
Combining it all: Cost minimal and low-latency
stream processing across distributed heterogeneous

infrastructures
Henriette Röger

University of Stuttgart
roegerhe@ipvs.uni-stuttgart.de

Sukanya Bhowmik
University of Stuttgart

bhowmisa@ipvs.uni-stuttgart.de

Kurt Rothermel
University of Stuttgart

kurt.rothermel@ipvs.uni-stuttgart.de

Abstract
Controlmechanisms of stream processing applications (SPAs)
that ensure latency bounds at minimal runtime cost mostly
target a specific infrastructure, e.g., homogeneous nodes.
With the growing popularity of the Internet of Things, fog,
and edge computing, SPAs are more often distributed on het-
erogeneous infrastructures, triggering the need for a holis-
tic SPA-control that still considers heterogeneity. We there-
fore combine individual control mechanisms via the latency-
distribution problem that seeks to distribute latency budgets
to individually managed components of distributed SPAs
for a lightweight yet effective end-to-end control. To this
end, we introduce a hierarchical control architecture, give
a formal definition of the latency-distribution problem, and
provide both an ILP formulation to find an optimal solution
as well as a heuristic approach, thereby enabling the combi-
nation of individual control mechanisms into one SPA while
ensuring global cost minimality. Our evaluations show that
both solutions are effective—while the heuristic approach is
only slightly more costly than the optimal ILP solution, it
significantly reduces runtime and communication overhead.

CCS Concepts • Information systems → Stream man-
agement.

Keywords Stream Processing, Multi-provider Infrastruc-
ture, Fog Computing
ACM Reference Format:
Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel. 2019.
Combining it all: Cost minimal and low-latency stream processing
across distributed heterogeneous infrastructures. In Proceedings
of Middleware ’19: Middleware ’19: 20th International Middleware
Conference (Middleware ’19). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3361525.3361551

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’19, December 8–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7009-7/19/12. . . $15.00
https://doi.org/10.1145/3361525.3361551

1 Introduction
The Internet of Things (IoT) requires continuous, timely
processing of high volumes of data. Stream processing ap-
plications (SPAs) evaluate streams of data on the fly, thus
enabling reactions to events and information gain with low
latency [7, 12, 13, 18]. Latency-bounded SPAs process input
streams within limited time, i.e., they are limited in the al-
lowed end-to-end latency. To achieve this, they require a
precise resource management to control queuing and com-
munication latencies and at the same time keep the resource
cost minimal. Due to the long running nature of SPAs with
changing workload, the resource management needs to con-
tinuously find the best solution to provide the resources
necessary to keep the latency bound and at the same time
minimize resource cost by adapting the system’s configura-
tion accordingly. Particularly, for distributed SPAs that run
on multiple nodes, this resource management requires SPA-
wide coordination. Today, a variety of proactive elasticity
solutions is available. They autonomously configure SPAs to
keep latency bounds while minimizing the resource costs
[3–7, 9, 13, 17–19, 28]. The authors of [23] give a detailed
overview and classification of these elasticity solutions. Con-
figuring the SPA comprises parallelization [19], placement
[7] and adaptation of system parameters, e.g., buffer sizes
[18]. In recent years, fog and edge computing have become a
popular extension of cloud computing [2, 27]. Applications
on fog and edge layers process data closer to the sources,
which leads to lower communication latencies, more context
related processing, and less bandwidth utilization than in
cloud applications. Still, cloud computing provides high pro-
cessing power and resource flexibility. To jointly benefit from
low communication latencies, less network load, and privacy
in edge and fog as well as computing power and flexibility
in the cloud, SPAs are commonly deployed across edge, fog,
and cloud, thus executing on a heterogeneous infrastructure.
Cloud, fog, and edge nodes in such an infrastructure can
further consist of individually controlled components and
sublayers, hosted by different providers [1]. Situations that
require SPAs with multiple providers include geographical
distribution, legal or privacy constraints, and heterogeneous
systems requirements [22]. Particularly, in IoT, we see high
potential for these situations and thus expect modern SPAs

https://doi.org/10.1145/3361525.3361551
https://doi.org/10.1145/3361525.3361551
Henriette Röger쐀
This is the authors’ version of the work. It is posted here for your personal use only. Not for redistribution.
The definitive version will be published in the Proceedings of ACM Middleware 2019.�

Middleware ’19, December 8–13, 2019, Davis, CA, USA Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel

to be deployed across multiple providers and individually
controlled components.
We name an SPA that fulfills the three properties — dis-

tributed, hosted on heterogeneous nodes, and infrastructure
managed by multiple providers — DHM-SPA. Examples are
world-wide web-applications, smart-grid applications moni-
toring different areas, digitalized factories, digital production
control, and health-care applications.
Managing the end-to-end latency of DHM-SPAs at mini-

mal resource cost is particularly challenging because the so-
lution needs to consider different processing properties due
to heterogeneity as well as different pricing models and man-
ageability due to multiple providers. To manage a DHM-SPA,
a single-model, i.e., one-size-fits-all approach, falls too short
and might become a limitation because it cannot capture
the complexity of the DHM-SPA. It oversimplifies, has high
information requirements, or leads to non-optimal configu-
rations. Furthermore, sometimes it is not possible to directly
influence the configuration, e.g., if parts of the DHM-SPA
are managed by different providers. However, ignoring het-
erogeneity and distribution can lead to a situation where
the end-to-end latency-control is either not as effective as it
could be or the cost is not optimal.

For DHM-SPAs, we therefore see the need to have a mech-
anism that combines different elasticity solutions that each
optimally manage a part of the SPA. This enables a cost op-
timal latency compliant SPA-deployment while using the
most eligible elasticity solution for each part of the SPA.
The mechanism should ensure that, despite the individually
managed components, the overall resource cost is minimal
and the DHM-SPA maintains its end-to-end latency bound.
So far, there is no integrated approach that considers the
combination of different elasticity solutions in one SPA in a
manner that minimizes global resource consumption, keeps
the end-to-end latency bound, and enables each part of the
SPA to be configured by the best-fitted elasticity approach.
Hence, in this paper, we tackle the problem of how to

configure a latency-bounded DHM-SPA that is distributed
over a heterogeneous infrastructure while combining mul-
tiple elasticity solutions so that the overall resource cost is
minimized. A solution to this problem needs to fulfil the
following requirements:

• Work with highly distributed infrastructures, hence
enable as much local control as possible to enable fast
elasticity and reduce communication overheads.
• Handle different kinds of elasticity solutions to align
with the heterogeneous infrastructure.
• Support even black-box elasticity solutions, e.g., when
a cloud provider does not exhibit its elasticity mech-
anism but provides cost and latency by Service Level
Agreements (SLAs) only.

In this paper, we solve this configuration problem and thereby
make the following contributions:

1. We provide an integrated approach to ensure end-to-
end latency compliance for DHM-SPAs at minimal re-
source cost. The approach combines multiple elasticity
solutions across a heterogeneous infrastructure.

2. We introduce a hierarchical architecture to optimally
configure DHM-SPAs at runtime.

3. From the configuration problem, we derive the latency-
distribution problem that relies on a divide-and-
conquer mechanism.

4. We provide two effective solutions for the latency-
distribution problem.

5. We show the effectiveness of our proposed solutions
through extensive evaluations on various cost mod-
els and compare them with another state-of-the-art
algorithm for homogeneous systems.

2 Latency-bounded Stream Processing
Applications

Our approach, described in Sections 3, 4, and 5, shows how
to optimally combine different mechanisms and models to
provide latency compliant and cost minimal DHM-SPAs. This
section gives the necessary background of commonly used
mechanisms to control latency in an SPA and of the models
that enable cost optimal use of these mechanisms.

2.1 Mechanisms to influence the latency of an SPA
SPAs consist of an operator graph. The operator graph is
a directed acyclic graph where the nodes are the operators
processing the input data streams and the edges are the
communication channels that connect the operators and
define the flow of information. Each operator usually has
an input queue where new data items arrive and wait for
processing. In a distributed SPA, operators run on different
processing nodes, connected via network channels.
An SPA is latency-bounded if there is a given time limit

between the point in time a data item arrives at the system,
e.g., the input queue of the first operator, until it is available
for the consumer, e.g., by placing it into the consumers input
queue. If an operator requires multiple data items, in partic-
ular, for the detection of complex events in Complex Event
Processing (CEP), the time limit is set from when the last
data item of the pattern arrives in at the SPA until the output
is available for the consumer.
Latency comes from queuing, processing, and communi-

cation efforts. To achieve a given latency bound, we can
influence the SPA’s configuration — parallelism, placement
and system parameters.
Parallelism enables high throughput and low queuing

latency. Most common is data parallelism that replicates
instances of an operator onto multiple parallel processing
nodes. Each instance processes a portion of the total data
each. When using data parallelism, splitting the input stream,

Combining it all Middleware ’19, December 8–13, 2019, Davis, CA, USA

Figure 1. Smaller latency bounds need more instances.

management of distributed state and merging of results in-
duce overhead. This overhead might diminish the positive
effect on latency that parallelism shall achieve [26].

Placement assigns operator instances to processing nodes.
An evenly balanced placement avoids overloaded nodes that
have high queuing latencies. Further, placing operators on
faster processing nodes reduces processing latency. To in-
fluence communication latency, a good placement places
neighboring operators within a short distance. The degree
to which placement reduces latency is limited, in particular,
by the available infrastructure.

System parameters that influence latency are, e.g., acknowl-
edgment frequencies, logging, and the output buffer size. The
latter defines how many data items an operator assembles
into one network package before it forwards them down-
stream [18]. A smaller output buffer leads to more network
packages but small queuing latencies.

To sum up, parallelism, placement, and system parameters
are techniques to control an SPA’s latency. Lower latency
comes with higher resource requirements, e.g., more or faster
processing nodes to reduce queuing and processing latency,
and vice versa. Finally, the resource requirements grow dis-
proportionately with a latency decrease due to an increased
overhead for data splitting and merging. A theoretical expla-
nation can be given with queuing theory. It is depicted in
Figure 1. It shows the number of instances (y-axis) given a
latency bound (x-axis). For the plot, we use Equation 1 that
is based on Littles Law for M/M/1 queues. We calculate the
number of instances c with c = ⌈λis/λr equired ⌉ with an expo-
nentially distributed arrival rate λis of 100 data items/s and a
processing rate µ of 1 item/s. λr equired is the average arrival
rate per instance that would ensure processing within the
given latency bound. We see that the lower the latency, the
higher is the resource requirements for a further reduction.

λr equired = −1/latency + µ (1)

2.2 Model-Types for predictive Latency-bound
management

While the former subsection described the mechanisms to
influence an SPA’s latency, in order to find cost-optimal and
latency compliant SPA-configurations, we need to determine
parameter values of these mechanisms. Example parameters

are for parallelism a parallelization degree, for placement an
operator-to-node assignment, and for system parameters an
output batch size. A configuration of an SPA is then defined
by these parameter values. We can usemodels that determine
the necessary parameter values given information about the
system such as workloads and processing rates. A model is
the core of an elasticity solution and enables us to proactively
calculate the parameter values for optimal configurations as
opposed to, e.g., threshold-based configurations that moni-
tor the system’s workload and react to it, e.g., by adding a
machine at an observed node-overload.
For an intuition of these models, in the following, we

describe examples from literature. We focus on those models
that can be used to calculate parameter values from system
information such asworkload and processing rates to achieve
cost minimal, latency-bounded stream processing. However,
they differ in whether they can be used to manage the latency
of homogeneous or also of heterogeneous infrastructures as
well as of single operators or multiple operators at once.

Models for homogeneous infrastructures assume that
each processing node provides the same processing capacity.
For example, a queuing-theory based model determines the
number of service stations, i.e., the degree of parallelism,
given the same service rate µ for each node.
In heterogeneous infrastructures, the model needs to

distinguish the differences in processing capacities. The fol-
lowing example shows, why the model in this case also in-
corporates a placement problem. Consider a single, small
processing node n. Now, the available latency decreases and
requires lower queuing times, hence higher processing ca-
pacities. The model needs to reflect whether it is cheaper and
latency compliant to add an additional smaller, hence slower,
node, increasing the degree of parallelism, or to migrate the
processing to one bigger, hence faster, node and turn off n. A
migration decision itself can be costly and induce latencies,
e.g., if state has to be migrated. The model thus needs to
reflect these complex interdependencies. It can, for example,
estimate the potential migration costs and latency spike.
Homogeneous infrastructures are common in cloud en-

vironments. We can rent multiple machines with the same
configurations. Heterogeneous infrastructures are common
in fog and edge processing.
Models for single operators only need to ensure the la-

tency bound for the processing of this operator. Hence, the
model determines the number of operator instances or nec-
essary migrations. Models formultiple operators addition-
ally balance the available latency between all operators.
An example for homogeneous, single operator control

comes from Mayer et al. [19]. It uses queuing theory to keep
queuing latencies below the latency bound. This works par-
ticularly well for M/M/1-queues. Another example comes
from Balkesen et al. [3]. They predict the future workload of
an operator and then divide the workload by the processing
capacity for each node. A queuing-theory based model for

Middleware ’19, December 8–13, 2019, Davis, CA, USA Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel

multiple operators in homogeneous infrastructures comes
for example from Lohrmann [17]. They use Kingman’s for-
mula [11] to predict queuing latencies and thereof the re-
quired parallelization degrees. Zacheilas et al. [28] provide a
model that uses a learned covariance matrix that describes
the interdependence of end-to-end latency, arrival rates and
number of instances. Given this covariance matrix, they de-
termine the optimal parallelization degree by constructing a
graph for possible configurations and their respective costs
and apply a shortest path algorithm on this graph. A solu-
tion that considers heterogeneous nodes with placement and
latency spikes from state migrations comes from Heinze et
al. [7]. The publications of these models show that they are
legible to keep latency bounds [7, 17, 19]. We now aim for a
solution to combine these models within one DHM-SPA.

3 Cost optimal management of distributed
SPAs

In this section, we present our problem statement and the
conceptual parts of our solution to this problem.

3.1 Problem statement
Given a DHM-SPA, it is challenging to ensure the end-to-end
latency. A single model type might not properly reflect the
differences in the SPA’s infrastructure. We further face the
challenge to simultaneously find the optimal configuration
for a DHM-SPA that can be distributed over three types of
infrastructures which offer different levels of control. The
first and second types are infrastructures with homogeneous
or heterogeneous nodes that application owners can either
directly configure because they rented the (virtual) machines
or because they provide the infrastructure themselves. This
level of control means, for example, that the owners can de-
cide the placement of the operators, the degree of parallelism,
the type of used machines. The third type are infrastructures
that a provider controls and that an application owner influ-
ences via Service Level Agreements (SLAs) only. The appli-
cation owner rents the complete service and has no internal
control, e.g., how the degree of parallelism or the placement
is defined or which type of machines is used. The parts of the
SPA on infrastructures that are configurable directly by the
application owner differ in the required model (c.f. Section
2). Those parts controlled by an external provider need a
cost optimal SLA definition.

Hence, our problem statement is to find an optimal config-
uration for a DHM-SPA, where the parts might be managed
by individual model types each and have different levels of
control, such that the DHM-SPA keeps an end-to-end la-
tency at minimal resource cost. In the following, we present
our solution on how to handle this configuration problem.
To this end, we formalize the latency-distribution problem
and describe how we use cost functions to abstract over the
differences in the models that jointly control the SPA .

3.2 Managing a distributed SPA with Control Units
The main idea of our solution is to encapsulate the heteroge-
neous parts of the SPA into independent components, and
give each component a share of the overall latency. The
component then manages its share according to the most
applicable mechanism. The following two subsections give
the details to this approach.
Available solutions that ensure end-to-end latency in a

multi-operator SPA use one model for the complete appli-
cation (c.f. [17, 28]). However, given our infrastructure, this
might lead to suboptimal configurations due to the diverse
model requirements or even not be possible at all due to
the limitations of providers. Our goal is to have each part
of the SPA managed with the best fitting model and to in-
clude SPA-components with different levels of control, e.g.,
those hosted by providers that do not exhibit their managing
mechanisms to the customers.
Hence, instead of finding a complete configuration for

the SPA at once to ensure the end-to-end latency bound, we
model the SPA as a graph of individually controlled control
units (CUs). This allows multiple control models for a single
SPA but at the same time ensures end-to-end optimization. A
CU comprises a subset of the SPA’s operator that is managed
together according to the best fitting model. A CU can cover
a single operator — thus being manageable by those models
that work best for the single-operator case — or multiple op-
erators. The infrastructure of a CU can still be heterogeneous
but is then jointly managed by a controller that is optimized
for the node types the CU comprises. Given, e.g., a part of
the SPA being hosted at a provider, this is seen as one CU.
With DHM-SPAs, we target SPAs that already consist of

multiple parts, e.g., for legal, privacy, soft- and hardware con-
straints, and geographical distribution. We explicitly model
them now as one SPA-graph and add CUs to reflect and make
use of the partwise control in our model. Hence, the scope
of this work is not to define the CUs but rather to explicitly
exploit the given heterogeneity in infrastructure and owner-
ship of the SPA. We refer to existing work for techniques to
optimize the granularity of operator graphs [8, 21] . Figure 2
gives an example for CUs of an SPA which we describe in
detail in the architecture Section 4.

The CUs form a DAG that is a higher-level abstraction of
the original SPA’s operator graph (c.f. Figure 2). Introducing
the CUs frees us from managing all operators of the SPA
in a complete configuration. We rather shift the problem
to managing the CUs instead. A CU becomes the smallest
unit of control on the operator graph. The CUs themselves
implement the model that fits best to manage their opera-
tors. Using its model, a CU autonomously keeps an assigned
latency bound in a cost minimal manner.
As we described in Section 2, the general requirement of

each of the models is that they find those parameter values
that provide a cost minimal SPA configuration that ensures

Combining it all Middleware ’19, December 8–13, 2019, Davis, CA, USA

a latency bound. Further, a latency bound is a valid property
of an SLA and thus enables us to include provider-hosted
services into our SPA. Given this requirement, we now trans-
fer the general management problem by simply finding the
best latency bound for each CU, so that the overall cost is
minimized and the end-to-end latency bound of the SPA is
ensured. As each CU individually ensures a cost minimal
configuration for its latency bound and this minimal cost-
value depends on the assigned latency bound, we minimize
the overall cost if we find the optimal distribution of the
available latency onto CUs. We formalize this new problem
as the latency-distribution problem in the following section.
3.3 The latency-distribution problem
The latency-distribution problem describes the challenge to
assign each CU of a distributed SPA a latency budget so that
the overall cost of the SPA is minimized and every path of
the SPA is compliant to the end-to-end latency bound.
Each CU of the SPA gets a latency budget it has to keep.

Keeping the budget induces costs. How high the cost for a
budget is, is individual for each CU and depends, e.g., on the
CU’s workload, the infrastructure it is hosted on, and the
pricing mechanisms for the resources of this CU. Hence, in
order to be cost minimal, the latency-distribution problem
needs to cover the different non-linear latency-cost behavior
of each CU.
To ensure the end-to-end latency bound, the individual

budgets of each CU need to be assigned so that the sum of
budgets along each path of the SPA does not exceed the end-
to-end latency bound. Recall that the CUs themselves form a
graph, where each path of this graph needs to be compliant
with the end-to-end latency constraint.

The latency-distribution problem is thus the problem of
optimally distributing the available end-to-end latency onto
the CUs of a DHM-SPA, so that the total resource cost is
minimized. Equations 2 and 3 formalize it:

min
∑

cu ∈CU

cost (cu, latency) (2)

∀paths
∑

cu ∈path

latency (cu) ≤ e-to-e latency bound. (3)

To abstract over the heterogeneous models, we use cost func-
tion as shown in Equation 2. A cost functionmaps the latency
budget of a CU to the cost that are required by the CU to keep
this budget. For example, a latency budget of 5 ms requires a
CU to provide 5 instances of an operator or the migration to
one bigger machine from two smaller ones with the respec-
tive price. The cost function of this CU would return the cost
for these five instances for a budget of 5 ms. Similarly, a cost
function of a CU managed by a different provider would re-
turn the cost for a latency budget according to the providers
pricing scheme.

CostCU : Latency → Cost (4)

Cost
Functions

Latency
Budgets

CU1 CU2

CU3

CU4

SPA
Layer with
Control Units

Optimizer	with	CU-graphOptimization
Layer

CU1 CU2
CU3

CU4

Figure 2. The Two-Layer Architecture with the SPA at the
lower and the optimizer at the top layer.

Cost functions usually are convex, showing that dispropor-
tionally more resources are necessary the smaller the latency
budget (c.f. Figure 1) . To derive a cost function from a control
approach, it might, e.g., be necessary to provide a wrapper
class that executes the algorithm of the control approach
with the given latency value.

To show that the problem is NP-hard, we model it as a
Knapsack problem: The set of possible items to pack are the
possible latency budgets for CUs. The reward is the negative
cost of a latency budget. The limited bag size is the maxi-
mum latency bound. However, this model is simplified as
it assumes linear cost functions and discrete latency bud-
gets for a discrete set of items to choose from, it ignores
the condition of exactly one latency budget for a CU, and it
prohibits different latency bounds for different paths which
might be possible. Hence, the latency-distribution problem
is even more complex.

4 System Model
Our solution has two layers (Figure 2). The figure demon-
strates how an SPA in the lower layer is divided into four
CUs. The different colors of the CUs represent the difference
in control models. The upper layer contains the centralized
optimizer that distributes the latency budgets.
4.1 SPA Layer and CU graph
The CUs of the SPA form a CU graph that is an abstraction of
the SPA’s operator graph. Recall that a CU is the smallest unit
of control on the operator graph and each CU individually
manages a latency budget. The most fine-grained division of
the SPA into CUs is one CU per operator. A CU can belong
to multiple paths of the CU graph., e.g., CU 2 in Figure 2.

4.2 Optimization Layer
At the Optimization Layer, given the CU graph, the optimizer
divides the available end-to-end latency into individual la-
tency budgets and assigns them to the CUs. To this end, it
uses the algorithms from Section 5. The Optimization Layer
only needs the CU graph and the cost function per CU to

Middleware ’19, December 8–13, 2019, Davis, CA, USA Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel

optimize the assignments. With its global perspective, the
optimizer can then find the cost-optimal latency distribution
for the DHM-SPA.
4.3 Communication
For each CU, the optimizer has two options to access the cost
function. The first option is a full transfer of the cost function
to the optimizer. This option has low communication cost
and is useful for simple cost functions, e.g., tables or simple
models. To not limit our solution to these simple cases, the
second option is a request/response mechanism that makes
external cost-function calls. This option is useful, e.g., if there
is a cloud provider that does not expose its cost function.
Depending on the complexity of the cost function, a cost-
function call can require non-linear processing time. If the
CU is hosted by a public cloud provider, each cost-function
call might include a fee. Hence, fewer cost-function calls are
preferable when solving the latency-distribution problem.
5 Proposed Algorithms
This section presents two solutions to the latency-distribution
problem. Section 5.1 describes an integer linear program (ILP)
that solves the problem optimally. However, the latency-
distribution problem is NP-hard. This complexity limits scal-
ability of the ILP. We therefore provide a heuristic in Section
5.2. The heuristic exploits a greedy algorithm to solve the
problem in linear runtime.
Both solutions use the following four principles for the

cost function to find the optimal latency distribution:
1. The solutions assign an individual latency budget to

each CU in the CU graph. The CU keeps this budget with
its control model. For each path p in the CU graph, the path-
wise sum of these latency budgets cannot exceed a maximum
latency bound Lmaxp .

2. Deterministic cost functions ensure that during the exe-
cution of a single optimization run, the cost for a latency bud-
get value latcu is always the same. However, the SPA might
experience changes over time (c.f. Section 2) which might af-
fect the cost function. Examples include current inter-arrival
times relevant for cost functions that use queueing-theory
to determine the number of required processing nodes. In
this realm, the inter-arrival time is an important parameter
since a change in the inter-arrival time might affect the cost
of a latency budget. Hence, the cost function remains de-
terministic during one optimization run but may update its
parameters in-between runs to reflect these changes.
3. Minimal latency budget: Each CU requires a minimal

latency budget to ensure a stable system. It is the minimal
latency a CU can achieve. For example, even in case of zero
queuing latency due to high parallelism and optimal place-
ment, a minimal processing and communication latency al-
ways remains. Limited resources, e.g., in fog infrastructures,
further increase the required minimal latency with only lim-
ited available processing capacity and restricted options for
parallel processing.

4. Complete value domain: Both algorithms require cost
functions for each CU, whose domain covers all possible
latency budgets. The set of possible latency budgets is lower
bounded by the required minimal latency budget LminCU
and upper bounded by the maximum latency bound Lmax .
We use the step size to get the set of discrete latency budgets
from the continuous latency value by making the possible
latency budgets multiples of the step size.

5.1 ILP based optimal solution
We formulate an ILP to find the optimal solution to the
latency-distribution problem. Such an optimal solution as-
signs exactly one latency budget to each CU so that the total
cost of the SPA is minimized and the path-wise sums of
latency-budgets are below the end-to-end latency bound.

5.1.1 ILP Definition
Equations 5 to 8 formalize the ILP. The decision variables
xcu,l represent all CU — latency budget combinations, i.e.,
x ∈ BL×CU . xcu,l is 1, if the respective cu is assigned the
latency budget l , or 0 otherwise. The coefficient costcu,l is
the cost of latency budget l at CU cu according to this CU’s
cost function. CU is the set of all CUs in the SPA, P is the set
of all paths on the CU graph, L be the set of possible latency
budgets defined as multiples of the step size between 0 and
the latency bound Lmax . This definition ensures discrete
values for the latency budgets required for the ILP. The step
size thereby indicates the granularity of the assignments. It
is further possible to have arbitrarily small but fixed units for
the latency budgets, e.g., milliseconds, seconds or minutes.
Equation 5 shows the cost-minimization objective that

minimizes the total cost of the application. The cost func-
tions are usually not linear and can therefore not be included
directly into the objective function. Instead, we use the inte-
ger decision variables and the cost coefficients. Equations 6
to 8 denote the ILP’s constraints. The first constraint, Equa-
tion 6, ensures that for each path, the sum of the latency
budgets of the CU on that path cannot exceed the path’s la-
tency bound Lmaxp . Each path can have an individual bound
which is why we use the index p. Equation 7 ensures that
each CU is assigned exactly one latency budget out of L.
Equation 8 is the integer-condition.

min
∑

cu ∈CU

∑
l ∈L

xcu,l ∗ costcu (l) (5)

∑
cu ∈P

∑
l ∈L

xcu,l ∗ l ≤ Lmaxp ∀p ∈ P (6)

∑
l ∈L

xcu,l = 1 ∀cu ∈ CU, (7)

xcu,l ∈ {0, 1} ∀cu ∈ CU,∀l ∈ L (8)

Combining it all Middleware ’19, December 8–13, 2019, Davis, CA, USA

5.1.2 Cost-function Calls by the ILP
A cost-function call, e.g., for a CU hosted by a public provider,
can be seen as a Function as a Service, leading to cost per call.
For instance, in [13], the algorithm needs to be executed mul-
tiple times to determine the required number of instances for
different latency bounds. Hence, the number of cost-function
calls is an important performance metric for a solution to
the latency-distribution problem.
Given the ILP, a solver that finds an optimal solution for

the ILP makes at initialization |CU| ∗ |L| cost-function calls
and uses the results as the coefficients costcu (l) in the objec-
tive function. |CU| is the number of CUs in the CU graph. |L|
is the number of different latency budgets that the solver can
assign to a CU. While |CU| is given by the SPA, the step size
and the latency bound Lmax defines |L|. Through adjusting
the step size, we can control the trade off between precision
of the output and cost-function calls. For example given a
latency bound of 2000ms, a step size of 1 leads to |L| = 2001;
a step size of 100 to |L| = 21. A longer step size reduces the
number of cost-function calls, a smaller step size leads to a
more precise, hence cheaper, result. An assignment of 168ms
is possible using for step size one but can become a (less cost
optimal) assignment of 200ms for step size 100.

5.2 Heuristic Solution
As the ILP is limited in scalability and needs a high number
of cost-function calls, we additionally developed a heuris-
tic. This heuristic implements a greedy strategy to quickly
converge to a solution that is close to the optimal cost.

5.2.1 Greedy Algorithm
The greedy algorithm processes the CU graph pathwise. For
each path, it initially distributes the available end-to-end
latency evenly among all CUs of a path. It then optimizes this
assignment stepwise. With each step, the greedy algorithm
swaps a share of the latency assignment LatCU from one CU
to another, where this share leads to reduced costs. The sum
of LatCU of all CUs on a path thereby remains the same and
does not exceed the end-to-end latency bound. The algorithm
thus stepwise improves the total cost until it does not find
an improving swap any more.
As in the ILP, the greedy algorithm needs for each CU a

cost function with a domain over all possible latency budgets.
Again, the step size controls the precision. Algorithm 1 gives
the pseudocode. Its major steps are as follows:

a) Assign minimal latency to all CUs (L. 5)
b) While there are un-processed paths, select the path

pmin with the smallest latency to distribute (L. 9)
c) process this path as follows:

i Evenly distribute free latency (L. 11)
ii Greedily optimize the assignment (L. 12)
iii Mark CUs passive to forbid further changes and

mark path as processed (L. 14)

Algorithm 1 Greedy Budget Assignment
1: Graph д
2: array of paths [1 . . . P] ps ← pathsд
3: array of cus [1 . . .CU] cus ← cusд
4: for cu in cus do
5: latencycu ← getMinLatency(cu)
6: end for
7: plef t ← ps
8: while size (plef t) > 0 do
9: p ← p ∈ plef t :min(f reeLat (p))
10: cusActive ← getActiveCUs(p)
11: distributeFreeLat(cusActive , freeLat(p))
12: optimize(cusActive)
13: for cu in cusActive do
14: cu ← passive
15: end for
16: plef t ← plef t − p
17: end while

18: freeLat(path p):
19: assiдnedLat ←sum(latencycu)∀cu ∈ p
20: f reeLat ← Lp − assiдnedLat
21: return f reeLat

Algorithm 2 Path-wise Optimization
1: optimize(array of cus cus):
2: cud ← cu ∈ cus : min(redCostcu)
3: cui ← cu ∈ cus : max(incGaincu) and not cud
4: while incGaincui > redCostcud do
5: swapLatencyStep(cud , cui)
6: cud ← cu ∈ cus : min(redCostcu)
7: cui ← cu ∈ cus : max(incGaincu) and not cud
8: end while

9: swapLatencyStep(cu cud , cu cui):
10: incGaincud ← redCostcud
11: redCostcui ← incGaincui
12: latencycud ←reduce(latencycud)
13: latencycui ←increase(latencycui)
14: redCostcud ←costFunction(reduce(latencycud))
15: incGaincui ←costFunction(increase(latencycui))

In the following, we explain each of these steps:
a) Assign minimal latency. As initial assignment, each CU

receives its minimal budget (Line 5). This budget is the min-
imal latency the CU can achieve, potentially at very high
cost. If there is a path whose sum of these minimal assign-
ments of the paths CUs exceeds the path’s latency bound,
the algorithm raises an exception—there is no solution for
this latency bound. While each CU then has an assignment,
it is not yet cost optimal. The greedy algorithm improves the
total cost path-wise.

Middleware ’19, December 8–13, 2019, Davis, CA, USA Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel

Free latency to distribute
Minimal latency
requirements

Total latency bound of the path

Assigned latencies
of passive CUs

Figure 3. The free latency is the latency bound reduced by
the minimally required and the already assigned latency.

Table 1. Example for greedy iterations with 3 CUs. Notation:
(LatCU [sec], cost(LatCU) + step, cost(LatCU − step)

Iteration CU1 CU2 CU3
Init (5 sec,-1,+2) (5 sec,-4,+5) (5 sec ,-5,+6)
1 (4 sec,-2,+3) (5 sec,-4,+5) (6 sec,-1,+5)
2 (3 sec,-3,+8) (4 sec,-2,+4) (6 sec,-1,+5)

b) Find the next path to process. The algorithm processes
next the path with the smallest latency value available to
distribute. We name this latency value free latency. The free
latency of a path is the latency bound of the path Lmaxp
minus already fixed assignments on this path (Figure 3, Line
11). These fixed assignments are the initial minimal latencies
budgets (Line 5) and already fixed assignments of multi-path
CUs. These multi-path CUs get their latency assignment
when their first path is processed. When processing their
other paths, their assignment is fix, the CUs thus passive. All
CUs that have not yet been assigned a budget are active and
will be considered in the path-wise processing.

The algorithm selects the path with the minimal free la-
tency to avoid invalid assignments. An assignment is invalid
for a path, if the sum of LatCU on the path exceeds the end-
to-end latency bound. If the algorithm did not select the path
with smallest free latency, it might assign latency budgets to
multi-path CUs that exceed the free latency of another path,
there resulting in an invalid assignment.

c) Path-wise Processing. Once the next path is selected, the
algorithm first evenly distributes the free latency among
the active CUs of the path, i.e., those CUs that have not
been processed in other iterations before, (Line 10) and then
greedily optimizes the assignment (Lines 12 to 14).

To evenly distribute the free latency, at first, the algorithm
assigns each active CU, in addition to its minimal latency
budget, an even share of the free latency. After this step, the
complete latency is distributed among the CUs on the path
but the assignment might not be optimal yet. Hence, the
algorithm greedily optimizes the assignments (Line 12). As
the latency budget is fully distributed after this step, a latency
increase at one CU requires a latency decrease at another
CU to fulfill the end-to-end latency bound. The algorithm
therefore swaps assignments stepwise until it cannot further
reduce the total cost of the path any.
Algorithm 2 details the greedy optimization. We use the

example in Table 1 to illustrate the algorithm’s steps. The ex-
ample considers a path with three CUs, seconds as time unit
and step size one. Each tuple shows the currently-assigned

latency budget LatCU , the cost if this assignment increases
by one step and the cost if this assignment decreases by one
step. To ensure fast greedy steps and to limit the number
of cost-function calls, we store this tuple for each CU. For
readability, we show the respective deltas, not the actual cost
value. In the first row, we see the initial assignment with
the evenly distributed end-to-end latency (Line 11). For the
greedy step, the algorithm selects the node with the biggest
cost reduction when increasing latency (cui - CU to increase
latency) and the node with the lowest cost increase when
reducing latency (cud - CU to reduce latency) for one step
(Line 2). In the example, it sets cui = CU3 and cud = CU1. If
the cost reduction of cui is greater than the respective cost
increase of cud , the CUs swap this latency step (Lines 9 et
seq), in our example one second. In the example, CU3 now
has a budget of six sec and CU1 a budget of four sec. The
algorithm selects the next cui and cud until the stopping
condition is met, i.e., if there is not cost reduction any more
bigger than any resulting cost increase. Then, the path is
fully processed. In our example, the stopping condition is
true after the second swap.

There are cases when we can swap more than one latency
step at once. This is possible if the bigger latency leads to the
same cost at cud than a single step would, which can be the
case if a cost function is not injective. Then, multiple latency
values can have the same cost. An example is a step-wise
defined function. With such a cost function, decreasing the
latency of cud by a single step leads to some cost c. How-
ever, the system can, for the same cost c, provide an even
lower latency and thus assigns a higher budget to the more
expensive CU. Hence, we assign the smaller value to cud
and respectively provide a higher increase of the latency
budget of cui . This can reduce the overall cost further. We
implemented this improvement for the Kingman-based cost
function [11, 17], which has parallelization degrees as dis-
crete steps and thus a non-injective cost function, and found
in preliminary evaluations that this can improve the cost.
Once the stopping condition is met, the algorithm fixes

the assignments and sets the CUs passive to be not affected
by the processing of other paths they might belong to (Alg.
1, Line 14). Fixing the assignments reduces the runtime of
the algorithm: Assume a bigger example with two paths, one
with 10 CUs, another with 8 CUs, whereof 6 CUs are shared
by both paths. After assigning the first paths with 10 CUs,
the algorithm has to assign latency-bounds only to the two
CUs not shared, instead of the full 8 CUs. Also, fixing the
assignments guarantees that the algorithm converges.
The passive CU’s budget is fixed when processing the

other paths and considered when calculating the free latency
as described before. In our example in Table 1, the budgets for
CU1,CU2 and CU3 would be fixed after the second iteration.
If there was a path CU2,CU4,CU5, only the CUs CU4 and
CU5 are active and would be considered for further latency
budget assignments.

Combining it all Middleware ’19, December 8–13, 2019, Davis, CA, USA

Figure 4. Examples for CU graphs. The darker the shade,
the higher the workload.
After the assignments are fixed and CUs are flagged pas-

sive, the algorithm updates the free latency values of the
un-processed paths and selects the path with the now min-
imal free latency as described in b) for the next iteration.
When all paths are processed, the algorithm returns the final
assignment.

5.2.2 Cost-Function Calls by the Greedy Algorithm
As cost-function calls can cost time and money, we aim
to keep the number of cost-function calls low. The greedy
algorithm at first evenly distributes the free latency budget
among the active CUs of the path. This saves iterations that
were required if we started from 0, making less cost-function
calls. Afterwards, it calls the cost-function at each latency
swap for cui and cud only. In Section 6, we show that the
greedy algorithm makes significantly fewer calls than the
ILP. To further reduce the number of cost-function calls,
we provide a variation of the greedy algorithm that caches
results of the cost-function calls.

6 Performance Evaluations
In this section, we present the results of our performance
evaluations. We evaluate runtime, calculated cost and the
number of cost-function calls for the ILP and the greedy algo-
rithm. We further show how our greedy algorithm performs
compared to a state-of-the-art algorithm for homogeneous
infrastructures.

6.1 Setup
This section describes the graph types, cost functions and
parameters of the evaluations. We execute all evaluations
on a 128 GB server with an Intel Xeon e5 2687w v3 3.1 GHz
CPU with 40 cores. The ILP solver is the open-source Coin-
And-Branchcut solver.

6.1.1 Graph Types
The operator graph of an SPA is usually a directed, tree-
shaped acyclic graph (DAG) that routes data from sources,
i.e., the leaves, to the consumer, i.e., the root node. The cor-
responding CU graph is thus also a DAG. As a CU can in-
clude multiple operators, we evaluate on relatively small
graphs. For a realistic scenario, we execute our evaluations
with graphs of 10 to 100 nodes. Note that the SPA behind
a 100-nodes CU graph is already an application with 100
individually managed parts. Using up to 100 CUs, we show

that the approach scales and is applicable for the fast grow-
ing trend for fog-/edge infrastructure. Our solution supports
larger graphs as well in a similar manner. Figure 4 shows
exemplary two of the CU graphs we use with 10 respec-
tive 25 nodes. The color intensity qualitatively represents
the workload. We create each CU graph randomly and ran-
domly add initial workload values randint . We then fur-
ther simulate workload propagation throughout the graph
with a selectivity of 0.5. The workload of a CU v is thus
randint + 0.5 ∗

∑
u :(u,v)∈Emaxworklad (u) .

6.1.2 Cost Functions
Weuse four types of cost functions to show that our approach
seamlessly works with multiple cost functions types.

1. A cost function for M/M/1 queues based on Little’s
Law (c.f. Equation 1).

2. The cost function used by Lohrmann et al. [17] shown
in Equation 9. It uses Kingman’s formula [11] and is
applicable for G/G/1 queues, hence without any as-
sumption about the distribution of arrival and service
rates. p∗ denotes the parallelization degree that is re-
quired for queuing latency latency. The respective cost
per CU is the p∗ ∗ cost (instance).

3. A simple linear cost function (100−CUdeдree ∗latency)
that returns a higher value for nodes with a higher
input degree.

4. A general representative exponential cost function as
in Equation 10.

latency =

(
λ/µ2

p∗ − λ ∗ µ

)
*
,

(cA (p
∗))2 + c2S
2

+
-

(9)

costCU (latency) = 10 ∗ e (−1∗(CUdeдree)∗latency/100) + 1 (10)

The first two cost functions are applicable for single-
operator CUs, the latter for single- and multi-operator CUs.
If not stated otherwise, to show the multi-model feasibility
of our solutions, we randomly assign the cost functions to
the CUs so that each CU graph in the evaluations includes
all four cost functions. Through evaluations with randomly
assigned cost functions, we show that our solution is not
limited to specific cost functions but applicable for SPAs that
combine CUs with different cost functions.

6.1.3 Latency Bounds and Step Sizes
We set the latency bound of a graph as a multiple of the
graph’s node count, using a bound factor. For example, a
bound factor of 2 and a graph with 10 nodes leads to a bound
of 20, and for a graph with 50 nodes to a bound of 100.
The step size defines the granularity of the latency-budget as-
signment (c.f. Section 5). In our implementation, we initially
use step size one if not stated otherwise.

Middleware ’19, December 8–13, 2019, Davis, CA, USA Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel

Figure 5. Cost Figure 6. Algorithm Runtime Figure 7. Cost, Runtime relative to ILP

Figure 8. Cost for latency bounds Figure 9. Runtime for latency bounds Figure 10. Cost for step sizes

Figure 11. Runtime for step sizes Figure 12. CF-Calls Greedy and ILP Figure 13. Cost Greedy, Lohrmann, ILP

6.2 Runtime and Cost Evaluation
We evaluate the two solutions for scalability, their perfor-
mance for different step sizes, and for different latency
bounds with the following three settings. Our performance
measures are runtime and calculated cost and we evaluate
with the settings as follows.

1. Graphs with 10, 25, 50, 75, 100 nodes, 50 randomly
generated graphs per size

2. Step sizes 1-5, 50 graphs with 50 nodes
3. Bound factor 2-6, 50 graphs with 50 nodes

6.2.1 Evaluation Results
Figures 5 and 6 show the averaged global cost and the total
logarithmic runtime of the algorithms for the different graph
sizes. For both algorithms, the runtime increases with the
number of CUs. Yet, it is sufficiently small to not indicate
scalability issues.We see that in all configurations, the greedy
solution leads to a slightly higher cost but decreases the
runtime with orders of magnitudes compared to the ILP.
Figure 7 depicts the relative cost increase of the greedy

solution to the optimal ILP solution and the runtime increase

of the ILP solution to the greedy solution. We see that, with
more CUs, the cost difference grows slightly but the runtime
increase by the ILP is in the order of magnitudes higher than
the cost increase.
Figures 8 and 9 show the performance of the algorithms

for growing latency bound factors, i.e., less restrictive latency
bounds. Figure 8 illustrates that the cost shrinks as expected
with a higher latency bound and that both algorithms reflect
this behavior. The runtime of both algorithms increases with
a higher latency bound as seen in Figure 9 because a higher
latency bound increases the search space |L| (c.f. Section 5).
Figures 10 and 11 show how the greedy algorithm per-

forms with growing step sizes, i.e., more coarse grained la-
tency assignments. Preliminary evaluations with both algo-
rithms for specific cost functions indicated that with growing
stepsizes, the ILP has an upward trend for the optimal costs
as anticipated in Section 5. However, for the evaluations with
multiple cost function and step sizes > 1, the ILP did not find
a solution within a reasonable time (<1 hour per graph). As
we focus on multi-model graphs, we ran the experiment with
multiple cost functions again for the greedy algorithm only.

Combining it all Middleware ’19, December 8–13, 2019, Davis, CA, USA

We see in the results hat the cost remains stable while the
runtime decreases.

6.2.2 Discussion
For step size 1, both algorithms quickly find a solution. The
greedy approach is faster than the ILP with only little worse
cost. For a step size > 1, the ILP was not solvable for random
cost functions in a reasonable time. With its lower runtime,
the greedy approach is preferable, particularly, if the solu-
tion is executed frequently, or the step size is > 1 and cost
functions differ. On the other hand, if the SPA is more cost-
sensitive, and the step size is 1, the ILP solution is preferred.

6.3 Cost-function Calls
Each cost-function call induces latency and request-costs (c.f.
Section 2.2). A small number of calls is important, particu-
larly, in case of long runtimes of cost functions or fees per
call, i.e. by a cloud provider. We therefore also evaluate the
total cost-function calls of each solution. Figures 12 depicts
in logarithmic scale how the cost-function calls increase with
an increasing number of CUs. We see that the greedy ap-
proach continuously executes fewer cost-function calls than
the ILP as anticipated in Section 5.2.2. If the cost-function
calls are expensive — in time or in money — the greedy so-
lutions is preferred. Enabling the caching mechanism (c.f.
Section 5.2.2) can reduce the number of cost-function calls
even further. If, however, the cost-functions are available
locally and have short runtimes, i.e., little communication
and processing overhead, the ILP provides the optimal result
and is accordingly preferred.

6.4 Comparing our approach to a solution for
homogeneous nodes

To see how our generic approach compares to a highly
tailored one, we implemented the algorithm proposed by
Lohrmann et al. [17]. It is tailored for a homogeneous in-
frastructure and solely uses parallelization as configuration
mechanism to control latency. To determine the required de-
gree of parallelism for each operator, the authors use queuing
theory. In this section, we compare the performance of their
solution to our greedy and ILP implementation. In Table 2
we compare their concepts and assumptions to ours.

To increase the precision, we modified the Lohrmanm
algorithm in one point. The algorithm uses snapshots of ar-
rival and service rates at each operator. From this snapshot,
the original algorithm uses the measured cA (covariation
of arrivals) to compute the required parallelization degree
(c.f. Equation 9). Yet, this value depends on the current par-
allelization degree at the moment of the snapshot. As the
parallelization degree used in the equation changes through-
out executing the algorithm, we use the more precise cA(p)
that depends on the new degree. This modification makes the
equation a cubic function that needs to be solved numerically
which Lohrmann et al. claim to be future work.

Figure 14. Runtime of all three solutions in log scale.

To compare the approaches, we need to match the cost
function and the granularity of CUs. For each CU, we use the
same cost function as Lohrmann’s algorithm. Further, each
CU of our architecture needs to represent exactly one opera-
tor, as Lohrmann’s algorithm determines the parallelization
degree operator-wise. Thus, in the comparison, the smallest
unit of configuration a CU represents needs to have the same
size. We, thus, need to limit our options drastically to match
the strict assumptions of the Lohrmann algorithm.
Figures 13 and 14 show that Lohrmann’s algorithm

achieves almost the optimal cost compared to the ILP and
outperforms both ILP and greedy in runtime. While the
greedy algorithm is slightly slower than the Lohrmann al-
gorithm, both finish even for 100 nodes within less than 0.1
seconds. Hence, we see this difference as insignificant. The
reason for the better cost compared to our greedy solution
is that Lohrmann’s algorithm is closely tailored to SPAs on
homogeneous nodes that influence latency via paralleliza-
tion only, while we propose a highly abstract and generic
solution. Modifying the parallelization degree stepwise, as
Lohrmann’s algorithm does, provides a more fine-grained
control than controlling the latency value. However, control-
ling the parallelization degree poses those strict requirements
on the infrastructure and configuration techniques that op-
pose our most important requirement — to inclusively con-
figure a DHM-SPA on a heterogeneous infrastructure with
multiple configuration techniques, different models to deter-
mine the configuration and no need for internal information
from a CU such as the current parallelization degree.

6.5 Summary
We evaluate both solutions for runtime, cost, and cost-
function calls. Both solve the latency-budget assignment
problem in reasonable time. We see that in some cases, e.g.,
higher step sizes or expensive cost functions, the greedy
algorithm outperforms the ILP. However, the ILP is prefer-
able, e.g., when optimality is more important than runtime
and cost-function calls are fast and cheap. We show that the
greedy algorithm smoothly handles CU graphs that combine
different cost functions. The ILP enables these combinations
for step size one. We further saw that a less generic approach

Middleware ’19, December 8–13, 2019, Davis, CA, USA Henriette Röger, Sukanya Bhowmik, and Kurt Rothermel

Table 2. Comparing our approach to the alternative for homogeneous, parallelizable SPAs.

Property Greedy Lohrmann
Principle Start with feasible assignment and make it

cost optimal
Start with cost optimal assignment and make
it feasible

Parameter to assign Latency budget per CU Parallelization degree per node
Greedy step size Fixed Until no more improvement

Configuration techniques Any Parallelization
Requirements Cost function for each CU Homogeneous infrastructure, arrival- and ser-

vice rates from global snapshot. Independence
of arrival- and processing times per item.

Level of detail Summarize multiple operators into one CU if
necessary (e.g., black box provider)

Individual configuration of each node.

can outperform our algorithms but poses much higher re-
strictions on the setup — thus being hardly applicable for
DHM-SPAs.

7 Related Work
This section introduces autonomic control strategies to con-
trol latency of SPAs and continues with solutions to control
cost and QoS across distributed infrastructures. Approaches
that support autonomic latency compliance of SPAs usually
provide one model for the complete SPA. Cardellini et al. [4]
present a hybrid solution where local components request
configuration changes that a global component approves in
a globally optimal manner. However, the approval process
induces additional latencies for each adaptation while our
solution enables fast, individual and yet globally optimal
adaptations by the CUs. Mencagli et al. [20] propose a game-
theory based, decentralized approach where the SPA’s nodes
negotiate their degree of parallelization and an incentive
mechanism makes the nodes shift from their local optimum
towards a more globally optimal configuration. Lohrmann et
al. [17] propose a central component that uses queuing the-
ory to find the best parallelization degree for each operator
in an SPA for a bounded end-to-end latency at minimal cost.
Their solution, however, requires homogeneous nodes. Liu
et al. [16] propose a framework that implements autonomic
adaptation with a MAPE-loop. It defines and updates paral-
lelization degrees solely from profiled and monitored data.
Later they extend their work [15] to automatic cloud deploy-
ing with a bin-packing based plan. Russo et al. [24] recently
proposed a solution for elasticity for SPAs on heterogeneous
infrastructures using machine learning. However, they, too,
require control over the complete application. To control end-
to-end cost and bottleneck free processing already before
runtime, Mencagli et al [21] propose a static analysis tool
SpinStream. Besides fission, i.e., parallelization, they also
consider merging of multiple operators into one (fusion).
In our survey [23], we provide a more complete overview
over parallelization of SPAs. Other approaches are available
that tackle QoS and cost management across multi-provider
and heterogeneous platforms. Liu and Shen [14] manage
data storage across multiple cloud providers. As we do, they

minimize the overall cost across multiple providers with an
ILP and a heuristic but focus on data storage as resource.
Wang et al. target multi-provider hybrid cloud environments
[25] that include private and public infrastructures. They
aim at cost optimal, QoS aware task-scheduling. A cost opti-
mal solution first fully utilizes the private infrastructure and
adds public resources when necessary and handles workload
spikes within a required response time. Hung et al. [10] pro-
pose a job scheduling framework for geo-distributed jobs
that include edge, fog and cloud processing. They handle
the heterogeneity of network capacity and processing power
and deal with dynamics at runtime. Ultimately, they aim at
minimizing the average job response time by heuristically
estimating the remaining time for the geo-distributed job.

8 Conclusion
In this paper, we solve the challenge of cost minimally keep-
ing an end-to-end latency bound for SPAs that are hosted
on a distributed, heterogeneous, and multi-provider infras-
tructure. To this end, we propose an architecture and two
solutions. For our architecture, we model an SPA as a graph
of individually managed control units (CUs). We formulate
the latency-distribution problem to divide the end-to-end
latency bound into individual budgets and assign them to the
CUs in a cost minimizing manner. In doing so, each CU can
implement the latency-control mechanism that fits best to
the CUs specific infrastructure. As solutions to the latency-
distribution problem, we propose an ILP formulation and
a greedy algorithm. Evaluations show the effectiveness of
both solutions. Finally, we compared our greedy approach
to an existing solution that is restricted to homogeneous
infrastructures. With this work, we enable to control the
end-to-end latency of SPAs by the integration of different
control mechanisms into one globally but lightweight man-
aged system. This enhances stream processing in the emerg-
ing fields of IoT, edge and fog computing. For future work,
we plan to additionally consider energy consumption and
privacy constraints in the optimization and a mechanism to
learn cost functions at runtime.

Combining it all Middleware ’19, December 8–13, 2019, Davis, CA, USA

References
[1] Arif Ahmed, HamidReza Arkian, Davaadorj Battulga, Ali J. Fahs,

Mozhdeh Farhadi, Dimitrios Giouroukis, Adrien Gougeon, Fe-
lipe Oliveira Gutierrez, Guillaume Pierre, Paulo R. Souza Jr, Mu-
lugeta Ayalew Tamiru, and Li Wu. 2019. Fog Computing Applications:
Taxonomy and Requirements. arXiv:cs.DC/1907.11621

[2] Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala,
Marco Levorato, Pasi Liljeberg, and Nikil Dutt. 2017. HiCH: Hierar-
chical Fog-Assisted Computing Architecture for Healthcare IoT. ACM
Trans. Embed. Comput. Syst. 16, 5s, Article 174 (Sept. 2017), 20 pages.
https://doi.org/10.1145/3126501

[3] Cagri Balkesen, Nesime Tatbul, and M. Tamer Özsu. 2013. Adaptive
Input Admission and Management for Parallel Stream Processing. In
Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems (DEBS ’13). ACM, New York, NY, USA, 15–26.
https://doi.org/10.1145/2488222.2488258

[4] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele
Russo Russo. 2018. Decentralized self-adaptation for elastic Data
Stream Processing. Future Generation Computer Systems 87 (Oct. 2018),
171–185. https://doi.org/10.1016/j.future.2018.05.025

[5] Tiziano De Matteis and Gabriele Mencagli. 2016. Keep Calm and React
with Foresight: Strategies for Low-latency and Energy-efficient Elastic
Data Stream Processing. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’16). ACM, New York, NY, USA, Article 13, 12 pages. https://doi.org/
10.1145/2851141.2851148

[6] Tiziano De Matteis and Gabriele Mencagli. 2017. Proactive elasticity
and energy awareness in data stream processing. Journal of Systems
and Software 127 (2017), 302 – 319. https://doi.org/10.1016/j.jss.2016.
08.037

[7] Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof
Fetzer. 2014. Latency-aware Elastic Scaling for Distributed Data Stream
Processing Systems. In Proc. of the 8th ACM International Conference
on Distributed Event-Based Systems (DEBS ’14). ACM, New York, NY,
USA, 13–22. https://doi.org/10.1145/2611286.2611294

[8] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert
Grimm. 2014. A Catalog of Stream Processing Optimizations. ACM
Comput. Surv. 46, 4, Article 46 (March 2014), 34 pages. https://doi.org/
10.1145/2528412

[9] Christoph Hochreiner, Michael Vögler, Stefan Schulte, and Schahram
Dustdar. 2016. Elastic Stream Processing for the Internet of Things. In
2016 IEEE 9th International Conference on Cloud Computing (CLOUD).
100–107. https://doi.org/10.1109/CLOUD.2016.0023

[10] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik,
Minlan Yu, and Mingyang Zhang. 2018. Wide-area Analytics with
Multiple Resources. In Proceedings of the Thirteenth EuroSys Confer-
ence (EuroSys ’18). ACM, New York, NY, USA, Article 12, 16 pages.
https://doi.org/10.1145/3190508.3190528

[11] J. F. C. Kingman. 1961. The single server queue in heavy traffic.
Mathematical Proceedings of the Cambridge Philosophical Society 57, 4,
902–904. https://doi.org/10.1017/S0305004100036094

[12] Thomas Kohler, Ruben Mayer, Frank Dürr, Marius Maaß, Sukanya
Bhowmik, and Kurt Rothermel. 2018. P4CEP: Towards In-Network
Complex Event Processing. In Proceedings of the 2018 Morning Work-
shop on In-Network Computing, NetCompute@SIGCOMM 2018, Bu-
dapest, Hungary, August 20, 2018.

[13] R. K. Kombi, N. Lumineau, and P. Lamarre. 2017. A Preventive Auto-
Parallelization Approach for Elastic Stream Processing. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS
’17). 1532–1542. https://doi.org/10.1109/ICDCS.2017.253

[14] G. Liu and H. Shen. 2016. Minimum-Cost Cloud Storage Service Across
Multiple Cloud Providers. In 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS ’16). 129–138. https://doi.
org/10.1109/ICDCS.2016.36

[15] Xunjun Liu and Rajkumar Buyya. 2019. Performance-Oriented De-
ployment of Streaming Applications on Cloud. IEEE Transactions on
Big Data 5, 1 (March 2019), 46–59. https://doi.org/10.1109/TBDATA.
2017.2720622

[16] Xunyun Liu, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Chenhao
Qu, and Rajkumar Buyya. 2017. A Stepwise Auto-Profiling Method
for Performance Optimization of Streaming Applications. ACM Trans.
Auton. Adapt. Syst. 12, 4, Article 24 (Nov. 2017), 33 pages. https:
//doi.org/10.1145/3132618

[17] Björn Lohrmann, Peter Janacik, and Odej Kao. 2015. Elastic Stream
Processing with Latency Guarantees. In 2015 IEEE 35th International
Conference on Distributed Computing Systems (ICDCS ’15). 399–410.
https://doi.org/10.1109/ICDCS.2015.48

[18] Björn Lohrmann, DanielWarneke, andOdej Kao. 2014. Nephele stream-
ing: stream processing under QoS constraints at scale. Cluster Comput-
ing 17, 1 (mar 2014), 61–78. https://doi.org/10.1007/s10586-013-0281-8

[19] Ruben Mayer, Boris Koldehofe, and Kurt Rothermel. 2015. Predictable
low-latency event detection with parallel complex event processing.
IEEE Internet of Things Journal 2, 4 (Aug 2015), 274–286. https://doi.
org/10.1109/JIOT.2015.2397316

[20] Gabriele Mencagli. 2016. A Game-Theoretic Approach for Elastic
Distributed Data Stream Processing. ACM Trans. Auton. Adapt. Syst.
11, 2, Article 13 (June 2016), 34 pages. https://doi.org/10.1145/2903146

[21] Gabriele Mencagli, Patrizio Dazzi, and Nicolò Tonci. [n.d.]. Spin-
Streams: A Static Optimization Tool for Data Stream Processing Appli-
cations. In Proceedings of the 19th International Middleware Conference
(2018) (Middleware ’18). ACM, 66–79. https://doi.org/10.1145/3274808.
3274814 event-place: Rennes, France.

[22] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and
Lionel Seinturier. 2012. A FederatedMulti-cloud PaaS Infrastructure. In
2012 IEEE Fifth International Conference on Cloud Computing. 392–399.
https://doi.org/10.1109/CLOUD.2012.79

[23] Henriette Röger and Ruben Mayer. 2019. A Comprehensive Survey on
Parallelization and Elasticity in Stream Processing. Comput. Surveys
52, 2, Article 36 (April 2019), 37 pages. https://doi.org/10.1145/3303849

[24] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. 2019.
Reinforcement Learning Based Policies for Elastic Stream Processing
on Heterogeneous Resources. In Proc. of the 13th ACM International
Conference on Distributed and Event-based Systems (DEBS ’19). ACM,
New York, NY, USA, 31–42. https://doi.org/10.1145/3328905.3329506

[25] Wei-Jen Wang, Yue-Shan Chang, Win-Tsung Lo, and Yi-Kang Lee.
2013. Adaptive scheduling for parallel tasks with QoS satisfaction for
hybrid cloud environments. The Journal of Supercomputing 66, 2 (01
Nov 2013), 783–811. https://doi.org/10.1007/s11227-013-0890-2

[26] Sai Wu, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi. 2012.
Parallelizing Stateful Operators in a Distributed Stream Processing
System: How, Should You and How Much?. In Proc of the 6th ACM
International Conference on Distributed Event-Based Systems (DEBS ’12).
ACM, New York, NY, USA, 278–289. https://doi.org/10.1145/2335484.
2335515

[27] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Ne-
mirovsky. 2014. Key ingredients in an IoT recipe: Fog Computing,
Cloud computing, and more Fog Computing. In 2014 IEEE 19th Inter-
national Workshop on Computer Aided Modeling and Design of Com-
munication Links and Networks (CAMAD). 325–329. https://doi.org/
10.1109/CAMAD.2014.7033259

[28] Nikos Zacheilas, Vana Kalogeraki, Nikolas Zygouras, Nikolaos Pana-
giotou, and Dimitrios Gunopulos. 2015. Elastic Complex Event Pro-
cessing Exploiting Prediction. In Proc. of the 2015 IEEE International
Conference on Big Data (BIG DATA ’15). IEEE, Washington, DC, USA,
213–222. https://doi.org/10.1109/BigData.2015.7363758

http://arxiv.org/abs/cs.DC/1907.11621
https://doi.org/10.1145/3126501
https://doi.org/10.1145/2488222.2488258
https://doi.org/10.1016/j.future.2018.05.025
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1016/j.jss.2016.08.037
https://doi.org/10.1016/j.jss.2016.08.037
https://doi.org/10.1145/2611286.2611294
https://doi.org/10.1145/2528412
https://doi.org/10.1145/2528412
https://doi.org/10.1109/CLOUD.2016.0023
https://doi.org/10.1145/3190508.3190528
https://doi.org/10.1017/S0305004100036094
https://doi.org/10.1109/ICDCS.2017.253
https://doi.org/10.1109/ICDCS.2016.36
https://doi.org/10.1109/ICDCS.2016.36
https://doi.org/10.1109/TBDATA.2017.2720622
https://doi.org/10.1109/TBDATA.2017.2720622
https://doi.org/10.1145/3132618
https://doi.org/10.1145/3132618
https://doi.org/10.1109/ICDCS.2015.48
https://doi.org/10.1007/s10586-013-0281-8
https://doi.org/10.1109/JIOT.2015.2397316
https://doi.org/10.1109/JIOT.2015.2397316
https://doi.org/10.1145/2903146
https://doi.org/10.1145/3274808.3274814
https://doi.org/10.1145/3274808.3274814
https://doi.org/10.1109/CLOUD.2012.79
https://doi.org/10.1145/3303849
https://doi.org/10.1145/3328905.3329506
https://doi.org/10.1007/s11227-013-0890-2
https://doi.org/10.1145/2335484.2335515
https://doi.org/10.1145/2335484.2335515
https://doi.org/10.1109/CAMAD.2014.7033259
https://doi.org/10.1109/CAMAD.2014.7033259
https://doi.org/10.1109/BigData.2015.7363758

	Abstract
	1 Introduction
	2 Latency-bounded Stream Processing Applications
	2.1 Mechanisms to influence the latency of an SPA
	2.2 Model-Types for predictive Latency-bound management

	3 Cost optimal management of distributed SPAs
	3.1 Problem statement
	3.2 Managing a distributed SPA with Control Units
	3.3 The latency-distribution problem

	4 System Model
	4.1 SPA Layer and CU graph
	4.2 Optimization Layer
	4.3 Communication

	5 Proposed Algorithms
	5.1 ILP based optimal solution
	5.2 Heuristic Solution

	6 Performance Evaluations
	6.1 Setup
	6.2 Runtime and Cost Evaluation
	6.3 Cost-function Calls
	6.4 Comparing our approach to a solution for homogeneous nodes
	6.5 Summary

	7 Related Work
	8 Conclusion
	References

