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Abstract—Typically, Function-as-a-Service (FaaS) involves
state-less replication with very large numbers of instances. The
reliability of such services can be evaluated using Bayesian
Networks and k-out-of-n models. However, existing k-out-of-n
models do not scale to the larger number of hosts of FaaS services.
Therefore, we propose a scalable k-out-of-n model in this paper
with the same semantics as the standard k-out-of-n voting gates
in fault trees, enabling the reliability analysis of FaaS services.

I. INTRODUCTION

The reliability of a Function-as-a-Service (FaaS) runtime
environment, can be modeled by a k-out-of-n (k:n) reliability
model with Bayesian networks (BNs). However, as we will
see later, due to the very large number of hosts in server-less
computing environments, state-of-the-art reliability models
become intractable to model such large systems. For example,
suppose we have a FaaS environment with hundreds of hosts,
and we represent the failure probability of each host by a
binary random variable. Then the conditional probability table
of a k:n model, defined by the converging node K in Figure
would have 2190 entries.

To tackle this scalability problem, we provide an efficient
BN implementation of k:n models in this paper. We call this
model the scalable k:n model for BNs. The scalable k:n model
enables the reliability modeling of large FaaS environments.
We exploit the causal independence of the parent nodes from
the converging BN structure by showing that the k:n formalism
is an augmented instance of the temporal representation of the
noisy adder model as proposed by Heckerman [1]. In detail,
we make the following contributions: (1) we provide a scalabe
k:n model for BNs to assess the availability of large-scale
server-less computing environments, (2) we show that once the
scalable k:n model is implemented, we can perform inference
with any standard exact or approximate inference algorithm.

The remainder of the paper is structured as follows: First,
we describe necessary background information on BNs in Sec-
tion Afterwards, in Section we outline how to construct
the scalable k:n gate by exploiting causal independence of the
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Fig. 1: Naive k:n model representation as Bayesian network

k:n semantic with help of the temporal transformation of the
noisy adder. Finally, we conclude the paper in Section

II. BACKGROUND: BAYESIAN NETWORKS

A (discrete) BN is a directed acyclic graph G = (X, E),
where the set X = {X1, Xo,...X,,} represents discrete ran-
dom variables and the set £ C X x X models directed edges
representing the direct cause-effect, i.e. influence between
random variables. An edge is a tuple (X;, X;) € E, where
X is said to be a parent variable of X;, and X is said to be
a child variable of Xj.

The BN structure in Figure |I| is also called a common
effect or converging network, due to the cause-effect relation
modeled by edges between parent and child nodes. Random
variables are visualized as nodes in the graph, thus, we
will refer to random variables and their node representations
simply as variables or nodes interchangeably. For instance, in
Figure |1| node K represents a common effect of the nodes
C to C), representing the causes. We encode the probabil-
ity distribution of a variable by its conditional probability
distribution P(X;|pa(X;)) given their parent nodes pa(X;)
as a conditional probability table (CPT). Finally, the BN
structure defines the full joint probability distribution over X
with P(X) = [],cx P(z|pa(x)), which is the product of its
conditional probability distributions over all variables. Since
the BN encodes all information about the joint distribution,
it can be used to infer answers to any query on its random
variables.

Once we have constructed the BN, we can perform inference
on probabilistic queries to compute the posterior probability
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distribution P(Q|K) for a subset of random variable @) C X
given a set of observed states of other random variables K C
X\Q.

However, converging BN structures, such as the BN in
Figure |1} pose a challenge in terms of CPT size, which can
make inference intractable due to space limitations. The CPT
size grows exponentially in the number of parent nodes since
we need to provide a conditional probability distribution for
each parent state permutation.

III. SCALABLE K-OUT-OF-N MODEL

The main problem is the space complexity of the node K
in Figure [I| Node K has an exponential CPT size making
inference intractable for large n. Therefore, we need to find a
scalable BN formalism for the k:n model such that (1) it has
the same semantics as naive k:n model and (2) it scales in the
number of hosts w.r.t to space complexity.

A. Preliminaries: Temporal Noisy Adder Model

Our work is based on BN representations available in fault
tree (FT) analysis [2]. Bobbio et al. [3] have proposed an
algorithm to transform FTs into BNs. They show that the BN
formalism has more modeling power than FTs. However, they
only considered naive BN implementations of the AND, OR,
and k:n voting gates, which lead to inference intractability for
large numbers of events per gate.

For many expert systems, knowledge engineers were able to
exploit causal independence to provide scalable BN structures
and to ease knowledge acquisition [1], |4]. Important models
are the noisy OR [4]-[6], noisy MAX [7], and the noisy
adder [8], |9]. Our scalable k:n model is strongly related to
the temporal definition of the noisy adder by Heckerman [1].

In general, converging BN structures have CPTs whose
size grows exponentially with the number of parent nodes.
However, sometimes the CPT of the converging node contains
a special structure that can be exploited to enable inference
without exponential growth of the CPT, know as causal
independence. In our case, we use the temporal model of the
noisy adder by Heckerman |1] to realize our scalable k:n BN
structure.

The noisy adder is defined as follows. Suppose we have
the converging BN structure as shown in Figure E] with n
binary random variables C; to C,, with state true and false,
that influence the random variable K, where K represents a
counter with the domain [0, n]. If C; has the state true, it adds
one to the counter with probability ¢;, hence the name noisy
adder. In this work, we only consider the case ¢; = 1, thus
the counter is always increased by 1 whenever a variable C;
is true. If a variable C; is false, it does not change the value
of the counter. With this model, the overall influence of the
parent nodes is combined pairwise via a contribution variable
E;, which has the domain [0, ¢], to model the causal impact of
the variables C; to (), on the variable X = FE,,. Heckerman
defines the CPT of the contribution variables as follows:

Vie[l,n] :P(E;=k+1|Ei1 =k,C; =true) =1

1
P(E; =k|Ei—1 =k,C; = false) =1 0

where we increment the contribution variable FE; by one,
given the last state, i.e. last count of the previous contribution
variable F;_; given C; is in state true. If C; is false, the
contribution variable E; propagates the state of his predecessor
E;_1. Here, the CPT of Ej is set to P(Ey =0) = 1.

According to Heckerman, the complexity for inference is
O(n® x p) for the general noisy adder [1], which implies for
our case with ¢; = p = 1 that inference is performed in O(n?).

Next we show how to augment the noisy adder model to
implement a scalable k:n model for BNs.

B. Scalable k:n Model Construction

As described by Bobbio et al. [3], the k:n voting gate can
be represented by a converging BN structure where the CPT
of the converging node, say K, is a binary random variable
representing, for example, the availability of a system where
at least k components are available. In contrast to the FT
formalism of the k:n voting gate, we consider w.l.o.g. the
parent nodes C; to C,, as binary random variables with the
states {¢rue, false}, where true refers to the availability of
a component, i.e. (virtual) host, with the k:n semantic that at
least k faults lead to a service failure.

First, we describe the naive k:n model and then transform
the model step-by-step into the scalable k:n model. The CPT
of node K in the naive k:n BN model is defined as follows:

ey [ Theezh
0 otherwise

where 144 () denotes an indicator function such that

1true(m) = {1

P(K = true|cy, ..

if x = true,

0 otherwise.

Based on Eq. E] we implement the k:n semantic by com-
puting the posteriori probability distribution P(K = true) by
marginalizing variable K. Using the BN formalism of the joint
probability, we get the following marginal distribution for K:

P(K = true) =
Z P(K = true|cy,...,cn)P(c1) ... P(ey) &)

The conditional probability P(K = truelcy,...,c,) is 1
if at least k of the parent variables are true, and O otherwise.
Therefore, the posterior probability is the summation of those
products of parent variables P(c1) x - - - x P(c,,) where at least
k parents are true. If the parent variables are not independent,
we can change the product P(c1) X --- x P(cy,) to the joint
probability distribution P(c; X -+ X ¢,,) denoting that there
are other dependencies between the causes.

With the notion of causal independence, we define a
distinguished state, say false, as a neutral event that does
not influence variable K. In Eq. K is only influenced
by those variables that are in the state true, i.e., K only
depends on the sum of those parent variables that are true.
Thus, we can rewrite the conditional probability distribution
of P(K = truelcy,...,c2) as P(K = true|N = n) where K



is conditionally dependent on a random variable N with the
domain [0, n] representing the number of parent variables that
are in state true. Variable N has the following CPT:

1 Zzlzl ]-t'rue (Cz) =m

P(N =mjcq, ...
( e 0 otherwise.

5 Cn) = (4)
Since N is a random variable that is influenced by the summa-
tion of the states of its parent variables, we can implement N
as an adder that is semantically equivalent to the noisy adder
model from Section

We redefine the probability distribution P(K = true) by
introducing variable N:

P(K = true) =

Z Z P(K =true|N =m) x P(N =mlecy,...,cp)
C1,.++,Cn mE[0,n]
X P(Cl ZCn)P(CQ 262)
&)

where we substitute the initial conditional probability distri-
bution of K, which was previously influenced by the variables
C1 to C,, by a conditional probability distribution influenced
by the counter N. Consequently, the CPT of K has linear table
size. However, the problem of an exponential table size of the
variable K has shifted to variable N now, due to its conditional
dependency on variables C; to C,. Next, we rearrange the
summations to isolate the counting variable N, to apply the
temporal transformation of the adder model. In the next step,
we define

P(K = true) =

Z P(K = true|N =m)
me[0,n] (6)
x Y P(N=mlec,...,cn) xPer)... Plcy)

B

where we substitute the conditional probability distribution of
N by the temporal definition of the adder model in B, where

B is defined as follows:
B=PE;=0) Y [ PEi=elBi1=ei1,Ci=c)
€1, je[l,n]

15
ep=m

The last term defines the noisy adder model w.r.t N, as
proposed by Heckerman [1|]. The resulting BN structure of
Eq.[6]is shown in Figure [2] Variable K is now a child node of
the last contribution variable F,, in the causal chain. Since F,,
represents the total count of the causes C to C,, with the states
true, K enforces the k:n semantic by setting the conditional
probability for K = true when the count is a least k with
P(K = true|lN > k) = 1, and P(K = true|]N < k) =0
otherwise.

The overall space complexity of our scalable k:n model is
O(n®). A contribution variable E; can have up to n states,
and it is conditionally dependent on its previous contribution
variable F; — 1, which has up to n — 1 states. Thus, the size
of the CPT grows as O(n?). Since we have n contribution

Fig. 2: Scalable BN structure of the k:n gate: The structure
is composed of the temporal representation of the noisy adder
and a deterministic random variable K that represents a binary
relation operator, e.g. the greater-than-or-equal operator

variables, we have a total CPT size of the order O(n?). There-
fore, we decreased the space complexity from exponential to
polynomial by changing the structure of the BN network, thus
inference can be still performed with any standard exact or
approximate inference algorithm.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a scalable k:n reliability model
to enable the modeling of large FaaS with BNs. In future
work, we will show the practicality of modeling the reliability
of FaaS and other cloud services with our scalable k:n BN
structure.
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