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ABSTRACT
Network elements (e.g., switches), which intermit service, i.e., stop
forwarding and transmission of data according to a repeating sched-
ule, can be found in many real-time capable communication net-
works, e.g., communication networks with TDMA, Ethernet with
Time-aware Shapers or low-power wireless networks. The behav-
ior of those network elements depends on the (stationary) proper-
ties of the network elements, their schedule, and the current time,
as well as the offered traffic load. If a networked real-time system
generates traffic flowswhich are not synchronized to the schedules
of the network elements, formal frameworks such as Network Cal-
culus (NC) are highly valuable to derive deterministic guarantees
for the communication.

In this paper, we show the fundamental implications of model-
ing time-triggered network elements with service intermittence in
NC. We identify two archetypes of network elements with inter-
mittent service, and propose time-variant and time-invariant ap-
proaches to derive service curve formulations to model them. We
evaluate the differences between time-variant and time-invariant
service curves with respect to the overestimation of worst-case
backlog and worst-case delay, and we identify schedule properties
which influence the tightness of the derived bounds.

CCS CONCEPTS
• Networks → Network performance analysis; • Computer
systems organization → Real-time systems.
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1 INTRODUCTION
Many real-time systems are distributed systems, where the indi-
vidual components are connected by a communication network.
For example, Cyber-physical Systems (CPS), which control physi-
cal processes through a set of software components, are often dis-
tributed due to the spatial dimensions of the physical objects they
interact with. This applies, e.g., for automotive systems, “smart
cities”, Industrial Internet of Things (Industry 4.0), etc. Being a
distributed real-time system, real-time communication networks
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guaranteeing deterministic bounds on the network delay between
distributed components (real-time communication) are required.

There are many scenarios in which asynchronously generated
traffic, e.g., event-triggered traffic which is subject to real-time re-
quirements, is being sent through a communication network com-
prised of network elements with time-triggered service intermit-
tence (service being the forwarding and transmission of data in
the network elements). For example, in converged networks traf-
fic synchronized to the schedules in network elements (often called
time-triggered traffic) is transported as well as asynchronous traf-
fic (e.g., shaped real-time traffic as known from IEEE 802.1 AVB, or
rate-constrained traffic in TTEthernet [11]). Here, all data flows,
including the non-time triggered ones, can be affected by TDMA-
like time-aware shaping, where the bandwidth available to data
flows varies over time according to the time slots of the schedule.
Time-aware shaping as specified in the IEEE 802.1Q standard [3]
can restrict the access of each queue storing outgoing traffic of a
certain traffic class to its associated outgoing line to precisely de-
fined time intervals according to a cyclic schedule.

In addition, time-triggered service intermittence in network el-
ements is not always primarily motivated by real-time constraints.
Schedules for service intermittence can also be incorporated into
CPS to increase their efficiency, e.g., by anticipating external con-
straints. Stated informally: do not offer servicewhen it is not strictly
required, or when it is useless (e.g., due to environmental reasons).
For instance, the communication link of a traffic sensor could be
turned off outside of rush hours. This motivation can be found
in applications where transmission schedules in the network el-
ements are applied with the goal of power-conservation in energy-
constraint devices [7, 23, 26], e.g., in wireless applications where
data is buffered when the link is turned off. Nevertheless, for these
wireless applications with time-triggered transmission intervals,
there are many scenarios which require bounds on the time of data
delivery [19] and the buffer usage, e.g., to avoid packet loss.

In this paper, we therefore focus on the class of network el-
ements which are controlled by a repeating schedule where the
schedule entries trigger intermittence or resumption of the service
process at specific times to the effect that there is some service for
some intervals and no service for other intervals.We refer to such a
network element as time-triggered network element with intermit-
tent service. The service offered by these network elements does
not only depend on the offered traffic load and the properties of the
network (e.g., link bandwidth, cyclic schedule), but additionally on
the current time. Thus, these network elements, and by extension
the whole network, exhibit a time-varying behavior.

Since it is non-trivial to give deterministic, provable real-time
guarantees for the asynchronous traffic in these scenarios, formal
frameworks are highly useful, because they provide a “systematic”



RTNS 2019, November 6–8, 2019, Toulouse, France J. Falk, F. Dürr, K. Rothermel

way to prove guarantees on the end-to-end delay and othermetrics
such as themaximumqueue length in network elements. Envelope-
based approaches such as Network Calculus (NC) [25], which de-
scribe data flows with accumulative functions and network ele-
ments with service curves, are commonly used to analyze real-time
systems. Thus, it is no surprise that NC has already been applied
not only to analyze networks implementing non-time-triggered
QoS mechanisms such asWeighted FairQueuing of Integrated Ser-
vices (IntServ) or TSN credit-based shaping as used, for instance, in
multimedia communication [17, 18, 24], but also for time-triggered
network elements with intermittent service (cf. Section 2). How-
ever, the research, often targeted at very specific technologies, is
predominantly considering scenarioswhere the underlying service
process ultimately offers constant-rate service, i.e., the data is for-
warded with constant rates during service intervals.

But what happens if you abandon the assumption of service pro-
cesses with ultimately constant-rate service (e.g., in case of wire-
less MIMO links where the number of streams [1, 2], e.g., influ-
enced by the number of active antennas, is changed)? And how
bad is it, to use time-invariant functions to model time-variant sys-
tems? These questions are still open. Therefore, we focus on the
fundamental aspects of the analysis of such network elements in
this paper. In detail, we make the following contributions: 1) We
identify two archetypes of time-triggered network elements with
intermittent service. Additionally, we present type-specific time-
variant approaches for deriving service curves in the NC frame-
work since in absence of specific restrictions (e.g., constant-rate)
on the service process of these network elements, distinct service
curve formulations are required. 2) We present approaches for de-
riving time-invariant service curves for these two archetypes of
network elements. In particular, we show that a leftover service
curve approach is not applicable to obtain valid time-invariant ser-
vice curves for both types, and provide an alternative approach
to model time-triggered network elements with intermittent ser-
vice with time-invariant service curves. 3) We investigate the dif-
ference of worst-case backlog and worst-case delay between time-
variant and time-invariant service curve for the two types of time-
triggered systems, using arrival-curve independent metrics.

In the remainder of this paper, we discuss the related work in
Section 2, introduce the basic concepts of NC in Section 3, describe
the two types of time-triggered network elements with intermit-
tent service in Section 4, and present the service curve formula-
tions in Section 5.We evaluate the difference between time-variant
and time-invariant approaches for modeling the service curves in
Section 6, and conclude with a summary and outlook in Section 7.

2 RELATED WORK
NC has been applied to some time-triggered network elements
with intermittent service. TDMA systems have been targeted in [15,
22, 29]. In [22, 29], insights from theNC analysis of a TDMA system
(distributed embedded systemwith bus-interconnection [29], wire-
less sensor network [22]) are used as input for the optimization of
the TDMA schedule. In [15], the tightness of worst-case bounds
is improved, taking into account various scheduling policies and

packetization of data. More recently, Ethernet-based real-time net-
works (TTEthernet, IEEE 802.1 TSN) have been subject to NC anal-
ysis [31–33]. Concerning the analysis of Ethernet-based real-time
networks, the goal is to derive worst-case bounds for the traffic
factoring in the impact of various, implementation-specific inte-
gration effects. For example, for the analysis of IEEE 802.1 TSN net-
works, the integration effects of Credit-based Shapers, Time-aware
Shapers, and Frame-preemption is considered in [33], and in [31]
the combination of Time-aware Shapers, Length-aware Schedul-
ing, and strict-priority frame-selection policy is considered.

All of the work above has in common that the service curve
formulations presented in these papers assume one service inter-
val per cycle and all of the service curve formulations are time-
invariant, and can—eventually—be traced back to a peak-rate ser-
vice process with constant service rate. Besides explicitly antici-
pating more intricate schedules with multiple service intervals per
cycle in our service curve formulations, we show that these ap-
proaches are not sufficient for service curves for time-triggered
network elements with intermittent service processes with ulti-
mately non-constant service rate.

A different approach is pursued in [7], where stochastic, time-
variant NC is combined with a measurement-based approach to
model cellular sleep scheduling. Service intermittence due to “sleep-
ing” is considered a random process in [7], whereas we assume a re-
peating, deterministic schedule for service intermittence. In [6, 7],
also the notion of regenerative service processes (i.e., the service
process is restarted at regeneration points) is explicitly mentioned.
While we will also start with time-variant service curve formula-
tion (albeit using deterministic NCwith cyclic schedules), we cover
systems with and without “restarting” service processes, and com-
pare them to time-invariant service curve formulations.

3 NETWORK CALCULUS
Deterministic Network Calculus [9, 14] is a modeling framework
to derive worst-case bounds on performance metrics such as back-
log and delay. One of the core concepts of NC is the description of
properties of the arrival processes by arrival curves and the descrip-
tion of queuing network elements by service curves. Arrival curves
and service curves are cumulative, non-decreasing functions in

Ft .i . =
{

f : f (t) ≥ f (τ ) ≥ 0,∀t ≥ τ ≥ 0; else f (t) = 0
}

(1)
for time-invariant (t.i.) functions [20], and respectively we have
Ft .v . = { f : f (s, t) ≥ 0,∀t ≥ s; else f (s, t) = 0

∧ ∀u ≤ v ≤ w : f (u,v) + f (v,w) = f (u,w) }
(2)

for time-variant (t.v.) functions [4, 16]. We consider a continuous
time-domain, i.e., (s and) t ∈ R. Arrival curves indicate the accumu-
lated amount of arriving traffic for a time interval. Conversely, ser-
vice curves describe the accumulated amount of offered service for
a time interval. In the following, arrival curves and service curves
are left-continuous in each time variable. NC defines operations
such as convolution and deconvolution (using min-plus /max-plus
algebra) on arrival and service curves, and allows concatenating
systems in a way similar to common system theory [25].

In this paper, we derive both, time-variant service curves and
time-invariant service curves for time-triggered network elements.
The time-variant service curve can be expected to provide higher
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Table 1: Basic NC operations on Ft .i . /Ft .v . .
operation time-invariant f , д ∈ Ft .i .

pointwise min. ⊕ f ⊕ д(t) = inf [f (t), д(t)]
convolution ⊗ f ⊗ д(t) = inf0≤τ ≤t [f (t − τ ) + д(τ )]

left-deconv. ⊘ f ⊘ д(t) = sup
τ ≥0 [f (t + τ ) − д(τ )]+

operation time-variant f , д ∈ Ft .v .

pointwise min. ⊕ f ⊕ д(s , t) = inf [f (s , t), д(s , t)]
convolution ⊗ f ⊗ д(s , t) = infs≤τ ≤t [f (s , τ ) + д(τ , t)]

left-deconv. ⊘ f ⊘ д(s , t) = sup
τ ≤s≤t [f (τ , t) − д(τ , s)]+

fidelity regarding the modeled system. However, this comes at a
price: a) evaluating properties of a system with a time-variant de-
scription is more difficult (cf. Equation 6-8 in Section 3.4), b) impor-
tant algebraic properties are lost with time-variant analysis com-
pared to time-invariant analysis. Most prominently, the convolu-
tion operation is not commutative anymore, which would simplify
the analysis of multi-hop scenarios. Moreover, regarding the lit-
erature, time-invariant NC has attracted far more attention. This
has the practical consequence that none of the major toolboxes
and libraries for NC (DiscoDNC [8], CyNC [28], RTC [30], RTaW
Pegase [27], etc.) advertise support for time-variant formulations.
Therefore, we investigate time-invariant service curves, too.

Next, we provide formal definitions for arrival and service curves,
and the NC operations.

3.1 Min-Plus Operations
NC uses the algebraic structure {F , ⊕, ⊗} [12, 16, 21, 25]. The ba-
sic operations on functions in F used in this paper (cf. Table 1,
with [x ]+ = max(0, x)) comprise the pointwise-minimum ⊕, the
convolution ⊗, and the left-deconvolution ⊘ [12, 16] .

3.2 Arrival Curves
Assume that the cumulative arrivals at time t are given by A(t).
Then the arrivals are constrained by arrival curve α iff

∀s ≤ t : A(t) −A(s) ≤

{

α(t − s) α is t.i.
α(s, t) α is t.v.

, (3)

or alternatively using the convolution
{

A(t) ≤ A ⊗ α(t) t.i
At .v .(s, t) = [A(t) −A(s)]+ ≤ A ⊗ α(s, t) t.v.

. (4)

3.3 Service Curves
Assume that the cumulative departures of a particular system are
given by R(t). Then that system offers a (simple) service curve β

to the flow with arrivals A(t) iff

∀t ≥ 0 ∃s ≤ t : R(t) −A(s) ≥

{

β(t − s) β is t.i.
β(s, t) β is t.v.

. (5)

An important, more restrictive type of service curve is the so-called
strict service curve [5, 10]. A strict service curve has to satisfy

∀ backlogged intervals (s, t ] : R(t) ≥ R(s) +

{

β(t − s) β is t.i.
β(s, t) β is t.v.

.

Thestrict service curve definition is related to thework-conserving
property since it provides service guarantees over every continu-
ously backlogged time interval, i.e., intervals where continuously

R(t) < A(t). In contrast to that, a system with the more general,
simple service curve might idle during such time-intervals.

3.4 Deterministic Worst-Case Bounds
The goal of NC analysis is to calculate system properties such as
worst-case bounds on delay and the amount of backlog. Arrival
curve and service curve are required to this end (disregarding spe-
cial cases, such as the availability of minimum and maximum ser-
vices curves [25]). Given arrival curve α and service curve β , the
maximum backlog (the biggest amount of data being buffered in
the system) [20] can be computed by

backlog(α, β) ≤
{

α ⊘ β(0) α ,β t.i.
supt ≥0 [α ⊘ β(t, t)] α ,β t.v.

. (6)

The maximum backlog can be thought of as the maximal vertical
distance between the arrival curve constraining the arrivals in the
system and the service curve of the system.

Equivalently, in the time-invariant case the maximum virtual
delay [20] is given by v.delay(α, β) ≤ inf [w ≥ 0 : α ⊘ β(−w) ≤ 0]

= inf
[

w ≥ 0 : sup
τ ≥0

{α (τ ) − β (τ +w)} ≤ 0

]

, (7)

and in the time-variant case by
v.delay(α, β) ≤ sup

t ≥0

[

inf
{

w ≥ 0 : α ⊘ β(t +w, t) ≤ 0
}]

(8)

= sup
t ≥0

[

inf
{

w ≥ 0 : sup
τ ≤t+w

[α (τ , t) − β (τ , t +w)] ≤ 0

}]

.

Themaximum virtual delay can be visually interpreted as the max-
imal horizontal distance between arrival curve and service curve,
which is the maximal time needed for the value of the departures
to reach the same value as the arrivals [17]. In case of FIFO, i.e.,
data serviced in the order of its arrival, the maximal virtual delay
becomes the maximum waiting time for data in the system.

4 NETWORK ELEMENTS: SYSTEM MODELS
Next, we will introduce the system models for the two different
time-triggered network elements with intermittent service (cf. Fig-
ure 1). We will use them to highlight the fundamental principles
and capabilities of the different service curve approaches in Sec-
tion 5. Going on, we use the fluid model where data can arrive and
receive service in arbitrarily sized quantities, i.e., packetization is
ignored. We assume initially empty systems with no prior arrivals
before t = 0 and no queue overflow.

In this paper, we focus on a single network element1. Data ar-
riving at the network element is modeled by arrival processAwith
arbitrary, known arrival curve α . We have no influence on arrival
process A, i.e., in the remainder of this paper, we consider arrival
process A externally given. Data from arrival process A can be
queued at the network element. We assume that enqueuing and
dequeuing at the network element occurs instantaneously. During
times controlled by the time-triggered controller, service process
S (defined by βS) offers service to the arrivals of arrival process A.
Cumulative departures at the network element are denoted by R.

1The special case of a single network element can already model an idealized commu-
nication bus or a network where every host is directly attached to one central switch.
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gate controller
t1: pass
t2: block
. . .

Queue

β
βSA R

(a) Time-triggered blocking.

power controller
t1: on
t2: off
. . .

Queue

β
βSA R

(b) Time-trigg. halt and restart.

Figure 1: Service curve β describes a composite network ele-
ment comprised of a service process S with service curve βS
manipulated by a time-triggered mechanism.

The service curve βS of the service process S (in isolation) is
not to be confused with the service curve β of the complete net-
work element. The service curve β describes the service offered
to arrivals from arrival process A, and depends on βS, the type of
time-triggered mechanism, and the schedule. The time-triggered
mechanism operates according to a cyclic schedule which contains
entries for the time instances when the controller “enables” the ser-
vice process S to offer service to the arrivals of arrival process A
(“enabling time”), and the corresponding time instances when the
controller “disables” service process S from offering service to ar-
rivals of arrival process A (“disabling time”). To this end, the time-
triggered mechanism queries the current time tcurr from the clock
of the network element. Before explaining themeaning of enabling
and disabling for the two types of network elements, we first spec-
ify the parameters of the repeating schedule (cf. Table 2), with

ter ,i ≔ ith enabling time of S relative to the start of the cycle,
tdr ,i ≔ ith disabling time of S relative to the start of the cycle,
tcycle ≔ period of the schedule (cycle length).

The number of enabled intervals per cycle is given by (imax + 1).
The enabled intervals must not overlap, andwe require 0 ≤ ter ,0 <

tdr ,0 < ter ,1 and tdr ,imax ≤ tcycle.

Table 2: Repeating schedule with cycle length tcycle.

Interval i : tenabling tdisabling

0 ter ,0 tdr ,0
1 ter ,1 tdr ,1
… . . .

Service process S is enabled at tcurr if ∃i ∈ [0, imax] such that
(

tcurr mod tcycle > ter ,i

)
∧

(

tcurr mod tcycle ≤ tdr ,i

)

(9)

and disabled otherwise.
Regarding the time-triggeredmechanisms, we consider two cases

(cf. Figure 1) where enabling and disabling of service process S are
implemented differently.

In the first case (Figure 1a), there is an additional element—a
gate—in between queue and service process S . The service process
S has a strict, time-invariant service curve βS and starts operating,
(i.e., “is powered on”) at time t = 0, and runs continuously. Start-
ing at each enabling time, the gate controller “opens” the gate, i.e.,
data in the queue is transparently passed-through to the service
process S until the next disabling time. At each disabling time, the
gate controller “closes” the gate, i.e., service process S is blocked
from accessing the arrivals of arrival process A until the next en-
abling time. We will refer to this type of network element as time-
triggered network element with blocking. Note that the service pro-
cess S is only disabled from the perspective of the arrival processA.

While the service process is blocked for arrivals fromA, the service
process S could service data from other arrival processes, i.e., βS(τ )
is the total amount of service the service process S has offered up
to time τ = t of which only the fraction inside enabled intervals is
available to arrivals from arrival processA, and t is the time in the
domain of the network element. This behavior can, e.g., occur in
TSN networks, where gates restrict access of the different queues
of an output port to the link.

In the second case (Figure 1b), the service process S is manip-
ulated directly by a so-called power controller. At each enabling
time, the power controller (re-)starts the service process S . If the
service process S is active, it offers the strict, time-invariant service
curve βS to the arrivals of arrival processA until the next disabling
time when the power controller halts the service process S . If the
service process S is disabled, it offers no service at all. We will
refer to this type of network element as time-triggered network
element with halt-restart. Here, βS has only temporary meaning,
because βS(τ ) is the amount of service the service process S can
offer τ = t − tenabling time units into an enabled interval. Thus,
in case of halt-restart-behavior, time instances where the service
process S is restarted can be considered as renewal-points [6] of
the service process S .

5 DERIVING SERVICE CURVES
After presenting the basic NC background and introducing the sys-
tem models in the previous sections, next we derive time-variant
service curves for time-triggered network elements with intermit-
tent service in Section 5.1. The time-invariant service curves are
subsequently introduced in Section 5.2.

In the remaining sections, we will use the following notation:
The corresponding index in the cyclic schedule which belongs to
the overall n-th enabled interval is given by ϕ(n) = n mod (imax+
1). For each enabled interval n we introduce the symbols

and
te ,n = ter ,ϕ(n)

td ,n = tdr ,ϕ(n)

}

+

⌊

n

imax + 1

⌋

· tcycle

where te ,n is the start, and td ,n is the end of the overall n-th en-
abled interval (i.e., ter ,i , tdr ,i are relative to the beginning of a
schedule cycle, te ,n, td ,n are absolute times).

5.1 Time-Variant Service Curve
The service offered to incoming data in a certain time interval de-
pends on the position of that time interval on the time-axis. This
observation suggests using a time-variant formulation [12, 13].

Depending on the type of time-triggered network element (cf.
Section 4), the time-variant direct service curve is either given by
the formula in Theorem 5.1 or Theorem 5.2.

Theorem 5.1 (Time-triggered blocking of service process).
Let βS(t) be the time-invariant, strict service curve of the continu-
ously running service process S . In a time-triggered queuing system
where access to this service process S is blocked outside of enabled
intervals according to a given repeating schedule, the time-variant
service curve is given by

β (s, t) =
∞
∑

n=0

[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+
. (10)
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Proof. It holds that β (s, t) ∈ Ft .v . , since β (s, t) is the sum of
f (t), f ∈ Ft .i . . LetA(t) and R(t) be the arrival function and depar-
ture function, respectively. Considering an arbitrary backlogged
interval (s, t ], we show that R(t) − A(s) ≥ β(s, t). We can distin-
guish the following cases, startingwith those caseswhere the inter-
val intersects with at most one gate open interval, before we cover
the case where (s, t ] intersects with multiple gate open intervals of
the flow of interest.

If no enabled interval is included in (s, t ] at all, then for all en-
abled intervals before (s, t ], we have

[

βS(td ,n) − βS(s)
]+ and, con-

versely, for all enabled intervals after (s, t ], we have
[βS(t) − βS (te ,n)]

+

=
[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+

= 0.

Since for (s, t ] which do not intersect with any enabled interval
min

(

t, td ,n
)

≤ max (s, te ,n) and βS ∈ Ft .i . , R(t) − A(s) ≥ 0.
Thus, enabled intervals not included in (s, t ] contribute nothing
to β(s, t). We need [·]+ in Equation 10, since it is possible that
βS

(

min
(

t, td ,n
) )

− βS (max (s, te ,n)) < 0.
If the interval (s, t ] starts in the enabled interval, but the en-

abled interval ends before t (cf. enabled interval n = 0, (s1, t1] in
Figure 2), we have R(t) −A(s) ≥ βS

(

td ,n
)

− βS (s) .

t = 0

n = 0

te ,0 td ,0

n = 1

te ,1 td ,1 tcycle

n = 2

te ,2 = ter ,0 + tcycle

s1 t1

βS(s1)

βS(td ,0)

βS(td ,0) − βS(ts1 )

s2

t2

βS(te ,2)

βS(t2)

βS(t2) − βS(te ,2)

Figure 2: Start or end of enabled interval included in (s, t ].
In case, the interval (s, t ] starts before the enabled interval, but

ends before the enabled intervals ends again (cf. enabled interval
n = 2, (s2, t2] in Figure 2), we have R(t)−A(s) ≥ βS (t)−βS (te ,n) .

If the enabled interval includes the interval (s, t ] (cf. enabled
interval n = 0, (s1, t1] in Figure 3), we have R(t)−A(s) ≥ βS (t)−
βS (s) .

t = 0

n = 0

te ,0 tc ,0

n = 1

te ,1 td ,1 tcycle

n = 2

te ,2 = ter ,0 + tcycle

s1
t1

βS(s1)

βS(t1)

βS(t1) − βS(s1)
s2

t2

βS(te ,2)

βS(td ,2)

βS(tdr ,0) − βS(ter ,0)

Figure 3: Enabled interval contains (s, t ] or vice versa.

If the interval (s, t ] includes the enabled interval (cf. enabled in-
terval n = 2, (s2, t2] in Figure 3), we have R(t)−A(s) ≥ βS

(

td ,n
)

−

βS (te ,n) .
If the interval (s, t ] intersects with multiple enabled intervals

(cf. Figure 6, where (s, t ] intersects with three enabled intervals),
we define ns = max

{

n : td ,n ≤ s
}

+ 1 the first enabled inter-
val intersecting with (s, t ], likewise, the last intersecting interval
is nt = min

{

n : te ,n > t
}

− 1. According to the behavior of the
time-triggered element with blocking, the value ofR increases only
when the service process S is enabled to offer service to the arrivals
of A. For every n ∈ [ns ,nt ] the lower bound of the amount of de-
partures (i.e., arrivals which have received service from S) is given

by
[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+, and the lower bound

of departures over the whole interval (s, t ] is then given by accu-
mulating the amount of service

R(t) −A(s) ≥

nt
∑

n=ns

[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+

in the individual enabled intervals in [ns ,nt ]. Considering, that
ns−1
∑

n=0

[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+

= 0,

and
∞
∑

n=nt+1

[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+

= 0,

we can write

R(t) −A(s) ≥
∞
∑

n=0

[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+
,

thus R(t) −A(s) ≥ β(s, t). □

Theorem 5.2 (Time-triggered halting and restarting of
service process). Let βS(t) be the time-invariant, strict service curve
of a service process S. In a time-triggered queuing system where ser-
vice process S is restarted at the beginning of each enabled interval
and halted at the end of each enabled interval according to a given
repeating schedule, the time-variant service curve is given by

β (s, t) =
∞
∑

n=0

βS
(

min
(

t, td ,n
)

−max (s, te ,n)
)

. (11)

Proof. We prove Theorem 5.2 analogously to the proof of The-
orem 5.1. It holds that β (s, t) ∈ Ft .v . (cf. proof of Theorem 5.1).
Considering an arbitrary backlogged interval (s, t ], we show that
R(t)−A(s) ≥ β(s, t), withA(t) andR(t) the arrival function and de-
parture function, respectively. We can distinguish the same cases
as before:

If no gate enabled interval is included in (s, t ] at all, then for all
enabled intervals before (s, t ], we have td ,n −s ≤ 0. For all enabled
intervals after (s, t ], we have t − te ,n ≤ 0. Therefore, R(t)−A(s) ≥
βS

(

min
(

t, td ,n
)

−max (s, te ,n)
)

= 0, since βS ∈ Ft .i . .
If the interval (s, t ] starts in the enabled interval, but the en-

abled interval ends before t (cf. enabled interval n = 0, (s1, t1] in
Figure 4), we have R(t) −A(s) ≥ βS

(

td ,n − s
)

.

t = 0

n = 0

te ,0 td ,0

n = 1

te ,1 td ,1 tcycle

n = 2

te ,2 = ter ,0 + tcycle

s1 t1

βS
(

td ,0 − s1
)

s2 t2

βS (t2 − te ,2)

Figure 4: Start or end of enabled interval included in (s, t ].
If the interval (s, t ] starts before the enabled interval, but ends

before the enabled interval ends again (cf. enabled interval n = 2,
(s2, t2] in Figure 4), we have R(t) −A(s) ≥ βS (t − te ,n) .

If the enabled interval includes the interval (s, t ] (cf. enabled in-
terval n = 0, (s1, t1] in Figure 5), we have R(t)−A(s) ≥ βS (t − s) .

If the interval (s, t ] includes the enabled interval (cf. enabled
interval n = 2, (s2, t2] in Figure 5), we have

R(t) −A(s) ≥ βS
(

td ,n − te ,n
)

= βS
(

tdr ,ϕ(n) − ter ,ϕ(n)

)

.
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t = 0

n = 0

te ,0 tc ,0

n = 1

te ,1 td ,1 tcycle

n = 2

te ,2 = ter ,0 + tcycle

s1 t1

βS (t1 − s1)

s2
t2

βS
(

td ,2 − te ,2
)

Figure 5: Enabled interval contains (s, t ] or vice versa.

If the interval (s, t ] intersects multiple enabled intervals (cf. Fig-
ure 6, where (s, t ] (partially) covers three enabled intervals), the
argumentation is analogous to the proof of Theorem 5.1. The main
difference is that during each enabled interval n in (s, t ] the ser-
vice process S of the network element with halt-restart generates
at least βS

(

min
(

t, td ,n
)

−max (s, te ,n)
)

units of departing traffic.
The lower bound of the total departures in any interval (s, t ] is the
accumulated amount of the departures in the enabled intervals, i.e.,

R(t) −A(s) ≥
∞
∑

n=0

βS
(

min
(

t, td ,n
)

−max (s, te ,n)
)

= β(s, t).

□

In Equation 10 and Equation 11, respectively, the summands
{

[

βS
(

min
(

t, td ,n
) )

− βS (max (s, te ,n))
]+
,

βS
(

min
(

t, td ,n
)

−max (s, te ,n)
)

describe the service that can be offered by server S with service
curve βS during the n-th enabled interval in the time interval (s, t ].
For βS(t) = [C · t ]+ the two theorems yield the same service curve
β , since βS(t−s) = βS(t)−βS(s). Therefore, we will use this choice
of βS in Figure 6 and Figure 7 to illustrate the construction of β(s, t)
for (s, t ] overlapping more than one enabled interval and the time-
variant property for both theorems. The dashed curve depicted in
Figure 6 results from fixing s in β (s, t). Shifting the whole inter-
val (s, t ] from Figure 6 on the time axis yields a differently shaped
service curve, as shown in Figure 7.

t = 0

n = 0

te ,0 td ,0

n = 1

te ,1 td ,1 tcycle

n = 2

te ,2 = ter ,0 + tcycle

β
(

s , td ,0
)

β (s , t)

β
(

te ,1, td ,1
)

β (te ,2, t)

Figure 6: Offered service over multiple enabled intervals.
It is easy to see that static time-triggered scheduling results in

a time-variant service curve, even if βS is time-invariant, since ∃δ
for non-trivial schedules such that β(s, t) , β(s + δ , t + δ).

t = 0

n = 0

te ,0 td ,0

n = 1

te ,1 td ,1 tcycle

n = 2

te ,2 = ter ,0 + tcycle

β
(

s , td ,0
)

β (s , t)

β
(

te ,1, td ,1
)

β (te ,2, t)

Figure 7: Offered service for shifted interval (s, t ].
Wewant to point out, that in general the service offered by time-

triggered network elements with blocking differs massively from
time-triggered network elements with halt-restart even if the ser-
vice process S has the same service curve βS. For example, con-
sider a service process S with some kind of initialization “cost”, i.e.

some latency or lower service rate at t = 0. For network elements
with blocking, this initialization has to be accounted for only once,
whereas for networks elements with halt-restart, this initialization
has to be accounted for each enabled interval. This necessitates the
distinction between blocking behavior and halt-restart behavior in
general.

5.2 Time-Invariant Service Curves
After having developed formulations for the time-variant service
curve, we are going to provide two formulations for time-invariant
service curves using a leftover approach in Section 5.2.1, and a di-
rect approach in Section 5.2.2.

5.2.1 Leftover Service Curve with Instant Arrivals. The key idea of
the leftover service curve involves the subtraction of the amount of
service that is offered to another arrival process Av (which might
be an aggregate of multiple arrival processes) from the total ser-
vice offered by the service process S . Hence arrival process A can
receive only that amount of service from S that is “left-over” byAv
(hence the name). The leftover service approach is well-known in
NC, and has been used in [32, 33] to model time-triggered block-
ing behavior. The particular leftover service curve approach we
present here follows the principles of the approach presented in [32,
33]. However, we will show that in general the leftover service
curve approach is not applicable to time-triggered network ele-
ments with halt-restart (cf. Theorem 5.2).

A

Av

low prio.

high prio.
βS

St
ric

tP
rio

rit
y

Figure 8: Artificial arrival process Av occupies service pro-
cess S during disabled intervals of actual arrival process A.

For the leftover service curve approach, an additional (virtual)
arrival process Av is constructed, which is prioritized by the ser-
vice process S over the arrival process A (cf. Figure 8). The arrivals
of the (virtual) arrival process Av are scheduled according to the
inverse schedule of the network element, i.e., at each disabling time
in the schedule of the network element, there are arrivals for Av .
The amount of arrivals of the virtual arrival process Av is chosen
to occupy the service process S (at least) until the corresponding
disabling time for arrival process Av , which is equivalent to the
next enabling time in the schedule of the network element for the
actual arrival processA. Thus,Av effectively “disables” the service
process S from servicing any data of arrival process A during the
disabled intervals of the original schedule for arrivals from arrival
process A.

To construct Av in accordance with our system model (cf. Sec-
tion 4), we construct the arrival curve for the arrival process Av
from a set of intermediate arrival curves avimd,n . The intermediate
arrival curve

avimd,n(t) =
∞
∑

k=n

β
(

tv
e ,k
, tv
d ,k

)

· 1{

t>tv
e ,k

} (12)

with 1{t>T } = {1 : t > T ; 0 : otherwise} and

β
(

tv
e ,k
, tv
d ,k

)

with
tv
e ,k

= tv
er ,ϕ(k)

tv
d ,k

= tv
dr ,ϕ(k)

}

+

⌊

k

ivmax + 1

⌋

· tvcycle (13)
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models the instantaneous arrival of the maximum amount of data
from arrival process Av that can receive service during the k-th
enabled interval of the arrival process Av in the inverse schedule,
immediately at the beginning of the k-th enabled interval of the
arrival processAv . The first enabled interval to be included in each
intermediate arrival curve avimd,n is the overall n-th interval in the
inverse schedule. We construct the artificial arrival curve for arrival
process Av

αv (t) = sup
n∈[0,nvmax]

(

avimd,n
(

t + tve ,n
)

)

, (14)

by taking the supremum of the shifted intermediate arrival curves.
To account for the worst-case over all times when the service pro-
cess S is disabled for the actual arrival processA, each intermediate
arrival curve used in the construction of the arrival curve for the
(virtual) arrival process Av is shifted such that the first arrival of
data of the respective intermediate arrival curve occurs at the time-
origin. This artificial arrival curve av thus emulates the effect of
the service process S being not available during disabled intervals.
The arrival curve av for Av given in Equation 14 is artificial in the
sense that it is introduced only for modeling purposes and does not
necessarily reflect the actual arrival curve of any other arrival pro-
cess (e.g., other traffic flows at time-triggered network elements
with blocking). Note, that if we do not know anything about the
behavior of βS, then nvmax = ∞. For nvmax = ∞, it is infeasible
to evaluate Equation 14 computationally. However, if βS conforms
to one of the asymptotic behaviors2 given in Table 3, nvmax can be
bounded by

⌊

nvmax
ivmax+1

⌋

· tvcycle ≥ T + tcycle.

Table 3: Asymptotic behaviors for time-invariant service
functions with bounded nvmax.
const. rate [4] ∃σ , ρ ∈ R,∀t : f (t) = ρt + σ or ∀t : f (t) = ∞

ultimately const. rate [4] ∃T , ∃σ , ρ ∈ R,∀t > T : f (t) = ρt + σ or ∀t > T : f (t) = ∞

pseudo-periodic [4] ∃c, ∃d ∈ R \ 0,∀t : f (t + d) = f (t) + c

ult. pseudo-periodic [4] ∃T , ∃c, ∃d ∈ R \ 0,∀t > T : f (t + d) = f (t) + c

accelerating ∀a,d ∈ R
+
,∀t : f (t + d) − f (t) ≤ f (t + d + a) − f (t + a)

ult. accelerating ∃T ,∀a,d ∈ R
+
,∀t > T : f (t + d) − f (t) ≤ f (t + d + a) − f (t + a)

Subtracting the arrival curve αv (t) from the service curve of
the service process βS, yields the leftover service curve

β(t) =

[

sup
s≤t

(βs (s) − αv (s))

]+

. (15)

The [. . .]+ expression is necessary due to the model with instanta-
neous arrivals βs (t) − αv (t) < Ft .i .

Table 4: Example schedule and corresponding inverse sched-
ule for Av with imax = ivmax = 2 and tcycle = tvcycle = 8.

Interval i :

0
1
2

Original Sched.
tenabling tdisabling

0 1
2 4
6 7

Inverse Sched. for Av
tvenabling tvdisabling

1 2
4 6
7 8

2 [4] uses the term affine instead of constant-rate. In the related work, usually an
affine or ultimately affine service function is chosen for βS for which Equation 15 can
be used in practice since nvmax is finite.

Theshifted intermediate arrival curves, the artificial arrival curve,
and the leftover service curve using the cyclic schedules from Ta-
ble 4 are shown in Figure 9. A proof for the leftover service curve
has already been provided in [32, 33], and can be similarly applied
to our modified arrival curve for the (virtual) arrival process Av .
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time
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new cycle

βS

αv

service curve β
βS − αv

shift. imd. arrival curve (tv
e ,0

= 1)
shift. imd. arrival curve (tv

e ,1
= 4)

shift. imd. arrival curve (tv
e ,2

= 7)

Figure 9: Leftover service for cyclic schedule in Table 4.

However, in the context of time-triggered network elementswith
intermittent service, the leftover service curve approach fromEqua-
tion 15 is in general not applicable to time-triggered network ele-
ments with halt-restart (cf. Theorem 5.2). Consider a scenario with
βS(t) = {t2 : t ≥ 0, 0 otherwise}, and a schedule where disabled
intervals and enabled intervals of length 1 alternate, starting with
a disabled interval for arrival process A. Then, according to Equa-
tion 13 and Theorem 5.2 we get β

(

tv
e ,k
, tv
d ,k

)

= 1 per disabled
interval of arrival process A. However, e.g., for t = 3, according
to Equation 15, arrival process A will have been offered at least
β(3) = βS(3)−2 = 7 units of service. This is a contradiction since
even in the best case, arrival processAwill have observed only two
complete, enabled intervals in each of which it would have been
offered 1 unit of service. While this choice of βS(t) is quite con-
trived, with current wireless technology it is possible to vary the
bandwidth per time interval in a controlled way, e.g., by adjusting
the number of streams of MIMO links [1, 2] or 5G resource blocks
assigned to a connection.

5.2.2 Direct Service Curve. Here, we provide an alternative to the
leftover service curve approach from Section 5.2.1 that yields a
valid time-invariant service curve for time-triggered network ele-
ments with halt-restart. For this approach, we again reuse the time-
variant service curve, more precisely Equation 10 and Equation 11,
respectively, to “directly” construct a time-invariant service curve.

The main distinction between time-variant service curve and
time-invariant service curve is that the former describes the lower
bound of offered service in any specific interval, whereas the latter
describes the lower bound of offered service irrespective of the po-
sition of the interval. Therefore, the basic idea to derive the direct
time-invariant service curve from the time-variant service curve is
to get the overall lower bound of offered service by considering all
intervals of the time-variant service curve.
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Theorem 5.3. The time-invariant, direct service curve for a time-
triggered network element is given by the infimum

β(t) = inf
n∈[0,nmax]

({

β (0, t) n = 0

β
((

toffset,n

)

,

(

t + toffset,n

))

n > 0

)

, (16)

toffset,n = tdr ,ϕ(n)−1 +

⌊

n − 1

imax + 1

⌋

· tcycle (17)

where β(s, t) is the time-variant, direct service curve for the time-
triggered network element with given repeating schedule and service
process S with service curve βS. For time-triggered network elements
with halt-restart (cf. Equation 11), nmax can be set to imax + 1, since
in all cycles the same amount of service is being offered. For time-
triggered network elements with blocking (cf. Equation 10), we have
nmax = ∞ in general.

Proof. Recalling the definition of the service curves from Sec-
tion 3.3, the infimum of offered service in any backlogged interval
of length t equals the value of the time-invariant service curve at
time t . Due to the cyclic properties of the time-triggered mech-
anisms, this lower bound can be found by evaluating the time-
variant direct service curve β(s, s+t) fornmax intervalswith length
t using properly chosen starting points s . If the starting point s of
the interval with length t for which we evaluate the time-variant
service curve β(s, s + t) is equal to the time when an enabled in-
terval has just ended, no service is offered until the next enabled
interval. This is potentially a worst-case. As an intermediate step,
we define the intermediate service curves

bimd,n(t) =

{

β (0, t) n = 0

β
( (

toffset,n
)

,
(

t + toffset,n
) )

n > 0
. (18)

The values ofbimd,n(t) are obtained by evaluating β(s, t) for a fixed
s starting at the disabling times of the different enabled intervals n.
To make the step from the intermediate service curves to the time-
invariant service curve, each intermediate service curve bimd,n(t)
is first shifted in the time domain (cf. Figure 10) to the left by the
distance of the last disabling time before te ,n from the origin. In
the second step, we apply the infimum over all shifted intermedi-
ate service curves. Thus given arrival function A(t) and departure
function R(t), R(t) ≥ A(s) + β(t − s). □

Note, that for network elements where the service process S
gets blocked according to the cyclic schedule (cf. Theorem 5.1) this
service curve is again infeasible to evaluate computationally since
nmax = ∞. But for asymptotic behaviors of βS as defined in Table 3,
nmax can be bounded to a finite value similarly as in the leftover
service curve approach. The basic idea of taking the lower bound
of several intermediate service curves can be recovered from [31],
which considers the special case where the intermediate service
curves are derived from the traditional TDMA service curve with
constant-rate service.

In Figure 10, we illustrate the construction of the direct, time-
invariant service curve for the schedule in Table 4. Figure 10 al-
ready indicates that the cost for reducing the bivariate time-variant
service curve function to an univariate time-invariant service curve
is an under-approximation of the offered service due to the inf-
term in Equation 16.
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aggregate service curve β

Figure 10: Direct, time-invariant service curve for the cyclic
schedule from Table 4.

6 EMPIRICAL EVALUATION:
In this section, we investigate the difference between time-variant
and time-invariant service curves with respect to the underestima-
tion of offered service. We think this aspect is worth exploring, be-
cause both—time-variant and time-invariant Network Calculus—
have their own merits and drawbacks. Since the derivation of the
time-invariant service curves (cf. Equation 15-16) involves the com-
binatorial problem of finding extrema of the respective intermedi-
ate curves, we use a numerical approach to assess the impact of
the schedule on the difference between the time-variant and time-
invariant service curves for the time-triggered network elements.

Since service processeswith ultimately constant-rate service are
used the most often, we use the most simple service curve βS = t

with constant-rate behavior for the service process S of the time-
triggered network elements to figure out “how bad it is, to use
time-invariant functions to model time-variant systems”, focusing
on the tightness of the worst-case bounds. Before continuing, we
explain the performance metrics, which we use for the comparison
of the service curve formulations.

Arrival-Curve-Oblivious Metrics. Since service curves can be in-
terpreted as lower bounds on the actually offered service, the less
under-approximation of offered service a service curve exhibits,
the less worst-case bounds on backlog and delay are overestimated.
Assume service curve βa and service curve βb are both supposed
to model the same system. We consider service curve βb more pes-
simistic than service curve βa , if βa exceeds βb for some time,
but never falls below βb . More precisely, in the time-variant case,
βb is more pessimistic than βa if ∀s, t : βb (s, t) ≤ βa(s, t), and
∃s, t : βb (s, t) < βa(s, t).

The service curve can be regarded as means to describe the sys-
tem, whereas the arrival curve is foremost a description of the ar-
riving data traffic.The definition of the arrival curve is tied to a spe-
cific application and network scenario and is not within the scope
of this paper. However, the shape of the arrival curve determines
how much the different ways of modeling the service impact the
computed delay and backlog bounds: Figure 11 depicts an example
where delayb − delaya = ∆h. In this scenario, the largest horizon-
tal distance between the two service curves is the difference in
the derived worst-case delay, and can be computed with the equa-
tions for the virtual delay (Equation 7,8), replacing the actual ar-
rival curve α with the less pessimistic service curve βa , and β with
the more pessimistic service curve βb , i.e., ∆h = v.delay(βa, βb ).
Analogously, we have backlogb −backloga = ∆v in Figure 11, i.e.,
if we use βb instead of βa , we overestimate the worst-case backlog
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of the system by∆v . In this case, we compute the difference in the
derivedworst-case backlogwith the backlog equation (Equation 6),
replacing α with the less pessimistic service βa curve and β with
the more pessimistic service curve βb , i.e., ∆v = backlog(βa, βb ).

time
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.)

arrival curve

Δℎ

Δ�

�
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Figure 11: ∆h and ∆v are the difference in worst-case per-
formance bounds for βa and βb .

Similarly, depending on the arrival curve there exist scenarios
where the maximum delay and backlog are equal for both service
curves even though service curve βb is more pessimistic than ser-
vice curve βa . Using ∆h and ∆v , we can express the possible dif-
ference of the delay and backlog bounds of two service curves in
absence of any specific arrival curve. Therefore, our evaluation is
not subject to a particularly “good” or “bad” choice of the arrival
curve or limited to a specific scenario.

6.1 Results
With the ∆h and ∆v metric, we compare the following two com-
binations of pairs of service curves that can be mapped to the two
types of network elements :

time-triggered blocking: We compare the time-variant ser-
vice curve from Equation 10 in Section 5.1 to the time-invariant
leftover service curve from Equation 15 in Section 5.2.1.

time-triggered halt-restart:We compare the time-variant ser-
vice curve from Equation 11 in Section 5.1 to the time-invariant
direct service curve from Equation 16 in Section 5.2.2.

Note, that Equation 16 can also be used for time-triggered net-
work elements with blocking [31], but for brevity, we use the net-
work element types to label the combinations throughout this sec-
tion. To compare a time-variant service curvewith a time-invariant
service curve, we artificially extend each time-invariant service
curve to a time-variant function βpseudo t.v.(s, t) = βt.i(t − s). The
evaluation of ∆h and ∆v is done as described previously with the
time-variant versions of the equations for backlog bound (Equa-
tion 6) and virtual delay bound (Equation 8). Considering the deriva-
tion of the time-invariant service curve formulations for both types
of network elements, the time-invariant service curves are either
equally or more pessimistic than the time-variant service curves
(cf. Figure 11: βa equals the time-variant service curve, βb equals
the time-invariant service curve). We use our own prototype im-
plementation of NC operations in Python for the evaluations in
this section. For the computation of ∆h and ∆v , we apply a time
discretization with 100 steps per time unit and evaluate the service
curve functions with randomly created schedules with a granular-
ity of one time unit. The service curves are evaluated over a win-
dow of length tcycle since the offered service per cycle is equal for
all service curves for our choice of βS = t .

Schedules with Varying Number of Enabled Intervals of Random
Length. The schedules for the evaluations presented in Figure 12a
and 12b are created by randomly drawing the length of the enabled

intervals and disabled intervals from the discrete range [1, 100]
with uniform probability. The cycle time is set to the sum of the
lengths of the enabled intervals and disabled intervals. The num-
ber of enabled intervals ranges from 2 to 20, and we evaluate 20
unique schedules for each number of enabled intervals and each
type of network element. Due to the random length of the individ-
ual enabled intervals, it is not meaningful to interpret the absolute
values of ∆h and ∆v . Therefore, we normalize ∆h to the aver-
age interval length per schedule. Analogously, we normalize ∆v

to the amount of data that can be served in the average schedule
interval. Again, this normalization is applied per schedule. In both
figures (Figure 12a, Figure 12b) we can observe that overall the dif-
ference (i.e., the normalized values of ∆h and ∆v) between the
time-variant and time-invariant service curve increases with the
number of entries of the cyclic schedule. For the evaluated sched-
ules, ∆h is on average bigger than the size of an average interval.
The outliers in Figure 12a where ∆h exceeds the average interval
multiple times are from schedules where the enabled intervals are
shorter than the difference of the lengths of the disabled intervals.
Thus, the time-invariant service curves can possibly lead to over-
estimating the worst-case delay in the order of multiple interval
lengths. The different modeling approaches have a larger impact
on ∆h than on ∆v , because here all service curves have the same
slope in the enabled intervals, which is determined by βS.

Schedules with Varying Ratio of Enabled Intervals to Cycle Time.
While the evaluations in the previous section used random sched-
ules where only the number of schedule entries is fixed, we now
fix the percentage pe .d . of the cycle time where the service pro-
cess is enabled. To be exact, we create 20 unique schedules per
pe .d . =

∑

i (tdr ,i − ter ,i )/tcycle with pe .d . ∈ {0.1, 0.2, 0.4, 0.8},
eachwith tcycle = 400 and 10 enabled intervals.The results are pre-
sented in Figure 12c and show that themean of∆h reduces with in-
creasing pe .d . . This means, the less time the enabled intervals take
up per cycle, the bigger the benefit of employing the time-variant
service curve instead of the time-invariant service curve. The be-
havior shown in Figure 12c supports the observation from the eval-
uation in the with random interval length in the previous section
that the time-invariant approaches perform particularly bad if the
schedule consists of long disabled intervals with short interspersed
enabled intervals (e.g., for pe .d . = 0.1).

Schedules with Equal Mean Interval Length and Varying Variance
of the Interval Lengths. To evaluate the effect of the variance of the
enabled intervals, we compute ∆h for schedules where all inter-
val lengths are drawn from one of the two binomial distributions,
BHV (N = 1000,p = 0.1), or BLV (N = 125,p = 0.8). The param-
eters are chosen such that the interval lengths have equal mean
value µHV = µLV = 100, but different variance σ2

HV
= 90 and

σ2
LV

= 20. Effectively, BHV yields schedules with 4.5 times higher
variance of the interval lengths compared to BLV . Each schedule
comprises 20 enabled intervals for each gate, and we evaluate 16
schedules per configuration. The results are shown in Figure 12d.
The values of ∆h are much higher for the data sets with higher
variance of the interval lengths. Therefore, we conclude that not
only the length of the schedule intervals, but also the variance of
the schedule intervals is a major influence with respect to the dif-
ference of the service curves.
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Figure 12: Evaluation for random schedules with different creation scheme.

Summary of the evaluation. In all of our evaluations, the time-
invariant service curve approach can lead to vast overestimations
of the worst-case delay bounds and the worst-case backlog bounds.
The more entries the cyclic schedule contains and the more the in-
terval lengths vary, the stronger can the difference with regards
to the worst-case bounds emerge in the analysis of a system. This
can be attributed to the construction of the time-invariant service
curves where a large variance of the schedule intervals can in-
crease the under-approximation of offered service (cf. Figure 9 and
Figure 10). This is intuitively clear, if we look at the extreme case
where all schedule intervals have the same length. Then the vari-
ance of the lengths of the schedule intervals is zero, and the sched-
ule can be reduced to a schedule with just one enabled interval
and a cycle length of two enabled intervals. In this case, the dif-
ference between time-variant and time-invariant service curve is
limited to one interval length, i.e., much smaller than the values
observed in Figure 12. In the evaluations, the overall difference be-
tween time-variant service curve and the time-invariant service
curve for the time-triggered elements with blocking is larger than
the difference between time-variant service curve and the time-
invariant service curve for the time-triggered elements with halt-
restart. This is caused by the instantaneous arrivals of the data (cf.
Equation 12) that emulate the disabled intervals for the actual ar-
rival process A for the construction of the time-invariant leftover
service curve. The instantaneous arrivals can result in service be-
ing attributed to the virtual arrival process Av too early. Due to
our particular choice of βS = t , which is less affected by the cyclic
schedule compared to other service curves (cf. rate-latency, where
latency ≥ interval length), we expect these effects to be even more
pronounced for most other service processes.

6.2 Extension To Multi-Hop?
“In theory”, NC already provides the means to evaluate multi-hop
scenarios, because we can compute the service curve of a series of
network elements with β1 ⊗ β2 ⊗ . . . (βx being the single-hop ser-
vice curve of the x-th network element). However, in practice an
analytic (symbolic) approach is required to evaluate expressions
with multiple steps or operands, unless the expression can be com-
puted by pointwise evaluation of the operands. This is due to the

search for extrema (inf, sup) over large time-intervals as required
for operations such as ⊗which, if no analytic knowledge can be ex-
ploited, becomes computationally very expensive, effectively limit-
ing a numerical approach to a single hop. While for time-invariant
NC (restricted to piecewise-linear, ultimately pseudo-periodic func-
tions), at least the algorithms are published [4], research yet has to
provide similarly powerful algorithms for time-variant NC tomake
the evaluation of multi-hop scenarios feasible.

7 CONCLUSION
In this paper, we investigated service curves for network elements
with service intermittence and resumption triggered at times de-
rived from a cyclic schedule. In detail, we looked at time-triggered
network elements with blocking, and time-triggered network el-
ements with halt-restart behavior. Since there exists a tight cou-
pling between the type of network element and the service curve
formulation, we presented distinct time-variant formulations for
each type of time-triggered network element and also showed how
to obtain the respective time-invariant service curves. We showed
that for a generic service process S , the computation of the actual
value of the time-invariant service curve of the network element
might involve evaluating an arbitrary number of expressions. In
our numerical evaluations, we observed that the time-invariant
service curves result in large over-estimations of the worst-case
bounds compared to the time-variant service curve formulation
and identified influencing factors.

Ultimately, our findings highlight some challenges for analyzing
time-triggered network elements with intermittent service with
NC: time-invariant service curves suffer fromunder-approximation
when compared to the time-variant service curve, and, depending
on βS, might even be infeasible to evaluate computationally. Time-
variant service curves offer tighter bounds, but their use, e.g., for
large multi-hop scenario, is impeded by the lack of efficient algo-
rithms for time-variant NC. Besides the development of these al-
gorithms, the use of NC to jointly design shaping mechanisms and
service schedules for real-time applications in networks with inter-
mittent service is an interesting extension of this work.
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