GaaS: Adaptive Cross-Platform Gateway
for IoT Applications

Mohamed Abdelaal, Mochamad Dandy, Frank Diirr, Kurt Rothermel
Institute of Parallel and Distributed Systems, University of Stuttgart

Email: first.last@ipvs.uni-stuttgart.de

Abstract—Internet of Things (IoT) is expanding at a rapid
rate where it allows for virtually endless opportunities and
connections to take place. In general, IoT opens the door to
a myriad of applications but also to many challenges. One of the
major challenges is how to efficiently retrieve the sensory data
from “‘resources-limited” IoT devices. Such devices typically have
a restricted energy budget, which broadly hinders their direct
connection to the Internet. In this realm, modern mobile devices,
e.g. smartphones, tablets, smartwatches, have been harnessed
to bridge between the low-power IoT devices and the Internet.
However, the current vision which mainly relies on designing
siloed gateways, i.e. a separate gateway/App for each IoT device,
is certainly impractical, especially with the rapid growth in
the number of IoT devices. Furthermore, energy efficiency of
the smart mobile devices hosting the IoT gateways has to be
thoroughly considered.

To tackle these challenges, we introduce GaaS (Gateway as a
Service), a cross-platform gateway architecture for opportunis-
tically retrieving sensory data from the low-power IoT sensors.
Through Bluetooth low energy radios, Gaas is capable of simulta-
neously connecting to several nearby IoT sensors. To this end, we
devise two distinct priority-based scheduling algorithms, namely
the EP-WSM and FEP-AHP schedulers, which rank the detected
IoT sensors, before estimating the connection time for each IoT
sensor. The intuition behind ranking the IoT sensors is to improve
the data retrieval rate from these sensors together with reducing
the energy overhead on the mobile devices. Additionally, GaaS
encompasses a self-adaptive engine to automatically balance
the trade-off between energy efficiency and data retrieval rate
through switching between schedulers according to the run-
time dynamics. To demonstrate the effectiveness of GaaS, we
implemented an IoT testbed to evaluate the energy consumption,
the latency, and the data retrieval rate. The results show that
using GaaS, compared to siloed gateways, we can identify up to
18% savings in the consumed energy while requiring much less
data retrieval time.

Index Terms—Internet of Things, Opportunistic Gateways,
Interoperability, Priority-Based Scheduling

I. INTRODUCTION

Recently, the term Internet of Things (IoT) has been broadly
utilized to express the connectivity of physical objects and
sensors to the Internet to share and collect data. The growth
in the IoT market is primarily driven by the technological
advancements in sensing modalities, wireless communication,
and cloud computing. These features open the door for a
myriad of applications in health, industry, and smart homes
[1]. Depending on the application, IoT designers may select

This work is supported by the German Federal Ministry of Education and
Research (BMBF) grant 01DH17059.

Marwan Abdelgawad
German University in Cairo, Cairo, Egypt
Email: first.last@guc.edu.eg

between two communication models. In the first model, IoT
sensors directly report their measurements to a cloud ser-
vice. Nevertheless, these IoT sensors are typically “resource-
constrained” devices in terms of the allocated energy and
computing capabilities. Accordingly, the adoption of “energy-
expensive” communication facilities, such as cellular and
WiFi networks, to directly upload the measurements is hardly
feasible in most IoT applications .

Alternatively, the second communication model involves
deploying a gateway which effectively bridges the communica-
tion gap between the various IoT devices and a cloud service.
In this context, a research question arises about the suitabil-
ity of our smart mobile devices, e.g. smartphones, tablets,
smartwatches, to act as gateways whenever they exist in the
vicinity of the IoT devices. Indeed, the commercially-available
mobile devices possess several features which enable them
from playing such a role, including (1) their widespreadness
where recent studies foresee that the number of smartphone
subscriptions will exceed 6.1 billion by 2020 [3], (2) they
are always connected thanks to being equipped with several
communication interfaces such as WiFi, 3G/LTE, near-field
communication (NFC), and Bluetooth low energy (BLE) and
(3) they have relatively significant storage capability as well as
computing power. Thanks to these features, several research
activities have been devoted to explore the potential of em-
ploying smart mobile devices as data mules or opportunistic
mobile gateways [4], [5], [6].

Nevertheless, relying on mobile devices as opportunistic
gateways poses several challenges, including the siloed data
collection architecture, failures of mobile devices, and han-
dling the quality-of-service (QoS) metrics, e.g. energy over-
head on the mobile devices, throughput, and latency. Driven
by the growth of the IoT market, many companies and startups
are rushing to produce new connected IoT sensors, e.g. Xiaomi
MiBand [7] and Fitbit [8]. Each of these IoT devices has
its own mobile gateway/App—designed by its vendor—to
retrieve the sensory data. Such a siloed architecture requires
the installation of a new gateway/App whenever an IoT device
is to be connected to a mobile device. Accordingly, wireless
connectivity to the IoT devices is restricted to those mobile
devices which have the corresponding gateways. This closed
and siloed architecture broadly hinders the growth of this class
of IoT devices. Additionally, smart mobile devices introduce
an unnecessary failure point for the connected IoT devices.
If these mobile devices are not present or are discharged,

Published in the 16th IEEE International Conference on Mobile Ad-Hoc and Smart Systems
(IEEE MASS), November 4 - 7, 2019, Monterey, CA, USA.
© IEEE 2019

the attached IoT devices become completely unreachable.
Therefore, there is an immense need to design a cross-platform
gateway architecture for connecting low-power IoT sensors to
the Internet.

Another major challenge of relying on mobile devices as
opportunistic gateways is retrieving data from several IoT
sensors at the same time. Being mobile implies that an
opportunistic gateway will probably exist in the vicinity of
various IoT sensors for a relatively short time. Therefore, a
cross-platform gateway has to connect and swiftly retrieve as
much sensory data as possible from all IoT sensors while
considering the energy overhead on the mobile devices. In
fact, the mobile devices—acting as cross-platform gateways—
have to frequently scan the wireless channel to discover the
IoT sensors. However, current mobile devices typically have
limited energy sources, e.g. Sony Xperia Z5 has only 2900
mAh [9]. Hence, a challenge of compromising the trade-
off between energy consumption and the other relevant QoS
metrics, such as throughput and latency, emerges.

To tackle these challenges, we introduce GaaS, an
adaptive cross-platform gateway architecture. The proposed
architecture—developed on the Android operating system—is
capable of simultaneously connecting to multiple IoT devices
through Bluetooth low energy (BLE) connections. In this
paper, BLE has been selected thanks to its low-power per-
formance while providing moderate data rates. Additionally,
BLE modules are nowadays embedded in most modern mobile
devices, i.e. smartphones and laptops. Once a connection is
established, GaaS simultaneously receives sensory data from
active IoT sensors before either forwarding the data to a
cloud service or processing (probably also visualizing) the
collected data to provide the users with useful information.
To this end, a scheduling strategy is required to determine the
connection time and order. However, our application scenario
is highly dynamic in terms of the number of available IoT
devices and the remaining energy of the mobile devices
hosting the gateways. Accordingly, GaaS employs an adaptive
scheduling mechanism, based on the Monitor-Analysis-Plan-
Execute (MAPE-K) control loop [10] combined with Fuzzy
logic, to react to the runtime dynamics. In fact, the amount
of data which needs to be communicated to a gateway differs
among the [oT devices. Therefore, it is critical to assign longer
time slots to the IoT devices which possess more sensory data.
In this context, GaaS leverages two different multi-decision
making algorithms to assign higher priority levels to those
IoT devices before generating the connection schedule.

In detail, the paper provides the following contributions:
(1) We define an architectural framework for a generic mobile
gateway which can be connected to several IoT devices at
the same time. Our proposed gateway leverages the so-called
Android Interface Definition Language (AIDL) to provide
services for the connected IoT devices. Such services ranges
from data processing through visualization to data upload
to cloud services. (2) We devise an adaptive scheduling
mechanism, based on the exhaustive polling (EP) and fair
exhaustive polling (FEP) strategies, to enable the generic gate-

way from simultaneously connecting to several IoT devices.
The scheduling algorithm leverages the MAPE strategy to
dynamically modify the generated schedule according to the
number of connected IoT devices and the residual energy at
the mobile device. In this context, the well-known Fuzzy logic
theory has been exploited for reasoning the collected statistics
about the mobile gateway. (3) We introduce a priority-based
scheduling algorithm to further improve the efficiency of GaaS
through ranking the IoT devices before generating a certain
schedule. To this end, GaaS leverage two well-known multi-
criteria decision making techniques, namely analytic hierarchy
process (AHP) [11] and weighted sum model (WSM) [12] for
ranking the nearby IoT devices. (4) We present a proof-of-
concept implementation and evaluation of GaaS in a real-world
scenario. We implemented the generic gateway on Android
through which sensory data—from commercial [oT devices as
well as sensors connected to Arduino kits—can be retrieved.
The main goal of these evaluations is to quantify the power
overhead, latency, and data throughput in different scenarios.
The results show that using GaaS, we obtain a significant
improvement of the energy efficiency relative to the siloed
architecture with a comparable throughput and latency.

The remainder of this paper is organized as follows: Sec-
tion II introduces the system model, the architectural frame-
work of GaaS, and our assumptions. Section III presents the
software architecture of the generic gateway with discussing
each component. The adaptive and priority-based scheduling
techniques are discussed in Section IV. In Section V, we
present our real-world evaluation and our prototype implemen-
tation of the generic gateway architecture, before discussing
the obtained results. Finally, Section VI highlights the main
differences between GaaS and related work, before Section VII
draws a conclusion with an outlook on future work.

II. SYSTEM OVERVIEW

In this section, we explain the system model together
with our assumptions. Figure 1 depicts the system model
where a mobile device exists in the vicinity of a set of IoT
sensors S = S1,---,8, where n > 1. Each IoT sensor
measures a certain phenomenon, e.g. temperature, speed, and
electricity consumption, before periodically uploading these
measurements to the opportunistic gateway implemented on
the mobile device. To this end, the IoT sensors are assumed to
be equipped with a BLE module through which it can connect
to the opportunistic gateway. After collecting the sensory data,
the opportunistic gateway employs a cellular or WiFi network
to deliver the data to a cloud service or to a back-end server. If
the gateway received sensory readings while it has no Internet
connection, the readings are temporarily stored on the physical
storage of the mobile device to be uploaded to the cloud as
soon as an Internet connection is established.

To define the initial behavior of GaaS, the system settings
component is an XML file comprising the main configu-
rations. For instance, the system settings define the initial
scheduling algorithm, timing constraints for scheduling the
BLE connections, self-adaptation thresholds, and metadata

- @

7 Smart Tracker - Mobile Device
e] Cloud
o Smart- Smart % Generic Gateway Service
watch Meter
| . b BLE Scheduler —r—
i loT Sensors : 4 iaaa W
! 36,46 WiFi

l — Adaptation Engine ¢
0 : =
) 3 Gateway Services | =
Smart Lock -

s
. _+" Smart Lamp
@ «

Sensor™-.
~
Node

Fig. 1: GaaS system architecture

about the supported manufactures. In GaaS, we assume that
the cross-platform gateway has knowledge about the IoT sen-
sors. Specifically, GaaS comprises a list of all supported IoT
sensors—from different manufacturers—in the system settings.
Accordingly, GaaS is aware of the services required by each
supported IoT sensor to properly handle the collected data.

III. GENERIC GATEWAY ARCHITECTURE

In this section, we introduce the proposed architecture
which defines our cross-platform gateway. Figure 2 depicts the
main components of GaaS, including BLE interface, gateway
main service, priority-based scheduling, and self-adaptation
engine. At the outset, the discovery manager detects the nearby
IoT sensors through scanning the available BLE interface,
before obtaining their metadata, i.e. RSSI, MAC Address,
available services, manufacturer, etc. To retrieve data from the
detected 10T sensors, the connection manager establish BLE
connections to all available BLE interfaces. Nevertheless, the
gateway filters out the BLE interfaces which are not supported
by the gateway. Below, we explain the role of each component
to achieve a proper behavior of the gateway.

J

4 !/ / \‘ \
N [s (/J‘ i —) !
[Sp je= % S p ~ % : <
SE™ o e S e 2
2 5138 g Tp EZ
3 z Jilggl g3 ®& %48
(S = & g — 2=t 28 |Po
% 7 T 8% |Ew| "E|I|SE
e 2| |
= g 5E ® § gl R
g & Bs L)L & | T
= I R I e e e
o \)
AN . S R — \
T Gateway Main Service

S B

BLE
Interface -

\
~ 1
|
|
|
|

Discovery Manager l [Connection Manager l

/
i
1
|
|
\

Fig. 2: GaaS software components

A. Gateway Controller

The gateway controller (GC) primarily serves as the starting
point of the proposed architecture. In particular, the controller
is responsible for executing the initial configurations retrieved
from the system settings, e.g. initial scheduling algorithm
and execution period of the self-adaptive engine. Furthermore,
the GC initializes and terminates the gateway main service.
Figure 3 illustrates the sequence diagram of our proposed
gateway architecture. Once the gateway is activated, the GC
controller automatically binds to the gateway main service

which initializes the AIDL communication model. It is worth
mentioning that GaaS leverages multithreading to enable the
gateway from establishing connections to several IoT sensors
at the same time. Once the onServiceConnected()
method is triggered, two threads are created to simultaneously
run the default scheduling algorithm and the self-adaptive
engine. In this context, the scheduler thread is given the highest
priority in the multi-threading mechanism to ensure seamless
connections to the nearby IoT sensors.

Gateway

Gateway N Scheduler Se\fradaptatlon Service Interface
Controller Main Service Engine

T
|

i

Bind 1
Gateway Service !
i

i

New Thread
New Thread

Sensor Connected

Start
Application Service

Interrupt Thread

New Scheduling
Algorithm

New Thread

Sensor Connected

Add

|
i
‘Application Service
Unbind I °P
| |

Gateway Service Stop

Application Service

Fig. 3: Sequence diagram of the interactions between the
components of GaaS

Whereas, the self-adaptive engine runs periodically to de-
termine the most suitable scheduling algorithm based on the
number of connected IoT sensors and the energy budget of
the hosting mobile device. Once a new scheduling algorithm
is elected by the self-adaptation engine, the scheduler thread is
deliberately interrupted so that a new scheduling algorithm is
adopted by the GC controller. The service interface is activated
when at least one BLE-based IoT sensor has been connected,
and sensory data, e.g. heart rate or electricity consumption,
has been retrieved. Subsequently, the collected data is either
visualized or uploaded to a cloud service. If the gateway
is deactivated, the application service is interrupted, before
unbinding the gateway service.

B. Gateway Main Service

The gateway main service (GMS) basically runs the inter-
process communication to provide a programming interface by
means of the AIDL method. As shown in Figure 2, the GMS
component represents the heart of our proposed architecture
where several processes, e.g. necessary database operations,
hardware properties reading, activation and deactivation of
the scheduler, etc., are offered using AIDL so that the other
processes or threads may also use these services and bind
to the GMS service via AIDL. Additionally, the GMS ser-
vice serves as an abstraction of many Android peripheral
operations, such as scanning for BLE devices, connecting to
IoT sensors, connecting to the cloud services using Wi-Fi
or Cellular networks, and handling the node repository. The
GMS service has been designed to perform a long-running
operation in the background without having to utilize the user
interface. Thus, the GMS service complies with the intelligent
Job Scheduler for optimizing the battery usage [13].

C. Service Interface

In a siloed gateway architecture, there exists typically a
single application service that either visualizes the collected
sensory data or uploads it to a cloud service. For instance,
the gateway of a smart meter visualizes electricity consump-
tion readings to enable users to make better decisions about
their consumption. Alternatively, GaaS has been designed
to simultaneously connect to several IoT sensors. Therefore,
several application services are to be implemented to serve
the various IoT sensors. According to the number of available
IoT sensors, the number of active Android services is dynam-
ically changing during the runtime. GaaS leverages the AIDL
inter-process communication method to implement a service
interface through which data can be exchanged between the
main gateway service and the various application services. To
perform a remote procedure call, AIDL generates two inner
classes namely Stub and Proxy for handling data marshaling
and unmarshalling at the main gateway service and the various
application services, respectively.

D. Node Repository

For storing the various sensory data as well as the devices
metadata, we exploit the SQLite database provided by the
Android system. In GaaS, SQLite is mainly used to store
metadata about the nearby IoT sensors, services available on
each IoT sensor, and characteristics provided by the services
of these nearby IoT sensors. This metadata is then linked
to each other to connect between entities and relationship
of the underlying databases. Figure 4 depicts the entity-
relationship diagram employed by GaaS. Specifically, there
exist four central databases, namely BLE Device Data, BLE
Service Data, Data Upload, and BLE Characteristic Data.
First, the BLE Device Data database typically stores metadata
about the available nearby IoT sensors where the key is the
device ID. Furthermore, this database comprises other entities
representing the properties of each nearby IoT sensor, such as
sensor name, MAC address, RSSI values, etc.

Device MAC
Device ID Name @ Address
MAC
Address .
BLE Service
N Data
=
Q

State
Power
Usage
L Characteristic
BLE L Value
Characteristic

Characteristic
D Dat
2a Characteristic
uuiD
MAC
Sensory Upload (s
Data Status Characteristic
Property

Fig. 4: Entity-relationship diagram of GaaS databases

BLE Device
Data

Data
Upload

Second, the BLE Service Data database stores metadata
about services available in the IoT sensors where the key of

each entry is the service ID. The relationship between such
a database and the BLE Device Data database is a “has”
operator where one BLE device has one or more services.
Third, the BLE Characteristic Data database stores metadata
about characteristics from the available services in the nearby
IoT sensors where the key is the characteristic ID. Similarly,
the relationship between this database and the BLE Service
Data database is a “has” relationship where one service has
one or more characteristics. Finally, the Data Upload database
stores metadata about the sensory data ready to be uploaded
to the cloud/back-end server. Each IoT sensor typically has
one or more timestamped data entries where the primary key
is the MAC address of the IoT device and the timestamp.

E. Self-Adaptation Engine

In this section, we introduce the self-adaptation engine
implemented to further improve the relevant QoS metrics,
including energy consumption and throughput. As explained
in Section IV, the proposed schedulers perform distinctly in
different situations. For instance, the gateway may favor a
certain scheduler to improve the throughput if the number
of connected IoT sensors is suddenly increased. Furthermore,
data uploading to a cloud service may be drastically costly if
the residual energy of the hosting mobile devices is below a
minimum level. Therefore, GaaS has to proactively modify its
configurations to save energy and/or retrieve more data from
the IoT sensors. To this end, we employ the MAPE-K control
loop [10] where two main criteria are frequently monitored
while making the adaptation decision, namely the number of
connected IoT sensors and the residual energy of the mobile
devices hosting the cross-platform gateway.

Based on these monitored criteria, the self-adaptive engine
decides upon which priority-based scheduler to adopt and
whether to upload the sensory data to the cloud services. To
make such decisions, GaaS adopts a lightweight implemen-
tation of a Fuzzy logic controller to analyze the collected
metrics, i.e. residual energy and number of IoT sensors.
Specifically, we convert the monitored metrics into a set of
linguistic variables using triangular Fuzzy sets. We ran several
experiments to accurately construct the Fuzzy sets and rules.
For instance, if the residual energy is “low” and the number
of sensors is “high”, GaaS switches to a scheduler which
favors energy over throughput. To facilitate the development
of Fuzzy sets and rules on Android, a Java library for Fuzzy
control language, referred to as jFuzzyLogic [14], has been
integrated into our software architecture.

IV. PRIORITY-BASED SCHEDULING

In this section, we explain our proposed priority-based
scheduling algorithms. In fact, GaaS has been designed to
simultaneously connect to several IoT devices. To this end,
it is necessary to construct a schedule which clearly defines
the connection duration for each downlink between GaaS and
the IoT sensors. To this end, we harness two well-known
scheduling algorithms, namely exhaustive polling (EP) and
fair exhaustive polling (FEP) [15]. Aside from the duration

of each connection, a question arises about the order of BLE
connections that optimizes relevant quality metrics, such as
the energy consumption on the mobile devices and the amount
of retrieved sensory data (aka throughput). To determine the
downlink priorities, GaaS ranks the detected IoT sensors
according to the cost and efficiency of each BLE connection.
Specifically, the IoT sensors having the least connection cost
and highest connection efficiency will be given a higher prior-
ity. In this context, GaaS examines two different multi-criteria
decision making algorithms for ranking the IoT sensors, in-
cluding weighted sum model (WSM) and analytical hierarchy
process (AHP). In both algorithms, we consider three decision
criteria, viz. the received signal strength indicator (RSSI) of
the BLE connection, the mobile device’s residual energy, and
the state of the IoT sensor (i.e. whether it is active and has data
to upload). Below, we explain two priority-based schedulers,
namely the FEP-AHP scheduler and the EP-WSM scheduler.

A. FEP-AHP Scheduler

The core idea behind the FEP-AHP is to poll the IoT sensors
which has no data to report as rarely as possible. Specifically,
the FEP-AHP algorithm classifies the IoT sensors as either
active or inactive. Figure 5 demonstrates the main steps of the
FEP-AHP scheduler. In the first cycle, GaaS annotates all the
detected IoT sensors as active, before polling all sensors in
a round robin fashion (line 5). The connection time T, is
evenly-distributed between the IoT sensors (line 11). Based on
the feedback from the sensors, they are moved to the inactive
state if they have no sensory data to upload (line 14). In
fact, excluding the inactive sensors enables providing longer
connection time 7.,, to the other sensors (line 17). The
polling iteratively continues till the list of active sensors are
emptied. To sidestep favoring the sensors generating packets at
maximum rate, the FEP-AHP algorithm deliberately limits the
polling interval to a priori-defined time ¢,. Once the polling
interval timer expires, the inactive sensors are turned into
active state, thus allowing the gateway to poll them in the
next cycles (line 4).

Once the list of detected IoT sensors Synsort 1S recorded
in the node repository. The FEP-AHP scheduler descendingly
sorts the list through determining the priority of each IoT
sensor (line 10). To this end, we develop a hierarchical
structure with an objective at the top, criteria S1,--- , 3, at
the second level, and a set of alternatives at the third level.
As depicted in Figure 6, our main objective is to order the
BLE connections according to the priority of each IoT sensor.
To this end, GaaS considers three main criteria, including
the RSSI values, the sensor state, and the residual energy
of the mobile devices. Whereas, the alternatives represent, in
our model, the nearby IoT sensors detected in the scanning
phase. Subsequently, a pair-wise comparison matrix My, is
constructed to estimate the significance w; of the adopted
criteria relative to the main objective (line 8). Equation 1
defines a comparison matrix where each entry a;; represents
the ratio between the corresponding criteria, i.e. a;; = w; /w;.
In this context, we employ a scale of relative importance

Require: scanning time T, polling interval ¢,
1: Compute matrices Mprssr, Mstate, and Mepergy >
Equation 1

: for all cycle ¢; € C do

(3]

3 Sunsort < ScanSensors(Ty)

4 if ¢; == ¢; ort, is reached then

5: Annotate all sensors in S,,,s0r¢ as active

6: end if

7 for all s; € Sys0rt do > AHP model

8 Kahp <~ Weight(sia MRSSI; Mstate7 Menergy)

9: end for

10: Ssort SortAHP(Synsort, Kanp)

11: Toon — Teyele > Distributing connection time

|Ssm’t|

evenly

12: for all sensors s; € Sgot do

13: if sensoryData(s;) == Null then

14: Annotate s; as inactive

15: end if

16: end for

17: Tron +— S ‘:C”ﬁ;jzacm > Excluding inactive
Sensors

18: end for

Fig. 5: Priority-based FEP-AHP scheduling algorithm

ranging from equal importance, i.e. w; = 1, to extreme
importance, i.e. w; = 9.

[Connection Priority }

Criteria
=
w
w
2

[Sensor State ‘ [Residual Energy}

— .

Active

RSSI> -
80 dBm

Energy

Inactive level 1

Alternatives

Fig. 6: AHP hierarchical structure

B B2 e Bn
B1 wl/wl wl/w2 wl/wn
Moy = .ﬂg wz/wl wQ(wrz wQ/.w" (1)
ﬁn wn/wl wn/wQ wn/wn

Once the matrix Mgy, has been constructed, we compute
the priority vector through determining the normalized eigen-
vector of the pair-wise comparison matrix, as expressed in
Equation 2, where k is the priority vector and W is the vector
of weights [16]. It is worth mentioning that the sub-criteria,
e.g. RSSI < —80dBm and energy levels, are also considered
while estimating the final priority of each IoT sensor. For
example, sensor-A has RSSI value of -90 dBm, device state
is inactive and connection power consumption of 300 mW.
Meanwhile, sensor-B has RSSI value of -50 dBm, device

state is active and connection power consumption of 90 mW.
According to Equation 2, the AHP weights of sensor-A and
sensor-B are circa 29% and 64%, respectively. Accordingly,
sensor-B has higher priority than sensor-A, thus GaaS connects
first to sensor-B.

MahP'W:k'VVa W:(wlaw2a"'7wn)T (2)

B. EP-WSM Scheduler

Although being precise in sorting the IoT sensors, FEP-AHP
is relatively complex owing to the various matrix computations
(cf. evaluations in Section V). Therefore, we investigate, in
this section, the EP-WSM scheduler as a lightweight priority-
based scheduling algorithm. The core idea behind the EP-
WSM algorithm is to poll the detected IoT devices in a
consecutive order. GaaS continuously polls the first IoT sensor
in a list of detected sensors till either retrieving all sensory
data or the sensor becomes disconnected. Similarly, other IoT
sensors are polled till covering all detected sensors. To avoid
favoring the ToT sensors generating packets at higher rates,
GaaS employs for each BLE connection a predefined time
constraint t.,. Accordingly, a BLE connection is deliberately
terminated when either the data is completely retrieved or the
connection timer, adjusted to ¢.,, expires. Figure 7 depicts the
various steps of the priority-based EP-WSM scheduling algo-
rithm. In fact, BLE scanning is a major factor of the energy
overhead on the mobile devices hosting the cross-platform
gateway. To reduce the scanning time 7, GaaS records the
detected IoT sensors in the first cycle of the schedule, thus
requiring less BLE scanning time in the subsequent cycles.
Specifically, GaaS adopts, at the first cycle, an initial scanning
time T'" = « (line 3). The detected IoT sensors, during this
cycle, are recorded in the node repository. In the subsequent
cycles, the gateway directly connects to the recorded sensors
from the previous cycle. Therefore, a reduced scanning time
Tred = k x a, k € [0,1] can be adopted to solely detect the
newly-arrived IoT sensors (line 6).

After recording the IoT sensors in the node repository, GaaS
estimates the weighted sum score K, to descendingly sort
the list of sensors (lines 10-13). Equation 3 expresses the
weighted sum score in case of n criteria and m alternatives,
i.e. IoT sensors, where a;; is the performance value of the
i-th alternative with respect to the j-th criterion and wj is
the relative weight of importance of the j-th criterion. To
express all criteria in exactly the same unit, we map the
various criterion onto a scale between one and five, where
the performance values of residual energy a;;, device state a;s,
and RSSI a;3 are set—according to their significance—to five,
three, and one, respectively. Once the list of sensors are sorted,
GaaS then performs synchronized connections to the sensors
starting with the one having the highest priority (line 15).
The term “synchronized” emphasizes that the connection is
accessible only by one thread to avoid the multithreading
problems. Once a BLE connection is established, data retrieval
continues till the timer ., expires or no further data exists
(line 18).

Require: initial scanning time 77"

s

reduced scanning time

Tsred

1: for all cycle ¢; € C do

2: if ¢c; == c; then

3: Sunsort < ScanSensors(Ts = Ti™)

4: Record S,,,s0+ in the BLE device data database

5: else

6: Sunsort < ScanSensors(Ts =T edy

7: Update S50+ in the BLE device data database

8: end if

9: for all s; € Sys50r¢ do > WSM model

10: Asl — Q1w + AioW2 + Gi3ws

11: end for

12: kwsm maximum(Asg,), i =1,2,3,-- ,m

13: Ssort < SortWSM(Sunsort, Kwsm.)

14 for all s; € S,y do

15: connection d < synchronizedConnect(s;)

16: d.lock() > keep the connection alive

17: if sensoryData(s;) ! = Null & t.p is not reached
then

18: Record sensoryData(s;) in the data upload
database

19: end if

20: d.unlock(s;) > kill the connection

21: end for

22: end for

Fig. 7: Priority-based EP-WSM scheduling algorithm

Kwsm:maxZaijij, fori =1,2,3,---.m (3)
j=1

V. PERFORMANCE EVALUATION

To demonstrate the effectiveness of GaaS, we tested our
system in a real-world scenario. We first describe the setup of
our evaluation, before we discuss the evaluation results. The
performance is assessed in terms of the energy consumption of
the mobile devices. Furthermore, we evaluate the throughput
and latency of data collection from the various IoT devices.

A. Experimental Setup

To test our implementation of the cross-platform gateway,
we designed a testbed composed of six temperature sensors
connected to Faros BLE beacons and four commercial BLE-
supported IoT devices, including a smart meter, a temperature
sensor, a cycling speed sensor, and wearable Miband device
(cf. Figure 8). Figure 8a depicts a low-cost and low-power
Faros Board equipped with an Nordic nRF8001 BLE module.
Such a board has specifically been designed for BLE devices
operating as peripheral/slave nodes. The sensory data are
stored as characteristics according to the GATT specification.
In Faros board, data transmission is done using BLE’s ATT
protocol'. Similarly, the wearable MiBand device measures
several phenomena, e.g. heart rate and steps count. In addition

"More details about the implementation of the Faros BLE beacon can be
found under the following link: https://github.com/duerrfk/Faros

to these sensors, we also employed emulated sensors using
nRF Connect built by Nordic Semiconductor [17]. The nRF
Connect App—installed on LG Nexus 5X device—advertises
BLE beacons and provides synthetic data embedded into the
services and characteristics of the BLE connection mode.

\

(b) Commercial IoT devices

(a) Faros Board with BLE Module

Fig. 8: IoT devices used in the evaluations

For implementing the cross-platform gateway, we have
utilized a Sony Xperia Z5 mobile device with 2GB of RAM
and 32GB of internal storage [9]. For BLE wireless com-
munication, GaaS adopts a star topology where the mobile
device—hosting the cross-platform gateway—acts as a master
and the nearby IoT sensors are the slaves. such a topology has
been selected to enable the mobile device from concurrently
connecting to several IoT sensors. As a cloud service, we
adopted Google Firebase, which provides several services
for database post-processing, such as cloud storage, real-time
database, and back-end service, and Google Analytic.

To measure the power consumption of our mobile gateway,
the Trepn Profiler—a third party application built by Qual-
comm [18]—has been used. Each run of these measurements
were repeated ten times and the resultant values have been
averaged. Furthermore, the Android Bluetooth Host Controller
Interface (HCI) Snoop Log protocol has been utilized to
provide a log of all Bluetooth HCI packets captured by the
Android system. Wireshark [19] is then used to analyze the
log data output from the Bluetooth HCI Snoop Log in the
Android system for the sake of estimating the number of BLE
packets sent and received by the mobile device acting as a
mobile gateway.

B. Gateway Configurations

In this set of experiments, we examine various configura-
tions of the cross-platform gateway together with assessing
the impact of ranking the IoT sensors before generating a
schedule. We selected to dynamically change the number of
IoT sensors during the experiments through adding two IoT
sensors every two minutes. Figure 9a depicts the impact of
changing the scheduling cycle ¢,,—defined as the duration of
a single round in which the gateway connects and retrieves
data from all available IoT sensors. In this experiment, we
adopted the FEP-AHP scheduler to examine its performance
for different values of the scheduling cycle t,. As the figure
depicts, increasing the cycle ¢,, from 0.5 minute to one minutes
leads to a slight reduction in the consumed power (at most by
10%). Clearly, power consumption is increased as the number
of switching between the IoT sensors is also increased. There-
fore, we selected ¢,, = 1 minute as a reasonable period while

generating the various schedules in our next experiments.
Similarly, changing the self-adaptation period ¢,—defined as
the time between successive executions of the self-adaptation
engine—has a slight influence on the achieved throughput.
Again, we set t, to one minute while executing the self-
adaptive engine in our next experiments.

Figure 9c shows a comparison between the standard FEP
scheduler and the proposed priority-based schedulers. The
main intuition here is to assess the impact of ranking the
IoT sensors before generating a connection schedule. As the
figure depicts, the FEP-WSM scheduler consumes, on average,
16% less energy than the standard FEP scheduler. Similarly, it
achieves, on average, 17% higher throughput than the FEP
scheduler. It is worth mentioning that the relatively loose
distribution occurs owing to dynamically changing the number
of ToT sensors during the experiment. Accordingly, we can
conclude that ranking the IoT sensors broadly improves the
relevant QoS metrics.

C. Priority-Based Schedulers

In this set of experiments, we aim at assessing the per-
formance of the proposed priority-based schedulers in terms
of the energy overhead and the amount of retrieved data,
i.e. throughput. In addition to the EP-WSM and FEP-AHP
schdulers, we also implemented two other variants, including
the EP-AHP and FEP-WSM schedulers. Figure 9 demonstrates
a comparison between the various schedulers in terms of
the energy overhead for different number of connected IoT
devices. As shown in Figure 10a, the FEP scheduler consumes
less power than the EP scheduler (at least by 57%), regardless
of the adopted ranking method. Such energy savings occur
thanks to excluding the inactive sensors, thus allowing data
retrieval from other sensors in shorter time. Through compar-
ing Figures 10a-10c, it is obvious that the power consumption
increases as the number of connected sensors n is increased.
For instance, FEP-AHP consumes more energy (at most by
33%) when n is increased from two to ten sensors.

Similarly, Figure 11 illustrates the data retrieval rate of GaaS
for different number of connected IoT sensors. For n = 2,
the EP-WSM drastically outperforms the FEP-AHP scheduler
where it achieves higher throughput (at least by 46%). Such
high throughput of EP-WSM occurs thanks to retrieving all the
data in each sensor before switching to the next sensor, thus
collecting as much data as possible. Similar performance of the
EP-WSM scheduler is achieved if n is increased to ten sensors
(cf. Figures 11b and 11c). Based on the obtained results in
Figures 10 and 11, it is clear that there exists a trade-off
between the power consumption and throughput. Therefore,
it is crucial to implement the self-adaptive engine to switch
between the FEP-AHP and EP-WSM schedulers according to
the application dynamics i.e. number of sensors and residual
energy.

D. GaaS vs. Siloed Gateways

In this section, we compare the performance of GaaS and
the siloed gateways in terms of the power consumption and

B
w
I
I

35

Y
o
I
I

w
o

30

w
o

25

N
o

Power Consumption (mW)
&
Throughput (packet/sec)

=
v

=
o

. 15

N
o

Power Consumption (mW)

v
o

w
o

N
o

(a) Effect of changing the scheduling cycle

t,=0.5 =1
Cycle Period (min)

(b) Effect of changing the self-adaptation cycle

=1 t,=4
Self-Adaptaion Period

Fig. 9: Comparing various configurations of GaaS

N
o
o

350

Throughput (packet/sec)

FEP FEP+WSM FEP FEP + AHP

(c) Effect of ranking the IoT devices

g0 —X- EP-AHP e -X~- EP-AHP ><’”X -X- EP-AHP x"x
_ | =%~ FEP-AHP el _175{ ~%- FEP-AHP gt _ 3004 ~*- FEP-AHP o
Z70) -A- Ep-wsm x"x z -A- EP-WSM Jotas Z ~A- EP-WSM o
=60 -5~ FEP-WSM " A =107 5 Fepwsm 7 A =250 -E- FEP-WSM -
S o T S 125 < AT S e
850 o hatis g Py A A 8200 5o e
540 ,’X e _ 5 100 + 27 gt 5 X _,ﬂ——’A
g -~ el el g X A AT * E:"EI £150 K e
O 30 ,,X st *"a—:‘a"a—_ﬂ o7 X T P gt s o x w8 *__*_—*
g20 A - et amipes g 50 A >~ - g 1004 e 5 - 0
) X & e = 5 X7 ‘e 5 e - -m--F
-4 P - e o » e o X A —f{_ﬁ_ -
10{ & K T AE 501 -7 2=BF =447
& = 25 & Vs —
molE--E =" g
0 0 0-
2 4 6 8 10 2 4 6 8 10 2 ! 6 8 10
Time (min) Time (min) Time (min)
(@n=2 b)yn==6 (c)n =10
Fig. 10: Cumulative power consumption of GaaS for different numbers of the connected IoT devices
140
-X- EP-AHP A -X~- EP-AHP L 2001 -%- EP-AHP A
e K 1751 —g- ¢7 - a X
120 ~*- FEP-AHP . _ *- FEP-AHP K _ *- FEP-AHP A
B -A- EP-WSM & 9 -A- EP-WSM & 21757 —A- EP-WSM -9l
.
£ 1004 -=- FEP-WSM A L1507 oo Fep-wsm s B 150 ~E- FEP-WSM et
< g $) g Pt
] - U 125 &7] Paie
g 80 et g8 s & 1251 bl P
= X = 100 ,ﬁ | = s x' _=BF7
H -~ - 2 + e 2 100 £ el
£ 60 X et £ P & £ g =
2 s - El 27 = =) 2. _z
S , B 5 75 % it 3> 75 ,% 5=
2 X -3 8 ol 8 g
< / ke < P P = e
40 - z X
F R 4 Fosoy o K & F 501 R 2
X & ¢ & o7
20 @” 25 B 25| &
2 4 6 8 10 2 2 6 8 10 2 2 6 8 10
Time (min) Time (min) Time (min)

(a) Cumulative throughput of GaaS: n = 2

(b) Cumulative throughput of GaaS: n = 6

(c) Cumulative throughput of GaaS: n = 10

Fig. 11: Cumulative throughput of GaaS for different numbers of the connected IoT devices

the data retrieval latency. In this experiment, we utilized three
gateways corresponding to the smart meter, the cycling (speed)
sensor, and the MiBand device. For a fair comparison, we
selected to retrieve 30 KB of sensory data using GaaS, while
each siloed gateway collects only 10 KB of data, i.e. heart
rate in case of the MiBand device. Accordingly, the power
consumption and latency are measured for collecting 30 KB
of data in each method. For GaaS, the FEP-AHP scheduler has
been adopted while deactivating the self-adaptation engine.
Figure 12a depicts the latency of data retrieval in case of
GaaS and the three individual gateways, where the last entry
“siloed” sums up the latencies of the individual gateways.
Obviously, GaaS requires much less time (at least by 78%)
to retrieve 30 KB of data from three IoT sensors. For GaaS,
the distribution is highly tight where the maximum latency

does not exceed circa 6.5 minutes compared to circa 17.6
minutes for the siloed gateways. Similarly, Figure 12b shows
a comparison of the power consumption between GaaS and
the siloed gateways. Apparently, GaaS consumes more energy
than each individual gateway. Such a behavior of the individual
gateways occurs thanks to their relatively short duty cycle
along with collecting less amount of data. Nevertheless, we
found that GaaS outperforms the set of all siloed gateways
where it consumes, on average, 18% less power than all siloed
gateways together.

E. Impact of Self-Adaptation

In this section, we assess the ability of our MAPE-based
self-adaptation engine in improving energy efficiency and
throughput of the proposed cross-platform gateway. In this set
of experiments, we consider for the EP-WSM scheduler two

18 140 : 10
100 -~ FEP-AHP (MAPE Disabled) &
16 _ _ 120 -*- MAPE Enabled J
= =
8
14 E g0 E 100/ ,{/%
— z p "
£ o <] X Y
£ g 2 80 p 6 =
60 F 3 9]
S10 : : o FE
c 2 a 60 47 =
S8 S S 4 #* 4 2
E Q 40 2 40 el #*
6 o o X g
H H 2w
& & 20 Ay 2
“ + . + e
2 0] X .
GaaS Smart MeterCycling MiBand Siloed GaaS Smart MeterCycling MiBand Siloed 0 2 4 6 8 10
Gateways Gateways Time (min)

(a) Latency of data retireval

(b) Power consmuption of GaaS and siloed gateways

(¢) Scenario I: power consumption

250

1757 -3~ FEP-AHP (MAPE Disabled) 1o -X~ FEP-AHP (MAPE Disabled) 4 10 -%~- FEP-AHP (MAPE Disabled) 1o

150, ~*- MAPE Enabled X . 1201 -%- MAPE Enabled */X , -%- MAPE Enabled /*’
—~ 4 7 —~
% 7S 8 % v/ 2T g 200 A s
8 p £ 100 # X & * X
g 125 X 0w c 2 4 o g /7 e 0
~ 7 ¢ o Ry ¢ ¥ 54 X o
o X S S g0 PR o 150 P e o]
© 100 S 6> & H & 6 > © s X 6 S
= X K o £ s p o o # ’ [
= - ™ a § & 4b 8 2 A < &
5 75 X e - @ 60 7 & - 5 x > =
a - - o ¢ 4 o o 100 Ve - °
E - e 42 6 . 4 2 2 P 4 2
=y X e # O ;K # O ol #*
> 50 >(’ o <~ 40 4 =1 e
< AP g #x X o K X
< > 3 o g 50 72
F 25 /}{z 2 & 20 o r2 [/}/ 2

4 Py V4
0 o 0 0 0 0
[2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Time (min) Time (min) Time (min)

(d) Scenario I: throughput

(e) Scenario II: power consumption

(f) Scenario II: throughput

Fig. 12: Comparative study: GaaS against the siloed gateways and GaaS with/without the MAPE self-adaptation engine

distinct scenarios: Scenario I in which power consumption
is dominating, i.e given larger weight than throughput, and
Scenario Il in which throughput is dominating the decision
making process. At the beginning of each run, GaaS is ini-
tially connected to two sensors, where two additional sensors
are added every two minutes. For Scenario I, Figure 12c
shows the power consumption of GaaS with and without
enabling the self-adaptation engine. Apparently, enabling the
self-adaptation engine results in consuming, on average, 44%
less energy. Furthermore, the figure shows that the difference
between these two cases increases as the number of connected
IoT sensors is increased from two to ten sensors. As expected,
we find in Figure 12d that the self-adaptation engine achieves,
on average, 38% less throughput than the baseline method.

For Scenario II, Figure 12e depicts the power consumption
of GaaS with and without activating the MAPE-based self-
adaptation engine. The figure shows that enabling the MAPE
engine leads to consuming, on average, 19% more energy
than the baseline method. Conversely, Figure 12f demonstrates
that the MAPE engine achieves, on average, 28% higher
throughput than the baseline method. Such a behavior of the
self-adaptation engine proves that it can successfully react
to the application dynamics, i.e. the residual energy and the
number of detected IoT sensors, through favoring either energy
consumption or throughput.

VI. RELATED WORK

In this section, we review the most salient related work
in the realm of opportunistic gateways with highlighting the

novelty of our proposed solution. The problem of designing
gateways for IoT applications has been tackled in several
research work . For instance, Kang et al. [20] introduce a
self-configurable fixed IoT gateway for the large-scale IoT
environment. Such a gateway can automatically identify and
connect to the nearby IoT sensors. These capabilities are
already provided in GaaS through the BLE advertising mech-
anism. However, GaaS has the advantage of exploiting the
mobile devices to retrieve data from a wide spectrum of
IoT sensors in different locations. Aloi et al. [6] introduce
a software architecture of smartphone-centric gateways to
support the interoperability between different communication
technologies. This architecture allows bi-directional informa-
tion exchange between smartphones and the surrounding IoT
sensors. Although the architecture does not consume excessive
CPU power and memory space, it significantly increase the
energy overhead on the host smartphones owing to simul-
taneously activating several radio interfaces and periodically
scanning the radio channels to discover the surrounding IoT
sensors. Alternatively, GaaS leverages BLE interfaces thanks
to their widespreadness and their energy efficiency. Further-
more, GaaS considers energy efficiency through incorporating
a self-adaptation engine.

Along a similar line, Zhalgasbekova et al. [5] introduce
CollMule, an on-demand data collection mechanism which
harnesses smartphones for aggregating air quality data from
a set of IoT sensing devices. The core idea behind CollMule
is to reduce the energy consumption of the smartphones that
act as gateways through avoiding unnecessary connections

to unreliable IoT devices. Aguilar et al. [22] investigate the
performance of BLE as a promising technology for oppor-
tunistic data collection. They consider two scenarios for data
collection, including (1) piggybacking the sensor data in the
advertisement phase and (2) data collection in the connection
phase. Can et al. [4] investigate the feasibility of data collec-
tion by smartphones in the presence of rarely-visited regions
through analyzing the GPS trajectories of the mobile devices.
Furthermore, several duty cycling schedules were adopted to
conserve energy on smartphones and on the sensor nodes. As
alternative to these approaches, GaaS automatically discovers
and connects to various IoT sensors at the same time thanks
to its priority-based scheduling.

From the side of the IoT sensors, Wu et al. [21] de-
vise a distributed algorithm which improves the network
throughput via preforwarding the sensor data to other nodes
that are often visited by smartphones. The preforwarding
task has been formulated as an optimization problem that
maximizes the network throughput. To solve this problem,
two heuristic algorithms have been proposed that generate
the data preforwarding plan based on the states of the direct
neighboring nodes and on the mobility patterns of the available
smartphones. We strongly believe that this approach can be
readily augmented with GaaS to construct a highly reliable
IoT application. In general, data collection from IoT sensors
can also be performed using opportunistic communication
in vehicular mobile networks. For instance, Tang et al. [23]
present SWDCP-SCmules, a data collection framework which
enables a set of mobile data mules, such as taxis, buses and
pedestrians holding smartphones, from collecting sensory data,
before forwarding them to data centers.

VII. CONCLUSION & FUTURE WORK

In this paper, we presented GaaS, a cross-platform gateway
architecture for retrieving the sensory data from the low-power
IoT sensors. The proposed architecture leverages multithread-
ing to enable the gateway from simultaneously connecting
to several IoT sensors. To regulate the BLE connections,
we devised two distinct priority-based schedulers which rank
the IoT sensors, before generating the connection schedule.
Moreover, we developed a self-adaptation engine to regularly
modify the gateway’s configurations in accordance with the
run-time dynamics. We demonstrated the efficiency of GaaS
through carrying out several experiments on our IoT testbed.
The results showed that GaaS reduces the energy overhead on
the mobile devices together with reducing the amount of time
required to retrieve data from the IoT sensors. In the future,
we plan to further improve the energy efficiency of the mobile
devices through reducing the duty cycle of GaaS. To this end,
we may explore the potential of machine learning algorithms
in precisely predicting the locations where IoT sensors most
probably exist.

REFERENCES

[1] L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233—
2243, 2014.

[2

,_
(98]
[t

[4]

[5

[t}

[6]

[7

—

[8

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Zachariah, N. Klugman et al., “The internet of things has a gateway
problem,” in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile "15. ACM, 2015.
“Ericsson ~ Mobility ~ Report,” Ericsson Telecommunications
Company, Tech. Rep., 11 2016. [Online]. Avail-
able: https://www.ericsson.com/assets/local/mobility-report/documents/
2016/ericsson-mobility-report-november-2016.pdf

Z. Can and M. Demirbas, “Smartphone-based data collection from
wireless sensor networks in an urban environment,” Journal of Network
and Computer Applications, vol. 58, pp. 208 — 216, 2015.

A. Zhalgasbekova, A. Zaslavsky, and S. Saguna, Opportunistic Data
Collection for loT-Based Indoor Air Quality Monitoring. Springer
International Publishing, 2017, pp. 53-65.

G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo,
and C. Savaglio, “Enabling iot interoperability through opportunistic
smartphone-based mobile gateways,” Journal of Network and Computer
Applications, vol. 81, pp. 74-84, 2017.

Xiaomi, “MiBand 2,” https://www.mi.com/en/miband2/, [Accessed :
July, 2018].

Fitbit, “Fitbit Devices,” https://www.fitbit.com/es/home, [Accessed :
July, 2018].

S. Developers, “Xperia z5 dual,” Sony Mobile Communications Inc.,
White paper, oct 2017, accessed August 2018.

Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Miiller, M. Pezze, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive
systems. Springer, 2009, pp. 48-70.

A. Rangone, “An analytical hierarchy process framework for comparing
the overall performance of manufacturing departments,” International
Journal of Operations & Production Management, vol. 16, no. 8, pp.
104-119, 1996.

A. Kolios, V. Mytilinou, E. Lozano-Minguez, and K. Salonitis, “A
comparative study of multiple-criteria decision-making methods under
stochastic inputs,” Energies, vol. 9, no. 7, p. 566, 2016.

Google, “Android Optimize for Battery Life,” https://developer.android.
com/topic/performance/power/, [Accessed : July, 2018].

P. Cingolani and J. Alcala-Fdez, “jfuzzylogic: a robust and flexible
fuzzy-logic inference system language implementation,” in 2012 IEEE
International Conference on Fuzzy Systems. 1EEE, 2012, pp. 1-8.

N. Johansson, U. Korner, and P. Johansson, ‘“Performance evaluation
of scheduling algorithms for bluetooth,” in Broadband communications.
Springer, 2000, pp. 139-150.

T. L. Saaty, “How to make a decision: the analytic hierarchy process,”
European journal of operational research, vol. 48, no. 1, pp. 9-26, 1990.
Nordic-Semiconductor, “Bluetooth Low Energy nRF8001,” https:
/Iwww.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF8001,
[Accessed : July, 2018].

Qualcomm, “Qualcomm Trepn Power Profiler,” https://developer.
qualcomm.com/software/trepn-power-profiler, [Accessed : July, 2018].
Wireshark, “Wireshark Network Protocol Analyzer,” https://www.
wireshark.org/, [Accessed : July, 2018].

B. Kang, D. Kim, and H. Choo, “Internet of everything: A large-scale
autonomic iot gateway,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 3, no. 3, pp. 206-214, July 2017.

X. Wu, K. N. Brown, and C. J. Sreenan, “Data pre-forwarding for
opportunistic data collection in wireless sensor networks,” ACM Trans.
Sen. Netw., vol. 11, no. 1, pp. 8:1-8:33, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2629369

S. Aguilar, R. Vidal, and C. Gomez, “Opportunistic sensor data collec-
tion with bluetooth low energy,” Sensors, vol. 17, no. 1, p. 159, 2017.
Z. Tang, A. Liu, and C. Huang, “Social-aware data collection scheme
through opportunistic communication in vehicular mobile networks,”
IEEE Access, vol. 4, pp. 6480-6502, 2016.

M. Bonola, L. Bracciale et al., “Opportunistic communication in smart
city: Experimental insight with small-scale taxi fleets as data carriers,”
Ad Hoc Networks, vol. 43, pp. 43-55, 2016.

H. Nishiyama, M. Ito, and N. Kato, “Relay-by-smartphone: Realiz-
ing multihop device-to-device communications,” IEEE Communications
Magazine, vol. 52, no. 4, pp. 56-65, April 2014.

Z. Lu, G. Cao, and T. L. Porta, “Teamphone: Networking smartphones
for disaster recovery,” IEEE Transactions on Mobile Computing, vol. 16,
no. 12, pp. 3554-3567, Dec 2017.

