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Abstract—IEEE 802.1 Time-sensitive Networking (TSN) en-
ables real-time communication with deterministically bounded
network delay and jitter over standard IEEE 802.3 networks
(“Ethernet”). In particular, TSN specifies a time-triggered
scheduling mechanism in IEEE Std 802.1Qbv implemented by
switches to control when outgoing queues get access to switch
ports. Besides this time-triggered scheduling mechanism, other
scheduling mechanisms can be active in the network at the
same time including priority queuing and a credit-based shaper.
Moreover, further supporting mechanisms such as the possibility
to interrupt frames already in transmission (frame preemption)
are specified by the TSN standards. Overall, this leads to a
complex network infrastructure transporting both, real-time and
non-real-time traffic in one converged network, making it hard
to analyze the behavior of converged networks.

To facilitate the analysis of TSN networks, we present TSN-
specific extensions to the popular OMNeT++/INET framework
for network simulations in this paper including, in particular,
the time-triggered scheduling mechanism of IEEE Std 802.1Qbv.
Besides the design of the TSN simulator, we present a proof-
of-concept implementation and exemplary evaluation of TSN
networks.

Index Terms—Time-sensitive Networking (TSN), real-time
communication, network simulator, scheduling, quality of service
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I. INTRODUCTION

Cyber-physical Systems (CPS), where computers control pro-
cesses of the physical world, have become ubiquitous. Many
of these CPS are real-time systems requiring the ability to
react within given deadlines to events from the physical
world. One prominent application domain of such time-sensitive
CPS is the Industrial Internet of Things (Industry 4.0), for
instance, an emergency stop function triggered by sensors
detecting personnel within the working area of a machine,
or motion control of robots equipped with networked sensors.
Another application domain are automotive systems utilizing
various sensors such as cameras and radar to implement, for
instance, automated breaking assistants and ultimately enable
autonomous self-driving cars.

Typically CPS are distributed systems connecting sensors,
controllers, and actuators via a communication network. Con-
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sequently, to meet the real-time requirements of time-sensitive
CPS, the communication network must be able to deliver
messages (frames/packets) with bounded delay and delay
variation (jitter). Considering the safety-critical applications
mentioned above, network delay and jitter often must be
bounded deterministically, i.e., bounds must be strictly guaran-
teed (“hard” real-time communication).

Due to their high relevance, network technologies with
deterministic real-time guarantees have been available for quite
some time. In particular, so-called field buses such as SERCOS
III, EtherCAT, or PROFINET, all based on the popular Ethernet
technology, provide deterministic delay guarantees. However,
one major problem of these field bus technologies is their
mutual incompatibility. To solve this problem, the IEEE 802.1
Time-sensitive Networking (TSN) Task Group of the Institute
of Electrical and Electronics Engineers (IEEE) has specified
standards for IEEE 802.3 networks enabling deterministic real-
time communication over standard Ethernet. These standards
will enable converged networks transporting the whole range
of traffic classes—from best-effort to deterministic real-time
traffic—with a single network technology. Together with the
high network speeds supported by IEEE 802.3 networks,
these networks have the potential to largely simplify network
infrastructures and at the same time boost the performance of
networked systems by transporting large bulk data and real-time
traffic over the same network infrastructure.

At the heart of the IEEE 802.1 TSN standards are various
scheduling algorithms. In particular, the IEEE Std 802.1Qbv
specifies a time-triggered gating mechanism controlling when
traffic belonging to different traffic classes will be transmitted
by network elements (switches). Packets buffered in a queue
associated with an (egress) port can only be transmitted by
a switch if the gate of this queue is open. The opening and
closing of gates are controlled by a time schedule, which can be
configured either centrally or through a distributed mechanism.
Different algorithms for calculating gate schedules have been
proposed in the literature [1]–[4].

Besides the timed gating mechanism, further scheduling
mechanisms can be active at the same time. For instance,
priority scheduling can be used to select packets if the gates
of multiple queues belonging to the same egress port are open978-1-7281-0568-0/19/$31.00 c©2019 IEEE



at the same time according to queue priority. Moreover, a
credit-based shaper has been specified, which performs per-hop,
per-traffic class/queue traffic shaping. In addition, supporting
mechanisms such as frame preemption are specified to interrupt
lower priority frames that are already in transmission.

Overlaying the effects of all these mechanisms leads to a
complex network behavior making it hard to predict the quality
of service to be expected for each flow. For instance, one might
ask the following questions about the converged network: How
does the time-triggered gate schedule of deterministic real-time
traffic impact the performance of a lower priority best-effort
TCP flow or a multimedia flow running in addition to the timed
gating mechanism through the credit-based shaper? How do in-
evitable adverse effects such as inaccurate time synchronization
of switches and hosts impact the delay and jitter, e.g., during
failures of the master time server or in different configurations
of the time synchronization protocol (Precision Time Protocol
(PTP, IEEE Std 1588), IEEE Std 802.1AS)? Three methods can
be used to answer such questions: experiments in a real network,
formal network analysis, and network simulation. Experiments
are often limited to small topologies due to cost. Formally
analyzing the network performance using, for instance, Network
Calculus or queuing theory is very hard since it requires
detailed and accurate models of all mechanisms (timed gating
mechanism, credit-based shaping, frame-preemption, TCP, etc.),
traffic (load), etc. Moreover, frameworks such as the Network
Calculus focus on a worst case analysis, which is well-suited
for analyzing deterministic real-time traffic, but not specifically
targeting other important traffic classes such as best-effort TCP
traffic.

Therefore, we focus on network simulation in this paper.
We present a simulation framework to analyze the behavior of
converged IEEE 802.1 TSN networks called NeSTiNg (Network
Simulator for Time-Sensitive Networking). NeSTiNg is based
on the popular OMNeT++/INET discrete event simulation
framework. Therefore, it directly benefits from the features
already available in OMNeT++/INET. OMNeT++ [5] provides
a core simulation framework written in C++, and utilities such
as an Eclipse-based IDE, a tool for analyzing the recorded sim-
ulation traces, an interactive graphical visualization framework
to interact with the simulation, and its own domain-specific
language (NED) for composing simulation models. OMNeT++
is free-to-use in noncommercial settings under a GPL-like
license. Besides the tooling provided by OMNeT++ itself, there
exists an ecosystem of projects (including this one), which
provides additional simulation model components. Similar to
CoRE4INET [6], our simulation models leverage components
of the INET [7] model suite, such as simulation models of the
TCP protocol and basic switch models, and is developed with
the aim to be interoperable with INET components. Our original
contribution is to extend the existing framework with simulation
models of the most essential TSN features, namely, timed gating
mechanism (IEEE Std 802.1Qbv), frame preemption (IEEE
Std 802.1Qbu and IEEE Std 802.3br), and credit-based shaper
(IEEE Std 802.1Qav). We will show how we implemented and
integrated these mechanisms into the simulation framework.

Moreover, we will show an evaluation of the performance
characteristics and scaling behavior of NeSTiNg on a number
of proof-of-concept scenarios that illustrate the overhead of
simulating the TSN features covered by our simulation model.
The implementation of NeSTiNg is open source and available
at [8].

The rest of this paper is structured as follows. In Section II,
we give an overview of related work, before we explain the
background of our work including a short introduction to
the TSN standards in Section III. In Section IV, we present
the design and implementation of our TSN-extensions to the
OMNeT++/INET network simulation framework. Finally, we
present a proof-of-concept implementation and performance
evaluation in Section V, before we finally conclude the paper
in Section VI.

II. RELATED WORK

In the following section, we introduce research regarding the
simulation of TSN, its predecessor AVB, and further Ethernet-
based real-time extensions. Steinbach et al. [9] extended the
well-established INET framework by adding a model for Time-
Triggered Ethernet (TTEthernet). This contribution is available
as open-source in the CoRE4INET framework [6]. The authors
show that the overhead of their model is reasonable and that
the model’s behavior conforms to real hardware. However,
TTEthernet is a proprietary extension of Ethernet and non-
conformant with the IEEE 802.1 TSN standards.

Jiang et al. [10] presented a TSN simulation model for
OMNeT++ based on the CoRE4INET framework that adds
functionality of IEEE Std 802.1Qbv for traffic scheduling and
IEEE Std 802.1AS for time synchronization. To show the
validity of their model, the authors evaluated an exemplary
scenario. The simulation results of the evaluated scenario show
that scheduled traffic is unaffected by best effort transmissions.
However, the authors did not make their code freely available,
which rules out a straight-forward comparison with NeSTiNg.

Meyer et al. [11] built a module for AVB traffic shaping
augmented with time-triggered transmission to examine the
mutual influence of these mechanisms. At the time of publi-
cation, the IEEE Std 802.1Qbv was not available. Therefore,
the authors developed their own scheme for time-triggered
transmissions, which is non-conformant to the final version of
IEEE Std 802.1Qbv. Nevertheless, Meyer et al. present valuable
insights regarding the interaction of time-triggered transmission
and the Credit-based Shaper (CBS).

Heise et al. [12] proposed TSimNet, which is an OMNeT++
simulation model. TSimNet focuses on the non-time-based
components of the TSN mechanisms and, thus, does not cover
the important time-based parts of TSN.

Pahlevan et al. [13] present a TSN module for OPNET
that implements IEEE Std 802.1Qbv and IEEE Std 802.1Qci.
However, the implementation is not publicly available impeding
the usage and extension of the framework by the networking
community as well as comparison to our TSN simulator with
respect to performance and accuracy.
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Fig. 1. Gating and transmission selection architecture for one port of a switch
complying with IEEE Std 802.1Qbv. The figure shows a situation at some time
within the time interval with duration ti2, where the second gate schedule
entry is applied, i.e., only the gate for queue 6 is open. Additionally, the traffic
of queues 5 and 6 is shaped using the Credit-based Shaper.

III. TSN BACKGROUND

Before we present the technical details of our TSN simulator,
we first give an overview of the various mechanisms specified
as part of the TSN standards. Besides providing the technical
background required to understand the simulator presented in
the next section, we would like to highlight the complexity
of a TSN network making it non-trivial to predict the effects
on forwarded traffic and thereby motivating the need for a
simulator tool.

First of all, TSN does not only include a single but multiple
scheduling mechanisms (cf. Figure 1). The most important one
to ensure low and deterministic network delay bounds and
jitter is the so called Time-aware Shaper specified in IEEE Std
802.1Qbv “Enhancements for Scheduled Traffic” [14]. This
scheduler uses so-called gates to control when (FIFO) queues
can transmit buffered packets over an egress switch port. A
switch might implement up to eight queues for egress traffic per
port. Each packet is tagged with a three-bit Priority Code Point
(PCP) that is part of the VLAN tag, and the PCP is mapped to a
corresponding queue in which the forwarded frame is enqueued
during forwarding. Buffered frames from a queue can only be
transmitted over a port, if the gate associated with this queue is
open. The gate schedule, called Gate Control List, defines when
gates open and close. To this end, the clocks of all switches are
synchronized using the Precision Time Protocol (PTP, IEEE
Std 1588) [15] or the (very similar) synchronization protocol
defined in IEEE Std 802.1AS [16]. The gate schedule contains
the time duration for how long the associated set of states for the
gates is applied (cf. Figure 1, second entry: all gates are closed
except gate for queue 6). Every time the gate driver progresses
to the next entry in the gate schedule, the gates where the state
differs are opened or closed accordingly (cf. Figure 1 from
second to third entry: the gate in front of queue 6 is closed, gate
in front of queue 5 to queue 0 are opened). This operation is
cyclic, i.e., the schedule is reset to the first entry in an endless
loop after the cycle time. Similar to the paradigm of logically
centralized control known from Software-defined Networks

(SDN), the gate schedules of switches can be configured either
from a Centralized Network Controller (CNC) talking to the
switch via the SNMP (Simple Network Management Protocol),
NETCONF, or RESTCONF protocol. Algorithms to calculate
the gate schedules are out of the scope of the standard. Different
algorithms for calculating the schedules have been proposed
in the literature [1]–[4], [17], typically resulting in complex
constraint satisfaction and optimization problems to meet delay
and jitter bounds, optimize network utilization or similar. It is
important to realize that multiple gates might be open at the
same time! In that case, another scheduling algorithm decides,
which of the queues with open gates is eligible for transmitting
frames. In the simplest case, priority queuing as specified in
IEEE Std 802.1Q can be used to this end.

With the Time-aware Shaper the question comes up what
happens if the gate closes during the transmission of a frame?
This would result in frames reaching into the gate open intervals
of other queues, possibly delaying frames beyond the desired
bounds. One solution to avoid this problem altogether is to
use a length-aware scheduler, which checks before starting the
frame transmission, whether the transmission will finish before
the gate closes. However, this solution has its limitations since
the length of the frame must be known before transmission,
which is trivial for store-and-forward operation but hard for
“cut-through” switching, which starts forwarding already before
the complete frame has been received to reduce forwarding
latency. Therefore, as an alternative to length-aware scheduling,
guard bands between closing one gate and opening another gate
can be introduced.

Another scheduling mechanism that can be active in addition
to the Time-aware Shaper is the Credit-based Shaper, which
was specified already before the Time-aware Shaper for au-
dio/video bridging (AVB) in IEEE Std 802.1Qav “Forwarding
and Queuing Enhancements for Time-Sensitive Streams” [14].
The Credit-based Shaper introduces two traffic classes called
Class A and Class B, each mapped to a different egress queue
(cf. Figure 1). The Credit-based Shaper performs traffic shaping
per hop/per class, i.e., on each AVB queue, to smooth-out
bursts, which could otherwise increase the delay beyond desired
bounds. While packets wait in a queue for transmission, the
queue can build up credit with at a certain rate called the
idle slope. While frames are transmitted from a queue, the
queue’s credit is decreased with a rate called send slope. A
frame is eligible for transmission, if the credit of its queue is
non-negative regardless of the frame size. Positive queue credit
is reset to zero if no frames are waiting for transmission in this
queue. Calculating delay bounds for traffic running through
the Credit-based Shaper requires complex formal analysis [18]–
[20] and often will be higher than what is possible with the
Time-aware Shaper. Thus, for deterministic real-time traffic,
the Time-aware Shaper is better suited.

Another mechanism in TSN reducing latency for high priority
frames is Frame preemption which has been specified in
IEEE Std 802.1Qbu [14] (with corresponding extensions to
Ethernet MAC specified in IEEE Std 802.3br [21]) allowing
for interrupting and later resuming lower-priority frames that



are already in transmission by higher priority frames. Frame
preemption can interrupt frames of a minimum size of 127B
since every frame fragment must be at least 64B long.
Therefore, frame preemption reduces the worst case delay for
high priority frames caused by links blocked by lower priority
frames in transmission.

As an alternative to the Time-aware Shaper, the Asyn-
chronous Traffic Shaper (previously called “Urgency-based
Shaper”) has been proposed [22] to provide deterministic
bounds on delay. The main advantage of this scheduling
method is that it does not require synchronized clocks for
each switch, hence the name Asynchronous Traffic Shaper.
The Asynchronous Traffic Shaper performs per-hop/per-flow
shaping of traffic, in contrast to the per-hop/per-class shaping
performed by the Credit-based Shaper. Although a per-flow
shaper is required at each hop—which is cheap to implement
using basically a counter—, only a fixed number of queues,
independent of the number of flows is required. Rather than
on the number of flows, the number of queues depends on
the (fixed) number of input ports. Thus, in contrast to other
methods requiring one (expensive) queue per flow, such as the
Integrated Services (IntServ) in the Internet, the Asynchronous
Traffic Shaper can be considered scalable with respect to the
number of flows. Since this scheduling method has not been
standardized and worked out fully yet, we do not consider
it further in this paper and focus on the mature Time-aware
Shaper for deterministic guarantees in combination with other
scheduling methods, in particular, priority scheduling.

Without going into detail, we would like to point out that
further standards are relevant for TSN dealing with path
calculation (bridging along shortest and non-shortest paths),
multi-pathing for providing redundancy in case of link and
switch failures, flow filtering for dealing with senders not
conforming to their traffic specification and thus potentially
impacting the quality of service of other conformant flows,
time-synchronization, etc. Overall, this description shows that
TSN is actually a combination of various non-trivial mecha-
nisms leading to complex network behavior. This observation
motivates the need for a simulation tool assisting in the analysis
of TSN networks.

IV. TSN SIMULATOR NESTING

Next, we present the technical details of our TSN simulator
NeSTiNg. Due to space restrictions, we provide an overview
of the NeSTiNg simulator and highlight some of the technical
details. For a comprehensive description of the software
components and instructions how to use NeSTiNg, we refer
to the openly accessible repository [8]. The NeSTiNg version
referred to throughout this paper is based on OMNeT++ version
5.4.1 and INET version 3.6.4.

A. Frame Tagging

To provide frames from different traffic classes with different
Quality of Service (QoS) requirements, frames are tagged as
described by the IEEE Std 802.1Q. In NeSTiNg, frames carry
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Fig. 2. Components of a NeSTiNg TSN switch with 2 ports.

a VLAN tag including a 3-bit Priority Code Point (PCP) to
map frames to one of up to eight queues per outgoing port.

B. TSN Switch Components and Frame Processing

Next, we describe the components of a TSN switch as
implemented by NeSTiNg. Figure 2 provides an overview of
the components of a TSN-enabled switch with two ports (in
fact, the number of ports is variable). The lowerLayer compo-
nents are the boundary between the switch and the network
where the link components are connected to the switch. The
lowerLayer component is a so-called compound module, which
aggregates several subcomponents in one module. In NeSTiNg,
the lowerLayer module contains the MAC component and
components for handling the VLAN tags. The MAC component
models the transmission delay and hands over the frames to
the link component. The NeSTiNg TSN switch supports link
components provided by INET.

To explain the process of forwarding a frame by a simulated
TSN switch, we trace the flow of a frame through the switch
components from ingress to egress (cf. Figure 2). First, the
incoming frame is received by the lower layer of an ingress port.
Then, the frame is delayed by the processingDelay component
for the simulated processing delay of the switch, before the
relayUnit routes the frame to the queuing component of the
respective egress port. The queueing component encapsulates
the output port queues and the components responsible for
scheduling outgoing frames as discussed next.

The queuingFrames component (cf. Figure 3) evaluates the
PCP field of a frame, to enqueue it in one of the queues
according to the PCP value. Frames then can be retrieved by
the transmissionSelection component (cf. Figure 3 and Fig-
ure 1), which passes frames to the previously mentioned lower
layer. The transmissionSelection component is responsible for
selecting the next frame eligible for transmission. There are two
paths in the control flow of the simulation model of the switch
that can trigger the transmission selection process. In the first,
downward control flow path, information about frames ready
for transmission is propagated from the ingress components
down towards the lower layers (egress) of an output port. The
downward control flow path triggers the processing of newly



arrived frames after an idle period of an output port, thereby
avoiding inefficient active polling during those idle periods. On
this control flow path, the transmissionSelection component
continues to notify the lower layer about the arrival of a frame
ready for transmission after being activated, which in turn
starts transmitting the frame immediately after an idle period.
The second control flow path, called upward control flow path,
is activated by the lower layer of an output port during—or
more exactly, directly after—a busy period. When the lower
layer completes the transmission of a frame, it requests the
next frame from the transmissionSelection component, which
in turn polls the shapers (described below) and queues for the
next eligible frame. This upward control flow path ensures that
as long as there are frames eligible for transmission, they will
be processed.

The task of selecting the appropriate next frame is com-
plicated by the fact that two events can be scheduled for
exactly the same simulation time. It has to be ensured that
these concurrent events are resolved in the correct sequential
order to achieve the desired functional behaviour. As shown
next, even a simple strict-priority forwarding scenario is non-
trivial: Assume an initially idle output port. At time tx,
there are two events el, eh. Event el indicates the arrival
of a frame for a low-priority queue, and eh indicates the
arrival for high-priority queue. In the global event schedule,
el can be scheduled before eh, e.g., by putting el in the
schedule before eh. If the transmission selection is executed
immediately after receiving a notification about some frame
being ready for transmission (in this case triggered by el),
the lower layer erroneously forwards the frame from the
lower priority queue since the transmission selection did not
“see” the frame in the higher priority queue. Therefore, the
transmission selection has to be synchronized with respect to
all changes of the output queues and shapers before performing
the selection of the next frame, i.e., transmission selection has
to be performed only after all other events in the queue and
shapers have been processed. In NeSTiNg this is implemented
in the transmissionSelection component by scheduling a self-
message at the current simulation time. The event of this
self-message is placed after all events scheduled before the
current simulation time by OMNeT++ itself. By exploiting
the rules for the event execution order of events in the future
event list in OMNeT++, we keep the implementation simple
(especially when considering combinations of multiple TSN
mechanisms), and avoid any (error-prone) manual manipulation
of the future event list from OMNeT++. Thus, when the
transmissionSelection component receives its self-message, it
can finally select the next frame for transmission by checking
the queues and shaper states.

C. Shapers

Next, we discuss the components implementing the differ-
ent TSN scheduling mechanisms, called—consistent with the
wording of the IEEE standards—shaper components. Shapers
control whether a frame in an egress port queue has to be con-
sidered in the transmission selection. The shaper components

Fig. 3. Queueing network of egress port.

are logically located between the output port queue holding the
frames and the transmissionSelection component (cf. Figure 3).
From a software architectural perspective, the shapers provide
a queue interface for the transmissionSelection component. If
according to their current state the frames in the associated
queue component are eligible for transmission, the shaper
component transparently forwards all frame requests from
“below” and all notifications about frame arrivals from “above”.
If, however, the frames from the queue component associated
with the shaper component are not eligible for transmission, the
shaper component pretends to be an empty queue, effectively
blocking the selection (and subsequent transmission) of the
frames from the associated queue component. A state change
of the shaper from the blocking state triggers the same
notifications as if a frame were enqueued at the actual queue
component. Thus, information or requests about frames either
propagate through the chain of shaper components from or to
the actual queue, or can be blocked by a shaper component.
This allows for cascading multiple shaper components.

D. Time-aware Shaper

Next, we discuss the shaping mechanisms available in NeSTiNg
in more detail starting with the Time-aware shaper (TAS).
The functionality of the TAS is distributed among multiple
components, namely, one gate component in the data path
(symbolized by a faucet icon in Figure 3) for each queue,
one gate controller component, and one clock component per
switch. The gate controller contains the entries of the gate
schedule, which govern the state changes of the gate (open,
close) according to the simulated local switch time provided by
the clock component. To decouple the global simulation time
and the local clock time without generating several million
clock tick events per second of simulated time, we utilize the
observer pattern. The gate controller (or any switch component)
can subscribe itself as a listener at the clock component of the
switch and request to be notified at a certain time. The clock
component schedules a clock event for each request and notifies
the subscriber when the clock event occurs. The clock itself
can decide when with respect to the global simulation time the
clock event for the requested time is scheduled. This allows for
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Fig. 4. Exemplary test scenario of converged network.

implementing a clock with user-defined accuracy to evaluate
the impact of synchronization errors onto a TSN system.

E. Credit-based Shaper

The second TSN shaping mechanism implemented by NeSTiNg
is the Credit-based shaper (CBS). The CBS is modeled as
a finite state machine with three states, namely, credit stays
unchanged, increases, or is spent. For an efficient implemen-
tation by the discrete event simulator, the CBS only creates
events and updates its credit if state changes are necessary.
For example, if a frame from a queue is being transmitted,
the CBS changes to the “spending” state and precomputes
the time of the next state change considering the size of the
currently transmitted frame and the gate schedule. The CBS
then schedules an event for the time when this state change
will occur. From an outside perspective, this makes the credit
“jump” at each state transition.

V. EVALUATION

NeSTiNg targets simulations of converged networks, where
time-triggered and non-time-triggered traffic share one physical
network infrastructure and their interaction is non-trivial to
predict. Next, we will show exemplary results of simulating
such converged networks, once as a proof-of-concept, and
second to quantify the performance (runtime) of simulating
TAS in NeSTiNg.

A. Exemplary Simulation

In Figure 4, we show a very simple “converged” network
scenario with only three traffic flows, that share the bottleneck
link between switchA and switchB. All links have a bandwidth
of 1Gbit s−1 and a propagation delay of 100 ns. Each tail-
dropping queue in the switches can store at most 30 MTU-sized
frames (MTU of 1522B), and there is one queue per PCP.

The “best-effort” hosts (workstation1 and workstation2)
send MTU-sized frames with line rate to the backupServer1.
Messages from the robotController to the roboticArm form the
time-triggered flow with highest priority (PCP=7), frame size
376B and cycle time of 1000 µs.

We simulated this scenario and evaluated the end-to-end
delay for the time-triggered flow with three different switch

1This serves as a sanity check for a) strict-priority (all frames of workstation2
have to be dropped at switchA, since there are always frames from workstation1
available for transmission), and b) for CBS (ratio of sum of received packets
at backupServer from workstations ∝ ratio idle slopes).
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Fig. 5. End-to-end delays for time-triggered flow for scenario in Figure 4
with different switch configurations.

configurations, namely: TAS, frame preemption, and strict pri-
ority (cf. Figure 5). In the TAS setting, the time-triggered traffic
is assigned to a exclusive time slot. While in the remaining
scenarios all gates are open during the whole cycle. For the time
triggered traffic, the theoretical end-to-end delay dtot (taking the
inter-frame gap into account) is represented by the dotted line
in Figure 5, and dtot = 3 ·dprop +2 ·dproc +3 ·dtrans = 19.516 µs
with propagation delay dprop, transmission delay dtrans and
processing delay dproc. Without the exclusive time slot but
frame preemption enabled, the time-triggered flow suffers
from jitter and a slightly increased end-to-end-delay (up to
≈20.02 µs) caused by blocked links due to best-effort fragments
in transmission. Finally, without TAS and frame preemption,
the time-triggered traffic is heavily impacted by the best-effort
traffic. In the worst case, a time-triggered frame is being queued
for the time an MTU-sized frame requires for transmission. This
results in much larger jitter and a worst-case end-to-end-delay
of almost 32 µs.

The .ned-files and .ini-files for these scenarios can be found
in the NeSTiNg repository to reproduce these simulations.

B. Performance Evaluation of IEEE 802.1Q TAS

After presenting the basic functionality of NeSTiNg, we
continue with the performance evaluations of the TAS. To
auto-generate simulation scenarios with frame-based schedule
configurations for the performance evaluations, we use an
internal toolchain based on scheduling algorithms described
in [1], [2].

1) Setup: We executed the performance evaluation on a
machine with four Intel Xeon E7-4850 processors at a clock
speed of 2.1GHz, and total RAM of 1.057TB, running Linux
with kernel version 4.19.4. Moreover, we used Docker to
containerize and parallelize the experiments and to guarantee
a reproducible evaluation environment.

2) Parameters: In the following, we present the parameters
for our performance evaluations. In general, the scalability of a
network simulation model depends strongly on the scenario size
since each frame induces one or multiple events on each hop. To
achieve a predictable load pattern, we focus on time-triggered
traffic and use a line topology with all TSN hosts attached at the
ends of the line. For these topologies, we define the scenario
size as the product of the number of switches and the number
of flows. For each time-triggered flow, there is one dedicated
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Fig. 6. Comparison of the average runtime for baseline simulations and
NeSTiNg simulations over scenario size.

“source” host sending Ethernet frames 376B with a cycle time
of 1000 µs, to one dedicated host acting as sink receiving frames
on the opposite side of the line. Even though our toolchain
supports arbitrary, meshed networks with arbitrarily placed
hosts, all frames cross all switches in the chosen (restricted)
network topology thus inducing the maximum amount of events.
To simplify the mapping of the schedule configurations to
simulation scenarios in our tool chain, we chose the frame
size for the time-triggered flows such that the total delay per
switch is close to an integer value in micro-seconds. Switch
and link parameters are the same as in the exemplary scenario
in Section V-A.

To show the scalability of our approach and validate the
soundness of our scenario size definition, we measure the
simulation runtime of NeSTiNg with a varying number of
switches and flows. In detail, we simulate 75 scenarios with
increasing number of switches ranging from 2 to 50 with steps
size 2 for three fixed numbers of flows (5, 10, 15), and 75
scenarios with increasing number of flows ranging from 2 to
50 with step size 2 for three fixed numbers of switches (3,
6, 9). For each scenario, we performed ten experiments (i.e.
simulation runs to simulate 100 s of the scenario) with TAS
enabled and ten experiments with all TSN features disabled
(baseline experiment). The baseline experiments will be used
to quantify the overhead of simulating the TAS mechanism
using NeSTiNg.

3) Results: Next, we describe the findings of the TAS
performance evaluation of NeSTiNg.

Figure 6 depicts the runtime to simulate a scenario for 100 s.
The x-axis denotes the scenario size, which we introduced in
Section V-B2, and the y-axis denotes the runtime. Both axes
are scaled logarithmically. The diagram shows that both the
baseline and the IEEE 802.1Qbv implementation of NeSTiNg
scale linearly with the scenario size. Since each frame of every
flow requires a certain number of events and processing on
each hop of its path, we anticipated this behaviour and the
results verify our hypothesis.

However, due to the non-negligible complexity of the TSN
mechanisms in terms of required processing of events, the run-
time of the NeSTiNg simulation shows a significant overhead.
Figure 7 presents the runtime of NeSTiNg simulations relative
to the corresponding baseline simulations. The x-axis shows
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Fig. 7. Mean runtime ratio, i.e., the runtime of a NeSTiNg simulation divided
by the runtime of the corresponding baseline simulation over scenario size.
Vertical bars indicate 95% confidence intervals.
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Fig. 8. Mean ratio of memory consumption, i.e., the total memory required
by a NeSTiNg simulation divided by the total memory required for the
corresponding baseline simulation over scenario size. Vertical bars indicate
95% confidence intervals.

the scenario size and the y-axis shows the average runtime
ratio over ten runs of each parameter setting, where error bars
indicate 95% confidence intervals. We observe that the relative
overhead of NeSTiNg increases with the scenario size, due
to additional events per frame and hop. However, we note
that the NeSTiNg simulations achieved an average number of
1001 (±44 std. dev.) simulated events per millisecond runtime,
while the baseline simulations reached only 292 (±49 std. dev.)
events per millisecond.

Figure 8 shows the maximal memory consumption of
NeSTiNg simulations relative to that of the corresponding
baseline simulations. The x-axis shows the scenario size and the
y-axis shows the average memory consumption ratio over ten
runs of each parameter setting, where error bars indicate 95%
confidence intervals. We observe that the memory overhead
of NeSTiNg is insignificant, and increases only sightly with
the scenario size. On average, NeSTiNg simulations required
75.1 MB (±2.1 MB std. dev.) total memory, while the baseline
simulations required 74.6 MB (±1.8 MB std. dev.). Memory
consumption of the NeSTiNg process was sampled with 1Hz
for each experiment.

In conclusion, the presented performance evaluation shows
that simulating TAS with NeSTiNg comes with a non-negligible
runtime overhead due to processing the additional events
required for the simulation of the TSN features, but only
minimal increment in memory footprint. The results of the
performance evaluation unveil a linear complexity with regard



Fig. 9. Simplified control flow with frame preemption.

to the scenario size and thereby demonstrate that the simulation
of larger networks is possible within reasonable time.

VI. SUMMARY AND FUTURE WORK

In this paper, we presented NeSTiNg, a network simulator
for converged IEEE TSN networks. Our contributions include
simulation model components for time-aware and credit-based
shaping. NeSTiNg also provides a framework for switch-
local clocks that can be used to simulate switches without
perfectly synchronized clocks, as well as VLAN tagging, thus,
supporting—as a by-product—strict-priority scheduling.

Due to space restrictions, we focused on the time-triggered
TSN scheduling mechanism in this paper. However, NeSTiNg
also provides simulation models for further TSN features, in
particular, frame preemption. Frame preemption significantly
complicates the lower layers, which now have to be able to
handle two frames, an express frame and a preemptable frame,
resulting in a control flow with possibly several branches and
loops (cf. Figure 9). Any scheduled event regarding the future
transmission of a preemptable frame can become meaningless
when frame preemption occurs, but at the time of scheduling
these events, we do not know whether a frame in trasmission
will be preempted. However, the original design of the MAC
in INET strongly exploits the assumption that once a frame
has been forwarded to the lower layers, it will be transmitted
completely. In NeSTiNg, we work around this problem by
introducing a secondary “meta-data” message type that is sent
over the link component between the two MAC components
of the connected switch ports, to retain compatibility with
NeSTiNg links. We leave a detailed description of how to
work around this problem to future work.

Moreover, we also plan to integrate further TSN mechanisms
in the future such as the asynchronous traffic shaper and clock
synchronization protocols, as well as interfaces to application-
layer functions, for instance, to simulate cyber-physical systems,
in particular, networked control systems.

ACKNOWLEDGMENTS

We thank all contributors to the NeSTiNg project: Robin
Finkbeiner, Alexander Glavackij, Urim Limani, Adriaan Nieß,
Patrick Schneefuss, Nicklas Segedi and Michel Weitbrecht.

This work was supported by the German Research Founda-
tion (DFG) under the research grant RO 1086/20-1 “Integrated
Controller Design Methods and Communication Services for
Networked Control Systems (NCS)”.

REFERENCES

[1] F. Dürr and N. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. 24th Int. Conf. Real-Time Networks
and Systems (RTNS), Brest, France, Oct. 2016, best presentation award.

[2] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for TSN with ILP,” in Proc. 24th Int. Conf.
Embedded and Real-Time Computing Systems and Applications (RTCSA),
Hakodate, Japan, 2018, pp. 136–146.

[3] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “ILP-based joint routing and scheduling for time-triggered
networks,” in Proc. 25th Int. Conf. Real-Time Networks and Systems
(RTNS), Grenoble, France, Oct. 2017.
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