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Abstract
Complex event processing systems process the input event streams
on-the-fly. Since input event rate could overshoot the system’s
capabilities and results in violating a defined latency bound, load
shedding is used to drop a portion of the input event streams. The
crucial question here is how many and which events to drop so
the defined latency bound is maintained and the degradation in
the quality of results is minimized. In stream processing domain,
different load shedding strategies have been proposed but they
mainly depend on the importance of individual tuples (events).
However, as complex event processing systems perform pattern
detection, the importance of events is also influenced by other
events in the same pattern. In this paper, we propose a load shedding
framework called eSPICE for complex event processing systems.
eSPICE depends on building a probabilistic model that learns about
the importance of events in a window. The position of an event
in a window and its type are used as features to build the model.
Further, we provide algorithms to decide when to start dropping
events and how many events to drop. Moreover, we extensively
evaluate the performance of eSPICE on two real-world datasets.

CCS Concepts • Information systems→ Data streams; Stream
management; • Theory of computation → Streaming models;

Keywords Complex Event Processing, Stream Processing, Load
Shedding, Approximate Computing, latency bound, QoS
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1 Introduction
Complex event processing (CEP) is an efficient and scalable para-
digm for processing event streams. An operator in a CEP system is
used to detect important situations by analyzing the input event
streams. It performs pattern matching by correlating the events
(called primitive events) from the input event streams and gener-
ates, as output, complex events which represent the occurrence
of specific situations, e.g., fire detection, stock changes, intrusion
detection, etc. [10, 17, 21]. In CEP [1, 4, 7, 20, 24], the input event
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stream is partitioned into independent windows of events where
a window captures temporal relations between events. Windows
might overlap and hence an event can be part of several windows.

In CEP, the volume of input event streams is huge and cannot
be processed on a single machine. Therefore, distribution and par-
allelism are frequently used in CEP, where the CEP operator graph
is distributed on multiple compute nodes. Moreover, each CEP op-
erator runs on one or more compute nodes [4, 7, 15, 17, 20]. The
underlying assumption of the above works is that there are infinite
available resources, e.g., in cloud. However, there are various rea-
sons for considering limited resources such as: 1) limited monetary
budget, and 2) limited compute resources if operators run in private
clouds due to security or response time reasons.

In most CEP applications, the detected complex events are use-
less if they are not detected within a certain latency bound [7, 22].
Moreover, many applications accept a reduced result quality, e.g.,
network monitoring, traffic monitoring, stock market [4, 21, 32].
To avoid violating a defined latency bound or crashing the system
in the face of high incoming event rate and limited resources, load
shedding may be necessary. Load shedding drops events from input
event streams of an operator, thereby reducing its load. However,
dropping events might adversely impact the quality of the CEP
output where important situations could be missed or falsely de-
tected in the input event stream. Thus, it is crucial to drop those
events that have less impact (low utility/importance) on the quality
of results.

There are primarily three challenges facing the decision to drop
events in CEP systems: 1) Deciding on which events to drop since
the utility of an event depends on multiple factors, e.g., other events
in the pattern, on the order of events in the pattern, and on the
input event stream. 2) Calculating the number of events to drop
in order to maintain a given latency bound since an event may be
dropped from some windows while it is still there in other windows.
3) Dropping events in an efficient way to reduce the overhead of
load shedding.

Load shedding has been proposed by several research groups
[13, 14, 21, 23, 29, 30] in the stream processing domain. They focus
mainly on individual events, where each event has an associated
utility value that reflects its importance for the result quality. How-
ever, since CEP systems perform pattern matching, the utility of
events is also influenced by other events in the same pattern. For
example, let the pattern be {seq(A;B) ∨ seq(A;C )}. It is clear that
events of type A are more important than events of type B and C .
However, if all events of type B and C are dropped, then no com-
plex events would be detected. Hence, we cannot consider only the
utility of each event individually but we must also take into consid-
eration other events in the pattern and in the input event streams.
So far, there is only little work on load shedding in CEP. In [12], the
authors consider the dependency between different events of the
same pattern. However, they do not consider the order of events in
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patterns and input event streams which is extremely important in
CEP such as in the sequence operator.

In this paper, we propose a load shedding framework, called
eSPICE, for CEP systems. eSPICE is efficient and lightweight. More-
over, it considers the dependency between events of the same pat-
tern as well as the order of events in the pattern and in input event
streams. In addition, it also considers the impact of the same event
residing in overlapping windows on the quality of results, where
the same event may be in different positions in different windows.
To capture the utility of an event in different windows, we design
a probabilistic model that uses the relative position of events in
a window and their types as learning features. The goal of our
load shedding strategy is to maintain a given latency bound while
minimizing the adverse impact of dropping events on the quality
of results. More specifically, our contributions in this paper are as
follows:
• We propose an efficient lightweight load shedding strategy
that uses a probabilistic model to capture the importance of
events in a window. The importance of an event is influenced
by its type and its relative position in a window. The idea
behind this approach is that the events, in specific positions
within a window, that contribute to building a complex event
in one window are more likely to build complex events in
other windows as well.
• We provide an algorithm to estimate the number of events
to drop in order to maintain the given latency bound. It also
estimates the intervals within which the drop should take
place.
• In order to show the effectiveness of our proposed load shed-
ding strategy under realistic settings, we implement and
thoroughly evaluate eSPICE for a broad range of CEP opera-
tors using real world datasets.

The rest of the paper is structured as follows. Section 2 presents
the background for this work and formally states the problem that
we address. In Section 3, we provide a detailed explanation of how
the different components of eSPICE are used for our probabilistic
load shedding strategy. Section 4 presents results obtained from
extensively evaluating eSPICE. Finally, we discuss the related work
and the conclusion in Sections 5 and 6, respectively.

2 Preliminaries and Problem Statement
In complex event processing (CEP) systems, input event streams
are processed to detect patterns. Such CEP systems may comprise
of one or more operators that are represented by a directed acyclic
graph. Each operator processes input event streams produced from
one ormore sources. Event sourcesmight be sensors, upstream oper-
ators, other applications, etc. An event (also called primitive event)
in the input event streams consists of a meta-data and attribute-
value pairs. The event meta-data contains event type, sequence
number and timestamp. The event type is used to distinguish events
from different types. The event type could be, for example, a stock
symbol in a stock market application, a player in a soccer applica-
tion, etc. Events in the input event streams have global order, e.g.,
by using the sequence number or the timestamp and a tie-breaker.
The attribute-value pairs contain the actual data, e.g., stock quote
or player position.

In this work, we focus on a CEP system consisting of a single
CEP operator. We assume a window-based CEP system where the

input event streams are partitioned into windows (for example, by
a window operator) using predicates. The predicates to open and
close windows may depend on time (called time-based window),
on the number of events (called count-based window), on logical
predicates (called pattern-based window) or, on a combination of
them [4, 18]. The windows of primitive events are first pushed to the
input queue of an operator. An operator continuously gets primitive
events from the input queue and processes them by the process
function which performs the actual pattern matching as shown in
Figure 1. The output of the pattern matching are the complex events.
A primitive event might belong to multiple overlapped windows
where it is processed independently in each window.

To define patterns, the operator uses an event specification lan-
guage like Tesla [9], Snoop [8], or SASE [31]. These languages
contain several CEP operators: sequence, conjunction, negation,
etc.

Example: In intra-day stock trading, an operator receives an
event stream containing live stock quote changes of stock A and B
throughout the trading day. An analyst wants to detect correlations
between a change in A and a change in B in a time period of 1
minute. He formulates a query in the Tesla [9] event specification
language:

[QE ]

define Influence(Factor)

from B() and

A() within 1min from B

where Factor = B : change / A : change

Let us assume that a windoww of 1 minute contains the stock
events B4, B3, A2, A1, where Xi represents event type X and i
indicates the event position in stream of ordered events. There exist
several instance of each event type in w and hence it is not clear
which events of type A should be matched with which events of
type B. The generated complex events could be any combination
of these event instances. To precisely define which event instances
should participate in emitting the complex events, the selection
policy has been introduced [8, 34]. There are four main selection
policies: first, last, each, cumulative. In the first selection policy,
the earliest event instances are chosen for pattern matching. In
the above example, the generated complex events using the first
selection policy could be cplx13 = (A1, B3) and cplx24 = (A2, B4).
In last selection policy, the latest event instances are chosen for
pattern matching. In the above example, the generated complex
events using the last selection policy could be cplx23 = (A2, B3) and
cplx24 = (A2, B4).

In the above example, it is also not clear whether it is allowed to
reuse the event instances in performing other pattern matching or
they should be considered as consumed events, i.e., not reusing them
again. The consumption policy [8, 34] defines whether the same
event instance can be used in several pattern matching. There are
mainly two consumption policies: consumed and zero. In the above
example again, let us assume that the selection policy is last. Now,
using consumed consumption policy results in detecting only one
complex event cplx23 = (A2, B3). Whilst using zero consumption
policy results in detecting two complex events cplx23 = (A2, B3) and
cplx24 = (A2, B4), where the event A2 is reused in cplx24. For more
information about selection and consumption policy, see [8, 34].
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Depending on the used selection and consumption policy, the
events in specific positions within a window have different proba-
bilities to be part of the detected complex events. For example, if the
used selection policy is first and consumption policy is zero, then the
events in the beginning of the windows have higher probabilities
to match the pattern.

We assume that the processing logic in the operator is a black-
box, where we do not have any knowledge about their internal
states. In this work, we assume that the operator reveals detected
complex events, which is a standard assumption in any event pro-
cessing system. In addition, we assume that the event types are
known. Our probabilistic model estimates the utility of events re-
gardless of their order within the matching patterns and also re-
gardless of the used selection and consumption policy.

2.1 Quality of Results
In this paper, we represent the quality of results by number of false
positives and negatives. A false positive is a situation (a complex
event) that should not be detected but has been falsely detected.
While a false negative is a situation (a complex event) that should
be detected but has not been detected.

In the above example (cf. 2), using the first selection policy and
consumed consumption policy, two complex events can be detected
cplx13 = (A1, B3) and cplx24 = (A2, B4). If A2 is dropped from w ,
only one complex event can be detected cplx13 = (A1, B3). This
results in one false negative since cplx24 is not detected. On the
other hand, ifA1 is dropped fromw , a new complex event is detected
cplx23 = (A2, B3) which results in one false positive and two false
negatives since cplx13 and cplx24 are not detected.

2.2 Problem Statement
To maintain a given latency bound (LB) in the face of system over-
load, load shedding could be used to drop events from the operator’s
input queue. But dropping events might degrade the quality of re-
sult. Tominimize its impact on the quality of result, the load shedder
must drop only those events that have low utility values. The utility
of primitive events is measured by their influence on the number
of false positives (Nf p ) and false negatives (Nf n ), i.e., the quality.

More formally, our objective is to minimize degradation in the
quality of result, i.e., minimize (Nf p +Nf n ), while dropping events
such that the given latency bound LB is met.

3 Probabilistic Load Shedding
In order to minimize the degradation in quality of results, our main
idea is to avoid dropping primitive events that could contribute to
producing complex events. The question is–how do we identify the
importance/utility, in this context, of these primitive events prior
to processing them? In real-world applications, event streams have
properties that can be exploited to derive the aforementioned impor-
tance/utility of a primitive event w.r.t. its probability of contributing
to a complex event. An observation is that there is a correlation
between type and relative position within windows of primitive
events that constitute complex events. For example, in a soccer
game, a sport analyst might be interested in finding a complex
event called man- marking, i.e., certain defender(s) who always
defend against a particular striker. In this case, the ball possession
by a striker (possession-event) and the defender (defending-event)
are event types. These two event types have a correlation with each

other. Whenever a striker possesses the ball, a defender(s) defends
against him in a certain time interval (i.e., relative position in the
window), thus producing a complex event. Clearly, in this scenario,
position of the primitive events constituting the complex events,
i.e., position of defending-events relative to the possession-event, are
correlated. Such correlations also exist in stock market applications.
For example, a stock of type IBM may impact a stock of another
company within a certain time interval (i.e., relative position in the
window), thus resulting in a complex event which detects such an
influence. Again, in a different domain, the sensor data set provided
by the Intel Research Berkeley Lab shows positive correlation be-
tween events of type temperature and events of type humidity [6].
This implies that within a certain interval an increase/decrease in
temperature results in an increase/decrease in humidity.

We exploit this correlation, captured by the type and relative
position in thewindow of primitive events, to predict the probability
of primitive events to be part of a complex event. In particular, we
derive utilities of primitive events in a window based on the event
types and their relative positionswithin the window and use this
information to build a probabilistic model that estimates the utility
of incoming events in windows. Our load shedder drops only the
incoming events that have low utility values within each window,
thus minimizing the number of false positives and false negatives.

Next, we explain our probabilistic load shedding strategy in
detail. First, we show the architecture of eSPICE. Then, we for-
mally define the utility of primitive events within windows. This
is followed by a detailed explanation of our probabilistic learning
strategy, how to detect the overload on the system, and how to
compute the amount of load to be dropped in order to meet the
given latency bound. Finally, we explain the functionality of the
load shedder.

3.1 The eSPICE Architecture
To enable load shedding, we extend the architecture of a CEP oper-
ator by adding the following components–overload detector, utility
models, and load shedder (LS)–as depicted in Figure 1.

The overload detector detects if there exists an overload on the
operator. It checks the input event queue size periodically where
the incoming windows of primitive events are queued. In case
of an overload, the LS drops primitive events from windows to
prevent the violation of the defined latency bound (LB). The utility
models contain the utility of primitive events in a window and
other information that is needed by the LS.

Now, we explain how these 3 components are related. Upon
detecting an overload, the overload detector commands the LS to
drop events. On receiving this command, the LS uses the utility of
primitive events in a window, available from the utility models, to
decide on which events to drop.

Please note that load shedding is a time-critical task where it
directly affects the CEP system performance and hence it must be
lightweight and efficient. As we will see later, our load shedder
has very low overhead. Contrarily, building the utility models can
afford to be computationally heavy as it is not a time-critical task.

3.2 Utility Models and Their Applications
In this section, we explain, in detail, the utility models and the way
they can be used to drop events.

Utility Prediction Function. The utility of a primitive event
in a window is defined by its impact on the quality of results. As
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Figure 1. The eSPICE Architecture.

mentioned earlier, we represent utility as the probability of the
primitive event to be part of a complex event. Clearly, dropping
primitive events that have a high probability to be part of complex
events degrades the quality of results. Hence, we avoid dropping
these primitive events by assigning high utility values to them.
Please recall that we identified the type and position of an event
within a window to be an indicator of whether or not this event
has a high probability to contribute to detect a complex event. This
implies that the type and position of an event determine its utility.

As a result, to map type and position of events to a utility value,
we introduce the utility prediction functionU (T , P ) that predicts
the utility of a primitive event of type T in the position P within a
window. As we will see later, this prediction function can be simply
implemented based on statistical data collected from the operator.

Utility Threshold and Occurrences. Upon receiving the drop
command to drop x events from each window, the LS must find
those x events that have the lowest utility values in a window.
One simple approach is to sort the utility values using an efficient
sort algorithm. For example, heap sort has a time-complexity of
O (ws .loд2x ), wherews is the number of events in a window [26].
However, this approach requires that the entire window is available
to the LS before sorting of the utilities and consequently shedding
of events are performed. But waiting until the arrival of all events
of a window might introduce a high latency on event processing
or might even cause violation of LB. Moreover, sorting needs to be
performed in every window which might add additional overhead
on the system that already suffers from an overload.

A better approach to avoid the above induced latency and over-
head is to find a utility threshold (denoted by uth ) that can be used
on-the-fly to drop the desired number of events in a given window.
In particular, we need a function that maps the number of events
to drop per window (x) to a utility threshold uth , i.e., f(x ) → uth .
To find the utility threshold uth , we could predict the number of x
event occurrences in a window, whose utility is less or equal to the
utility threshold uth .

More specifically, in a windoww , we define the number of event
occurrences, whose utility is less or equal to a certain utility value
u as follows: O (u) = |{e : U (T , P ) ≤ u}|, where T is the type of
event e and P is its position in w. The number of event occurrences
O (u) in a window w , as defined above, implicitly represents the
cumulative occurrences of those utilities in w , whose values are
less or equal to the utility value u and hence, as a short hand, we
call O (u) as cumulative utility occurrences.

The utility threshold uth can be calculated using the inverse
function of the cumulative utility occurrencesO (uth ), where, given
the number of events that should be dropped from each window,
we can get the required utility threshold.

Applying Utility Models in Load Shedding. Now, we describe
how load shedding is performed in eSPICE. To drop x events from
each incoming window, the LS first searches for the cumulative
utility occurrencesO (u), which has a valueO (u) ≥ x . Then, the LS
uses the utility value u as a utility threshold uth to drop those x
events from each window.

To use the utility threshold uth and drop events, first, the LS
gets the next event e from the input event queue of the operator.
Then, for each window w to which the event e belongs, the LS
computes the utility value u of the event e in w using the utility
prediction function U (T , P ). If the event utility u in the windoww
is greater than the utility threshold uth , the LS keeps the event e
inw . Otherwise, it drops the event e fromw . The utility threshold
uth enables the LS to drop x events from each window.

3.3 Model Building
Having discussed the role of the utility prediction and the threshold
prediction functions, in this section, we discuss, in detail, the man-
ner in which we implement these functions. For a clear explanation,
let us introduce the following simple running example. We use a
pattern matching query that considers a window of 5 events (i.e.,
window size = 5) and an input event stream consisting of only two
event types A and B (cf. Figure 3).

Building the Utility Prediction Function. As mentioned in
Section 3.2, the utility of a primitive eventU (T , P ) is represented
by the probability of the event to be part of the detected complex
events. To predict the utility of primitive events in a window, we
collect statistics, from the already detected complex events, on the
types and relative positions within windows of primitive events that
contributed to those detected complex events. More specifically, we
count the number of occurrences of each event type in each position
in a window that contributed to the detected complex events. The
number of occurrences of primitive events within detected complex
events provides an incite into the importance (or utility) of the
primitive event types and their relative positions within a window.
As a result, we simply normalize those number of occurrences to
generate the utility (i.e., U (T , P )) of a certain event type T in a
certain window position P .

These utility values are stored in a table called utility table (de-
noted by UT ). The utility table has (MxN ) dimensions, where M
represents the number of different event types and N represents
the window sizews . Each of its cellsUT (T , P ) represents the utility
of a specific event type T in a certain position P in a window, where
the utility valueU (T , P ) of an event is stored inUT (T , P ).

The values inUT could be too fine-grained which can causemore
memory and computational overhead. To avoid this overhead, we
limit the number of different utility values by multiplying each cell
value in UT by 100 and rounding it to an integer, i.e., UT (T , P ) ∈
[0, 100]. Referring to our above example, Table 1 shows a utility
table that is generated from the collected statistical data.

BuildingUtility Threshold andOccurrences.Aswe discussed
in Section 3.2, to drop x events from each window, we should find
a utility threshold uth that results in dropping x events from each
window, where the utility threshold uth is the inverse function of
the cumulative utility occurrences O (uth ). In particular, we should
find a utility value u that is greater or equal to the utility value of
x events in a window, i.e., O (u) ≥ x . Then, we use u as a utility
threshold uth to drop x events from each window.
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event type
position 1 2 3 4 5
A 70 15 10 5 0
B 0 60 30 10 0

Table 1.UT generated from the collected statistical data.
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Figure 2.CDT computed from Table 1 (UT ) and the predicted posi-
tion shares in a widnow.

Figure 3. Simple running example.

To find the utility threshold uth , we need to calculate the cumu-
lative utility occurrences O (u) in a window. Since the utilities of
events of all types and in all positions in a window are stored inUT ,
we can determine the cumulative utility occurrencesO (u) fromUT .
The cumulative utility occurrences depend on the distribution of
utilities within windows captured inUT .

To predict the utility threshold uth , let us, for now, assume that
there is only one event type in the input event stream (i.e.,M = 1)
and hence the dimensions ofUT become (1xN ), recall N is the num-
ber of positions (i.e., events) in a window. Since the utility values
inUT are between 0 and 100 (recall thatUT (T , P ) ∈ [0, 100]), there
will be a maximum of 101 different utility values, where each utility
value in UT may repeat several times. To build the cumulative util-
ity occurrences O (u) for each individual utility value u ∈ [0, 100],
we first count the number of occurrences ou of each individual
utility value u ∈ UT . Once we have the occurrences of each utility
value, we can calculate the cumulative utility occurrences. To this
end, the number of occurrences ou of the individual utility values
u are accumulated together in a cumulative distribution fashion as
follows:

O (u) =



ou , if u = 0
ou +O (u − 1), otherwise

(1)

So far, we have assumed that there exists a single event type
in the input event stream. However, there may be multiple event
types in the input event stream. In this case, for each single position
in UT , there exists a utility value for each event type. For example,
in Table 1, each single position in UT has two utility values, one
utility value for the event type A and one for the event type B. In
the table,UT (A, 1) = 70 andUT (B, 1) = 0. This means that a single
position in UT is incrementing the occurrences of multiple utilities.
As a result, to count the number of utility occurrences ou , we need
to consider each position in UT as a shared position between all
event types. More specifically, for each event type, we count a util-
ity occurrence ou in a certain position in UT as a fractional value
instead of counting it as a full occurrence. We call these fractional
values as position shares in a window. We could predict the position
shares in a window between different event types from the distri-
bution probability of the primitive events within the window. The
position shares in a window S (T , P ) of a primitive event of type
T at position P in the window equals the probability of this event
type T to come at the position P in the window.

Now, to compute the cumulative utility occurrencesO (u) in case
of many event types, we count the occurrences ou of the utility
valueu inUT as a fractional value by its corresponding values from
the position shares in a window. For each utility valueu = UT (T , P )
for the event typeT at position P inUT , we increase the number of
occurrences ou by S (T , P ). The cumulative utility occurrencesO (u)
is then computed as in case of a single event type using equation 1.

We store the cumulative utility occurrences O (u) in an array
called CDT , where the utility values u are used as indices and the
cumulative utility occurrences O (u) are used as the actual values,
i.e.,CDT (u) = O (u).CDT is a single dimensional array of size (101),
which is the maximum number of different utility values inUT . An
index u in CDT represents a utility value u inUT and its cell value
CDT (u) represents the cumulative utility occurrences O (u) of the
utility value u.

Since the utility threshold uth is the inverse function of the
cumulative utility occurrences O (u), we extract uth from CDT . To
find a utility thresholduth which drops x events from each window,
we iterate over CDT to find a cell value CDT (u) that is ≥ x , which
means that the number of primitive events with utility values less
or equal to u occur at least x times in each window. Hence, using
u as a utility threshold drops at least x events from each window.
We explain utility threshold prediction further with the help of our
running example. Figure 2 shows the CDT computed from UT in
Table 1 and the predicted position shares in a window. Now, to drop
x = 2 events from each window, in the figure, CDT (10) = 2.3 > x .
Thus, to drop x = 2 events from each window, we use the utility
threshold uth = 10.

Algorithm 1 explains the construction of CDT from both UT
and the predicted position shares in a window. The algorithm first
counts the number of occurrences ou of each individual utility value
u in UT (cf. lines (2-5)). It iterates over each cell in UT (cf. lines
(2-3)) and gets its value u = UT (T , P ), i.e., the utility of the event
type T at the position P in the window (cf. line 4). Then, in line 5,
the algorithm increments the cell value in a temporary array temp
which is at index u by the fractional value S (T , P ). Since the utility
values are used as indices in CDT , they are already sorted in an
ascending order. Finally, the algorithm accumulates the values in
CDT starting from index 0 where CDT (u) = CDT (u) + CDT (u −
1), u = 1..100 (cf. lines(7-9)).

Algorithm 1 Building CDT table.

1: computeCDT () begin
2: for T = 0 to (M − 1) do ▷ M : Number of different event types
3: for P = 0 to (N − 1) do ▷ N : the window size ws
4: u = UT (T, P )
5: temp(u) += S (T , P ) ▷ temp (u ) = ou
6: //accumulate utility values in an ascending order.
7: CDT (0) = temp (0)
8: for u = 1 to 100 do
9: CDT (u ) = temp (u ) +CDT (u − 1)
10: end function

Please note that buildingUT andCDT is a continuous task where
they are periodically updated .

3.4 Overload Detection
Having explained the way utility models are built, we now provide
details on when the LS should drop events and how many and in
which interval should events be dropped.
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To detect an overload on an operator, the overload detector
periodically monitors the input event queue and calculates the
estimated latency for the incoming events (denoted by l (e )). It
compares l (e ) with the defined latency bound LB and decides to
drop events if LB might be violated.

The value of l (e ) depends on event processing latency (denoted
by l (p)) and event queuing latency (denoted by l (q)), in fact, l (e ) =
l (q) + l (p). Event processing latency l (p) represents the time an
event needs to be processed by the operator in all windows. l (p)
is calculated from the throughput of the operator (denoted by th).
The throughput th represents the maximum number of events
the operator can process per second. Event queuing latency l (q)
represents the time an event must wait before it gets processed by
the operator. This time depends on the number of queued events n
before this event e in the input event queue and on l (p), i.e., l (q) =
n ∗ l (p). This means that an event e in position n in the input event
queue has an estimated latency l (e ) = (n− 1) ∗ l (p) + l (p) = n ∗ l (p).

From the given latency bound LB and the event processing la-
tency l (p), we can get the maximum allowed queue size (denoted
by qmax ) before violating LB, where qmax = LB/l (p).

Waiting until the queue size (denoted by qsize ) equals qmax to
start dropping events might be too late and can cause LB violation.
Therefore, we start dropping events, if the following inequality
holds: qsize > f .qmax , where f ∈ [0, 1], see Figure 4. A high
f value, on one hand, avoids unnecessarily dropping events– in
cases the events are only queued for a short time as in short burst
situations. But on the other hand, it might force the LS to drop
events with high utility values to avoid LB violation– in case the
queue size gets close to qmax . Later, we explain how to choose an
appropriate f value.

Dropping Interval. So far, we have considered droppingx events
per window. However, the window size might not be the best drop-
ping interval to meet the given latency bound LB. The reason is
that as the LS starts dropping events when qsize > f .qmax , the
buffer that we have before violating the latency bound (LB) is of
size (qmax − f .qmax ) events (cf. Figure 4). More specifically, we
need to drop x events from at least every (qmax − f .qmax ) events
(i.e., dropping interval) in order to meet LB. Therefore, please note
that the dropping interval must be less or equal to (qmax − f .qmax ).

As a result, if the window sizews is less or equal to this buffer
size (i.e., qmax − f .qmax ), then the interval of dropping x events
is preserved and the utility threshold uth can be calculated for the
entire window. However, if the window sizews is greater than the
buffer size, there is a risk of LB violation, especially if the utility
values are not evenly distributed in windows, e.g., all events with
high utilities come together in a certain region of the window. In
this case, the utility threshold uth will result in dropping x events
from each window but not necessarily from each dropping interval
(i.e., the buffer size) if the size of the high utility region of the
windows is greater than the buffer size. This might result in LB
violation.

Therefore, we must partition the window into smaller partitions
of size less or equal to the buffer size, i.e., qmax − f .qmax (as can be
seen in Figure 4) and drop x events from each partition. While the
partition size cannot be greater than the buffer size (cf. the above
mentioned constraint), of course, it can be less than the buffer size.
However, larger the partition size is, greater is the probability to
find low utility values to drop, resulting in better quality. As a
result, we try to use a partition size which is as large as possible (of

input queue
qmax f .qmax

≥ psize

Figure 4. Partition Size.

course, the upper bound being the buffer size). More specifically,
we partition a window in ρ partitions of equal sizes, where ρ =
ceil ( ws

qmax−f .qmax
). As a result, the partition size psize = ws

ρ . We
use the partition size as a dropping interval in which x events should
be dropped. Therefore, we cannot use the utility threshold uth that
comes from a full window but instead we have to use a utility
threshold uth for each partition in order to drop x events in each
dropping interval.

We already discussed how to compute CDT, i.e., the cumulative
utility occurrences O (u), for a complete window. However, since
a window might be divided into more than one partition (when
ρ > 1), we must compute for each partition its own CDT . Please
note that UT will be calculated as before. However, the utility
threshold uth needs to be calculated based on the partition size
psize within which shedding must be performed. Therefore, we
compute CDT for each partition of size psize withinUT . So, now,
to drop x events from each partition of the incoming windows, each
partition has its own utility threshold uth .

Dropping Amount. The dropping amount represents the num-
ber of primitive events that must be dropped from each partition of
each window. Determining howmany events x to drop per partition
depends on the input event rate and the operator throughput th.
The overload detector computes the difference δ between the input
event rate R and th, where δ = R − th, to get the extra incoming
events per second. Then, the number of events x to drop per parti-
tion is computed as follows: x = δ .

psize
R , where psize

R represents
the partition size in seconds.

Appropriate f Value. As we mentioned above, using a high
f value prevents dropping events in short burst cases and hence
decreases the degradation in the quality of results. However, the
f value controls the partition size psize , and hence using a high f
value forces us to use a small partition size to avoid LB violation. A
small partition size might result in dropping events that have high
utility values. That can happen if all events in a partition have high
utility values. Therefore, we should choose a minimum f value
that still allows to have a partition size which avoids dropping high
utility events.

Fortunately, we already have the distribution of utilities within a
window captured inUT . We can take advantage of this knowledge
to determine f value. To find the f value, we propose to cluster
the utilities inUT into several classes of importance. The goal is to
partition the windows depending on the f value into one or more
partitions, where in each partition, there exists at least x events
from the low utility classes. This way, in each partition, the low
utility events can be dropped, hence reducing the degradation in
the quality of results. Therefore, we can choose the f value that
ensures the above partition size.

3.5 Load shedding
Now, we explain, in detail, the functionality of eSPICE’s load shed-
der (LS) component. Events are dropped from individual windows
without affecting other windows. An event might be dropped from
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one window while it is still there in other windows as the event
utilityU (T , P ) can be different in different windows, since the event
position P is different in different windows. The LS checks for each
incoming event in a window and decides on whether or not to drop
it depending on the event utility inUT and on the utility threshold
uth of the partition to which the event belongs. Hence, the LS must
be lightweight since it is performed for every event in a window.

Upon receiving the drop command from the overload detector,
the LS searches for the utility thresholds corresponding to each
partition of an incoming window. Note that the entire window can
also be a single partition, i.e., there is only one partition (ρ = 1),
ifws ≤ (qmax − f .qmax ) (cf. previous section). Having noted the
utility thresholds for every partition of a window, the LS proceeds
to drop events from the incoming windows. So, for each event e in a
window, the LS gets its utilityU (T , P ) fromUT and also determines
the partition (part ) in a window to which the event e belongs, both
in O(1) time-complexity. Then, the LS compares the event utility
U (T , P ) with the utility thresholduth of the corresponding partition
(part ) to decide on whether or not to drop e from the window. If
the utility of the event is less or equal to the utility threshold of its
corresponding partition, the LS drops the event.

Algorithm 2 explains the LS functionality more formally. If
qsize > f .qmax , the overload detector requires the LS to acti-
vate the shedding. It also sends drop commands which contain the
number of events x to drop per partition to LS. The LS receives
drop commands from the overload detector where it firstly calcu-
lates the utility threshold uth for each partition depending on the
required number of events x to drop per partition (cf. lines 1-7). To
calculate the utility threshold uth (part ) for each partition part , the
LS iterates (cf. lines 2-3) over its corresponding CDT to search for
a value CDT (part ,u) which is ≥ x (cf. line 4). Then, the index u of
this value CDT (part ,u) is used as the utility threshold uth (part )
for this partition part (cf. line 5).

In case load shedding is active, for each event e in the incoming
windows, the LS checks if it needs to drop the event e (cf. lines
8-17). First, the LS finds the partition in the window to which
the event e belongs (cf. line 12). Then, the LS checks if the utility
value UT (T , P ) of this event e in UT is less or equal to the utility
threshold uth (part ) of its calculated partition (cf. lines 13-16)—just
a simple lookup in UT . It then returns true if the event should
be dropped, otherwise false. This shows that our load shedder is
extremely lightweight and it takes the shedding decision in O (1)
time-complexity for each event in a window.

3.6 Extensions
In this section, we explain three extensions to our load shedding
approach—handling variable window size, using bins for large win-
dows, and retraining the model. Handling variable window size
enables our approach to work with windows of different sizes.
While, the use of bins optimizes our approach and enables it to
work with large windows.

HandlingVariableWindow Size.The incomingwindowsmight
have a variable window size ws depending on the window split-
ting strategies. As mentioned above, in CEP systems, there exist
three main window splitting strategies—count-based, time-based
and pattern-based. In count-based,ws is always fixed while in time-
based and pattern-based,ws might change depending on the input
event rate or content of the events [18].

Algorithm 2 Load shedder.

1: getUtilityThresholdForEachPartition (x ) begin
2: for part = 0 to (ρ − 1) do
3: for u = 0 to 100 do
4: if CDT (part, u) ≥ x then
5: uth (part) = u
6: break ▷ break the inner loop and proceed to the next partition.
7: end function
8: applyLS (T , P ) begin ▷ T : event type & P : event position in the window
9: if !LS.active then
10: return f alse
11: else
12: part = n

psize
13: if UT (T, P ) ≤ uth (part) then
14: return true
15: else
16: return f alse
17: end function

As explained earlier, in order to implement the utility prediction
function, we use UT which has a fixed number of event positions
N , where N = ws . However, if the window sizews varies and is not
fixed, we need a way to find N . Therefore, to handle variable win-
dow size, we profile the operator and choose N as the average seen
window size. Since N might be different from the incoming window
sizes, in the following, we explain the required modifications to
our approach during both model building and load shedding to
incorporate variable window size.

During Model Building: We need a way to map the event po-
sitions in windows to the event positions in UT that has a fixed
number of positions N . To do that, we normalize the size of incom-
ing windows to N . For each incoming window, ifws > N , we scale
downw where more than one position inw is mapped to a single
position inUT . On the other hand, Ifws < N , we scale upw where
each position inw is mapped to one or more positions in UT . The
scaling factor s f can easily be computed as follows: s f = ws

N . For
example, let N = 100 andws = 200, then s f = 200

100 = 2. This means
that every two positions inw is mapped to a single position inUT .

During Load Shedding: The window size may also vary while
performing load shedding. So, in this case while processing every
incoming event e of a windoww , the LS must determine the relative
position of the event e within the windoww , instead of the exact
position. In this way, the LS can map the learned utility values in
UT to the event e . To map relative position of the event e in the
windoww to the exact position in UT , we again scale downws if
ws > N and scale upws ifws < N . Since during scaling upws , an
event e inw is mapped to more than one cell inUT , the utility of e
is the average value of all these cell values inUT .

As mentioned above, the cumulative utility occurrences O (u),
which are stored in CDT , are computed from UT that has a fixed
number of positions N . In case of varying window sizes, the utility
threshold uth is calculated from CDT without any modification.
This is because, the utility values in UT already capture the vari-
ation in the window size. So, the calculated utility threshold uth
from CDT implicitly scales up/down depending on the window
size.

The problem with variable window size during load shedding is
that we process events on their arrival without waiting until the
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end of the windows. Thus, the incoming window size is not known
at the time when the LS performs lookup inUT to get the utility of
an event in a window based on its relative position. It is not possible
to get a relative position if the incoming window size is not known.
However, the window size is important for the lookup and we must
predict it. For example, in case of time-based window, the event
input rate could be used to predict the window size. Predicting the
window size is already researched in literature [18] and will not be
the focus of this paper.

Using Bins for a Large Window Size. The average seen win-
dow size N might be too large. This might result in a huge size
of UT , thus wasting computing resources. Therefore, bins of size
bs are used to map several neighboring positions for each specific
event type in a window to one single position inUT , thus reducing
its size. In Section 4, we discuss more about the impact of the bin
size on the quality of results.

Model Retraining. If the distribution of the input event stream
changes over time, the constructed model becomes inaccurate,
which may adversely impact the quality of results. Therefore, in
this case, we must retrain the model to capture the changes in the
input event stream. We can either periodically retrain the model
to capture these changes or we can use a statistical approach that
triggers the need to retrain the model (we leave this approach for
future work).

4 Performance Evaluations
Next, we evaluate the performance of eSPICE by analyzing its
impact on the quality of results when the input event rate exceeds
the operator throughput th.

4.1 Experimental Setup
Here, we describe the evaluation platform, the baseline implemen-
tation, datasets and queries used in the evaluations.

Evaluation Platform. We run our evaluation on a machine
which is equipped with 8 CPU cores (Intel 1.6 GHz) and a main
memory of 24 GB. The OS used is CentOS 6.4. We run the operator
in a single thread which is used as a resource limitation. Please note,
that the performance of eSPICE is independent of the parallelism
degree of the operator. We implemented eSPICE by extending a
prototype CEP framework which is implemented using Java.

Baseline. As evaluation results showed that a completely ran-
dom event shedder is comprehensively outperformed by eSPICE,
we did not think it would be a fair comparison and therefore looked
at comparing eSPICE with a baseline that is similar to state-of-the-
art solutions. We implemented a load shedding strategy which is
similar to the strategy in [12] as a baseline strategy (denoted by
BL). Our implemented baseline strategy also captures the notion of
weighted sampling techniques in stream processing [29]. BL assigns
utility values to the primitive events in a window depending on
the repetition of those primitive events in the pattern and on their
frequencies in windows. An event type receives a higher utility
proportional to its repetition in a pattern. Depending on the event
utility, BL decides the amount of events that should be dropped
from each event type in a window, where it uses uniform sampling
to drop those required amounts from each event type. BL, as in
[12], does not consider the order of events in a pattern and in input
event streams.

Datasets. We employ two different datasets from real-world.
First, we use a stock quote stream from the New York Stock Ex-
change (NYSE). This dataset contains real intra-day quotes of 500
different stocks from NYSE collected over two months from Google
Finance [2]. The quotes have a resolution of 1 quote per minute for
each stock symbol. We refer to this dataset as the NYSE Stock Quotes
dataset. Second, we use a position data stream from a real-time
locating system (RTLS) in a soccer game [19]. Players, balls and
referees (called objects) are equipped with sensors that generate
events which contain their position, velocity, etc. The sensor data
are generated at a high rate causing high redundancy. Thus, we
filter redundant events and keep only one event per second for each
object. We refer to this dataset as the RTLS dataset.

Queries. We employ four queries (Q1, Q2, Q3, Q4) that cover
an important set of operators in CEP: sequence operator, sequence
with any operator, and sequence operator with repetition, all with
skip-till-next/any-match [4, 8, 9, 11, 31, 33]. Moreover, the queries
use both time-based and count-based sliding window strategies
with different predicates. Furthermore, to study the robustness of
our load shedding with different selection policies, we implemented
all queries with the first and last selection policies. All queries
skip the intermediate not matching primitive events, i.e., skip-till-
next/any-match. The queries are as follows :

Q1 (sequence with any operator): uses the RTLS dataset. It de-
tects a complex event when any n defenders of a team (defined as
DF) defend against a striker (defined as STR) from the other team
within ws seconds from the ball possessing event by the striker.
The defending action is defined by a certain distance between the
striker and the defenders. We use two players as strikers; one striker
from each team. Q1 is of form: seq (STR; any (n, DF1, DF2, .., DFn )),
where DFx is the defend event of the player x .

Q2 (sequence with any operator): is adopted from related work
[17]. It detects a complex event when any n rising or any n falling
stock quotes of any stock symbol (defined as RE or FE, respectively)
are detected within ws seconds from a rising or falling quote of a
leading stock symbol (defined asMLE). The leading stock symbols
are composed of a list of 5 technology blue chip companies. Q2 is
of form: seq (MLE; any (n, RE1, RE2, ..,REn )) or seq (MLE; any (n,
FE1, FE2,..,FEn )), where REx or FEx is rising or falling event of the
stock company x .

Q3 (sequence operator): detects a complex event when rising or
falling stock quotes of 20 certain stock symbols (defined as RE or FE,
respectively) are detected within ws events in a certain sequence.
Q3 is of form: seq (RE1; RE2;..;RE20) or seq (FE1; FE2;..;FE20), where
REx and FEx are defined as in Q2.

Q4 (sequence operator with repetition): detects a complex event
when 10 rising or 10 falling stock quotes of certain stock sym-
bols (defined as RE or FE, respectively) with repetition are detected
within ws events in a certain sequence. Q4 is of form: seq (RE1;
RE1; RE2; RE3; RE2; RE4; RE2; RE5; RE6; RE7; RE2; RE8; RE9; RE10),
where REx is defined as in Q2. The sequence for falling quotes is
similar.

4.2 Experimental Results
In this section, first, we evaluate the impact of our probabilistic LS
strategy (eSPICE) on the quality of results, particularly the number
of false positives and false negatives, and compare its results with
the results of BL. Then, we show the impact of variable window
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size and bin size on the quality of results and analyze the overhead
of the LS.

If not noted otherwise, we employ the following settings. The
number of complex events per window is one. For Q1 and Q2, we
use a time-based sliding window. In both queries, a logical predicate
is used to open new windows. For Q1, a new window is opened for
each incoming striker event (STR). While for Q2, a new window is
opened for each incoming event of the leading stock symbols (MLE).
Q3 and Q4 use count-based sliding window. In Q3, we also use a
logical predicate where a new window is opened for each incoming
event of the leading stock symbols (MLE). For Q4, a count-based
predicate is used where a new window is opened every 100 events,
i.e., the slide size equals 100 events. We use a latency bound LB = 1
second and an f value = 0.8. Moreover, we stream the datasets
from stored files to the system with an event input rate that is
less or equal to the maximum processing rate of the operator (i.e.,
the operator throughput (th)) until the model is built. After that,
we increase the input event rate to a rate that is higher than the
operator throughput th by 20% (denoted by R1) and 40% (denoted
by R2). We execute several runs for each experiment and show the
mean value and standard deviation.

Impact on the quality of results and the given latency bound.
First, we show the impact of eSPICE on the given latency bound
and on the quality of results, i.e., the number of false negatives and
false positives. The quality is influenced by the input event rate and
the ratio of pattern size to window size. Therefore, we show results
using different input event rates and different ratios of pattern size
to window size.

To evaluate the performance of eSPICE, we run experiments
with Q1, Q2, Q3 and Q4. For Q1 and Q2, we use a variable pattern
size with a fixed window size to get different ratios of pattern size to
window size. For Q1, we use a window sizews of 15 seconds (≈ 700
events) and the following pattern sizes (i.e., number of defenders):
n= 2, 3, 4, 5, 6. The window sizews for Q2 is 240 seconds (≈ 2000
events) and the pattern is of the following sizes: n= 10, 20, 30, 40,
50, 60, 70, 80. Since the pattern size is fixed in Q3 and Q4, we use
a variable window size to get different ratios of pattern size to
window size. For both Q3 and Q4, we use the following window
sizes:ws =300, 600, 1200, 1500, 1800, 2000 events.

Number of false negatives. Figures 5a and 5b show results for Q1
with the first and last selection policy, respectively, while Figures
5c and 5d show results for Q2 with the two selection policies. Simi-
larly, Figures 5e and 5f show results for Q3 and Q4 using the first
selection policy. The x-axis in Figures 5a, 5b, 5c and 5d represents
the pattern size, while in Figures 5e and 5f, the x-axis represents
the window size. In all figures, the y-axis represents the percentage
of false negatives. Moreover, all figures show the result of applying
eSPICE and BL while using the two input event rates R1 and R2.

Using a large ratio of pattern size to window size may result
in making the pattern more sensitive to any event drop. Thus,
dropping even a few events may hinder detecting the pattern and
hence it may result in more false negatives depending on the query.
This can be observed in the following results. In Figure 5a, using
the input event rate R1 and first selection policy, the percentage
of false negative as a result of using eSPICE (cf. Figure 5a , the
blue line) is 9% when the pattern size is 2 and it increases with
the increment in the pattern size, where it reaches 21.2% with a
pattern of size 6. Similarly, the percentage of false negatives using

BL increases from 45.6% to 55.9% with the pattern sizes 2 and 6
(cf. Figure 5a , the red line). Also, the percentage of false negatives
increases with the higher input event rate R2 for both eSPICE and
BL (cf. Figure 5a , the green and brown lines, respectively). This
is because higher input rate implies more dropping. However, it
shows a similar behavior with the increase in the pattern size as in
R1. In Figure 5a, eSPICE produces better results than BL in all cases
where the performance of eSPICE is higher than the performance
of BL by up to 5 and 3.2 times using the event input rates R1 and
R2, respectively.

Q1, using last selection policy, shows similar behavior to the first
selection policy behavior as depicted in Figure 5b. The percentage
of false negatives for eSPICE and the input event rate R1 increases
from 4% to 6% for increasing pattern sizes of 2 to 6. Meanwhile, the
percentage of false negatives for BL increases from 27% to 42% for
the same pattern sizes of 2 to 6 and with the same input rate R1.
This shows that eSPICE performs better than BL by up to 7 times.
Similar results are shown when using the input event rate R2.

The results of Q2 has similar behavior to the results of Q1. Figure
5c shows that eSPICE performs better than BL by up to 30 and 24
times using the input event rates R1 and R2, respectively, while
using the first selection policy. The performance of eSPICE while
using last selection policy is very similar to that of the first selection
policy, where it significantly outperforms BL for both input event
rates R1 and R2.

Figures 5e and 5f, i.e., running Q3 and Q4 with the first selection
policy, show that the performance of eSPICE is much better using
sequence operator that matches an exact pattern, where the per-
centage of false negatives is almost zero with both input event rates
R1 and R2. Using the sequence operator ensures that every time
only the exact same event types would match the pattern and con-
struct the complex events. This results in higher utility values for
those event types and the shedding is extremely accurate. On the
other hand, the sequence with any operator allows any event type
to match the pattern and hence it results in distributing the util-
ity values more sparsely between different available event types in
windows. This is the reason why eSPICE performs exceedingly well
for sequence operator. As a result, the performance of eSPICE for
Q3 and Q4 is enormously better than the performance of BL which
produces a high percentage of false negatives. Moreover, our re-
sults clearly show that the presence of repetitions in the sequence
operator does not impact the performance of eSPICE (cf. 5e and 5f).

Number of false positives. Figures 6a and 6b show results for Q1
and Q3, respectively, with the first selection policy. We do not show
Q2, Q4, and the last selection policy as they have similar results. In
Figure 6a, the x-axis represents the pattern size while the x-axis in
Figure 6b represents the window size. In both Figures, the y-axis
represents the percentage of false positives. Moreover, both figures
show the results of applying eSPICE and BL while using the two
input event rates R1 and R2.

The percentage of false positives in Figure 6a shows a similar be-
havior to the percentage of false negatives in Figure 5a, i.e., Q1 with
the first selection policy. The percentage of false positives increases
with the increment in the pattern size, i.e., the increment in ratio of
pattern size to window size. This is because, the probability to drop
a primitive event that contributes to detect a complex event in a
window increases with a higher pattern size, thus increasing the
percentage of false negatives as we showed above. Moreover, since
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(a) Q1: First selection policy

2 3 4 5 6
pattern size

0

20

40

60

80

100

%
 f

a
ls

e
 n

e
g
a
ti

v
e
s 

(b) Q1: Last selection policy
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(c) Q2: First selection policy
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(d) Q2: Last selection policy
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(e) Q3: First selection policy
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(f) Q4: First selection policy
Figure 5. False negatives for Q1, Q2, Q3 and Q4 with input event rates R1 and R2.
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(a) Q1: First selection policy
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(b) Q3: First selection policy
Figure 6. False positives for Q1 and Q3 with R1 and R2.

Q1 uses the sequence with any operator, the probability to find any
other primitive event, i.e., any other defender event, alternative
to the dropped primitive event is high, which can result falsely
in detecting a new complex event, i.e., a false positive. As in false
negative experiment, the percentage of false positives increases
with the input event rate. eSPICE performs better than BL up to 4.8
and 3.2 times using the event input rates R1 and R2, respectively.

The percentage of false positives in Figure 6b also shows a simi-
lar behavior to the percentage of false negatives in Figure 5e, i.e.,
Q3 with the first selection policy, where the percentage of false
positives is almost zero for eSPICE. However, the percentage of
false positives for BL increases with the increment in the window
size. This is because, Q3 uses the sequence operator which matches
an exact pattern. Thus, if a primitive event that contributes to a
complex event in a window is dropped, it is hard to find an alter-
native primitive event to the dropped primitive event in smaller
windows. The probability to find this alternative primitive event in
a window increases with the increment in the window size, thus
increaing the number of falsely detected events, i.e., increasing the
percentage of false positives.
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Figure 7. Event processing latency.

Maintaining the given latency bound. The main goal of eS-
PICE is tomaintain the given latency bound. Hence, here, we discuss
the ability of eSPICE in keeping the given latency bound. Figure 7
shows the incurred event latency (le ) in case of running Q1 with
the input event rates R1 and R2. The results of other queries show
similar behavior and hence they are not shown. The figure shows
that eSPICE never violated the given latency bound (LB = 1 second)
and it always keeps the event latency around (f ∗ LB) which is 800
milliseconds in this experiment.

Impact of variable window size on the quality of results.
Now, we show the impact of variable window size on the quality
of results. Using time-based or pattern-based sliding window may
result in splitting the incoming event stream into windows of differ-
ent sizes. However, UT has a fixed number of positions/events N ,
where N represents the average window size, given bs = 1. Hence,
we must map the incoming windows of different sizes to N as we
showed above in Section 3.6.

The ideal window size should be N , however, in case the incom-
ing windows are larger or smaller than N , the quality of results
might degrade because of the variations in relative positions of
events in windows . To evaluate that, we run experiments with Q1
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and Q2 where we use several window sizes during model building
to enforce having different number of events per window.

For Q1, we use a pattern size of n = 5. Moreover, we use a time-
based window of the following sizes: ws= 12 , 14, 16 ,18 and 20
seconds. The average seen window size is ≈ 800 events and hence
we use N = 800 to buildUT . As the window sizews = 16 seconds
contains around 800 events (≈ N ), we use it as a reference window
size in our results and refer to it as a window of size 100%. We
represent the window sizes as percentage values compared to the
reference window size (i.e.,ws = 16 seconds) and hence the used
windows are of the following sizes: 75%, 87%, 100%, 112% and 125%.

For Q2, we use a pattern size of n = 20. Again, we use a time-
based window of the following sizes:ws= 180 , 200, 240 , 260 and
300 seconds. The average seen window size is ≈ 2000 events and
hence we use N = 2000 to build UT . The window size ws = 240
seconds contains around 2000 events (≈ N ) therefore we use it as a
reference window size in our results and refer to it as window of
size 100%. Again, we represent the window sizes as a percentage
value compared tows = 240 seconds and hence the used windows
are of the following sizes: 75%, 83%, 100%, 108% and 125%.

For both queries, during the model building, we change the
window size between the above given window sizes randomly to
ensure that our model has learned from several window sizes and
not only from one window size. During load shedding, we use one
of the window sizes of the above given window sizes to check the
impact of this window size on the quality of results.

Figure 8 depicts the percentage of false negatives for both Q1 and
Q2. The x-axis represents the percentage of window size compared
to the reference window size and the y-axis represents the percent-
age of false negatives. Figure 8a shows results for Q1 with the two
event input rates R1 and R2, respectively while Figure 8b shows
results for Q2 with the two rates, all using the first selection policy.
We observed similar results for Q1 and Q2 using the last selection
policy and also for the number of false positives experiments and
hence we don’t show them.

Figure 8a shows that the percentage of false negatives is only
slightly influenced by the used window size with both input event
rates R1 and R2. Hence, more than one event in a window can
be mapped to a single position in UT in case ws > N or one
event in a window can be mapped to several positions inUT when
ws < N without having a considerable impact on the number of
false negatives.

The impact of window size is clearer in Figure 8b, i.e., in Q2. In
this figure, the percentage of false negatives increases when the
difference between N and the window size increases. The reason
behind this is that Q2 has a longer pattern size than Q1 which
makes it more sensitive to the relative event positions in windows.
Moreover, the number of event types (i.e., MLE) that start a new
match in Q2 is higher than the number of event types that start a
new match in Q1 (only two strikers). In Q2, each event in MLE may
impact different stock companies and hence the utility values are
more distributed between different event types and over the whole
window. Meanwhile, in Q1, the distribution of the utilities is more
focused on specific number of defenders.

Impact of bin size on the quality of results. A big bin size
might degrade the quality of results since it reduces the accuracy in
UT of the important positions in the incoming windows. To analyze
the impact of bin size on the quality of results, we run experiments
with Q1 and Q2. We use a pattern of size n = 5 and n = 20 and
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Figure 8. Impact of variable window size on the quality.

1 2 4 8 16
bin size

0

20

40

60

80

%
 f

a
ls

e
 n

e
g
a
ti

v
e
s 

R1

R2

(a) Q1: First selection policy

1 2 4 8 16
bin size

0

20

40

60

80

%
 f

a
ls

e
 n

e
g
a
ti

v
e
s 

R1

R2

(b) Q2: First selection policy
Figure 9. Impact of bin size on the quality.

a window of size ws = 15 seconds and ws = 240 seconds for Q1
and Q2, respectively. In addition, we use the following bin sizes for
both queries: bs = 1, 2, 4, 8, 16, 32, 64.

Figure 9 depicts the percentage of false negatives for both queries
with the first selection policy. The x-axis represents the bin size and
the y-axis represents the percentage of false negatives. We observed
similar results for Q1 and Q2 using the last selection policy and
also for the number of false positives experiments and hence we
don’t show them.

Figure 9a depicts results for Q1 with the rates R1 and R2 where
it shows that the percentage of false negatives is slightly influenced
by the used bin size for both input event rates R1 and R2.

Figure 9b depicts results for Q2 with the rates R1 and R2 where
it shows that the percentage of false negatives increases with the
used bin size. The reason here is again similar to the reason in the
variable window size experiment.

Run-time overhead of the LS. Load shedding is used in systems
that already face overload and hence the LS overhead must be
considerably small compared to the event processing overhead.
Our LS performs only a single lookup in the utility table UT to
decide whether or not to drop an event from a window and hence
its time-complexity is O(1). Thus, it is a lightweight load shedding
strategy.

An important parameter that impacts the LS overhead is the
window size. A large window may not fit in the system caches and
cost higher lookup time and hence higher overhead.

To show the overhead of the LS, we run experiments for Q2
with the two input event rate R1 and R2 and use a window of the
following sizes: ws = 240, 360, 480, 960, 1920 seconds, where the
approximate window sizes in events are 2000, 3000, 4000, 8000 and
16000 events, respectively. We used these approximate window
sizes in events as a dimension for UT , i.e., N = ws . We observed
similar behavior for other queries and hence we do not show them.

Figure 10 depicts the overhead of the LS for Q2. The x-axis repre-
sents the used window size and the y-axis represents the percentage
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Figure 10. Q2: Overhead of the LS.

time the LS needs compared to the actual event processing time. As
expected, the overhead of our LS increases with the used window
size. In the figure, the overhead increases from less than 1% with
the window of size 240 seconds (≈ 2000 events) to ≈ 5% with the
window of size 1960 seconds (≈ 16000 events). Please note that the
result shown for the window size 1960 seconds is with respect to a
large table size whereM = 500 (number of stock companies) and
N = 16000. However, the overhead is still small compared to the
actual event processing time. Hence, our load shedding strategy can
maintain the given latency bound with a low overhead. Moreover,
the overhead of the window size can be reduced by increasing the
the bin size (bs). In addition, improving the utility table locality in
the memory can further reduce the overhead of LS.

Results Discussion. eSPICE performs much better than BL for
all queries, datasets and selection policies. However, the perfor-
mance of eSPICE varies for different classes of operators. The per-
formance of eSPICE is exceptionally good for the sequence and
sequence with repetition operator with a negligible number of false
negatives and positives. The sequence operator ensures that every
time only the same event types would match the pattern and this
results in higher utility values for those event types. On the other
hand, the any operator matches any event regardless of its type.
Hence, the utility of the events are more sparse which adversely
impacts the performance of eSPICE. Further, eSPICE shows its
robustness against variable window size and bin size, where the
quality of results is only slightly influenced by a window size which
is different from N or by a higher bin size. Moreover, the overhead
of LS component in eSPICE is very low compared to the actual
processing overhead which makes eSPICE suitable for real-time
complex event processing.

5 Related Work
Complex event processing has emerged as an important paradigm
to process event streams on-the-fly. Different event definition lan-
guages [8, 9, 31] have specified the rules for CEP systems. To
precisely match the events, [8, 9, 34] define selection and con-
sumption policies. CEP systems are used to process huge event
streams and required to provide a high performance. Hence, the
CEP operator graph is usually distributed on several compute nodes
and each operator might be parallelized to speedup its process-
ing [1, 20]. A powerful parallelization technique is data-parallel
CEP [1, 4, 7, 20, 24]. Data-parallel CEP is mainly divided in two cat-
egories, namely window-based parallelization [1, 4] and key-based
parallelization [1, 7, 20, 24]. The key-based parallelization is limited
only to the applications where events could have a key.

Various approximation techniques are frequently used to avoid
resource constraints in various domains such as in-network pro-
cessing [5, 28], distributed graph processing [25], stream process-
ing [21, 23, 29], etc. In fact, load shedding has been proposed by
several research groups [3, 13, 14, 16, 21, 23, 29, 30] in the stream
processing domain. The idea is to drop events in a way that reduces
the system load but still provides the maximum possible quality of
result. Hence, the crucial question here is which events (tuples) to
drop so the quality of result is not impacted drastically. In [21, 29],
the authors assumed that the tuples have different utility values–
which reflects their importance and impact on the quality of result.
In case of overload, the tuples with low utility values are dropped.
The work in [23] proposes to drop tuples that incur higher pro-
cessing latency where the authors claim that tuples have the same
utility value but may have different processing latency. In [22] the
authors assume that all tuples have the same utilities and process-
ing latency. They fairly select tuples for drop from different input
streams by combining two techniques, stratified sampling and reser-
voir sampling. In contrast to all these works, in CEP, the utility of
events is influenced by other events in the same pattern since CEP
systems perform pattern correlation. Hence, we cannot consider
only the utility of each event individually but we have to also take
into the consideration other events in the pattern. Moreover, the
order of events in patterns and in input event streams is important
in CEP (e.g., the sequence operator) which is not considered in the
above works.

The authors in [12] have formulated the load shedding problem
in CEP as a set of different optimization problems. Two types of
load shedding are considered by the authors: integral load shedding
in which specific event types or patterns are dropped and fractional
load shedding where a uniform sampling is used to keep a portion
of event types or pattern matches. However, they do not consider
the order of events in patterns and in input event streams which is
important in CEP. In [27], the authors proposed a load shedding
approach, called pSPICE, to drop partial matches instead of events
from a CEP operator’s internal state where partial matches that
have low probabilities to complete and become complex events are
dropped. However, as the authors show, pSPICE is outperformed
(w.r.t. quality of results) by event dropping strategies if the partial
match completion probability is relatively high.

6 Conclusion
In this paper, we proposed a lightweight load shedding framework,
called eSPICE, for window-based CEP systems which maintains a
given latency bound by dropping events while reducing its adverse
impact on the quality of results. eSPICE uses the type and relative
position within windows of primitive events to predict their util-
ity values and efficiently drops events from incoming windows.
Through extensive evaluations on two real world datasets and a
range of popular CEP operators, we show that eSPICE outperforms
state-of-the-art load shedders for CEP/stream processing systems.
eSPICE successfully maintains the given latency bound while keep-
ing the degradation in quality of results very low at minimum
overhead.
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