
contribution, we update the base method of [8] by allowing
windows to be processed in parallel, which effectively extends
the method to support data-parallel CEP. Although this
extension has little impact on the operator model, it affects
the recovery process in nontrivial ways, as we shall detail.

To evaluate our proposal—the extension of the base method
of [8] with support for the collection and distribution of
information about skipped events and for parallel processing
of windows—we wrote a C library that implements the base
method and the proposed extensions from the point of view
of a single operator. Using this library, we run experiments
that compared the recovery cost of executions that do not use
the information about skipped events with the recovery cost
of equivalent executions that use it. The experiments indicate
that collecting and using the information about skipped events
reduces the cost of recovery (i.e., decreases the number of
events that need to be stored and replayed during recovery
and, consequently, the total recovery time) at the expense of
a negligible overhead during normal operation (less than 1%
in extra time while recovery data is computed).

The rest of this paper is organized as follows. In Section II,
we describe the operator model and the base method of
upstream backup we are using. In Section III, we present
the proposed extensions to the base method. In Section IV,
we describe the implementation and the experiments. In

Section V, we discuss some related work. Finally, in
Section VI, we present our conclusions and future work.

II. BACKGROUND

A distributed CEP system can viewed as a directed acyclic
graph where the nodes stand for operators and the edges
stand for interconnections between operators, through which
events flow (see Figure 1). Nodes with no incoming edges
are called sources and only produce events; nodes with no
outgoing edges are called sinks and only consume events. We
say that events flow from the upstream portion of the graph
(sources) to the downstream portion of the graph (sinks).

Figure 1: A typical CEP graph.

The intermediate nodes of the graph are event processors.
They search for a given pattern in the stream of events
arriving on their incoming edges and, if a match is found,
produce a corresponding event on their outgoing edges. When
we talk about an operator in the sense of event processor, we
mean an intermediate node of the graph. From the point of
view of such intermediate node, an arriving (input) event is a
primitive event and an outgoing (output) event is a complex
event. A complex event embodies a match of the search
pattern and usually carries in its payload the primitive events
that caused the match.

Besides the payload, every event has a header. The header
contains metadata that is used by the system in general, while
the payload contains data that is used only by the internal
logic of operators. The operator model we adopt (detailed
next) assumes as little as possible about this internal logic
and only access it through a well-defined interface.

A. The Operator Model

The internal structure of an operator of the CEP graph is
depicted in Figure 2. The operator consists of (i) a set of input
queues I1, I2, . . . , In, one per incoming edge, (ii) a Splitter
component, (iii) a set of pattern-matching engine instances P1,
P2, . . . , Pk, which are associated to windows w1, w2, . . . ,
wk, (iv) a Sequencer component, and (v) a set of output
queues O1, O2, . . . , Om, one per outgoing edge.

Splitter

I1
I2
...
In

Pattern matching

w1
P1

, w2
P2

, . . . , wk
Pk

Sequencer

O1

O2

...
Om

Figure 2: The internal structure of an operator.

The primitive events that arrive from upstream through the
incoming edges are stored in input queues I1, I2, . . . , In. The
input queues feed the Splitter, which partitions their contents
into overlapping windows w1, w2, . . . , wk. Each window wi

is associated with an instance Pi of the pattern-matching
engine, which searches for the same predetermined pattern
in wi and, whenever a match is found, collects the matched
(primitive) events into a new complex event and sends it
to the Sequencer. The Sequencer accumulates the complex
events it receives and pushes them into output queues O1,
O2, . . . , Om. Finally, the complex events stored in the output
queues are sent downstream through the outgoing edges.

The previous description of the inner workings of an
operator was intentionally abstract. The operator model
we are using is generic enough to accommodate different
operational policies [8]. It has some important requirements
though. First, the method used by the Splitter to merge the
input queues into an event stream and then to split this
event stream into windows must be deterministic. That is,
upon receiving the same history of events, the Splitter must
partition them into the exactly same windows.

In practice, common strategies for window partitioning
include time-based windows and count-based windows [10].
In time-based windows, the Splitter opens and closes win-
dows depending on the time of the incoming events, which
is stamped on their header. In count-based windows, the
decision to open or close a window depends on the number
of incoming events. Both strategies lead to deterministic be-
havior. Other strategies, such as pattern-sensitive windows [9],
are also possible—the only requirement is that the window
partitioning process as a whole be deterministic.

A further requirement of the operator model is that
the behavior of the pattern-matching instances Pi also
be deterministic and depend solely on the content of its
associated window wi. Thus, it must be possible to describe
each Pi as a function that given window wi produces a
sequence of complex events.

The last requirement of the operator model concerns the
Sequencer. Every event in the system carries in its header
a sequence number (SN), which is a nonnegative integer
that identifies it globally. The Sequencer is responsible for
assigning sequence numbers to events. While doing this, the
Sequencer must ensure that sequence numbers are assigned
deterministically and in a way that establishes a global (total)
order among the events flowing through the system. Any
global order is allowed. The only restriction is that the
sequence number of events that traverse a same edge of
the graph must have increasing values.

B. Acks and Savepoints

We have discussed how the input queues and output queues
of an operator are populated—the former with incoming
primitive events and the latter with complex events produced
internally. We now turn to the discussion of how events are

deleted from these queues and of how this process relates to
the creation and maintenance of upstream backups.

Primitive events are deleted from the input queues of an
operator by the Splitter when old windows are dropped. Com-
plex events, in contrast, are deleted from the output queues
only after they are explicitly released—or acknowledged—by
the downstream neighbors of the operator. That is, only after
an ack message (containing a sequence number greater than
or equal to that of the event) is received from all nodes
connected to the outgoing edges of the operator.

This deletion-on-ack policy implies that, until being ack’ed,
the incoming events of an operator are preserved in the output
queues of its predecessors. In other words, the output queues
of an operator function as in memory backups for the inputs
of its successors in the graph. Thus, as operators behave
deterministically, if a successor B of operators A1, A2, . . . ,
An loses its state, this state can be recovered by replaying
to B the events in the output queues of each Ai. This situation
is illustrated below.

A1 : �13, 25, 33, 48�
A2 : �28, 29, 41�
...

An : �30, 31, 45�

�31, 33, 41, 45, 48� : B

ack(30)←−−−−
ack(30)←−−−−

ack(30)←−−−−

Figure 3: Operator B sends an ack(30) to A1, A2, . . . , An.

In Figure 3, operator B has just dropped from its input
queues all events with sequence number ≤ 30; the only events
left are those with sequence numbers 31, 33, 41, 45, and 48.
For the sake of the example, we will consider this sequence
of events to be the consolidated state of operator B. After
reaching this state, B sends to A1, A2, . . . , An an ack(30)
message indicating that events with sequence numbers ≤ 30
are no longer needed to restore B to its last consolidated
state. These events can thus be safely deleted from the output
queues of B’s predecessors.

Now, suppose that just after the ack(30) messages are
processed by the Ai’s operator B crashes and loses its state.
Then, to restore B to its last consolidated state, all we need
to do is to replay to it the events that are saved in the output
queues of each Ai (the upstream backups). This would put
events 31, 33, 41, 45, and 48 back in the input queues of B
and, from this point on, the assumption that B’s Splitter
behaves deterministically is sufficient to ensure that the same
layout of windows that existed before the crash is recovered.

In general, the consolidated state of an operator consists
of four things:

1) The contents of its input queues.
2) The layout and contents of its windows.
3) The state of the associated pattern-matching instances.
4) The contents of its output queues.

The contents of the input queues can be recovered from
the upstream backups. The requirement of determinism,
ensures that the layout and the contents of the windows
can be recovered by rerunning the Splitter. Similarly, by
rerunning the pattern-matching instances and the Sequencer,
the complex events which make up the contents of the output
queues can also be recovered.

What cannot be recovered, however, is the sequence
numbers originally assigned by the Sequencer to the complex
events. This information, which is effectively the Sequencer
state, must be saved upstream and retransmitted back to the
operator during recovery. One way to reduce the Sequencer
state is to generate these numbers deterministically from a
given initial number. This way the Sequencer state becomes
a single number: the sequence number of the first complex
event to be generated during recovery or of the next complex
event (in case no events are generated during recovery). This
initial sequence number, call it SNseed, is sent upstream in the
ack message together with the sequence number of the latest
event to be deleted from the predecessors’ output queues, call
it SNtrim. The payload of a complete ack message consists
thus of a pair �SNseed, SNtrim�, which is called a savepoint.

We defer the description of the algorithm for com-
puting savepoints to Section III. We anticipate, however,
that such computation is triggered by the reception of
an ack from downstream. That is, when the operator re-
ceives an ack(SNseed, SNtrim) from downstream, it saves
the received SNseed, trims its output buffers using the
received SNtrim, and checks if any of the primitive events that
comprise the ack’ed complex event (SNtrim) can be dropped
from its input queues. If so, the operator computes a new
savepoint and sends it upstream in a new ack message. This
means that ack messages propagate through the system from
sinks to sources—each ack may cause the generation of
lower-order acks, which generate further acks, and so on,
until the sources are reached.

C. Additional Features

In Sections II-A and II-B, we described the core features
of the method for upstream backup of [8]. Although these
core features are sufficient for explaining our proposal, the
complete method has some other features which are required
to ensure correct and complete recovery.

We will not detail these other features, as that would be
outside the scope of this paper, but we summarize the main
ones next. So, in addition to what we have discussed, in [8]:

• A system model establishes assumptions about the
behavior of the underlying hardware and network.
Among other things, the system model postulates that
the communication channels guarantee eventual in-order
delivery of events and that a monitoring component is
responsible for identifying and recovering failed nodes.

• The Splitter component does not need to be stateless.
In [8], the authors discuss the possibility of extracting

and saving the state of the Splitter upstream together
with the state of the Sequencer.

• The SNseed of the last savepoint sent upstream is
replicated in all ancestors of the operator and not only in
its immediate predecessors. This is necessary to recover
from simultaneous failures on adjacent operators.

III. THE PROPOSAL

We proceed to describe the proposed extensions. For
simplicity, but without loss of generality, we will do so
from the point of view of a hypothetical operator, say A.
Operator A is a node of the graph with exactly one incoming
edge and one outgoing edge. The upstream neighbor of A (the
predecessor) feeds A with events and receives from A acks
concerning these events. Similarly, A feeds its downstream
neighbor (the successor) with events and receives acks from it.

APredecessor Successor
a, b, c, d

ack(SN(b))

θ

ack(SN(θ))�a, b, c, d�
�→��,�, c, d�

Figure 4: An exchange between A and its neighbors.

A typical exchange between operator A and its neighbors
is depicted in Figure 4. The exchange consists of five stages:

1) The predecessor sends to A events a, b, c, and d. These
are primitive events from A’s perspective which are
backed up in the predecessor’s output queue.

2) After receiving and processing events a, b, c, and d,
operator A finds a match and produces a new complex
event θ. Operator A then pushes event θ into its output
queue and sends θ downstream to the successor.

3) After some time, the successor acknowledges event θ,
i.e., sends to A an ack message in which SNtrim =
SN(θ). (In Figure 4, only the SNtrim component of ack
messages is shown; the SNseed component is omitted.)

4) Upon receiving this ack, operator A saves the SNseed
component, deletes θ and any previous event from the
output queue, and computes a new savepoint. That
is, A looks into the events that make up θ for the
latest primitive event that is no longer necessary, which
becomes SNtrim; then it looks into the output queue for
the first complex event produced after SNtrim, which
becomes SNseed. Operator A then puts the computed
savepoint into a new ack message and sends this
message upstream to the predecessor.

5) Finally, after the predecessor receives from A the ack,
in which SNtrim = SN(b), the predecessor deletes from
its output queue any events with sequence numbers
less than or equal to SN(b), namely, events a and b.
Thus the predecessor’s output queue, which at stage (1)
was �a, b, c, d�, is trimmed down and becomes �c, d�.

The first extension we propose makes the trimming of
output queues more aggressive. The idea is to delete not

only a prefix of the output queue, as described in stage (5)
above, but to go beyond the prefix determined by SNtrim
and delete also events that were skipped by operator A in
stage (2), while A was searching for a match. We describe
this extension in detail Section III-A.

The second extension we propose concerns the internal
operation of A during stage (2). It is not exactly an extension
but a fix—a modification in the structure and attribution
process of sequence numbers. This fix allows that the
windows into which the operator splits the incoming events be
processed in parallel. Without this fix, these windows must be
processed in series, one after another. That is, first the events
that comprise a window are accumulated until the window
is complete; then these events are fed into the associated
pattern-matching engine, which also runs to completion; and
only after that the next window is processed.

The problem here is that while it waits for the current
window to complete the operator does nothing but introduce
delay. The more efficient alternative, called data-parallel
CEP [9], is to feed each incoming event to all open windows
and corresponding pattern-matching instances at once, in
parallel. Without the proposed fix, however, such parallel
processing of windows can lead to inconsistencies during
recovery. We discuss these inconsistencies, the proposed fix,
and its implications in Section III-B.

A. Deleting Skipped Events

To collect information about skipped events we need first
to extend the pattern-matching engine interface to inform the
operator, for each event fed, whether or not the event was
used. In CEP, unused (or skipped) events are common. For
instance, suppose that the operator is searching for pattern
“abc” in the incoming events, i.e., an event of type a followed
by an event of type b followed by an event of type c, possibly
with events of other types in between. Clearly, any events
that are not of types a, b, or c, will be skipped. This strategy
of search, in which events that do not contribute to the search
are ignored, is called skip-till-next-match and is frequently
adopted in CEP [11].

One way to search for pattern “abc” following a skip-till-
next-match strategy is to use an automaton, such as the one
depicted in Figure 5. The automaton starts at state 1 and,
for each event fed, either collects the event and advances its
state, or skips the event and remains in the same state. If
state 4 (the final state) is reached, the automaton completes
the match: it gathers all events it has collected into a new
complex event and returns this complex event to the user
(i.e., the operator).

1 2 3 4
a

!a

b

!b

c

!c

Figure 5: An automaton that detects the pattern “abc”.

In Figure 5, an input event is collected by the automaton,
and hence used, if the event triggers one of the transitions
labeled a, b, or c; otherwise, if it triggers one of the transitions
labeled !a, !b, or !c, the event is skipped. Thus, for example,
if we feed the automaton with the sequence of events

a1, a2, a3, b4, a5, b6, d7, d8, b9, c10, (†)

events a1, b4, and c10 will be collected into a match and
events a2, a3, a5, b6, d7, d8, and b9 will be skipped. To inform
the operator about the skipped events, all the automaton has
to do is check which transition each event has triggered.

Besides detecting events that were skipped, the operator
also needs store their sequence numbers. We can do this
efficiently by storing not the individual numbers but ranges
(intervals) of skipped sequence numbers. These skip ranges
can be represented by an array whose elements are pairs
of numbers, where the first and second members of the
pair denote the start and end of the range. Using this
encoding, after feeding the sequence (†) to the automaton
of Figure 5, the operator will have collected as skip ranges
the array ��2, 3�, �5, 9��, which indicates that events with
sequence numbers in the intervals 2–3 and 5–9 were skipped.

The skip ranges collected by the operator are sent upstream
in the ack message as part of its payload. This means
that, with the skip extension, the savepoint becomes a
triple �SNseed, SNtrim, vskip�, where SNseed and SNtrim retain
their original meaning and vskip is the value of the skip-ranges
array at the moment the savepoint was computed. Thus, the
operator is assumed to keep a skip-ranges array at all times,
which it updates continuously, with each event skipped, and
which it clears whenever a new savepoint is computed.

Finally, when an upstream operator receives an ack with a
savepoint of the form �SNseed, SNtrim, vskip�, it saves SNseed,
uses SNtrim to delete a prefix from its output queues, and
uses vskip to delete further events from the output queues.
Note that it is completely safe to delete these further events
from the output queues. In an eventual recovery, as these
events were skipped in the original run, and as operators
behave deterministically, if retransmitted, these events would
be skipped once again, and would not affect the state of
the downstream operator. Therefore, by not storing nor
retransmitting them, we save space and time.

That said, there are cases in which an event must be
preserved even if it was skipped by the pattern-matching
engine. This is the case, for example, of an event that causes
windows to open or close inside the operator. Even when
such event does not contribute to the pattern searched, it
must be preserved to ensure that during recovery the Splitter
produces the same windows it has produced originally.

B. Processing Windows in Parallel

In this section, we describe a modification in the structure
and attribution process of sequences numbers that makes
the method of upstream backup of [8] compatible with

data-parallel CEP while preserving its properties (correct
and complete recovery). Before describing the modification,
however, we first detail the inner workings of an operator,
including the computation of savepoints, and discuss the
problem itself, i.e., why recovery does not work with the
original method when windows are processed in parallel.

1) Inside the operator: When an operator receives an
event, the first thing it does is to determine how this event
affects its window layout—which old windows it will close
(if any) and whether it will open any new windows. After
that, the operator feeds the received event to the pattern-
matching instance associated with each open window. Then
it (i) collects any complex events produced, (ii) stamps them
with a new sequence number, (iii) pushes them into the
output queue—or output queues, in case there is more than
one—and finally (iv) sends the complex events downstream.

To make matters concrete, consider the example depicted
in Figure 6 below. Operator A in the figure is searching for
the pattern “ef” in the incoming stream using count-based,
overlapping windows. The windows have a fixed size (five
events) and a fixed slide (two events). The size determines
the number of events each window will contain and the
slide determines the distance between consecutive windows.
The contents of the windows of A are depicted below the
circle that represents the operator. (Although in the figure
the windows look like event containers, this is not the case;
windows are just logical sections of the input queue.)

A
. . . , d, c, b, a . . . , θ2, θ1

a b c d e

c d e f . . .

e f . . .

w1 :

w2 :

w3 :

slide size

O : �θ2, θ1�

time

Figure 6: The inner workings of operator A.

At the start of its execution, operator A of Figure 6 has no
windows and its output queue (O) is empty. When A receives
the first incoming event, a, it opens a new window w1 and
feeds a to it, i.e., to the associated pattern-matching instance
(not shown in the figure), which skips the event. The second
incoming event, b, causes no windows to open and is fed to
all open windows (only w1 at this point) which skips it. The
third incoming event, c, causes window w2 to open and is
fed to w1 and w2, both of which skip it. This process goes
on until event e, the fifth incoming event, is received.

Upon receiving event e, operator A opens a new window,
w3, and feeds e to w1, w2, and w3, which are all open at
this point. This time e is collected by the three windows, but
no complex event is produced as the underlying matches are

incomplete. The next incoming event, f , will change that.
Upon receiving event f , operator A closes window w1

(which means that w1 will be kept in memory but will no
longer be fed with events) and feeds event f to the only
windows open at this point, w2 and w3. Both windows, w2

and w3, collect event f , complete the underlying matches,
and generate the complex events θ1 and θ2. Operator A then
stamps these complex events with newly generated sequence
numbers, pushes them onto the output queue O, and sends
them downstream. Finally, after that, operator A is ready to
process the next incoming event.

The crucial moment in the previous example is the genera-
tion and attribution of sequence numbers to complex events θ1
and θ2. Although not explicitly mentioned, in the description
of the example we already considered that windows were
being processed in parallel—when given an event, operator A
feeds it to all open windows, i.e., it does not wait for the
earlier open window to complete before processing later
windows. As long as the result is deterministic, there is
no problem with that. Processing windows in parallel is
completely safe during normal operation. The problem occurs
when a savepoint is computed, sent upstream, and then
restored during an eventual recovery, as we shall see next.

2) Computing a savepoint: Suppose that during its exe-
cution, an operator A (not the same A of Section III-B1)
receives an ack acknowledging one of its output events, θ,
and that at this point A has a window layout such as the one
depicted in Figure 7. After receiving the ack(SN(θ)) message,
operator A removes θ from the output queue together with
any events preceding it, and then computes a new savepoint.

To compute a savepoint, A has to determine SNseed,
SNtrim, and vskip. Let’s ignore SNseed and vskip for now and
concentrate on SNtrim—the sequence number of the event
that defines the prefix to be trimmed of the upstream backups.

a b c d

b c d e

c d e f

d e f g

e f g . . .

λ

last window
closed before θ

replay start

θ

Figure 7: Window layout of operator A when θ is ack’ed.

To determine SNtrim, operator A has to find the first event
that should be replayed to restore A to the point it was
immediately after event θ was generated. We call this event
the replay start. Let w be the last window closed before θ
was generated, i.e., the last window closed before the last
primitive event that comprises θ was matched. As closed
windows cannot generate complex events, everything that
happened in w, by definition, happened before θ, as w was

closed when θ was generated. So, the replay-start event is
the first event of the first window after w. And, consequently,
SNtrim is the sequence number of the event that precedes the
replay-start event.

In Figure 7, window w (the last window closed before θ)
is the second window from the top and the replay-start event
(the first event in the first window after w) is event c. So,
SNtrim (the sequence number of the event that precedes c)
is SN(b).

We call the sequence of events between the replay start
event and the last event in w the replay interval, denoted λ.
If operator A loses its state and we replay to it all events
in λ, we will get all complex events that were generated
immediately after θ and possibly some complex events that
were generated before θ, including θ itself. Events of the
first kind are those effectively recovered by the replay, as
they have not been ack’ed by A’s successors. Events of
the second kind are artifacts of the recovery process—they
are duplicates that already have been ack’ed and must be
discarded by the successors. (To do this the successors need
only to drop events with old sequence numbers.)

Back to the savepoint, once the replay start is established,
SNseed and vskip follow naturally. SNseed is the sequence
number of the first complex event that will be generated
during the replay, i.e., the sequence number of the earlier
complex event in λ occurring in the windows after w. (Note
that SNseed is always defined; in the worst case, the case in
which only θ happens to be in λ, SNseed = SN(θ).) And vskip
is the current skip-ranges array trimmed so that no range in
the array starts earlier than SNtrim.

Finally, after computing the savepoint, operator A sends
it upstream in a new ack message and then drops (deletes
from memory) window w and any earlier windows. Any
information in these windows is no longer needed—w and
any preceding windows are not going to be regenerated in
an eventual recovery (e.g., in Figure 7, a replay would start
with event c, which opens the third original window) so there
is no point in keeping them. It is also at this moment that
events are deleted from the input queue, in case they do not
belong to any of the windows kept.

3) The problem: The fact that old closed windows are
dropped while computing the savepoint implies that any
complex events produced by these windows will not be
produced during recovery. As a consequence, if the operator
uses simple increments to generate sequence numbers for
complex events (or any other method that depends on the
number of events produced), it may happen that during
recovery some complex events get stamped with the wrong
numbers. This is better explained by example.

Consider the window layout depicted in Figure 8a. In this
layout, every primitive event is matched as soon as it is feed
to any window, producing a corresponding complex event.
The sequence numbers of the complex events produced are
show in superscripts. So, in the figure, event a is fed to the

first window, is collected, and produces complex event 1.
Event b is fed to the first and second windows, is collected by
both, and produces complex events 2 and 3, and so on. Note
that in this example windows are being processed in parallel
and the sequence number of complex evens is generated
incrementally, by adding one to the sequence number of the
last complex event.

a1 b2 c4 d7

b3 c5 d8 e11

c6 d9 e12 f15

d10 e13 f16 g18

e14 f17 g19 h20

λ

dr
op

pe
d

(a)

a1:1 b2:1 c3:1 d4:1

b2:2 c3:2 d4:2 e5:2

c3:3 d4:3 e5:3 f6:3

d4:4 e5:4 f6:4 g7:4

e5:5 f6:5 g7:5 h8:5

λ

dr
op

pe
d

(b)

Figure 8: An extreme case.

Suppose that at some point the operator whose windows
are depicted in Figure 8a, call it A, receives an ack message
for the complex event 13, whose match is highlighted in the
figure. After receiving this ack, operator A computes a new
savepoint S, where SNtrim = SN(b) and SNseed = 6, drops
the first two windows, and sends S upstream.

Now suppose that A loses its state and is restored from S.
Then A’s Sequencer will be initialized with SNseed (=6) and
the primitive events c, d, e, f , and g, which were backed
up upstream, will be replayed to A. Event c, when received,
causes the first window to open and produces complex event 6.
The next event, d, causes a second window to open. When d
is fed to the first window it produces complex event 7
(=SNseed +1) and when it is fed to the second window
it produces complex event 8 (=SNseed +2). Although the
contents of these events (i.e, their matches) are correct, their
sequence numbers (7 and 8) are wrong. Both of the events
were stamped with sequence numbers that are different from
those they had before A lost its state (9 and 10).

The problem is that the complex events 7 and 8 that
existed in the first two windows in the original window
layout (Figure 8a) are not produced in the replay, as their
windows are not reconstructed. Thus, the Sequencer misses
some of the SNseed increments, and the original events 9
and 10 and others, get stamped with a different (wrong)
sequence number after recovery. The problem is subtle but
its solution is simple.

4) The fix: Instead of using nonnegative integers as
sequence numbers, we will use pairs of nonnegative integers
of the form x:y, where x is the number of the complex event
(incremented per parallel iteration) and y is the number
of the window in which the complex event was produced.
For instance, Figure 8b depicts the same window layout of
Figure 8a but with the original sequence numbers replaced
by x:y pairs.

In Figure 8b, the process of attribution of sequence
numbers can be described as follows. Event a is fed to
the first window and produces complex event 1:1. In this
case, x = 1 as this is the first iteration in which an event
was produced, and y = 1 as this is the first window. Next,
event b is fed to the first and second windows which produce
complex events 2:1 and 2:2. In both cases, x = 2, as this
is the second iteration in which an event was produced,
but y = 1 in the first event, as it was produced in the first
window, and y = 2 in the second event, as it was produced
in the second window. This process is repeated for the next
incoming events until the layout of Figure 8b is reached.

As before, if we suppose that the same complex event
(now with sequence number 5:4 and also highlighted in
Figure 8b) is ack’ed, the operator will compute exactly the
same savepoint S but with SNseed = 3:3. Next, once more,
the operator will drop the first and second windows and will
send S upstream in the payload of an ack(SN(b)) message.
What is different now is that if the operator loses its state
and savepoint S is restored, the Sequencer will be initialized
with SNseed = 3:3 and during the replay will stamp the
complex events produced with the correct pairs.

In order to see this, note that once again the replay will
consist of events c, d, e, f , and g. The first event, c, when
received by the operator, will cause the first window to
open, but this will be window number 3 as SNseed = 3:3.
Accordingly, event c’s match will be stamped with the
pair 3:3, i.e., the third (restored) iteration in which a complex
event is produced and the third window.

The next event in the replay, event d, will cause second
window (number 4) to open and will be fed to the first and
second windows, producing a complex event in both. Notice
that these two matches were numbered incorrectly in the
version of the example discussed in Section III-B4. This
time, however, as this is now the fourth iteration in which
a complex event is produced, event d’s match in the first
window will be numbered 4:3 and its match in the second
window will be numbered 4:4. Both pairs are correct—they
agree with the original pairs attributed to these matches, and
the same applies to the matches of subsequent events.

5) Pros and cons: The main advantage of the proposed
fix is that it is simple and has little impact in the operator
model of [8]. We only need to replace the scalar sequence
numbers by pairs of numbers, and to update the Splitter and
Sequencer components to work with these pairs.

One drawback of the pairs, however, is that although they
induce a total order, there is no way to tell the distance
(in number of events) between two of them. That is, from
the lexicographical order of pairs, we know that event 4:3
was produced before event 4:4 and that 4:4 was produced
before 5:3. But just by looking at the pairs it is impossible to
know how many events were produced between the pairs 4:3
and 5:3. With scalar, incremental sequence numbers this was
easy (e.g., there are four integers between 7 and 10 inclusive).

The fact that such arithmetic is meaningless for pairs makes
them unsuitable for delimiting count-based windows. (Note
that this a problem only during recovery—during normal
operation the incoming events can simply be counted.) One
way to cope with this problem is to store in the savepoint,
and consequently in upstream backups, information about
which events caused windows to open downstream, and then
use this information to split windows during recovery. This
idea can also be used to deal with more esoteric window
splitting policies.

IV. EVALUATION

To evaluate our proposal we wrote a C library, called
libgem1, which implements the operator model and the vskip
extension discussed in the previous sections. The library
is only concerned with the internal processing of a single
operator and, as such, it offers no support for networking or
coordination of distributed operators.

Libgem’s operator API consists of the following functions:
1) new (p, wsize, wslide, F) → A. Creates a new op-

erator A with pattern-matching engine p, window
size wsize, window slide wslide, and flags F . The library
uses state machines for pattern-matching and time-
based windows with fixed size and slide; one of the
flags is the skip flag, which enables or disables the
detection of skipped events.

2) push (A, e). Pushes primitive event e to operator A, i.e.,
pushes e into A’s input queue and process it, storing
any complex event produced in A’s output queue.

3) pop (A) → θ. Pops a complex event θ from operator A.
This function simply returns next complex event in A’s
output queue (or null in case the queue is empty).

4) save (A, θ) → S. Computes a savepoint S from a
previously popped event θ. This call is the effectuation
of an ack for θ. It causes A to trim its output queue,
drop any old windows, and run the algorithm for
computing savepoints of Section III-B2. The function
returns the resulting savepoint S containing a SNtrim,
SNseed, and vskip (if the skip flag is on).

5) restore (A, S). Restores A with savepoint S, i.e., resets
the operator and re-initializes it with the SNseed of S.

For the experiments, detailed next, we wrote an execution
environment that wraps a libgem operator A and simulates
exchanges between A and its neighbors, analogous to those of
Figure 6. The execution environment collects statistics about
the operator and is responsible for (i) generating random
primitive events, saving them in a simulated upstream backup,
and pushing them into operator A; (ii) popping the complex
events produced by A and simulating their acknowledgment,
i.e., triggering the generation of savepoints; and (iii) from
the savepoints, simulating the acks that are sent upstream,
i.e., updating the contents of the simulated upstream backup.

1https://gitlab.com/gflima/gem

Experiments
In each experiment we compared two runs of the same

operator executing the same failure-recovery cycle. First
with the skip flag off (not collecting/using information about
skipped events) and then with the skip flag on. By the same
failure-recovery cycle, we mean that in both runs the same
primitive events were consumed and, consequently, the same
complex events were produced. By a failure-recovery cycle,
we mean that one failure is introduced in the middle of the
processing, followed by a complete recovery.

Thus, in each run the operator would execute normally
until 50% of the input was processed. Next, the execution
environment would reset the operator and restore the last
savepoint sent upstream. Finally, the execution environment
would replay the events in the upstream backup, recovering
the operator and resuming its normal processing.

In all runs, one million input events were processed and
the pattern searched was “abcde” (skip-till-next-match) with
the possible event types varying from a to j (a total of 10
types). The windows had a fixed size of wsize = 1000 time
units and we considered two variations for the window slide,
wslide = 50 and wslide = 800 time units.

We considered five variations for the delay between the
production of a complex event and its ack: 8, 16, 32, 64,
and 128. This number, the save interval (Si), determines
the number of acks the execution environment accumulates
before triggering the computation of a savepoint. For instance,
with a save interval of 8, the execution environment waits
for the acknowledgment of eight complex events before call-
ing save (A, θ) where θ is the first of these complex events.
A lower save interval value implies more frequent save calls.

The results of the experiments are shown in Figure 9. In
the figure, each pair of bars in one of the graphics compares
a run with the skip flag off (white bar) and the same run with
the skip flag on (crossed bar). The graphics on the left-hand
side of the figure, (a), (c), (e), and (g), show the experiments
where wslide = 50, and those on the right-hand side, (b), (d),
(f), and (h), show the experiments where wslide = 800. In
all experiments, the values for pairs of runs are an average
of 50 executions with different random seeds.

As shown in (a) and (b), when saves are more frequent,
there is a significant reduction in recovery time when the
skip flag is on, regardless of the value of wslide. For instance,
with the save interval Si = 8, (a) and (b) show a reduction
of 57% and 43% in recovery time. The gain is smaller for
bigger Si’s because it takes more events and, consequently,
more time to recover from an old savepoint. The comparison
in number of events replayed is shown in (e) and (f). Again,
with the skip flag on, fewer events were replayed in general,
and even fewer when saves are more frequent.

If fewer events were replayed with the skip flag on, then
it should be the case that fewer events were kept in the
upstream backup. Indeed, this is confirmed by (g) and (h)
which show a reduction in the maximum size (in number of

(a) (b)

(c) (d)

(e) (f)

(g) (h)

slide 50 slide 800

slide 50 slide 800

slide 50 slide 800

slide 50 slide 800

skip off skip on

R
ec

ov
er

y
(%

ru
nt

im
e)

Sa
ve

s
(%

ru
nt

im
e)

E
ve

nt
s

re
pl

ay
ed

M
ax

.e
ve

nt
s

ke
pt

Save interval Save interval

0

0.1

0.2

0.3

0.4

0.5

8 16 32 64 128

-57%
-55%

-30%

-21%

-11%

0

0.1

0.2

0.3

0.4

0.5

8 16 32 64 128

-43% -50%
-42%

-21%

-10%

0

0.2

0.4

0.6

0.8

1

8 16 32 64 128

+11%

+13%

+13%
+13%

+18%

0

0.2

0.4

0.6

0.8

1

8 16 32 64 128

+110%

+100%

 +114%
+136%+158%

0

1k

2k

3k

4k

5k

8 16 32 64 128

-72%
-62%

-47%

-34%

-20%

0

1k

2k

3k

4k

5k

8 16 32 64 128

-42% -56%
-41%

-27%

-13%

0

2k

4k

6k

8k

10k

8 16 32 64 128

-27%
-30%

-30%

-19%

-11%

0

2k

4k

6k

8k

10k

8 16 32 64 128

-15%
-12%

-28%

-17%

-9%

Figure 9: Experimental results.

events) of the upstream backup with the skip flag on—fewer
events were kept, which means less memory was used.

The costs associated with this economy of space and time
are shown in (c) and (d), which depict the time the operator
spent computing savepoints in relation to the total time. As
expected, with the skip flag on, the computation of savepoints
gets more expensive, as the skip-ranges array vskip now needs
to be allocated and filled. This computation seems to get
even more expensive in (d) where wslide = 800. In this case,
the time spent computing savepoints practically doubles. This
difference, however, is just an artifact.

On average, the experiments with wslide = 50 take about 14
times more to run than those with wslide = 800; in the
experiments with wslide = 50 there are 21 windows open
simultaneously (which means 21 active pattern-matching
instances) while in those with wslide = 50 there are only 2
windows open at any given time. Hence, any time comparison
between these experiments is meaningless. The important
thing about the numbers in (c) and (d) is that they are all
below 1% of the total running time. The overhead of saves
is thus negligible independently of the value of the skip flag.

We conclude this section with an observation that might
guide future optimizations. Consider the graphics (a) and (b)
and the graphics (e) and (f). Although the difference between
the bars get smaller when Si increases, their actual difference
is almost constant, which means that when the operator
fails and is restored it skips almost the same number of
events, regardless of Si. This happens because the only events
skipped during recovery are those in vskip when the savepoint
was computed. Events that arrived after this savepoint will not
be trimmed, even though the operator might have skipped
them and is waiting for an ack to send this information
upstream. One way to improve this is to send the information
about the skipped events upstream more frequently, in a new
type of message, and not only when an ack is received from
downstream and a savepoint is computed.

V. RELATED WORK

The idea of upstream backup for recovery can be traced
back to [12] and [7]. These works use the term “repeating
recovery” to refer to approaches where the outputs of a
restored operator are the same as those of the original operator.
The base method of [8] is a method for repeating recovery.

Less strict approaches to recovery also exist. For instance,
some applications can tolerate inaccuracies in the output of
restored operators, which characterizes them as requiring only
partial fault-tolerance [13]. Methods for partial fault-tolerance
usually permit that inaccuracies be corrected later through
revoke messages [14]. However, in the scenarios we consider,
such as real-time financial analysis and intrusion detection,
it is often too costly to accommodate late corrections.

Regarding the recovery technique, an alternative to up-
stream backup is replication, which can be active or passive.
In active replication [15], the execution operators is replicated
together with the messages they exchange. This speeds up
recovery but imposes high processing and network overheads.
Passive replication [16] sacrifices recovery time to avoid the
runtime overhead, but the general problems remain the same.

The alternative to replication is checkpoint-based rollback-
recovery. Upstream backup is in fact a lightweight form of
rollback-recovery; it reduces the size of checkpoints to a
minimum, and thus avoids the costs of heavyweight state-
extraction algorithms of classical rollback-recovery [6].

Some systems support several fault-tolerance schemes,
mixing replication with rollback-recovery [17]. Any system
that uses event logs to restore operators can benefit from the
idea of skipping unused events discussed in this paper.

VI. CONCLUSION

In this paper, we discussed two extensions for a state-of-
the-art method for rollback-recovery via upstream backup in
distributed CEP. The first extension speeds up recovery and
saves memory by avoiding to store and retransmit unnecessary
events, and its cost is negligible (at least from the point of
view of the operator). The second extension adds support for

data-parallel CEP to the base method adopted in the paper,
while preserving its properties (correct & complete recovery).

We are currently investigating further ways to improve the
base method and the proposed extensions. One possible
improvement is the decoupling of the notifications for
acknowledging events from those for trimming the upstream
buffer, as discussed at the end of Section IV.

ACKNOWLEDGMENT

We thank Dr. Ruben Mayer of Technical University of
Munich for his feedback on the proposed extensions during
the development of this work in IPVS/University of Stuttgart.

REFERENCES

[1] P. Carbone, G. E. Gévay, G. Hermann, A. Katsfodimos, J. Soto,
V. Markl, and S. Haridi, “Large-scale data stream processing systems,”
in Handbook of Big Data Technologies, 2017.

[2] A. Akbar, F. Carrez, K. Moessner, J. Sancho, and J. Rico, “Context-
aware stream processing for distributed IoT applications,” in IEEE
2nd World Forum on Internet of Things, 2015.

[3] N. Mao and J. Tan, “Probabilistic event processing with negation
operators in cyber physical systems,” in IEEE Int. Conf. Cyber-Enabled
Distributed Computing and Knowledge Discovery, 2015.

[4] M. Volz, B. Koldehofe, and K. Rothermel, “Supporting strong reliabil-
ity for distributed complex event processing systems,” in 13th IEEE
Int. Conf. High Performance Computing and Communications, 2011.

[5] A. Brito, C. Fetzer, and P. Felber, “Multithreading-enabled active
replication for event stream processing operators,” in 28th IEEE Int.
Symp. Reliable Distributed Systems, 2009.

[6] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, 2002.

[7] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik, “High-availability algorithms for distributed stream
processing,” in IEEE 21st Int. Conf. Data Engineering, 2005.

[8] B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, and M. Völz,
“Rollback-recovery without checkpoints in distributed event processing
systems,” in Proc. 7th Int. Conf. Distributed Event-based Systems.
ACM, 2013.

[9] R. Mayer, B. Koldehofe, and K. Rothermel, “Predictable low-latency
event detection with parallel complex event processing,” IEEE Internet
of Things Journal, vol. 2, no. 4, 2015.

[10] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query
Language: Semantic foundations and query execution,” VLDB J.,
vol. 15, no. 2, 2006.

[11] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient
pattern matching over event streams,” in Proc. Int. Conf. Management
of Data. ACM, 2008.

[12] J.-H. Hwang, M. Balazinska, A. Rasin, M. Stonebraker, and S. Zdonik,
“A comparison of stream-oriented high availability algorithms,” Brown
University, Tech. Rep. CS-03-17, 2003.

[13] N. Bansal, R. Bhagwan, N. Jain, Y. Park, D. Turaga, and C. Venka-
tramani, “Towards optimal resource allocation in partial-fault tolerant
applications,” in IEEE 27th Conf. Computer Communications, 2008.

[14] J.-H. Hwang, S. Cha, U. Cetintemel, and S. Zdonik, “Borealis-r:
A replication-transparent stream processing system for wide-area
monitoring applications,” in Proc. Int. Conf. Management of Data.
ACM, 2008.

[15] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4,
1990.

[16] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The
primary-backup approach,” in Distributed Systems, 2nd ed. ACM
Press, 1993.

[17] A. Martin, T. Smaneoto, T. Dietze, A. Brito, and C. Fetzer, “User-
constraint and self-adaptive fault tolerance for event stream processing
systems,” in 45th IEEE/IFIP Int. Conf. Dependable Systems and
Networks, 2015.

