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ABSTRACT
Converged networks support applications with completely differ-
ent (real-time) requirements.Thecommunicationparadigmsoffered
in converged networks are predominantly treated as separate enti-
ties from the perspective of traffic engineering, e.g., time-triggered
trafficforclosed-loopcontrol systems, shapedtrafficformultimedia-
streaming applications, and best-effort traffic for non-time-critical
IT applications. However, there are scenarios where applications
benefit from considering time-triggered messages and non-time-
triggered messages as complemental components of a single traffic
flow.Theseapplicationshave theproperty that time-triggered trans-
missions guarantee basic functionality (e.g., stability of a control
system), and additional non-time-triggered transmissions improve
the application’s performance.

We present how to model these so-called complemental traffic
flowsfor this typeofapplicationusinga trafficmetric for thedescrip-
tion of the non-time-triggered traffic part. Furthermore, we show
that complemental flows are suitable for traffic engineering by pre-
senting two different approaches for the problemof optimized joint
routing and scheduling in converged networks with mixed integer
linear programming.

In our evaluations, we use an exemplary min-max objective for
the joint routing and scheduling problem which yields an average
reduction of the peak value of the traffic metric by 20-30% over
constraint-based approaches.

CCS CONCEPTS
•Networks→Network algorithms; •Computer systems organi-
zation→ Real-time systems.
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1 INTRODUCTION
Real-time communication is a fundamental requirement for imple-
menting distributed real-time systems. In particular, so-called Net-
worked Control Systems (NCS), where physical processes are con-
trolled through distributed networked sensors, actuators, and con-
trollers, depend on real-time communication. NCS can be found
in many areas, such as the Industrial Internet of Things (Industry
4.0) for controlling robots ormachines, or on-board systems of cars,
planes, etc.

Beyond mere real-time communication, there is a strong trend
towards so-called converged networks. To avoid the costly installa-
tion of dedicated networks for different traffic classes, converged
networks support a gamut of communication paradigms ranging
from time-triggered real-time communication to simple best-effort
communication with class-based priority scheduling in one shared
network. In particular, real-time Ethernet technologies are promis-
ing candidates to implement converged networks.The relevance of
converged networks is also highlighted by the standardization ef-
forts of the IEEE, who have recently ratified a set of standards, com-
monly referred to Time-Sensitive Networking (TSN) [10], enabling
standard Ethernet to implement converged networks. In particu-
lar, TSN includes a scheduling discipline called Time-aware Shaper
(formerly IEEE 802.1Qbv, now part of IEEE 802.1Q) implementing
a time-division multiplexing (TDMA) scheme to enforce temporal
isolation of traffic from different traffic classes. The Time-aware
Shaperenables real-timecommunicationwithdeterministic latency
bounds and extremely low jitter bounds (in the order of microsec-
onds), alongside other traffic classes with relaxed requirements.

Although theTSNstandard describes the schedulingmechanism
(Time-aware Shaper) executed by each network element (switch),
the algorithmic part to calculate schedules for configuring the net-
work is not covered. To this end, several algorithms for calculating
time schedules for the Time-aware Shaper have been proposed in
the literature, partially also considering the complementary prob-
lemof calculating routes togetherwith schedules (joint routing and
scheduling [5]) for time-triggered traffic. These algorithms isolate
time-triggered traffic in time (scheduling) and space (routing) from
other trafficandaimat different goals such as compactness of sched-
ules [4], latency optimization [21], or repairability [19]. Some ap-
proaches also consider non-time-triggered traffic during the calcu-
lation of schedules for real-time traffic [18, 24]. However, common
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to all of these approaches is the principle of strictly distinguish-
ingbetween time-triggeredflowsandnon-time-triggeredflowsand
treating them as strictly separate entities.

In contrast to this binary classification and separate treatment of
time-triggered and non-time-triggered flows, we argue that some
applicationswould benefit from a third type of flows, whichwe call
complemental flows. Complemental flows consist of both, a deter-
ministic real-time part, which has to be delivered deterministically
within bounded latency and is generated deterministically accord-
ing to a time schedule, and a complemental non-time-triggered part
transported with relaxed or no latency guarantees (called oppor-
tunistic part in the following). The basic idea is that the determin-
istic part of the flow provides the strictly mandatory guarantees to
safely operate the system, whereas the opportunistic part just im-
proves the system performance beyond the mandatory minimum.
In other words, the deterministic part ensures that nothing “bad”
will ever happen, whereas the opportunistic part is “nice to have”
and used to further optimize the performance.

NCS are a prime example of a class of applications that would
benefit from such complemental flows as we have already outlined
in [14].Here, the deterministic part is used to guarantee the stability
of the control system by enforcing latency bounds for a base rate of
periodically transmitted sensor values or actuator commands. The
opportunistic part transports additional sensor values and actuator
commands that allow the controller to improve the control system
performance, e.g., by staying closer to the set-point,whenever there
is extra bandwidth available.

It is important to see that thevalueof theopportunistic part is not
completely independent from the deterministic part. For instance,
an opportunistically transmitted sensor value transmitted immedi-
ately after a deterministically transmitted sensor value might carry
only little additional information since both values are almost the
same. In contrast, an opportunistic value with a greater temporal
distance to the previous deterministic value might provide really
new(er) information.This example shows that complemental flows
shouldbeconsideredwhenitcomes toplanningschedulesandroutes
if we strive for maximum performance.

Since existing TSN routing and scheduling approaches for real-
time networks in general and specifically TSN do not have a notion
of complemental flows, theymiss the opportunity of optimizing op-
portunistic parts in relation to deterministic parts during schedul-
ing and routing, ultimately resulting in lower application perfor-
mance.Therefore, we propose specific joint routing and scheduling
algorithms for TSN networks explicitly supporting complemental
flows in this paper. In detail, the contributions of this paper are the
following. We first introduce the concept of complemental flows
consisting of time-triggered, periodic transmissionswith determin-
istic real-time requirements and interspersed opportunistic trans-
missions.Weproposedifferentgenericmodels tomodel opportunis-
tic transmissions, which serve as basis for defining optimization ob-
jectives.Wethenformalize theoptimal routingandschedulingprob-
lem for complemental flows using mixed integer-linear programs
(MILP) that canbe solved by standardMILP solvers. Finally,we eval-
uate the performance of our approachwith exemplarymin-max ob-
jective with respect to the solution quality and solution runtime,
showing that our models reduce “traffic concentration” on average
by 20-30%.

The rest of this paper is structured as follows. We first discuss
related work in Section 2, before we introduce concept of comple-
mental flows in detail in Section 3. Next, we formalize in Section 4
the system model, and subsequently the joint routing and schedul-
ing problem for complemental flows in Section 5 with MILP, and
present the evaluation results in Section 6. Finally, we conclude the
paper in Section 7.

2 RELATEDWORK
In this paper, we use a traffic model where each application gener-
ates a complementalflowconsistingofboth time-triggeredandnon-
time-triggered messages. NCS have been shown to be a type of ap-
plicationswhich are able to exploit complemental flows, e.g., in [14]
which focuses on the control theoretic aspects, or in [15] which tar-
gets a specific network technology (CAN). In this paper, we have a
network-centric perspective and show how to compute routes and
transmission schedules for applications with complemental flows
in converged networks.

Theproblemofschedulingtime-triggeredmessages inconverged
networks is a sub-problemof the joint-routing and scheduling prob-
lem for complemental flows. To synthesize transmission schedules
for time-triggered traffic, it is common to express the scheduling
constraints in a constraint-based programming framework such as
Linear Programming or Satisfiability Modulo Theories, e.g., sched-
uling of time-triggered traffic with given routes [3, 4, 16, 23, 25], or
joint routing and scheduling of time-triggered traffic [5, 21, 22].The
aforementioned work limits its scope to the time-triggered traffic,
addressing questions such as feasibility of the solution and runtime
characteristics of the solving process.

In the literature, some integration effects of different traffic types
(time-triggered, non-time-triggered, etc.) in converged networks
are addressed, usually with the intention of reducing the jitter and
delay for non-time-triggered traffic. For example, [24] proposes to
explicitly incorporate“gaps” into the transmissionschedule for time-
triggeredmessages, and [13, 18] computesoptimized routes forAVB
traffic, taking into account the existing routing and scheduling of
the time-triggered traffic.Apart fromconvergednetworks, [12] pro-
poses a centralized scheduling heuristic targeted atwireless sensor-
actuator networks (WASN) for event-triggered (i.e., non-time trig-
gered) flows and time-triggeredflowswith precalculated routes. Be-
sides the system model of WASNs differing from converged net-
workswith TSN (e.g., message reordering,mediumaccess,message
sizes), in [12] all messages are subject to real-time constraints.

However, in the aforementioned approaches, time-triggered and
non-time-triggered traffic are treated as separate entities, whereas
we explicitly consider the interdependency of the two traffic parts
with different criticality that compose a complemental flow.

3 COMPLEMENTAL FLOWSAND
APPLICATIONMODEL

In this section, we describe the concept of complemental flows in
detail, and put it into the context of real-time applications.

Deterministic andOpportunisticMessages. Weconsider real-time
applications that, on the one hand, require the time-triggered, cyclic
transmission of messages that need to be delivered within determin-
istic time bounds and limited jitter via a switched (bridged) real-time
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Ethernet network, for instance, following the TSN standard (IEEE
802.1Qbv). We call these messages in the following deterministic
messages. Such deterministic messages can be found in many real-
timeapplicationswhere timelydelivery isasafetyrequirement.Con-
sider, for example, the diverse applications found in modern cars
where controllers, networked sensors, and actuators (servomotors)
form several control loops. Here, sensor values need to be delivered
from the sensors to the controller, and actuator commands from the
controller to the actuators within time bounds, or the car might be
damaged or passenger’s lives endangered. Depending on the speci-
fications of the car (engine power, speed, accuracy of sensors, etc.),
someminimumupdate (message) rate and cycle time canbe defined
a priori guaranteeing that the car will be operational with (at least)
a minimum required quality (safety condition).

On the other hand, additional updates might increase the accu-
racy and efficiency (quality) of the operation of the car beyond the
safeminimum.Here, quality is a performancemetric that should be
optimized, and quality is related to transmittedmessages.The prob-
lem is that network bandwidth is a shared resource since different
applicationsmight use the same onboard-network at the same time.
Reserving more bandwidth beyond the minimum required band-
width for one application makes it unavailable for other applica-
tions. Moreover, not all applications might require additional band-
width at all time. For instance, a car cruising with high speed on
the autobahnmight need fewer updates (messages) for the steering
applicationbut benefits fromhigherupdates on the lane-keepingas-
sistance application. While maneuvering in an urban environment
at low velocity, higher update rates for steering can improve the
driving experience. Therefore, reserving excessive bandwidth in a
time-triggered fashion at all time seems to be unjustified. Instead,
we propose to use residual network resources opportunistically, i.e.,
when available, to optimize performance. We call messages trans-
mitted outside the a priori defined time-triggered schedule for de-
terministic traffic opportunistic messages.

Ourmodeldistinguishingbetweendeterministic andopportunis-
tic messages has relevance beyond this concrete example. For in-
stance, it can be used to implement the well-known class ofweakly-
hard real-time (WHRT) systems. WHRT systems [1, 2] can tolerate
a certain number of messages missing their deadline within a time
window.We can easily ensure this using deterministic messages at
a minimum rate, such that enough deterministic messages are part
of each timewindow, and all othermessageswithin thewindoware
sent as opportunistic messages.

OptimizingApplication Performance: TrafficMetric. Complemen-
tal flows consist of the aforementioned deterministic and oppor-
tunistic messages that guarantee safety (e.g., stability) on the one
hand, and optimize performance on the other hand. Considering
the optimizationof performance throughopportunisticmessages, a
trafficmetric is required that relates opportunisticmessages to their
utility. Based on this metric, we would like to schedule and route
complemental flows such that performance ismaximized (optimiza-
tionobjective).Note thatwestrive foranoffline schedulingandrout-
ing approach, thus, we need to define trafficmetrics that also can be
estimated offline. Obviously, these metrics are application-specific,
therefore, we cannot provide an exhaustive list of concrete metrics
here, but focus on the generic properties of metrics.

t

det.
msg.

det.
msg.

time-dependent traffic metric sequence

renewal points for
traffic metric period length

Figure 1: Time-dependent traffic metrics assign a value to
time intervals with respect to the position within transmis-
sion period.

In general, we distinguish between time-independent and time-
dependent metrics. For time-independent metrics, the utility of an
opportunistic message is not related to the schedule of the deter-
ministic traffic, i.e., the time distance between sending an oppor-
tunistic message and the previous deterministic message does not
influence the utility of the opportunistic message. For instance, the
average bandwidth (rate) of opportunistic messages is such a time-
independent trafficmetric following thereasonableassumption: the
more messages (e.g., sensor values), the higher the performance.

However, this simplifying assumption is obviously neglecting
the fact that not all messages might have equal utility, but the util-
ity of a message also depends on its value and time. For instance, a
sensor value deviating significantly from the previous determinis-
tically reported value might be more useful than sending the same
value again.The problem is that for an offline approach, it is impos-
sible to predict the concrete sensor values transmitted at runtime,
which obviously depend on the situation (otherwise, onewould not
need to send predicted messages at all, as done by the orthogonal
model predictive control paradigm).

Therefore, we can make reasonable assumptions, e.g., that op-
portunistic messages sent at a larger time distance to the previous
or next message might provide more useful information than mes-
sages send immediately after or before deterministic messages. For
instance, sensor readings taken immediately after each othermight
have the almost samevalue.Thismotivates the introduction of time-
dependent trafficmetrics that incorporate the relation of opportunis-
ticmessages to the time-scheduleofdeterministicmessages. Inother
words, a time-dependent metric can be interpreted as an a priori
given function over time defining for each point in time the traffic
metric value of an opportunisticmessage sent at that time. Sincewe
assume that utility is defined in relation to the previous and/or next
deterministic message, this function only needs to be defined over
the time period of one cycle of the deterministic traffic and then
repeats for every cycle (cf. Figure 1)

4 SYSTEMMODEL
In this section, we formalize the so far abstract concepts of flows,
trafficmetrics and network graphs.Moreover, we state our assump-
tions about the system.

We use calligraphic letters (e.g.,V,E,F ) for sets. Bold letters de-
note an indexable data structure d where d[i,k] is the component
associated with indices i and k , and indexable data structures may
be nested.Thewildcard character ∗ indicates that element i ∈Imay
have any possible value from its domain.

We represent a packet-switched communication network by a
directed graphG(V,E). Edge e ∈E denotes a directional link (thus,
a full-duplex Ethernet link is represented by two edges), and vertex
v ∈ V denotes a switch (bridge). For each switch in the network,
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Transmission Selection

PCP 0PCP 1PCP 5PCP 6PCP 7

···

···

(to host or next switch)

Gate Driver
t1: 10000000
t2: 01000000
t3: 00111111

· · ·

Figure 2:Output portwithTASof IEEE Std 802.1Q-compliant
switch. Deterministic and opportunistic messages are en-
queued in queue 6 and queue 5, respectively.

there exists a unique vertex v in the graphG. F denotes the set of
all complemental flows f .

Network and Switches. We make some assumptions regarding
how flows are handled, which are compatible with the TSN stan-
dards: We assume there exists a mechanism to establish routes for
flows in the network, such that an incoming message will be trans-
mittedon thecorrectoutgoing linkaccording to thecalculated route
of thatflow.Furthermore,weassume (for the sakeof simplicity) that
theprocessingdelay is constantand thesameforall switches, andall
links have the same propagation delay and data rate. Switches can
distinguish between different traffic classes, for instance using the
Priority Code Point (PCP) field of Ethernet. Each switch uses FIFO-
queuing for the aggregate of deterministic traffic, as well as for the
aggregate of opportunistic traffic, i.e., switches are not required to
distinguish between the individual traffic flows.

Switches have the ability to precisely control the point in time,
whenmessages are scheduled for transmission for each traffic class,
e.g., using the Time-aware Shaper (TAS) from IEEE Std. 802.1Q (cf.
Figure 2). TAS uses gates for each FIFO queue of each output port to
control when messages from a queue are eligible for transmission
over that outgoing port. The opening and closing of gates is con-
trolled by a Gate Driver according to a time schedule.The clocks of
all switches are synchronized, for example using thePrecisionTime
Protocol (PTP).

These switch capabilities are also required for the zero-queuing
abstractionfor time-triggered (deterministic)messages.As thename
indicates, with zero-queuing time-triggered messages traverse the
network without queuing. Put differently, with zero-queuing at ev-
ery switch a time-triggeredmessagewill enter an empty queue and
is immediately selected for forwardingandsentout.Thishas several
advantages: zero-queuing eliminates the queuing delay, thus, al-
lows for lower jitter, and themessage delay depends directly on the
path length. Additionally, zero-queuing trivially satisfies ordering
constraints imposed by the FIFO property of the switches’ queues,
and simplifies the validation of the timing behavior of deterministic
messages in the design phase.

Complemental Flows. For each complemental flow f of an appli-
cation,we define the vertex indices of the origination vertexvo[f ]∈
V anddestinationvertexvd[f ]∈V ,whichmap to those switches in
the network where source node and destination node are attached,

v
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v

x

v

z
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trans

d

proc

d

h
o
p

+d
prop

Figure 3: Per-hop delay: Time between start of transmission
on two subsequent edges.

respectively. All messages of a specific complemental flow are for-
wardedthroughthenetworkaccordingtoastatic routewhich ispart
of the solution of the joint routing and scheduling problem. Appli-
cationnodes are aware of the distinction betweendeterministic and
opportunistic messages and “annotate” messages in a way that al-
lows switches to map the messages to traffic classes, e.g., by setting
different PCP values for deterministic and opportunistic transmis-
sions to achieve queue isolation (cf. Figure 2).

The transmission period of flow f is denoted byp[f ]∈N, and the
end-to-end delay bound for an individual deterministic message of
flows f is denoted by tddln[f ] ∈ N. Due to the cyclic behavior, we
define that each period of flow f starts with the transmission of a
deterministic message of flow f , followed by a time-interval dur-
ingwhich opportunistic messages can be transmitted.Thus, we use
the deterministicmessages as reference point for the computation of
the transmission schedule for deterministic messages, in the sense
that we have to compute suitable phases for the transmission peri-
ods for each flow, cf. Figure 4. The delay between the transmission
of deterministic messages of f at two neighboring switches on the
route of f under zero-queuing (cf. Figure 3) is referred to as per-hop
delay dhop[f ]of flow f . It consists of a constant processing delay
and a constant propagation delay, and a transmission delay which
depends on the size of the deterministic messages of flow f .

For a given problem instance, we expect that for all flows, the
traffic metric describes the same property of the opportunistic traf-
fic part. For instance, the trafficmetric could be equal to the average
bandwidth for the opportunistic traffic part of each flow. Addition-
ally, we require that the trafficmetric does not change significantly
from hop to hop and is additive in nature.This implies, that the traf-
fic metric is actually a property of the application node, or, to be
more exact, a property of the process generating opportunisticmes-
sages.This has the practical advantage, that the trafficmetrics could
be obtained for example by analyzing the application’s sending be-
havior. These requirements for the traffic metric facilitate solving
the problemwithMILPs,which require thatwe canmodel our prob-
lem only with linear inequalities and linear objective function. Fur-
thermore, additive traffic metrics are established in the context of
quality-of-service, e.g., in admission control schemes [11].

To model the time-independent traffic metric of complemental
flows, we use single scalar value which contains the aggregated in-
formation about the opportunistic transmissions for flow f . Corre-
spondingly, we use a discretized representation which splits each
transmission period into a sequence of small intervals (so-called
cells) for the time-dependent traffic metric of flow f , and we assign
the respective traffic metric value to each cell.

Note, thatdependingontheactual implementationandtheactual
meaningof the trafficmetric, thequeuingofopportunisticmessages
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has the potential to influence the temporal relation of the traffic
metric. In this paper, we work with the assumption that this influ-
ence is negligible in relation to the overall uncertainty regarding
the generation of opportunisticmessages.Wewould like to remark,
that there are approaches to limit message queuing for opportunis-
tic transmissions, e.g. Controlled Load Services [26] or bufferless
statistical multiplexing [20].

Time. In the MILPs, we discretize time in general (not only for
the time-dependent traffic metric) at the granularity of a cell (e.g.,
the respective transmission duration of deterministic messages is
given inmultiplesofcell lengths).Acelldenotesa time-intervalwith
length τ . To find a suitable mapping of cell length τ to seconds, we
can for example use the greatest commondivisor of all transmission
durations and delay parameters.

5 ROUTINGAND SCHEDULINGOF
COMPLEMENTAL FLOWS

In this section, we present two approaches for joint routing and
scheduling of complemental flows with mixed integer linear pro-
gramming. Additional definitions required for the formulation of
theMILPsare successively introduced togetherwith the constraints
in Section 5.1 and Section 5.2, and underlined symbols x denote de-
cision variables.

The joint routing and scheduling problem takes as input a graph
representing the topology of a converged network and a set of com-
plemental flows representing a set of applications.The solution con-
sists of a route for the messages of each flow and a transmission
schedule for the deterministic messages of each flow. In this con-
text a route is a set of edges forming a sequence from the appli-
cation’s source node to application’s destination node. The trans-
mission schedule must guarantee deterministic traversal of all de-
terministic messages subject to the flow requirements. Traffic met-
rics are used to select from the set of feasible routes and schedules
those that optimize the objective. In our MILP formulation, we use
a min-max objective function that minimizes the highest accumu-
lated value of the traffic metric in the network.

Wefirst present anMILPwith edge-granularity routingand time-
independent trafficmetric in Section 5.1, andnext aMILPwith path-
granularity routing and time-dependent trafficmetric in Section 5.2.

5.1 MILP: Edge-Granularity Routing and
Time-Independent TrafficMetric

TheMILP in this section is based on the ILP from [5], but extended
with the time-independent trafficmetric andoptimizationobjective
for complemental flows.

This MILP contains most notably the two variables u[f ,e] and
t[f ,e] from which routes and schedules for the flows can be recov-
ered. Variable u[f ,e] ∈ {0,1} indicates whether messages of flow f

are routed along edge e . Variable t[f ,e] ∈ N is an integer variable
denoting the phase of the transmission periods of flow f on edge e
in multiples of τ (cf. Figure 4). We can therefore get the path for f
by appending all edges with u[f ,∗] = 1, starting at the origin ver-
tex of f . Similarly, we can derive the transmission schedule for the
deterministic messages at each edge e from t[∗,e].

t

de
t. 

time-
independent

traffic metric for
opp. messages

phase for det.
transmissions

de
t. 

de
t. 

de
t. 

de
t. 

de
t. 

de
t. 

hyper-period

period f
1

period f
2

Figure 4: Scheduling by computing feasible phases for the pe-
riodic, deterministic transmissions.

RoutingConstraints. Constraints (1)-(4) express the properties of
a valid route for each flow. For the formulation of the constraints,
we define the sets Ein,v =

{

e ∈E|(1=BVE[v,e])
}

and Eout,v =
{

e ∈E|(−1=BVE[v,e])
}

which denote the set of all incoming, re-
spectively departing, edges at vertex v using the vertex-edge inci-
dence matrix BVE ofG. BVE is defined as follows: if e departs from
v , then BVE[v,e]=−1, if e entersv BVE[v,e]= 1, else BVE[v,e]= 0.
The route of each flow f starts at the origination vertex vo[f ], i.e.,

∀f ∈F :
∑

e ∈Eout,vo[f ]

u[f ,e]=1. (1)

ensures that the route of each flow f contains one edge that departs
from the origin vertex of f . Analogously, the constraint

∀f ∈F :
∑

e ∈Ein,vd[f ]

u[f ,e]=1 (2)

ensures that for each flow f , one incoming edge at the destination
vertex of f is part of the route of f . Finally, Constraints (3)-(4)

∀f ∈F :∀v ∈V\{vo[f ],vd[f ]} :
∑

e ∈Ein,v

u[f ,e]=
∑

e ∈Eout,v

u[f ,e] (3)

∀f ∈F :∀v ∈V\{vo[f ],vd[f ]} :
∑

e ∈Ein,v

u[f ,e]≤1 (4)

express that messages of each flow f are routed along a loop-free
sequence of connected edges.

Scheduling constraints. We limit the phase of the deterministic
transmissions for each flow f to ensure one complete deterministic
transmission in every interval with the length of one transmission
period of that flowwith the constraint

∀f ,e ∈F ×E : t[f ,e]+tresv[f ]≤p[f ], (5)

where tresv[f ] ∈ N denotes the duration of the transmission of a
deterministic message of flow f in multiples of τ .

Constraints (6)-(10) are responsible for interflow scheduling. In-
terflowschedulingensures temporal isolationofdeterministic trans-
missions. For the interflow scheduling, we introduce hyper-period
h = lcmf ∈F (p[f ]) ∈ N, and the auxiliary variable ujoint[f1, f2,e] ∈
{0,1}. Constraints (6)-(8) set ujoint[f1, f2,e] to 1, if messages of f1
and f2 are both traversing e , else ujoint[f1,f2,e]=0.

∀f1,f2,e ∈F ×F ×E with f1, f2 :

ujoint[f1,f2,e]≤u[f1,e] (6)
ujoint[f1,f2,e]≤u[f2,e] (7)

ujoint[f1,f2,e]≥u[f1,e]+u[f2,e]−1 (8)
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Weuseujoint[f1,f2,e] in Constraints (9)-(10) to constrain the phases
of all flowswhosemessages traverseanedgee such that all transmis-
sions of deterministicmessages of these flows in a hyper-period are
non-overlapping, i.e, we “reserve” the edge for mutually exclusive
time-intervals with

∀f1,f2,e,a,b ∈F ×F ×E×Ninst×Ninst

with f1, f2, a<
h

p[f1]
, b <

h

p[f2]
:

(t[f1,e]+a ·p[f1]+tresv[f1]−(t[f2,e]+b ·p[f2]))

−
(

ojoint[f1,f2,e,a,b]+
(

1−ujoint[f1,f2,e]
))

·Maux ≤0 (9)

(t[f2,e]+b ·p[f2]+tresv[f2]−(t[f1,e]+a ·p[f1]))

−
((

1−ojoint[f1,f2,e,a,b]
)

+
(

1−ujoint[f1,f2,e]
))

·Maux ≤0. (10)

In the formulation of Constraints (9)-(10), we have to consider that
neither dowe know the routes of the flows a priori, nor dowe know
the order of the transmissions a priori. This is reflected in an im-
plication (if messages of f1 and f2 are routed over e , ensure tem-
poral isolation of deterministic transmissions of f1 and f2), and a
disjunction (ensure transmission of deterministic message of f1 be-
fore transmission of deterministic message of f2 or vice versa). For
the disjunction, we define the set of the number of possible peri-
ods per hyper-period for all flowsNinst = {0,...,maxf

(

h
p[f ]

)

} ⊂N,
and a sufficiently large (e.g., 2 · h) constant Maux (aka bigM), and
we introduce the auxiliary variable ojoint[f1, f2,e,a,b] ∈ {0,1} with
f1,f2 ∈F ,e ∈E,a,b ∈Ninst.

Constraints (11)-(17)) are the intraflow scheduling constraints.
The intraflow scheduling constraints enforce zero-queuing for de-
terministic messages. Again, we first introduce an auxiliary vari-
able useq[f ,e1,e2] ∈ {0,1}. If e1 is followed by e2 on the route of
messages of flow f , then useq[f ,e1,e2] = 1, else useq[f ,e1,e2] = 0.
To this purpose, we use Constraints (11)-(13):

∀f ∈F :∀v ∈V :∀e1 ∈Ein,v ,e2 ∈Eout,v :

useq[f ,e1,e2]≤u[f ,e1] (11)
useq[f ,e1,e2]≤u[f ,e2] (12)

useq[f ,e1,e2]≥u[f ,e1]+u[f ,e2]−1 (13)

In Constraints (14)-(17), we constrain the start times for the reser-
vations on subsequent edges on the route of each flow f to enforce
zero-queuing. Zero-queuing applies only for edges on the route (im-
plication) of themessages, and due to the cyclic behavior, the phase
of the transmission period can “wrap around” (i.e., t[f ,e1]+dhop[f ]
mod p[f ] = t[f ,e2]) [5]. Since, modulus is not a native MILP con-
struct, we model this with an auxiliary variable oseq[f ,ein,eout] ∈
{0,1}, a large constantMaux, and thedisjunction t[f ,e1]+dhop[f ]=
t[f ,e2] or t[f ,e1] + dhop[f ] = t[f ,e2] + p[f ]. To express implica-
tion, disjunction and equality (reservation on subsequent edges are

shifted by dhop[f ]), we end up with the four linear inequality con-
straints for zero-queuing

∀f ∈F :∀v ∈V :∀e1 ∈Ein,v ,e2 ∈Eout,v :
(

t[f ,e2]−t[f ,e1]−dhop[f ]
)

−
(

oseq[f ,e1,e2]+
(

1−useq[f ,e1,e2]
))

·Maux ≤0 (14)
(

t[f ,e2]−t[f ,e1]−dhop[f ]
)

+
(

oseq[f ,e1,e2]+
(

1−useq[f ,e1,e2]
))

·Maux ≥0 (15)
(

t[f ,e2]+p[f ]−t[f ,e1]−dhop[f ]
)

−
((

1−oseq[f ,e1,e2]
)

+
(

1−useq[f ,e1,e2]
))

·Maux ≤0 (16)
(

t[f ,e2]+p[f ]−t[f ,e1]−dhop[f ]
)

+
((

1−oseq[f ,e1,e2]
)

+
(

1−useq[f ,e1,e2]
))

·Maux ≥0. (17)

Tokeep theend-to-enddelaybounds formessagesofflow f , Con-
straint (18) bounds the delay accumulated along each flow’s route.

∀f ∈F :
∑

e ∈E

dhop[f ]·u[f ,e]≤ tddln[f ] (18)

Traffic Metric. We introduce variablemedge[e]∈R+. With

∀e ∈E :
∑

f ∈F

m[f ]·u[f ,e]=medge[e], (19)

medge[e] is set to the accumulatedvalueof the trafficmetric onapar-
ticular edge e . We use min-max optimization to avoid an extremely
uneven distribution of the opportunistic traffic (metric). To this end,

∀e ∈E :medge[e]≤mmm,edge (20)

sets the auxiliary variablemmm,edge ∈ R+ to the globally highest
value of the accumulated traffic metric. Our objective

minimizemmm,edge (21)

thus minimizes this value. This combination of constraints for the
trafficmetric reduces thehighest value of the accumulated values of
the traffic metric in the whole network. Due to flow conservation,
this can distribute the traffic (subject to the timing constraints of
deterministic messages) more evenly. However, usingmedge[e] and
replacingConstraints (20)-(21)we can easily adapt theMILP. For ex-
ample, if our trafficmetric is the average bandwidth, we can restrict
medge[e] to not exceed the link bandwidth on edge e by adding an
additional constraint (medge[e]≤ threshold).

5.2 MILP: Path-Granularity Routing and
Time-Dependent TrafficMetric

TheMILPwepresentnext trades in the spatial granularity regarding
routing for higher temporal granularity with respect to the traffic
metric (time-independent vs. time-dependent). Instead of deciding
edge-by-edge whether an edge is part of the route of a flow, path-
granularity routing selects one route from a set of predefined paths
for each flow. We allow different numbers of (candidate) paths per
flow and keep a list of available path indices for flow f denoted by
npath[f ] = [0,1,2, ...]. We use a binary variable upath[f ,r ] ∈ {0,1}
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Figure 5: Rows of the cell matrices (mrsvs[f ], mtrf[f ]) repre-
sent the complemental trafficparts for differentphases.Vari-
able s[e, f ,c] indicates whether phase c ·τ is selected for trans-
mission period for flow f on edge e.

to indicate whether path r ∈npath[f ] is selected as route for flow f .
R[f ,r ]=[ea,eb ,ec ,...]denotes thepathr forflow f , and is a sequence
of edges e ∈ E from origination vertex to destination vertex of f .
Different from the previousMILP, the length of precomputed paths
has to be restricted accordingly (cf. Constraint (18)) to incorporate
the deadline parameter for deterministic messages.

The time-dependent properties of the complemental flows in this
MILP are represented in a discretized fashion with the use of cell
matrices, cf. Figure 5. The list of cell indices in a transmission pe-
riod of flow f is denoted by nprd[f ] = [0,1, ... ,p[f ]− 1]. For each
flow f , we use the cell matrix mrsvs[f ] ∈ {0, 1}p[f ]×p[f ] to indi-
cate cells reserved for the transmission of deterministic messages,
and similarly a cell matrix mtrf[f ] ∈ R

p[f ]×p[f ]
+ to store the traffic

metric sequences. For both matrices, each row is associated with
a specific phase for the transmission period of flow f , and each
column index is associated with the corresponding cell in a time-
interval with the same length as the flow period. If flow f is sched-
uled with phase cphase, thenmrsvs[f ][cphase,cindex]=1 if the trans-
missionof thedeterministicmessage is inprogress in cellcindex, else
mrsvs[f ][cphase,cindex]=0, cf. Figure 5. Similarly, if flow f is sched-
uled with phase cphase, the value of the traffic metric in cell cindex
is mtrf[f ][cphase,cindex]. Note, that due to the periodical nature of
deterministic transmissions and their property as a reset point for
the trafficmetric sequence, it is sufficient to consider cphase,cindex ∈
nprd[f ]. We can construct both matrices (mtrf[f ],mrsvs[f ]) itera-
tively from the flow parameters with the roll-operator. The opera-
tor roll(x,i) rotates the components of x by i positions to the right,
overflowing components being appended on the left.Thus, we have

mrsvs[f ][cphase,∗]= roll
(

mrsvs[f ][0,∗],cphase
)

(22)

for the rowsofmrsvs[f ]where thefirst tresv[f ] cells inmrsvs[f ][0,∗]
have value 1 (indicating a deterministic transmission) and the re-
maining cells have value 0. Similarly, we have

mtrf[f ][cphase,∗]= roll
(

mtrf[f ][0,∗],cphase
)

(23)

v
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s[e,f2, ] Mrsvs,∗ ⋅
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Figure 6: Each cell in the hyper-period can only be assigned
to deterministic messages of at most one flow.

for the rows ofmtrf[f ]wheremtrf[f ][0,∗] contains the values of the
traffic metric sequence for phase 0.

With this in mind, we can rephrase the scheduling problem as:
howmuchdowehave to rotate thecell arrays?Therotation (=phase)
is encoded by help of a set of indicator variables s[e, f ,c] ∈ {0,1}
which encodes the phase c of flow f on edge e . If we consider

s[e,f ,∗]=
[

s[e,f ,0] s[e,f ,1] s[e,f ,2] ···
]

as another rowvector, then thephase for thedeterministic transmis-
sions of flow f on edge e in the period is equal to the (zero-based)
indexc of thatvariables[e,f ,c]whichhasvalue1 (cf. Figure5).There-
fore, s[e,f ,∗] contains at most one component with s[e,f ,c]=1.

Routing Constraints. In this MILP, the routing constraint

∀f ∈F :
∑

r ∈npath[f ]

upath[f ,r ]=1 (24)

chooses one path out of the set of possible paths for each flow, i.e.,
retrieving the route of f from theMILP solution is trivial. It has to be
considered in the scheduling constraints that different paths for one
flow can contain identical sub-paths.We define the set Er[f ]which
contains all edges on any pathR[f ,∗] of a particular flow f , and the
set Re ,f = {r ∈ npath[f ]|e ∈R[f ,r ]} of all indices r of paths of flow
f which contain edge e . Therefore, to link the scheduling with the
routing decision, the constraint

∀f ∈F :∀ef ∈Er[f ] :uedge[ef ,f ]=
∑

re ∈Ref ,f

upath[f ,re ] (25)

sets auxiliary variable uedge[e, f ] ∈ {0,1} to 1, if edge e is on the
chosen path of flow f , else uedge[e,f ]=0.

SchedulingConstraints. Analogously toConstraint (5)werestrict
the phase of the transmission periods with

∀f ∈F :∀ef ∈Er[f ] :

∀c ∈
{

c ∈nprd[f ]|c > (p[f ]−tresv[f ])
}

:s[ef ,f ,c]=0,
(26)

i.e., for each flow f only those phases can be selected for which
there is one complete transmission of a deterministic message per
interval with the length of a transmission period of flow f .

To force all entries in s[e, f ,∗] to zero on those edges which are
not part of the selected route, we use the constraint

∀f ∈F :∀ef ∈Er[f ] :
∑

cshift∈nprd[f ]

s[ef ,f ,cshift]=uedge[ef ,f ]. (27)

Next,wehavethe interflow-schedulingconstraint inmatrix-notation

∀e ∈E :

[
0
.
.
.

]

≤
∑

fe ∈Fe

(

M⊺

rsvs,fe
·s[e,fe ,∗]⊺

)

≤

[
1
.
.
.

]

(28)
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on the route used by f . On unused edges, all components of
s[e1,f ,∗] have value 0.

with Fe =
{

f ∈F |e ∈Er[f ]
}

denoting the set of flows whose paths
contain e . The matrixMrsvs,fe is constructed as follows

Mrsvs,fe =
[

mrsvs[fe ] ··· mrsvs[fe ]
]

︸                               ︷︷                               ︸

h
p[fe ] times

,

i.e., we concatenate matrix mrsvs[fe ] such that each cell in a row
of Mrsvs,fe is associated with one interval of length τ in the hyper-
period. The term s[e, fe ,∗] ·Mrsvs,fe yields a row vector which indi-
cates which cells in the hyper-period are used for the transmissions
of deterministic messages of flow f on edge e for the selected phase
(encoded in s[e, fe ,∗]), cf. Figure 6. Since element-wise inequalities
aremore common for column-vectors, we use the relation (AB)⊺=
B⊺A⊺ and sum over all flows on edge e .

∑

fe

(

M⊺

rsvs,fe
·s[e,fe ,∗]⊺

)

gives a column vector which indicates how many flows use a spe-
cific cell for transmitting a deterministicmessage. By enforcing that
for each edge e each cell in the hyper-period is assigned to the trans-
mission of at most one deterministic message, we ensure tempo-
ral isolation of deterministic messages. Note that the time schedule
for deterministic transmissions at edge e can be recovered from the
MILP solution by evaluating the sum term in Constraint (28).

For the corresponding intraflow-scheduling (cf. Figure 7), we de-
fine the matrixmshift[f ] = roll

(

Ip[f ]×p[f ],dhop[f ]
)

where roll(I,x)
rotates the columns of the identity matrix I by x positions to the
right.The constraints

∀f ∈F :∀r ∈npath[f ] : (e1,e2)⊆R[f ,r ] :

mshift[f ]
⊺∗s[e1,f ,∗]⊺−

(

1−1·uedge[e1,f ]
)

≤ s[e2,f ,∗]⊺−
(

1−1·uedge[e2,f ]
)

(29)

mshift[f ]
⊺∗s[e1,f ,∗]⊺+

(

1−1·uedge[e1,f ]
)

≥ s[e2,f ,∗]⊺+
(

1−1·uedge[e2,f ]
)

(30)

enforce zero-queuing. InConstraints (29)-(30), the tuples (e1,e2)are
thepairsof subsequentedgesofR[f ,r ], and1 isacolumnvectorwith
p[f ] ones. Here, we need no disjunction for the “wrap-around” of
the phase (cf. Constraints (9)-(10)), since it is accounted for by the
roll-operation. If we ignore the routing aspect, then the scheduling
part of these constraints can be expressed with thematrix equation

∀f ∈F :∀ subsequent edges e1,e2 on the route of f :
s[e1,f ,∗]·mshift[f ]=s[e2,f ,∗]

or equivalently, mshift[f ]
⊺ ∗ s[e1, f ,∗]⊺ = s[e2, f ,∗]⊺. This means,

the phase (encoded) in s[e, f ,∗] is advanced along the edges on the
chosen path for flow f according to the respective per-hop delay, cf.

flow origins

flow destinations
n

width

n

h
e
i
g
h
t

start side

destination side

Figure 8: Scenario used for the evaluations.

Figure 7. However, sincewe are solving the joint routing and sched-
ulingproblem,Constraints (29)-(30) contain theadditional auxiliary
terms

(

1−1·uedge[e∗,f ]
)

which trivially satisfy the constraints if
not both edges (e1 and e2) are part of the chosen path.

Traffic Metric for Non-Time-Triggered Traffic. The constraint

∀e ∈E :
∑

fe ∈Fe

(

M⊺

trf,fe
·s[e,fe ,∗]⊺

)

=mcell[e,∗]
⊺ (31)

computes the value of the accumulated amount of the trafficmetric
mcell[e,chyper] ∈ R+ on edge e , but for each cell chyper in the set of
cell indicesChyper for thehyper-period. Structurally,Constraint (31)
is similar to Constraint (28), only that we consider the trafficmetric
instead of reservations here. MatrixMtrf,fe is constructed by

Mtrf,fe =
[

mtrf[fe ] ··· mtrf[fe ]
]

︸                            ︷︷                            ︸

h
p[fe ] times

. (32)

As it was the case in Section 5.1, we give the constraints and the
objective function for the min-max-optimization, but with one dif-
ference: the objective is tominimize themaximum valuemmm,cell ∈
R+ in any cell on any edge:

∀e ∈E :∀chyper ∈Chyper :mcell[e,chyper]≤mmm,cell (33)
minimizemmm,cell (34)

Variablemcell[e,chyper]exposes theaccumulatedvaluesof the traffic
metric, facilitating the adaption of the the objective function of the
MILP with path-granularity and time-dependent traffic metric.

6 EVALUATION
In this section, we first give an overview of the evaluation setup,
before we present the evaluation results.

Evaluation Setup. We implemented theMILPswith Pyomo [8, 9],
and used Gurobi 8.1.0 [7] to solve the MILPs for our evaluation sce-
narios in a containerized environment on a computing node (4×
Intel Xeon E7-4850, 2.1GHz, 1 TB RAM) running Linux 4.19.4.

Each evaluation scenario consists of a network (graph) and a set
of flows.The evaluation scenarios use a regular 4-by-4 grid (cf. Fig-
ure 8) asunderlyingnetwork topology to allowflowplacementwith
a well-known spatial distribution. The values of propagation delay
and processing delay are 1 cell length for all edges, respectively, ver-
tices. All flows start at vertices on one side (start side) and the flow
destinations are located on the opposite side (destination side) of
the grid, thus there existmultiple paths for eachpair of origin vertex
anddestinationvertex.Toachieveanapproximatelysimilarnumber
of a flows per origination vertex and destination vertex, we assign
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Figure 9: Average solver runtime, varying number of flows.

flows in a round-robin fashion to the vertices on the start side and
the destination side. For each flow, the number of cells per period
is randomly drawn from the set {10,20,40}, transmissions of de-
terministic messages require a reservation of 1 cell length, and the
deadline (length of precomputed paths, respectively) is such that up
to two thirds of all vertices may be traversed by each flow.

Due to the different granularity of routing and the traffic metric
description in the MILPs from Section 5.1 and Section 5.2, there are
two “pseudo-equivalent” variants of the flow parameters for each
evaluation scenario, i.e., for each flow f in the set of flow parame-
ters for the edge-granularity approach, there is a flow f in the set
of flow parameters for the path-granularity approach which differs
only with respect to the routing and the value of the traffic metric:
The flow parameters for MILPs with path-granularity routing con-
tain for each flow f a set of paths which we precomputed with the
graph-tool library 2.27 [17]. For the time-dependent traffic metric,
we create a random sequences by assigning the absolute values of
normally distributed random numbers to the cells of mtrf[f ][0,∗].
The time-independent traffic metric value (m[f ]) is set to the aver-
age ofmtrf[f ][0,∗] of the pseudo-equivalent flow f .

In addition to theMILPwith edge-granularity and time-indepen-
dent traffic metric from Section 5.1 (abbr.: edge, min-max) and the
MILP with path-granularity and time-independent traffic metric
from Section 5.2 (abbr.: path, min-max), we additionally use a ver-
sionofbothMILPswithoutobjective.TheMILPwithedge-granularity
routing and time-independent traffic metric and no objective func-
tion (abbr.: edge, no-obj) lacks Constraint (20). Similarly, the MILP
with path-granularity routing and time-dependent traffic and no
objective (abbr.: path., no-obj.) metrics lacks Constraint (33). Note,
that theMILPswithout objective solve the “classic” problemof joint
routing and scheduling of time-triggered traffic with zero-queuing
(ignoring the opportunistic traffic parts of complemental flows).

In our evaluations, we limit the solver runtime to 30min. For the
evaluated scenarios, this did not affect the schedulability, only the
optimality of the routes and schedules.

Evaluation Results. Next, we present the evaluation results. Fig-
ure 9 and Figure 10 show the results for evaluation scenarios with
thenumber of flows ranging from10 to 18flows, and 4precomputed
routes for the MILPs with path-granularity. In Figure 9, we plot the
average runtime in seconds for evaluation scenarios with different
number of flows. For 10 and 12 flows the MILPs with edge-gran.
routing and time-independent traffic metrics are solved faster on
average, even though the size of the MILPs with edge-granularity
routing are in general amagnitude larger compared theMILPswith
path-gran. routing for our evaluation scenarios (edge-gran: from
∼ 1.1×105 constraints and ∼ 1.3×105 variables for 10 flows up to
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Figure 10: Exit status of solver, varying number of flows.

∼ 3.4×105 constraints and ∼ 3.5×105 variables for 18 flows; path-
gran: from ∼ 2×104 constraints and ∼ 8×103 variables for 10 flows
up to ∼ 2.7×104 constraints and ∼ 1.1×104 variables for 18 flows).
Interestingly, this is not reflected in terms of memory usage of the
solver , where we observed similar values (≤ 12.3GB) during run-
time for both approaches. However, the solver hits the run-time
limit of 30min for two instances of evaluation scenarios with only
10 flows for the path-gran., min-maxMILP, whereas all instances of
evaluation scenarios with 10 and 12 flows for the edge-gran., min-
maxMILPs are solved optimally in less than 30min.

In Figure 9, we also we observe an at a first glance counter-in-
tuitive decrease of the average runtime of the path-gran, min-max
MILPs for 16 and 18 flows.The reason, why the solver appears to re-
quire less runtime to solve the harder problems with more flows is
indicated inFigure10which shows the solver status for thedifferent
instances of the evaluation scenarios. Starting at 16 flows, there are
evaluations scenarios which result in infeasible MILPs with path-
granularity routing (irregardless whether or not we have an objec-
tive function). Since infeasibility is detected relatively quickly by
state-of-the-art solvers, these MILP solutions, which actually indi-
cate the absence of a solution for our joint routing and scheduling
problem, skew the runtime observations.

This interpretation is supported by the runtime results in Fig-
ure 11 where we fix the number of flows to 16 flows, and vary the
number of precomputed paths. The corresponding solver statuses
for these MILP with path-gran. routing are given in Figure 12. The
required runtime for the path-gran., min-max MILPs for different
numbers of precomputed paths correlates with the number of in-
feasible evaluation scenarios, i.e., the number of infeasible evalu-
ation instances decreases monotonically from 5 infeasible scenar-
ios with only 2 precomputed paths to 0, i.e., 10 out of 10 evalu-
ation scenarios are schedulable for evaluation scenarios with 20
or more paths. Or in other words, the schedulability of our eval-
uation scenarios increases (as expected) with the number of pre-
computed paths, if we use the approach with path-gran. routing.
As before (Figure 9 and Figure 10), all evaluation scenarios with
the edge-granularity variant of the flow-parameters are schedula-
ble with the MILPs with edge-gran. routing, i.e., all edge-gran, no
obj. MILPs terminate optimally for these evaluation scenarios, and
all edge-gran, min-max MILPs yield a (possibly) non-optimal feasi-
ble solution within 30min.
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Figure 12: Solver status forMILPwith path-gran. routing for
varying number of precomputed paths.

Ifweconsideronly theMILPswithoutobjective,wecanconclude
that for our evaluation scenarios the path-granularity approach re-
sults not only in smaller MILPs, but is also much faster. In both, Fig-
ure 9 and Figure 11 the MILP with path-gran. and time-dependent
trafficmetric without objective is solved in a few seconds (Figure 9:
≤ 4.1s; Figure 11: ≤ 17.1s for 30 paths), which is much faster com-
pared to the average runtime of the MILP with edge-based routing
and time-independent traffic metric (Figure 9: ≤ 99s for 10 flows,
≤ 14.7 min for 18 flows; Figure 11: ≤ 12 min). In turn, the addi-
tional degrees of freedom for routing in the edge-based routing ap-
proaches massively improve the schedulability.1

For both (edg-gran. and path-gran.) no-obj. MILPs, we retain the
constraints to compute the accumulated values of the trafficmetric
per edge (Constraint (19)) or per cell per edge (Constraint (31)). De-
spite our method for generating the traffic metrics, simply compar-
ing the trafficmetric values of the approachwith edge-gran. routing
to thoseof the approachwithpath-gran. routing is unfair, since they
have different objectives (accumulated trafficmetric value per-edge
vs. accumulated value per-edge per-cell). Instead, we calculate the
respective reduction of the objective value (highest value of the ac-
cumulated traffic metric values per edge/per cell per edge)

reduction edge-gran., t.i.:
(

max
e ∈E

medge[e]

)

/mmm,edge−1

reduction path-gran., t.d.:
(

max
c ∈Chyper,e ∈E

mcell[e,c]

)

/mmm,cell−1

yielded by the min-maxMILPs over the no-obj MILPs.
In Figure 13, the reduction is depicted for the evaluations scenar-

ios with varying number of paths from Figure 11 and Figure 12. In
otherwords, Figure 13 shows the improvement over the casewhere

1Note, that this holds for the problem of joint routing and scheduling of time-triggered
traffic with zero-queuing, too, since the MILPs without objective solve this problem.
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Figure 13: Average reduction of highest value of aggregated
trafficmetric for varying number of precomputed paths.

a classic time-triggered routing and scheduling approach (which ig-
nores the opportunistic messages) is used for complemental flows.
The approach with edg-gran. routing reduces the highest accumu-
lated value of the traffic metric on any edge on average by 32.4%,
with the extrema ranging from a reduction of as less as 15.5% up to
a reduction of 50.8%. The approach with path-gran. yields an aver-
age reduction of the highest accumulated value of the trafficmetric
in any cell on any edge in the range of 18.3% (for 5 paths) to 44.2%
(30 paths).The (feasible) evaluation scenarios fromFigure 9 and Fig-
ure 10 yield similar results with an average reduction of 23.9% for
the approach with path-gran. routing and an average reduction of
30.8% for the approach with edge-gran. routing.

For our evaluation scenarios,weobserved that there is oftenano-
ticeable improvement shortly after the solver has found the first fea-
sible solution. Thus, depending on the relative value of computing
resources, time, and the required “optimality” of the solution, even
if we abort the solving process prematurely, the joint routing and
scheduling for complemental flows quickly yields substantial im-
provements over the pure-constraint based solution which ignore
the opportunistic traffic part.

7 CONCLUSIONANDOUTLOOK
In this paper, we explain the concept of complemental flows for ap-
plications in converged networks.We provide twoMILPs to jointly
compute optimized routes and schedules for applicationswith com-
plemental flows with different granularity. Our evaluations with
a min-max objective show that both approaches can be used, e.g.,
for better distribution of the complemental flows compared to ap-
proaches for pure time-triggered flows, leading to an average re-
duction of 20% to 30% of the accumulated traffic metric for the non-
time-triggered traffic even with limited solver runtime.

Our approach uses offline estimates of the traffic metrics for the
opportunistic traffic parts. Therefore, an integrated simulation of
the converged network (cf. using [6]) and the applications generat-
ing the complemental flowsmight provide further insights into the
relation of the traffic metrics to the actual performance improve-
ments of the application during runtime. Working towards a more
integrated approach which explicitly considers the queuing behav-
ior for non-time-triggered messages is another challenge in exten-
sion to the work presented in this paper.

ACKNOWLEDGMENT
ThisworkwassupportedbytheGermanResearchFoundation (DFG)
under the research grant “Integrated Controller Design Methods
andCommunicationServices forNetworkedControlSystems(NCS)”
(RO 1086/20-1, AL 316/13-1).



Optimal Routing and Scheduling of Complemental FLows RTNS 2019, November 6–8, 2019, Toulouse, France

REFERENCES
[1] M. E. M. Ben Gaïd, D. Simon, and O. Sename. 2008. A Design Methodology for

Weakly-HardReal-TimeControl. In 17thIFACWorldCongress (IFACWC’08). IFAC,
Seoul, South Korea, 7. https://hal.inria.fr/inria-00269209

[2] G. Bernat, A. Burns, andA. Liamosi. 2001. WeaklyHard Real-Time Systems. IEEE
Trans. Comput. 50, 4 (April 2001), 308–321. https://doi.org/10.1109/12.919277

[3] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. 2016. Scheduling Real-
Time Communication in IEEE 802.1Qbv Time Sensitive Networks. In Proceedings
of the 24th InternationalConference onReal-TimeNetworks and Systems (RTNS ’16).
183–192. https://doi.org/10.1145/2997465.2997470

[4] F. Dürr and N. G. Nayak. 2016. No-Wait Packet Scheduling for IEEE Time-
Sensitive Networks (TSN). In Proceedings of the 24th International Conference on
Real-Time Networks and Systems (RTNS ’16). 203–212. https://doi.org/10.1145/
2997465.2997494

[5] J. Falk, F. Dürr, and K. Rothermel. 2018. Exploring Practical Limitations of Joint
Routing and Scheduling for TSN with ILP. In 2018 IEEE 24th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications. Hakodate,
Japan, 136–146. https://doi.org/DOI%002010.1109/RTCSA.2018.00025

[6] J. Falk, D. Hellmanns, B. Carabelli, N. G. Nayak, F. Dürr, S. Kehrer, and K. Rother-
mel. 2019. NeSTiNg: Simulating IEEE Time-sensitive Networking (TSN) in OM-
NeT++. In Proceedings of the 2019 International Conference on Networked Systems
(NetSys). Garching b. München, Germany.

[7] LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[8] W. E. Hart, C. D. Laird, J.-P.Watson, D. L.Woodruff, G. A. Hackebeil, B. L. Nichol-
son, and J. D. Siirola. 2017. Pyomo–optimization modeling in python (second ed.).
Vol. 67. Springer Science & Business Media.

[9] W. E. Hart, J.-P. Watson, and D. L.Woodruff. 2011. Pyomo: modeling and solving
mathematical programs in Python. Mathematical ProgrammingComputation 3, 3
(2011), 219–260.

[10] IEEE Computer Society. 2018. IEEE Standard for Local and Metropolitan Area
Network–Bridges and Bridged Networks. IEEE Std 802.1Q-2018 (Revision of IEEE
Std 802.1Q-2014) (July 2018), 1–1993. https://doi.org/10.1109/IEEESTD.2018.
8403927

[11] S. Jamin, S. J. Shenker, and P. B. Danzig. 1997. Comparison of Measurement-
Based Admission Control Algorithms for Controlled-Load Service. In , Proceed-
ings IEEE INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer
andCommunications Societies. Driving the Information Revolution, Vol. 3. 973–980
vol.3. https://doi.org/10.1109/INFCOM.1997.631035

[12] X. Jin, A. Saifullah, C. Lu, and P. Zeng. 2019. Real-Time Scheduling for Event-
Triggered and Time-Triggered Flows in IndustrialWireless Sensor-Actuator Net-
works. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.
1684–1692. https://doi.org/10.1109/INFOCOM.2019.8737373

[13] S.M. Laursen, P. Pop, andW. Steiner. 2016. RoutingOptimization of AVB Streams
in TSN Networks. SIGBEDRev. 13, 4 (Nov. 2016), 43–48. https://doi.org/10.1145/
3015037.3015044

[14] S. Linsenmayer, B. W. Carabelli, F. Dürr, J. Falk, F. Allgöwer, and K. Rothermel.
2019. Integration of CommunicationNetworks andControl SystemsUsing a Slot-
ted Transmission Classification Model. In 2019 16th IEEE Annual Consumer Com-
municationsNetworkingConference (CCNC). 1–6. https://doi.org/10.1109/CCNC.
2019.8651811

[15] P.Marti,A.Camacho,M.Velasco, andM.E.M.BenGaid. 2010. RuntimeAllocation
ofOptionalControl Jobs to a Set ofCAN-BasedNetworkedControl Systems. IEEE
Transactions on Industrial Informatics 6, 4 (Nov. 2010), 503–520. https://doi.org/
10.1109/TII.2010.2072961

[16] R. S. Oliver, S. S. Craciunas, andW. Steiner. 2018. IEEE 802.1QbvGateControl List
Synthesis Using Array Theory Encoding. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 13–24. https://doi.org/10.1109/
RTAS.2018.00008

[17] T. P. Peixoto. 2014. The graph-tool python library. figshare (2014). https://doi.
org/10.6084/m9.figshare.1164194

[18] P. Pop,M. L. Raagaard, S. S. Craciunas, andW. Steiner. 2016. DesignOptimisation
ofCyber-PhysicalDistributed SystemsUsing IEEETime-SensitiveNetworks. IET
Cyber-Physical Systems:TheoryApplications 1, 1 (2016), 86–94. https://doi.org/10.
1049/iet-cps.2016.0021

[19] F. Pozo, G. Rodriguez-Navas, and H. Hansson. 2018. Schedule Reparability: En-
hancingTime-TriggeredNetworkRecoveryUponLink Failures. In 2018 IEEE24th
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA). 147–156. https://doi.org/10.1109/RTCSA.2018.00026

[20] M. Reisslein, K. W. Ross, and S. Rajagopal. 2002. A Framework for Guaranteeing
Statistical QoS. IEEE/ACM Transactions on Networking 10, 1 (Feb. 2002), 27–42.
https://doi.org/10.1109/90.986511

[21] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl. 2017.
ILP-Based Joint Routing and Scheduling for Time-Triggered Networks. In Pro-
ceedings of the 25th International Conference on Real-Time Networks and Systems
(RTNS ’17). 8–17. https://doi.org/10.1145/3139258.3139289

[22] F. Smirnov, M. Glaß, F. Reimann, and J. Teich. 2017. OptimizingMessage Routing
and Scheduling in Automotive Mixed-Criticality Time-Triggered Networks. In
Proceedingsof the54thAnnualDesignAutomationConference2017 (DAC’17). ACM,
Austin, TX, USA, 48:1–48:6. https://doi.org/10.1145/3061639.3062298

[23] W. Steiner. 2010. An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-Hop Networks. In 2010 31st IEEE Real-Time Systems Symposium.
375–384. https://doi.org/10.1109/RTSS.2010.25

[24] W. Steiner. 2011. Synthesis of Static Communication Schedules for
Mixed-Criticality Systems. In 2011 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops.
11–18. https://doi.org/10.1109/ISORCW.2011.12

[25] W. Steiner, S. S. Craciunas, and R. S. Oliver. 2018. Traffic Planning for Time-
Sensitive Communication. IEEE Communications Standards Magazine 2, 2 (June
2018), 42–47. https://doi.org/10.1109/MCOMSTD.2018.1700055

[26] J. Wroclawski <jtw@lcs.mit.edu>. 1997. RFC 2211: Specification of the
Controlled-Load Network Element Service. https://tools.ietf.org/html/rfc2211


	Abstract
	1 Introduction
	2 Related Work
	3 Complemental Flows and Application Model
	4 System Model
	5 Routing and Scheduling of Complemental Flows
	5.1 MILP: Edge-Granularity Routing and Time-Independent Traffic Metric
	5.2 MILP: Path-Granularity Routing and Time-Dependent Traffic Metric

	6 Evaluation
	7 Conclusion and Outlook
	References

