
GaaS: Adaptive Cross-Platform Gateway
for IoT Applications

Mohamed Abdelaal, Mochamad Dandy, Frank Dürr, Kurt Rothermel
Institute of Parallel and Distributed Systems, University of Stuttgart

Email: first.last@ipvs.uni-stuttgart.de

Marwan Abdelgawad
German University in Cairo, Cairo, Egypt

Email: first.last@guc.edu.eg

Abstract—Internet of Things (IoT) is expanding at a rapid
rate where it allows for virtually endless opportunities and
connections to take place. In general, IoT opens the door to
a myriad of applications but also to many challenges. One of the
major challenges is how to efficiently retrieve the sensory data
from “resources-limited” IoT devices. Such devices typically have
a restricted energy budget, which broadly hinders their direct
connection to the Internet. In this realm, modern mobile devices,
e.g. smartphones, tablets, smartwatches, have been harnessed
to bridge between the low-power IoT devices and the Internet.
However, the current vision which mainly relies on designing
siloed gateways, i.e. a separate gateway/App for each IoT device,
is certainly impractical, especially with the rapid growth in
the number of IoT devices. Furthermore, energy efficiency of
the smart mobile devices hosting the IoT gateways has to be
thoroughly considered.

To tackle these challenges, we introduce GaaS (Gateway as a
Service), a cross-platform gateway architecture for opportunis-
tically retrieving sensory data from the low-power IoT sensors.
Through Bluetooth low energy radios, GaaS is capable of simulta-
neously connecting to several nearby IoT sensors. To this end, we
devise two distinct priority-based scheduling algorithms, namely
the EP-WSM and FEP-AHP schedulers, which rank the detected
IoT sensors, before estimating the connection time for each IoT
sensor. The intuition behind ranking the IoT sensors is to improve
the data retrieval rate from these sensors together with reducing
the energy overhead on the mobile devices. Additionally, GaaS
encompasses a self-adaptive engine to automatically balance
the trade-off between energy efficiency and data retrieval rate
through switching between schedulers according to the run-
time dynamics. To demonstrate the effectiveness of GaaS, we
implemented an IoT testbed to evaluate the energy consumption,
the latency, and the data retrieval rate. The results show that
using GaaS, compared to siloed gateways, we can identify up to
18% savings in the consumed energy while requiring much less
data retrieval time.

Index Terms—Internet of Things, Opportunistic Gateways,
Interoperability, Priority-Based Scheduling

I. INTRODUCTION

Recently, the term Internet of Things (IoT) has been broadly

utilized to express the connectivity of physical objects and

sensors to the Internet to share and collect data. The growth

in the IoT market is primarily driven by the technological

advancements in sensing modalities, wireless communication,

and cloud computing. These features open the door for a

myriad of applications in health, industry, and smart homes

[1]. Depending on the application, IoT designers may select

This work is supported by the German Federal Ministry of Education and
Research (BMBF) grant 01DH17059.

between two communication models. In the first model, IoT

sensors directly report their measurements to a cloud ser-

vice. Nevertheless, these IoT sensors are typically “resource-

constrained” devices in terms of the allocated energy and

computing capabilities. Accordingly, the adoption of “energy-

expensive” communication facilities, such as cellular and

WiFi networks, to directly upload the measurements is hardly

feasible in most IoT applications .

Alternatively, the second communication model involves

deploying a gateway which effectively bridges the communica-

tion gap between the various IoT devices and a cloud service.

In this context, a research question arises about the suitabil-

ity of our smart mobile devices, e.g. smartphones, tablets,

smartwatches, to act as gateways whenever they exist in the

vicinity of the IoT devices. Indeed, the commercially-available

mobile devices possess several features which enable them

from playing such a role, including (1) their widespreadness

where recent studies foresee that the number of smartphone

subscriptions will exceed 6.1 billion by 2020 [3], (2) they

are always connected thanks to being equipped with several

communication interfaces such as WiFi, 3G/LTE, near-field

communication (NFC), and Bluetooth low energy (BLE) and

(3) they have relatively significant storage capability as well as

computing power. Thanks to these features, several research

activities have been devoted to explore the potential of em-

ploying smart mobile devices as data mules or opportunistic

mobile gateways [4], [5], [6].

Nevertheless, relying on mobile devices as opportunistic

gateways poses several challenges, including the siloed data

collection architecture, failures of mobile devices, and han-

dling the quality-of-service (QoS) metrics, e.g. energy over-

head on the mobile devices, throughput, and latency. Driven

by the growth of the IoT market, many companies and startups

are rushing to produce new connected IoT sensors, e.g. Xiaomi

MiBand [7] and Fitbit [8]. Each of these IoT devices has

its own mobile gateway/App—designed by its vendor—to

retrieve the sensory data. Such a siloed architecture requires

the installation of a new gateway/App whenever an IoT device

is to be connected to a mobile device. Accordingly, wireless

connectivity to the IoT devices is restricted to those mobile

devices which have the corresponding gateways. This closed

and siloed architecture broadly hinders the growth of this class

of IoT devices. Additionally, smart mobile devices introduce

an unnecessary failure point for the connected IoT devices.

If these mobile devices are not present or are discharged,

Published in the 16th IEEE International Conference on Mobile Ad-Hoc and Smart Systems
(IEEE MASS), November 4 - 7, 2019, Monterey, CA, USA.
© IEEE 2019

the attached IoT devices become completely unreachable.

Therefore, there is an immense need to design a cross-platform

gateway architecture for connecting low-power IoT sensors to

the Internet.

Another major challenge of relying on mobile devices as

opportunistic gateways is retrieving data from several IoT

sensors at the same time. Being mobile implies that an

opportunistic gateway will probably exist in the vicinity of

various IoT sensors for a relatively short time. Therefore, a

cross-platform gateway has to connect and swiftly retrieve as

much sensory data as possible from all IoT sensors while

considering the energy overhead on the mobile devices. In

fact, the mobile devices—acting as cross-platform gateways—

have to frequently scan the wireless channel to discover the

IoT sensors. However, current mobile devices typically have

limited energy sources, e.g. Sony Xperia Z5 has only 2900

mAh [9]. Hence, a challenge of compromising the trade-

off between energy consumption and the other relevant QoS

metrics, such as throughput and latency, emerges.

To tackle these challenges, we introduce GaaS, an

adaptive cross-platform gateway architecture. The proposed

architecture—developed on the Android operating system—is

capable of simultaneously connecting to multiple IoT devices

through Bluetooth low energy (BLE) connections. In this

paper, BLE has been selected thanks to its low-power per-

formance while providing moderate data rates. Additionally,

BLE modules are nowadays embedded in most modern mobile

devices, i.e. smartphones and laptops. Once a connection is

established, GaaS simultaneously receives sensory data from

active IoT sensors before either forwarding the data to a

cloud service or processing (probably also visualizing) the

collected data to provide the users with useful information.

To this end, a scheduling strategy is required to determine the

connection time and order. However, our application scenario

is highly dynamic in terms of the number of available IoT

devices and the remaining energy of the mobile devices

hosting the gateways. Accordingly, GaaS employs an adaptive

scheduling mechanism, based on the Monitor-Analysis-Plan-

Execute (MAPE-K) control loop [10] combined with Fuzzy

logic, to react to the runtime dynamics. In fact, the amount

of data which needs to be communicated to a gateway differs

among the IoT devices. Therefore, it is critical to assign longer

time slots to the IoT devices which possess more sensory data.

In this context, GaaS leverages two different multi-decision

making algorithms to assign higher priority levels to those

IoT devices before generating the connection schedule.

In detail, the paper provides the following contributions:

(1) We define an architectural framework for a generic mobile

gateway which can be connected to several IoT devices at

the same time. Our proposed gateway leverages the so-called

Android Interface Definition Language (AIDL) to provide

services for the connected IoT devices. Such services ranges

from data processing through visualization to data upload

to cloud services. (2) We devise an adaptive scheduling

mechanism, based on the exhaustive polling (EP) and fair

exhaustive polling (FEP) strategies, to enable the generic gate-

way from simultaneously connecting to several IoT devices.

The scheduling algorithm leverages the MAPE strategy to

dynamically modify the generated schedule according to the

number of connected IoT devices and the residual energy at

the mobile device. In this context, the well-known Fuzzy logic

theory has been exploited for reasoning the collected statistics

about the mobile gateway. (3) We introduce a priority-based
scheduling algorithm to further improve the efficiency of GaaS

through ranking the IoT devices before generating a certain

schedule. To this end, GaaS leverage two well-known multi-
criteria decision making techniques, namely analytic hierarchy

process (AHP) [11] and weighted sum model (WSM) [12] for

ranking the nearby IoT devices. (4) We present a proof-of-

concept implementation and evaluation of GaaS in a real-world

scenario. We implemented the generic gateway on Android

through which sensory data—from commercial IoT devices as

well as sensors connected to Arduino kits—can be retrieved.

The main goal of these evaluations is to quantify the power

overhead, latency, and data throughput in different scenarios.

The results show that using GaaS, we obtain a significant

improvement of the energy efficiency relative to the siloed

architecture with a comparable throughput and latency.

The remainder of this paper is organized as follows: Sec-

tion II introduces the system model, the architectural frame-

work of GaaS, and our assumptions. Section III presents the

software architecture of the generic gateway with discussing

each component. The adaptive and priority-based scheduling

techniques are discussed in Section IV. In Section V, we

present our real-world evaluation and our prototype implemen-

tation of the generic gateway architecture, before discussing

the obtained results. Finally, Section VI highlights the main

differences between GaaS and related work, before Section VII

draws a conclusion with an outlook on future work.

II. SYSTEM OVERVIEW

In this section, we explain the system model together

with our assumptions. Figure 1 depicts the system model

where a mobile device exists in the vicinity of a set of IoT

sensors S = s1, · · · , sn where n ≥ 1. Each IoT sensor

measures a certain phenomenon, e.g. temperature, speed, and

electricity consumption, before periodically uploading these

measurements to the opportunistic gateway implemented on

the mobile device. To this end, the IoT sensors are assumed to

be equipped with a BLE module through which it can connect

to the opportunistic gateway. After collecting the sensory data,

the opportunistic gateway employs a cellular or WiFi network

to deliver the data to a cloud service or to a back-end server. If

the gateway received sensory readings while it has no Internet

connection, the readings are temporarily stored on the physical

storage of the mobile device to be uploaded to the cloud as

soon as an Internet connection is established.

To define the initial behavior of GaaS, the system settings
component is an XML file comprising the main configu-

rations. For instance, the system settings define the initial

scheduling algorithm, timing constraints for scheduling the

BLE connections, self-adaptation thresholds, and metadata

Generic Gateway

Server

IoT Sensors

Smart Tracker

Smart Lock
Smart Lamp

Smart-
watch

Smart
Meter

Sensor
Node

Mobile Device

BLE Scheduler

Cloud
Service

Gateway Services

Adaptation Engine

Fig. 1: GaaS system architecture

about the supported manufactures. In GaaS, we assume that

the cross-platform gateway has knowledge about the IoT sen-

sors. Specifically, GaaS comprises a list of all supported IoT

sensors—from different manufacturers—in the system settings.

Accordingly, GaaS is aware of the services required by each

supported IoT sensor to properly handle the collected data.

III. GENERIC GATEWAY ARCHITECTURE

In this section, we introduce the proposed architecture

which defines our cross-platform gateway. Figure 2 depicts the

main components of GaaS, including BLE interface, gateway

main service, priority-based scheduling, and self-adaptation

engine. At the outset, the discovery manager detects the nearby

IoT sensors through scanning the available BLE interface,

before obtaining their metadata, i.e. RSSI, MAC Address,

available services, manufacturer, etc. To retrieve data from the

detected IoT sensors, the connection manager establish BLE

connections to all available BLE interfaces. Nevertheless, the

gateway filters out the BLE interfaces which are not supported

by the gateway. Below, we explain the role of each component

to achieve a proper behavior of the gateway.

Gateway Main Service

Connection ManagerDiscovery Manager

N
ode Repository

Priority-Based
Scheduling

Self-A
daptation

Engine

W
iFi/Cellular
Interface

G
atew

ay
Controller

System

Settings
Pow

er
Estim

ator

Services Interface

S1

S2

Sn

BLE
Interface

Fig. 2: GaaS software components

A. Gateway Controller

The gateway controller (GC) primarily serves as the starting

point of the proposed architecture. In particular, the controller

is responsible for executing the initial configurations retrieved

from the system settings, e.g. initial scheduling algorithm

and execution period of the self-adaptive engine. Furthermore,

the GC initializes and terminates the gateway main service.

Figure 3 illustrates the sequence diagram of our proposed

gateway architecture. Once the gateway is activated, the GC

controller automatically binds to the gateway main service

which initializes the AIDL communication model. It is worth

mentioning that GaaS leverages multithreading to enable the

gateway from establishing connections to several IoT sensors

at the same time. Once the onServiceConnected()
method is triggered, two threads are created to simultaneously

run the default scheduling algorithm and the self-adaptive

engine. In this context, the scheduler thread is given the highest

priority in the multi-threading mechanism to ensure seamless

connections to the nearby IoT sensors.

Gateway
Controller

New Thread

Gateway
Main Service Scheduler Self-adaptation

Engine

Interrupt Thread

Service Interface

New Thread

Sensor Connected
Start

Application Service

New Scheduling
Algorithm

New Thread

Sensor Connected

Add
Application Service

Bind
Gateway Service

Unbind
Gateway Service Stop

Application Service

Fig. 3: Sequence diagram of the interactions between the

components of GaaS

Whereas, the self-adaptive engine runs periodically to de-

termine the most suitable scheduling algorithm based on the

number of connected IoT sensors and the energy budget of

the hosting mobile device. Once a new scheduling algorithm

is elected by the self-adaptation engine, the scheduler thread is

deliberately interrupted so that a new scheduling algorithm is

adopted by the GC controller. The service interface is activated

when at least one BLE-based IoT sensor has been connected,

and sensory data, e.g. heart rate or electricity consumption,

has been retrieved. Subsequently, the collected data is either

visualized or uploaded to a cloud service. If the gateway

is deactivated, the application service is interrupted, before

unbinding the gateway service.

B. Gateway Main Service

The gateway main service (GMS) basically runs the inter-

process communication to provide a programming interface by

means of the AIDL method. As shown in Figure 2, the GMS

component represents the heart of our proposed architecture

where several processes, e.g. necessary database operations,

hardware properties reading, activation and deactivation of

the scheduler, etc., are offered using AIDL so that the other

processes or threads may also use these services and bind

to the GMS service via AIDL. Additionally, the GMS ser-

vice serves as an abstraction of many Android peripheral

operations, such as scanning for BLE devices, connecting to

IoT sensors, connecting to the cloud services using Wi-Fi

or Cellular networks, and handling the node repository. The

GMS service has been designed to perform a long-running

operation in the background without having to utilize the user

interface. Thus, the GMS service complies with the intelligent

Job Scheduler for optimizing the battery usage [13].

C. Service Interface

In a siloed gateway architecture, there exists typically a

single application service that either visualizes the collected

sensory data or uploads it to a cloud service. For instance,

the gateway of a smart meter visualizes electricity consump-

tion readings to enable users to make better decisions about

their consumption. Alternatively, GaaS has been designed

to simultaneously connect to several IoT sensors. Therefore,

several application services are to be implemented to serve

the various IoT sensors. According to the number of available

IoT sensors, the number of active Android services is dynam-

ically changing during the runtime. GaaS leverages the AIDL

inter-process communication method to implement a service
interface through which data can be exchanged between the

main gateway service and the various application services. To

perform a remote procedure call, AIDL generates two inner

classes namely Stub and Proxy for handling data marshaling

and unmarshalling at the main gateway service and the various

application services, respectively.

D. Node Repository

For storing the various sensory data as well as the devices

metadata, we exploit the SQLite database provided by the

Android system. In GaaS, SQLite is mainly used to store

metadata about the nearby IoT sensors, services available on

each IoT sensor, and characteristics provided by the services

of these nearby IoT sensors. This metadata is then linked

to each other to connect between entities and relationship

of the underlying databases. Figure 4 depicts the entity-

relationship diagram employed by GaaS. Specifically, there

exist four central databases, namely BLE Device Data, BLE
Service Data, Data Upload, and BLE Characteristic Data.

First, the BLE Device Data database typically stores metadata

about the available nearby IoT sensors where the key is the

device ID. Furthermore, this database comprises other entities

representing the properties of each nearby IoT sensor, such as

sensor name, MAC address, RSSI values, etc.

BLE Device
Data Has

BLE Service
Data

BLE
Characteristic

Data

Has

Device ID

Power
UsageRSSI

Service ID
MAC

Address

Characteristic
Property

Characteristic
Value

Device
Name

Service
UUID

MAC
Address

Characteristic
UUID

MAC
Address

Device
State

Characteristic
ID

Timestamp

Timestamp

Service
UUID

Timestamp

Data
Upload

TimestampSensory
Data

Upload
Status

Has

Fig. 4: Entity-relationship diagram of GaaS databases

Second, the BLE Service Data database stores metadata

about services available in the IoT sensors where the key of

each entry is the service ID. The relationship between such

a database and the BLE Device Data database is a “has”

operator where one BLE device has one or more services.

Third, the BLE Characteristic Data database stores metadata

about characteristics from the available services in the nearby

IoT sensors where the key is the characteristic ID. Similarly,

the relationship between this database and the BLE Service

Data database is a “has” relationship where one service has

one or more characteristics. Finally, the Data Upload database

stores metadata about the sensory data ready to be uploaded

to the cloud/back-end server. Each IoT sensor typically has

one or more timestamped data entries where the primary key

is the MAC address of the IoT device and the timestamp.

E. Self-Adaptation Engine

In this section, we introduce the self-adaptation engine

implemented to further improve the relevant QoS metrics,

including energy consumption and throughput. As explained

in Section IV, the proposed schedulers perform distinctly in

different situations. For instance, the gateway may favor a

certain scheduler to improve the throughput if the number

of connected IoT sensors is suddenly increased. Furthermore,

data uploading to a cloud service may be drastically costly if

the residual energy of the hosting mobile devices is below a

minimum level. Therefore, GaaS has to proactively modify its

configurations to save energy and/or retrieve more data from

the IoT sensors. To this end, we employ the MAPE-K control

loop [10] where two main criteria are frequently monitored

while making the adaptation decision, namely the number of

connected IoT sensors and the residual energy of the mobile

devices hosting the cross-platform gateway.

Based on these monitored criteria, the self-adaptive engine

decides upon which priority-based scheduler to adopt and

whether to upload the sensory data to the cloud services. To

make such decisions, GaaS adopts a lightweight implemen-

tation of a Fuzzy logic controller to analyze the collected

metrics, i.e. residual energy and number of IoT sensors.

Specifically, we convert the monitored metrics into a set of

linguistic variables using triangular Fuzzy sets. We ran several

experiments to accurately construct the Fuzzy sets and rules.

For instance, if the residual energy is “low” and the number

of sensors is “high”, GaaS switches to a scheduler which

favors energy over throughput. To facilitate the development

of Fuzzy sets and rules on Android, a Java library for Fuzzy

control language, referred to as jFuzzyLogic [14], has been

integrated into our software architecture.

IV. PRIORITY-BASED SCHEDULING

In this section, we explain our proposed priority-based

scheduling algorithms. In fact, GaaS has been designed to

simultaneously connect to several IoT devices. To this end,

it is necessary to construct a schedule which clearly defines

the connection duration for each downlink between GaaS and

the IoT sensors. To this end, we harness two well-known

scheduling algorithms, namely exhaustive polling (EP) and

fair exhaustive polling (FEP) [15]. Aside from the duration

of each connection, a question arises about the order of BLE

connections that optimizes relevant quality metrics, such as

the energy consumption on the mobile devices and the amount

of retrieved sensory data (aka throughput). To determine the

downlink priorities, GaaS ranks the detected IoT sensors

according to the cost and efficiency of each BLE connection.

Specifically, the IoT sensors having the least connection cost

and highest connection efficiency will be given a higher prior-

ity. In this context, GaaS examines two different multi-criteria

decision making algorithms for ranking the IoT sensors, in-

cluding weighted sum model (WSM) and analytical hierarchy
process (AHP). In both algorithms, we consider three decision

criteria, viz. the received signal strength indicator (RSSI) of

the BLE connection, the mobile device’s residual energy, and

the state of the IoT sensor (i.e. whether it is active and has data

to upload). Below, we explain two priority-based schedulers,

namely the FEP-AHP scheduler and the EP-WSM scheduler.

A. FEP-AHP Scheduler

The core idea behind the FEP-AHP is to poll the IoT sensors

which has no data to report as rarely as possible. Specifically,

the FEP-AHP algorithm classifies the IoT sensors as either

active or inactive. Figure 5 demonstrates the main steps of the

FEP-AHP scheduler. In the first cycle, GaaS annotates all the

detected IoT sensors as active, before polling all sensors in

a round robin fashion (line 5). The connection time Tcon is

evenly-distributed between the IoT sensors (line 11). Based on

the feedback from the sensors, they are moved to the inactive

state if they have no sensory data to upload (line 14). In

fact, excluding the inactive sensors enables providing longer

connection time Tcon to the other sensors (line 17). The

polling iteratively continues till the list of active sensors are

emptied. To sidestep favoring the sensors generating packets at

maximum rate, the FEP-AHP algorithm deliberately limits the

polling interval to a priori-defined time tp. Once the polling

interval timer expires, the inactive sensors are turned into

active state, thus allowing the gateway to poll them in the

next cycles (line 4).

Once the list of detected IoT sensors Sunsort is recorded

in the node repository. The FEP-AHP scheduler descendingly

sorts the list through determining the priority of each IoT

sensor (line 10). To this end, we develop a hierarchical

structure with an objective at the top, criteria β1, · · · , βn at

the second level, and a set of alternatives at the third level.

As depicted in Figure 6, our main objective is to order the

BLE connections according to the priority of each IoT sensor.

To this end, GaaS considers three main criteria, including

the RSSI values, the sensor state, and the residual energy

of the mobile devices. Whereas, the alternatives represent, in

our model, the nearby IoT sensors detected in the scanning

phase. Subsequently, a pair-wise comparison matrix Mahp is

constructed to estimate the significance wi of the adopted

criteria relative to the main objective (line 8). Equation 1

defines a comparison matrix where each entry aij represents

the ratio between the corresponding criteria, i.e. aij = wi/wj .

In this context, we employ a scale of relative importance

Require: scanning time Ts, polling interval tp
1: Compute matrices MRSSI , Mstate, and Menergy �

Equation 1

2: for all cycle ci ∈ C do
3: Sunsort ← ScanSensors(Ts)

4: if ci == c1 or tp is reached then
5: Annotate all sensors in Sunsort as active
6: end if
7: for all si ∈ Sunsort do � AHP model

8: Kahp ← weight(si,MRSSI ,Mstate,Menergy)

9: end for
10: Ssort ← SortAHP(Sunsort,Kahp)

11: Tcon ← Tcycle

|Ssort| � Distributing connection time

evenly

12: for all sensors si ∈ Ssort do
13: if sensoryData(si) == Null then
14: Annotate si as inactive
15: end if
16: end for
17: Tcon ← Tcycle

|Ssort|−|Sinactive| � Excluding inactive

sensors

18: end for

Fig. 5: Priority-based FEP-AHP scheduling algorithm

ranging from equal importance, i.e. wi = 1, to extreme

importance, i.e. wi = 9.

Connection Priority

RSSI Sensor State Residual Energy

RSSI ≤ -
80 dBm

RSSI ≥ -
80 dBm Active Inactive Energy

level 1
Energy
level 2

Energy
level 3

Sensor 1 Sensor 2 Sensor n… ……

Cr
ite

ria

Alternatives

Fig. 6: AHP hierarchical structure

Mahp =

⎛
⎜⎜⎜⎝

β1 β2 · · · βn

β1 w1/w1 w1/w2 · · · w1/wn

β2 w2/w1 w2/w2 · · · w2/wn
...

...
...

...

βn wn/w1 wn/w2 · · · wn/wn

⎞
⎟⎟⎟⎠ (1)

Once the matrix Mahp has been constructed, we compute

the priority vector through determining the normalized eigen-

vector of the pair-wise comparison matrix, as expressed in

Equation 2, where k is the priority vector and W is the vector

of weights [16]. It is worth mentioning that the sub-criteria,

e.g. RSSI ≤ −80dBm and energy levels, are also considered

while estimating the final priority of each IoT sensor. For

example, sensor-A has RSSI value of -90 dBm, device state

is inactive and connection power consumption of 300 mW.

Meanwhile, sensor-B has RSSI value of -50 dBm, device

state is active and connection power consumption of 90 mW.

According to Equation 2, the AHP weights of sensor-A and

sensor-B are circa 29% and 64%, respectively. Accordingly,

sensor-B has higher priority than sensor-A, thus GaaS connects

first to sensor-B.

Mahp ·W = k ·W, W = (w1, w2, · · · , wn)
T (2)

B. EP-WSM Scheduler

Although being precise in sorting the IoT sensors, FEP-AHP

is relatively complex owing to the various matrix computations

(cf. evaluations in Section V). Therefore, we investigate, in

this section, the EP-WSM scheduler as a lightweight priority-

based scheduling algorithm. The core idea behind the EP-

WSM algorithm is to poll the detected IoT devices in a

consecutive order. GaaS continuously polls the first IoT sensor

in a list of detected sensors till either retrieving all sensory

data or the sensor becomes disconnected. Similarly, other IoT

sensors are polled till covering all detected sensors. To avoid

favoring the IoT sensors generating packets at higher rates,

GaaS employs for each BLE connection a predefined time

constraint tep. Accordingly, a BLE connection is deliberately

terminated when either the data is completely retrieved or the

connection timer, adjusted to tep, expires. Figure 7 depicts the

various steps of the priority-based EP-WSM scheduling algo-

rithm. In fact, BLE scanning is a major factor of the energy

overhead on the mobile devices hosting the cross-platform

gateway. To reduce the scanning time Ts, GaaS records the

detected IoT sensors in the first cycle of the schedule, thus

requiring less BLE scanning time in the subsequent cycles.

Specifically, GaaS adopts, at the first cycle, an initial scanning

time T in
s = α (line 3). The detected IoT sensors, during this

cycle, are recorded in the node repository. In the subsequent

cycles, the gateway directly connects to the recorded sensors

from the previous cycle. Therefore, a reduced scanning time

T red
s = k × α, k ∈ [0, 1] can be adopted to solely detect the

newly-arrived IoT sensors (line 6).

After recording the IoT sensors in the node repository, GaaS

estimates the weighted sum score Kwsm to descendingly sort

the list of sensors (lines 10-13). Equation 3 expresses the

weighted sum score in case of n criteria and m alternatives,

i.e. IoT sensors, where aij is the performance value of the

i-th alternative with respect to the j-th criterion and wj is

the relative weight of importance of the j-th criterion. To

express all criteria in exactly the same unit, we map the

various criterion onto a scale between one and five, where

the performance values of residual energy ai1, device state ai2,

and RSSI ai3 are set—according to their significance—to five,

three, and one, respectively. Once the list of sensors are sorted,

GaaS then performs synchronized connections to the sensors

starting with the one having the highest priority (line 15).

The term “synchronized” emphasizes that the connection is

accessible only by one thread to avoid the multithreading

problems. Once a BLE connection is established, data retrieval

continues till the timer tep expires or no further data exists

(line 18).

Require: initial scanning time T in
s , reduced scanning time

T red
s

1: for all cycle ci ∈ C do
2: if ci == c1 then
3: Sunsort ← ScanSensors(Ts = T in

s)

4: Record Sunsort in the BLE device data database

5: else
6: Sunsort ← ScanSensors(Ts = T red

s)

7: Update Sunsort in the BLE device data database

8: end if
9: for all si ∈ Sunsort do � WSM model

10: Asi ← ai1ω1 + ai2ω2 + ai3ω3

11: end for
12: kwsm ← maximum(Asi), i = 1, 2, 3, · · · ,m
13: Ssort ← SortWSM(Sunsort, kwsm)
14: for all si ∈ Ssort do
15: connection d ← synchronizedConnect(si)
16: d.lock() � keep the connection alive

17: if sensoryData(si) ! = Null & tep is not reached

then
18: Record sensoryData(si) in the data upload

database

19: end if
20: d.unlock(si) � kill the connection

21: end for
22: end for

Fig. 7: Priority-based EP-WSM scheduling algorithm

Kwsm = max

n∑
j=1

aij × ωj , for i = 1, 2, 3, · · · ,m (3)

V. PERFORMANCE EVALUATION

To demonstrate the effectiveness of GaaS, we tested our

system in a real-world scenario. We first describe the setup of

our evaluation, before we discuss the evaluation results. The

performance is assessed in terms of the energy consumption of

the mobile devices. Furthermore, we evaluate the throughput

and latency of data collection from the various IoT devices.

A. Experimental Setup

To test our implementation of the cross-platform gateway,

we designed a testbed composed of six temperature sensors

connected to Faros BLE beacons and four commercial BLE-

supported IoT devices, including a smart meter, a temperature

sensor, a cycling speed sensor, and wearable Miband device

(cf. Figure 8). Figure 8a depicts a low-cost and low-power

Faros Board equipped with an Nordic nRF8001 BLE module.

Such a board has specifically been designed for BLE devices

operating as peripheral/slave nodes. The sensory data are

stored as characteristics according to the GATT specification.

In Faros board, data transmission is done using BLE’s ATT

protocol1. Similarly, the wearable MiBand device measures

several phenomena, e.g. heart rate and steps count. In addition

1More details about the implementation of the Faros BLE beacon can be
found under the following link: https://github.com/duerrfk/Faros

to these sensors, we also employed emulated sensors using

nRF Connect built by Nordic Semiconductor [17]. The nRF
Connect App—installed on LG Nexus 5X device—advertises

BLE beacons and provides synthetic data embedded into the

services and characteristics of the BLE connection mode.

(a) Faros Board with BLE Module (b) Commercial IoT devices

Fig. 8: IoT devices used in the evaluations

For implementing the cross-platform gateway, we have

utilized a Sony Xperia Z5 mobile device with 2GB of RAM

and 32GB of internal storage [9]. For BLE wireless com-

munication, GaaS adopts a star topology where the mobile

device—hosting the cross-platform gateway—acts as a master

and the nearby IoT sensors are the slaves. such a topology has

been selected to enable the mobile device from concurrently

connecting to several IoT sensors. As a cloud service, we

adopted Google Firebase, which provides several services

for database post-processing, such as cloud storage, real-time

database, and back-end service, and Google Analytic.

To measure the power consumption of our mobile gateway,

the Trepn Profiler—a third party application built by Qual-

comm [18]—has been used. Each run of these measurements

were repeated ten times and the resultant values have been

averaged. Furthermore, the Android Bluetooth Host Controller

Interface (HCI) Snoop Log protocol has been utilized to

provide a log of all Bluetooth HCI packets captured by the

Android system. Wireshark [19] is then used to analyze the

log data output from the Bluetooth HCI Snoop Log in the

Android system for the sake of estimating the number of BLE

packets sent and received by the mobile device acting as a

mobile gateway.

B. Gateway Configurations

In this set of experiments, we examine various configura-

tions of the cross-platform gateway together with assessing

the impact of ranking the IoT sensors before generating a

schedule. We selected to dynamically change the number of

IoT sensors during the experiments through adding two IoT

sensors every two minutes. Figure 9a depicts the impact of

changing the scheduling cycle tu—defined as the duration of

a single round in which the gateway connects and retrieves

data from all available IoT sensors. In this experiment, we

adopted the FEP-AHP scheduler to examine its performance

for different values of the scheduling cycle tu. As the figure

depicts, increasing the cycle tu from 0.5 minute to one minutes

leads to a slight reduction in the consumed power (at most by

10%). Clearly, power consumption is increased as the number

of switching between the IoT sensors is also increased. There-

fore, we selected tu = 1 minute as a reasonable period while

generating the various schedules in our next experiments.

Similarly, changing the self-adaptation period tv—defined as

the time between successive executions of the self-adaptation

engine—has a slight influence on the achieved throughput.

Again, we set tv to one minute while executing the self-

adaptive engine in our next experiments.

Figure 9c shows a comparison between the standard FEP

scheduler and the proposed priority-based schedulers. The

main intuition here is to assess the impact of ranking the

IoT sensors before generating a connection schedule. As the

figure depicts, the FEP-WSM scheduler consumes, on average,

16% less energy than the standard FEP scheduler. Similarly, it

achieves, on average, 17% higher throughput than the FEP

scheduler. It is worth mentioning that the relatively loose

distribution occurs owing to dynamically changing the number

of IoT sensors during the experiment. Accordingly, we can

conclude that ranking the IoT sensors broadly improves the

relevant QoS metrics.

C. Priority-Based Schedulers

In this set of experiments, we aim at assessing the per-

formance of the proposed priority-based schedulers in terms

of the energy overhead and the amount of retrieved data,

i.e. throughput. In addition to the EP-WSM and FEP-AHP

schdulers, we also implemented two other variants, including

the EP-AHP and FEP-WSM schedulers. Figure 9 demonstrates

a comparison between the various schedulers in terms of

the energy overhead for different number of connected IoT

devices. As shown in Figure 10a, the FEP scheduler consumes

less power than the EP scheduler (at least by 57%), regardless

of the adopted ranking method. Such energy savings occur

thanks to excluding the inactive sensors, thus allowing data

retrieval from other sensors in shorter time. Through compar-

ing Figures 10a-10c, it is obvious that the power consumption

increases as the number of connected sensors n is increased.

For instance, FEP-AHP consumes more energy (at most by

33%) when n is increased from two to ten sensors.

Similarly, Figure 11 illustrates the data retrieval rate of GaaS

for different number of connected IoT sensors. For n = 2,

the EP-WSM drastically outperforms the FEP-AHP scheduler

where it achieves higher throughput (at least by 46%). Such

high throughput of EP-WSM occurs thanks to retrieving all the

data in each sensor before switching to the next sensor, thus

collecting as much data as possible. Similar performance of the

EP-WSM scheduler is achieved if n is increased to ten sensors

(cf. Figures 11b and 11c). Based on the obtained results in

Figures 10 and 11, it is clear that there exists a trade-off

between the power consumption and throughput. Therefore,

it is crucial to implement the self-adaptive engine to switch

between the FEP-AHP and EP-WSM schedulers according to

the application dynamics i.e. number of sensors and residual

energy.

D. GaaS vs. Siloed Gateways

In this section, we compare the performance of GaaS and

the siloed gateways in terms of the power consumption and

(a) Effect of changing the scheduling cycle (b) Effect of changing the self-adaptation cycle (c) Effect of ranking the IoT devices

Fig. 9: Comparing various configurations of GaaS

(a) n = 2 (b) n = 6 (c) n = 10

Fig. 10: Cumulative power consumption of GaaS for different numbers of the connected IoT devices

(a) Cumulative throughput of GaaS: n = 2 (b) Cumulative throughput of GaaS: n = 6 (c) Cumulative throughput of GaaS: n = 10

Fig. 11: Cumulative throughput of GaaS for different numbers of the connected IoT devices

the data retrieval latency. In this experiment, we utilized three

gateways corresponding to the smart meter, the cycling (speed)

sensor, and the MiBand device. For a fair comparison, we

selected to retrieve 30 KB of sensory data using GaaS, while

each siloed gateway collects only 10 KB of data, i.e. heart

rate in case of the MiBand device. Accordingly, the power

consumption and latency are measured for collecting 30 KB

of data in each method. For GaaS, the FEP-AHP scheduler has

been adopted while deactivating the self-adaptation engine.

Figure 12a depicts the latency of data retrieval in case of

GaaS and the three individual gateways, where the last entry

“siloed” sums up the latencies of the individual gateways.

Obviously, GaaS requires much less time (at least by 78%)

to retrieve 30 KB of data from three IoT sensors. For GaaS,

the distribution is highly tight where the maximum latency

does not exceed circa 6.5 minutes compared to circa 17.6

minutes for the siloed gateways. Similarly, Figure 12b shows

a comparison of the power consumption between GaaS and

the siloed gateways. Apparently, GaaS consumes more energy

than each individual gateway. Such a behavior of the individual

gateways occurs thanks to their relatively short duty cycle

along with collecting less amount of data. Nevertheless, we

found that GaaS outperforms the set of all siloed gateways

where it consumes, on average, 18% less power than all siloed

gateways together.

E. Impact of Self-Adaptation
In this section, we assess the ability of our MAPE-based

self-adaptation engine in improving energy efficiency and

throughput of the proposed cross-platform gateway. In this set

of experiments, we consider for the EP-WSM scheduler two

(a) Latency of data retireval (b) Power consmuption of GaaS and siloed gateways (c) Scenario I: power consumption

(d) Scenario I: throughput (e) Scenario II: power consumption (f) Scenario II: throughput

Fig. 12: Comparative study: GaaS against the siloed gateways and GaaS with/without the MAPE self-adaptation engine

distinct scenarios: Scenario I in which power consumption

is dominating, i.e given larger weight than throughput, and

Scenario II in which throughput is dominating the decision

making process. At the beginning of each run, GaaS is ini-

tially connected to two sensors, where two additional sensors

are added every two minutes. For Scenario I, Figure 12c

shows the power consumption of GaaS with and without

enabling the self-adaptation engine. Apparently, enabling the

self-adaptation engine results in consuming, on average, 44%

less energy. Furthermore, the figure shows that the difference

between these two cases increases as the number of connected

IoT sensors is increased from two to ten sensors. As expected,

we find in Figure 12d that the self-adaptation engine achieves,

on average, 38% less throughput than the baseline method.

For Scenario II, Figure 12e depicts the power consumption

of GaaS with and without activating the MAPE-based self-

adaptation engine. The figure shows that enabling the MAPE

engine leads to consuming, on average, 19% more energy

than the baseline method. Conversely, Figure 12f demonstrates

that the MAPE engine achieves, on average, 28% higher

throughput than the baseline method. Such a behavior of the

self-adaptation engine proves that it can successfully react

to the application dynamics, i.e. the residual energy and the

number of detected IoT sensors, through favoring either energy

consumption or throughput.

VI. RELATED WORK

In this section, we review the most salient related work

in the realm of opportunistic gateways with highlighting the

novelty of our proposed solution. The problem of designing

gateways for IoT applications has been tackled in several

research work . For instance, Kang et al. [20] introduce a

self-configurable fixed IoT gateway for the large-scale IoT

environment. Such a gateway can automatically identify and

connect to the nearby IoT sensors. These capabilities are

already provided in GaaS through the BLE advertising mech-

anism. However, GaaS has the advantage of exploiting the

mobile devices to retrieve data from a wide spectrum of

IoT sensors in different locations. Aloi et al. [6] introduce

a software architecture of smartphone-centric gateways to

support the interoperability between different communication

technologies. This architecture allows bi-directional informa-

tion exchange between smartphones and the surrounding IoT

sensors. Although the architecture does not consume excessive

CPU power and memory space, it significantly increase the

energy overhead on the host smartphones owing to simul-

taneously activating several radio interfaces and periodically

scanning the radio channels to discover the surrounding IoT

sensors. Alternatively, GaaS leverages BLE interfaces thanks

to their widespreadness and their energy efficiency. Further-

more, GaaS considers energy efficiency through incorporating

a self-adaptation engine.

Along a similar line, Zhalgasbekova et al. [5] introduce

CollMule, an on-demand data collection mechanism which

harnesses smartphones for aggregating air quality data from

a set of IoT sensing devices. The core idea behind CollMule

is to reduce the energy consumption of the smartphones that

act as gateways through avoiding unnecessary connections

to unreliable IoT devices. Aguilar et al. [22] investigate the

performance of BLE as a promising technology for oppor-

tunistic data collection. They consider two scenarios for data

collection, including (1) piggybacking the sensor data in the

advertisement phase and (2) data collection in the connection

phase. Can et al. [4] investigate the feasibility of data collec-

tion by smartphones in the presence of rarely-visited regions

through analyzing the GPS trajectories of the mobile devices.

Furthermore, several duty cycling schedules were adopted to

conserve energy on smartphones and on the sensor nodes. As

alternative to these approaches, GaaS automatically discovers

and connects to various IoT sensors at the same time thanks

to its priority-based scheduling.
From the side of the IoT sensors, Wu et al. [21] de-

vise a distributed algorithm which improves the network

throughput via preforwarding the sensor data to other nodes

that are often visited by smartphones. The preforwarding

task has been formulated as an optimization problem that

maximizes the network throughput. To solve this problem,

two heuristic algorithms have been proposed that generate

the data preforwarding plan based on the states of the direct

neighboring nodes and on the mobility patterns of the available

smartphones. We strongly believe that this approach can be

readily augmented with GaaS to construct a highly reliable

IoT application. In general, data collection from IoT sensors

can also be performed using opportunistic communication

in vehicular mobile networks. For instance, Tang et al. [23]

present SWDCP-SCmules, a data collection framework which

enables a set of mobile data mules, such as taxis, buses and

pedestrians holding smartphones, from collecting sensory data,

before forwarding them to data centers.

VII. CONCLUSION & FUTURE WORK

In this paper, we presented GaaS, a cross-platform gateway

architecture for retrieving the sensory data from the low-power

IoT sensors. The proposed architecture leverages multithread-

ing to enable the gateway from simultaneously connecting

to several IoT sensors. To regulate the BLE connections,

we devised two distinct priority-based schedulers which rank

the IoT sensors, before generating the connection schedule.

Moreover, we developed a self-adaptation engine to regularly

modify the gateway’s configurations in accordance with the

run-time dynamics. We demonstrated the efficiency of GaaS

through carrying out several experiments on our IoT testbed.

The results showed that GaaS reduces the energy overhead on

the mobile devices together with reducing the amount of time

required to retrieve data from the IoT sensors. In the future,

we plan to further improve the energy efficiency of the mobile

devices through reducing the duty cycle of GaaS. To this end,

we may explore the potential of machine learning algorithms

in precisely predicting the locations where IoT sensors most

probably exist.

REFERENCES

[1] L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[2] T. Zachariah, N. Klugman et al., “The internet of things has a gateway
problem,” in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’15. ACM, 2015.

[3] “Ericsson Mobility Report,” Ericsson Telecommunications
Company, Tech. Rep., 11 2016. [Online]. Avail-
able: https://www.ericsson.com/assets/local/mobility-report/documents/
2016/ericsson-mobility-report-november-2016.pdf

[4] Z. Can and M. Demirbas, “Smartphone-based data collection from
wireless sensor networks in an urban environment,” Journal of Network
and Computer Applications, vol. 58, pp. 208 – 216, 2015.

[5] A. Zhalgasbekova, A. Zaslavsky, and S. Saguna, Opportunistic Data
Collection for IoT-Based Indoor Air Quality Monitoring. Springer
International Publishing, 2017, pp. 53–65.

[6] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo,
and C. Savaglio, “Enabling iot interoperability through opportunistic
smartphone-based mobile gateways,” Journal of Network and Computer
Applications, vol. 81, pp. 74–84, 2017.

[7] Xiaomi, “MiBand 2,” https://www.mi.com/en/miband2/, [Accessed :
July, 2018].

[8] Fitbit, “Fitbit Devices,” https://www.fitbit.com/es/home, [Accessed :
July, 2018].

[9] S. Developers, “Xperia z5 dual,” Sony Mobile Communications Inc.,
White paper, oct 2017, accessed August 2018.

[10] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive
systems. Springer, 2009, pp. 48–70.

[11] A. Rangone, “An analytical hierarchy process framework for comparing
the overall performance of manufacturing departments,” International
Journal of Operations & Production Management, vol. 16, no. 8, pp.
104–119, 1996.

[12] A. Kolios, V. Mytilinou, E. Lozano-Minguez, and K. Salonitis, “A
comparative study of multiple-criteria decision-making methods under
stochastic inputs,” Energies, vol. 9, no. 7, p. 566, 2016.

[13] Google, “Android Optimize for Battery Life,” https://developer.android.
com/topic/performance/power/, [Accessed : July, 2018].

[14] P. Cingolani and J. Alcala-Fdez, “jfuzzylogic: a robust and flexible
fuzzy-logic inference system language implementation,” in 2012 IEEE
International Conference on Fuzzy Systems. IEEE, 2012, pp. 1–8.

[15] N. Johansson, U. Körner, and P. Johansson, “Performance evaluation
of scheduling algorithms for bluetooth,” in Broadband communications.
Springer, 2000, pp. 139–150.

[16] T. L. Saaty, “How to make a decision: the analytic hierarchy process,”
European journal of operational research, vol. 48, no. 1, pp. 9–26, 1990.

[17] Nordic-Semiconductor, “Bluetooth Low Energy nRF8001,” https:
//www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF8001,
[Accessed : July, 2018].

[18] Qualcomm, “Qualcomm Trepn Power Profiler,” https://developer.
qualcomm.com/software/trepn-power-profiler, [Accessed : July, 2018].

[19] Wireshark, “Wireshark Network Protocol Analyzer,” https://www.
wireshark.org/, [Accessed : July, 2018].

[20] B. Kang, D. Kim, and H. Choo, “Internet of everything: A large-scale
autonomic iot gateway,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 3, no. 3, pp. 206–214, July 2017.

[21] X. Wu, K. N. Brown, and C. J. Sreenan, “Data pre-forwarding for
opportunistic data collection in wireless sensor networks,” ACM Trans.
Sen. Netw., vol. 11, no. 1, pp. 8:1–8:33, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2629369

[22] S. Aguilar, R. Vidal, and C. Gomez, “Opportunistic sensor data collec-
tion with bluetooth low energy,” Sensors, vol. 17, no. 1, p. 159, 2017.

[23] Z. Tang, A. Liu, and C. Huang, “Social-aware data collection scheme
through opportunistic communication in vehicular mobile networks,”
IEEE Access, vol. 4, pp. 6480–6502, 2016.

[24] M. Bonola, L. Bracciale et al., “Opportunistic communication in smart
city: Experimental insight with small-scale taxi fleets as data carriers,”
Ad Hoc Networks, vol. 43, pp. 43–55, 2016.

[25] H. Nishiyama, M. Ito, and N. Kato, “Relay-by-smartphone: Realiz-
ing multihop device-to-device communications,” IEEE Communications
Magazine, vol. 52, no. 4, pp. 56–65, April 2014.

[26] Z. Lu, G. Cao, and T. L. Porta, “Teamphone: Networking smartphones
for disaster recovery,” IEEE Transactions on Mobile Computing, vol. 16,
no. 12, pp. 3554–3567, Dec 2017.

