liteNDN: QoS-Aware Packet Forwarding and
Caching for Named Data Networks

Mohamed Abdelaal, Mustafa Karadeniz, Frank Diirr, Kurt Rothermel
Institute of Parallel and Distributed Systems, University of Stuttgart
Email: first.last@ipvs.uni-stuttgart.de

Abstract—Recently, named data networking (NDN) has been
introduced to connect the world of computing devices via naming
data instead of their containers. Through this strategic change,
NDN brings several new features to network communication,
including in-network caching, multipath forwarding, built-in
multicast, and data security. Despite these unique features of
NDN networking, there exist plenty of opportunities for continu-
ing developments, especially with packet forwarding and caching.
In this context, we introduce liteNDN, a novel forwarding and
caching strategy for NDN networks. liteNDN comprises a coop-
erative forwarding strategy through which NDN routers share
their knowledge, i.e. data names and interfaces, to optimize their
packet forwarding decisions. Subsequently, liteNDN leverages
that knowledge to estimate the probability of each downstream
path to swiftly retrieve the requested data. Additionally, liteNDN
exploits heuristics, such as routing costs and data significance, to
make proper decisions about caching normal as well as segmented
packets. The proposed approach has been extensively evaluated
in terms of the data retrieval latency, network utilization, and
the cache hit rate. The results showed that liteNDN, compared
to conventional NDN forwarding and caching strategies, achieves
much less latency while reducing the unnecessary traffic and
caching activities.

Index Terms—named data networking, forwarding strategy,
caching policy, quality of service

I. INTRODUCTION

Thanks to the current technological advancements in sensing
and communication, more machines, controllers, consumer de-
vices, and wearables are to be connected to the Internet. How-
ever, the current IP-based architecture has several limitations
when dealing with large-scale data distribution, including high
multicasting overhead especially for “resources-constrained”
devices, high handshaking overhead, poor mobility support,
limited routing scalability, and complex security models [1].
These limitations have confirmed the belief that the era of
IoT and Industry 4.0 inevitably demands the design of a
second generation of the Internet architecture. Hence, several
novel architectures have recently been introduced to meet the
accelerating expansion in Internet traffic.

In this context, named data networking is a data-centric
Internet architecture solution. It has recently received much
attention as an efficient alternative Internet architecture to
the IP-based Internet architecture. Generally, NDN represents
a clean-slate receiver-oriented design which utilizes the re-
quest/response model to retrieve data from possible source
nodes [2]. NDN architecture is based on four main concepts,

This work is supported by the German Federal Ministry of Education and
Research (BMBF) grant 01DH17059.

namely content forwarding, in-network caching, multicasting,
and built-in security at the data level. Content forwarding
leverages data names—that carry application semantics—to
exchange two types of packets, i.e. Interest and Data. Such
NDN packets carry only unique names to identify the re-
quested data without embedding the source or destination
addresses. Specifically, users specify what data they are in-
terested in while NDN infrastructure takes care of searching
and delivering the data back to the users.

In fact, we observed that the conventional NDN forwarding
strategy, referred to as the best route strategy (BRS) [3],
entirely overlooks the unique NDN primitives, such as in-
network caching and multipath forwarding. Specifically, the
BRS strategy estimates the best route for each name prefix
towards its producer. Nevertheless, there may exist routers in
the vicinity of data consumers which have cached versions
of the requested data. Accordingly, the routes estimated by
the BRS strategy can further be optimized to proactively
forward the Interest packets to the closest data source. Aside
from packet forwarding, the default caching strategy of NDN
architecture relies on storing each received packet regardless
of the network size and the routing costs. For medium- and
large-sized networks, the NDN routers—in the vicinity of data
producers—typically incur excessive overhead as a result of
caching data requested by remote consumers. Accordingly,
the cache memories can be exhausted in vain. Moreover, the
current NDN architecture lacks an efficient mechanism for
dealing with segmented data, where each segment requires
an individual Interest packet, thus flooding the network with
unnecessary traffic. Consequently, a challenge of improving
the forwarding strategy together with increasing the caching
efficiency emerges.

To tackle this challenge, we introduce liteNDN, a QoS-
aware forwarding and caching strategy for NDN networks.
liteNDN exploits the unique NDN primitives to broadly sup-
port the fast and reliable retrieval of data from cached versions
at intermediate routers, thus reducing the packet delivery time.
Moreover, liteNDN implement a decision making mechanism
to proactively decide upon caching the received packets in
light of the routing costs. Consequently, routers located close
to a certain data producer can completely avoid caching Data
packets from this producer. Additionally, liteNDN leverages
the strategy of sending a portion of the segmented data without
receiving corresponding Interest packets, before caching them
close to the data consumers. Therefore, the time required to
retrieve these segments can be drastically reduced together

Published in the IEEE Consumer Communications and Networking Conference (CCNC),

10-13 January 2020 Las Vegas, USA
© IEEE 2020

with reducing the network traffic. To the best of our knowl-
edge, liteNDN is the first NDN forwarding strategy which
harnesses the cached versions of the exchanged packets to
optimize the forwarding decisions. Additionally, the proposed
caching strategy represents the first work which simply ex-
ploits heuristics to efficiently deal with segmented data and to
drastically reduce the caching activities.

In detail, liteNDN provides the following contributions: (1)
We introduce a cooperative forwarding strategy which relies
on sharing data names for identifying possible data sources
close from consumers. In our proposed forwarding strategy,
each router collects information about the names of data being
exchanged by neighboring routers. Together with the routing
costs, these shared names are locally exploited to estimate
the probability of each path to swiftly retrieve the requested
data (cf. Section III). (2) We devise a heuristic-based caching
strategy which leverages the routing cost as a decision metric
to sidestep the caching of data received from nearby producers.
(3) We introduce an adaptive mechanism for dealing with
segmented data. In this context, a weighted sum model (WSM)
is used to determine the portion of segmented data to send
back to a producer—according to the data type, size, and
its significance—once the first segment has been requested.
(4) We provide an extensive evaluation of liteNDN to assess
its effectiveness compared to the default NDN strategies.
The results show that using liteNDN, we obtain a significant
improvement of the round trip time (at least by 43%) relative
to the BRS strategy. Moreover, littNDN requires much less
time (at least by 91%) to retrieve segmented data compared
to the baseline method.

II. SYSTEM OVERVIEW

In this section, we provide an overview of named data
networking, before introducing our proposed solution.

A. Preliminaries

In general, NDN networks rely on the request/response
model to pull data, i.e. video, sensory data, etc. An Interest
packet s; typically comprises a hierarchical name of a desired
piece of data, e.g. ndn:/temp/01, where NDN routers
utilize such a name to forward the Interest packet towards
all possible data sources (cf. Figure 1). In this context,
name-based routing algorithms are de facto employed to
distribute information about the contents’ location based on
the embedded names using the longest prefix matching. It
is worth noting that hierarchical namespace is utilized for
naming the exchanged data to achieve better routing scala-
bility. Once an Interest is received by a node that possesses
the required data, a Data packet d;—comprising the data
name, a cryptographically-signed version of the required data,
and additional authentication and data-integrity information—
is forwarded along the Interest’s reverse route.

To exchange Interest and Data packets, NDN routers main-
tain three data structures, namely content store (CS), pending
interest table (PIT), and forwarding information base (FIB)
(cf. Figure 1). The former component is a temporary cache

Interest(name)

S Data(name)
NDN Router Y

@ Interest(name) @
| | |
I Data(name) /,/'/v\\‘

Producer

Strategy

Consumer

Module

1

L E Routing Plane j

Fig. 1: Architecture of an NDN router

\
|
|

.
i
i
|
1
1
|
i
|
|
i
|
|
i
|

/

of the received Data packets. In fact, the in-network cashing
mechanism enables the NDN routers from responding to
similar data requests, thus reducing the network congestion
together with improving the delivery speed. The PIT table
stores all the incoming Interests that the NDN router has for-
warded but not satisfied yet. If an incoming Interest s;(name,
face ID) has a matching entry in the PIT table, the NDN
router records only the face ID without forwarding such an
Interest. For the data requests, which do not have matching
entries in the PIT table, the FIB component employs an
adaptive forwarding strategy to forward them through multiple
interfaces toward the data source(s). Such a per hop, per packet
state enables routers to identify and discard looping packets,
thus allowing them to freely use multiple paths toward the
same data producer.

For the Data packets, they are typically not retrieved ac-
cording to a routing table. Instead, they follow the reverse path
toward consumers thanks to the interfaces recorded at the PIT
table of each NDN router. In this context, the NDN routers
perform component-wise longest prefix match of the content
name from a Data packet against the FIB table. Once a Data
packet is received by a router, the PIT table is initially checked
for requests from consumers interested in this data packet. If
there exist valid entries in the PIT table, the received data is
stored in the CS cache, before forwarding the Data packet to
the downstream neighbors, corresponding to all the matched
PIT entries. When a Data packet is found to be unsolicited,
the packet will be deliberately dropped as it may pose security
risks to the forwarder. Nevertheless, there are cases in which
unsolicited Data packets are cached if they arrive from a
local face. Accordingly, the default caching policy stores all
incoming data regardless of the network size.

B. liteNDN Architecture

Despite providing solutions to the predominant problems in
IP-based networks, NDN networking is still in its infancy and
there are plenty of opportunities for continuing research and
developments. In this context, we introduce liteNDN, a novel
forwarding and caching strategy for NDN networks which ex-
ploits the unique NDN features to broadly improve the relevant
QoS metrics, i.e. data retrieval latency and throughput. As de-
picted in Figure 2, liteNDN comprises two main contributions,
namely the cooperative forwarding strategy and the heuristic-
based caching policy. The former contribution revolves around
avoiding exceedingly long routes via deliberately retrieving

cached versions of the requested data from closer routers in
lieu of obtaining them from the original producers. To this
end, our proposed forwarding strategy, referred to as NDN-
MPP, enables the various NDN routers to frequently share
their knowledge, i.e. data names, to build a knowledge base
of the data names exchanged among the neighboring routers.

BRS
Strategy

FIB Routes
MPP-01
MPP-02 (P(n;))

-
L
<

=

(7]

a

a

=

Knowledge

Segmented Table

Sini
Heuristic-Based B
Caching BRS-01
1

} } ’

i Strategy s ‘
Module

z
o
=z
<
o
o

}H
\

Fig. 2: liteNDN forwarding plane

In addition to the MPP shared knowledge, the NDN-MPP
strategy takes as an input the ranked list of best paths estimated
by the best route strategy, i.e. the default forwarding in current
NDN architecture. In this manner, NDN-MPP generates, as an
output, a new ranked list of paths where closer routers which
most probably have the requested data are placed at the top of
the list (cf. Figure 2). Aside from the NDN-MPP forwarding
strategy, we also propose a heuristic-based caching policy
which makes decisions of whether to store the received data.
The core idea is to avoid exhausting the cache memories which
mostly occurs due to storing Data packets from nearby data
sources. To this end, we adopt the routing distance—defined in
terms of the routing cost and the hop count between a certain
router and the data producer—as a metric to properly make
the caching decision. As a result, the received data by a router
is cached only if the producer is exceedingly distant from
that router. Moreover, we devise a mechanism for retrieving
the segmented data without receiving corresponding Interests.
Below, we explain our proposed methods in more detail, before
experimentally assessing their impact in terms of the relevant
QoS metrics.

III. COOPERATIVE PACKET FORWARDING

In this section, we introduce a novel forwarding strategy
implemented as a component of the NDN Forwarding Daemon
(NFD). Before delving into our proposed forwarding strategy,
we first explain the conventional NDN forwarding strategy
together with highlighting its drawbacks. In general, NDN
employs the named-data link state routing (NLSR) protocol
[4] as the default routing protocol. NLSR computes the best
path—using the Dijkstra algorithm—for each data prefix to its
destination. To implement multipath routing, NFD implements
the best route strategy (BRS) which provides a ranked list of
all possible paths towards each producer according to their
routing cost, i.e. the best path is the one which has the lowest
routing cost [3]. If the best path failed to retrieve the requested
data, the BRS strategy selects the second best path to forward
the Interest. This process continues till receiving a Data packet

for such a request. In this manner, the BRS strategy tends to
minimize the routing costs.

Such a forwarding strategy completely ignores the in-
network caching implemented in NDN routers. According
to this policy, every NDN router—along the reverse path
of a request packet—has to temporarily store the incoming
data. Thus, the NDN routers employing the BRS forwarding
strategy can readily overlook data sources in their vicinity
which most probably have a copy of the requested data. As a
result, the data retrieval latency can be broadly increased due
to lacking flexibility while determining the most suitable path
towards a data source. As an example, consider the routing
scenario shown in Figure 3 to explain our observation. As
depicted in Figure 3a, the network consists of eight NDN
routers with two consumers connected to the routers 2, and
R, together with a data producer connected to the router Rg.
The terms c; and c; denote the routing costs for each link
where cl < 2.

(b) Using NDN-MPP

Fig. 3: An example of the proposed forwarding strategy

In this scenario, the NDN router /; sends an Interest at
time ty to retrieve a data whose name is temp/01, i.e. the
temperature value at room 01 of a certain building. Figure 3a
demonstrates that the best path for the Interest triggered by
R1 goes through the routers R3, Rs, R7 and Rg where the
total cost in this path equals to 3c; + c2. Once the data is
found in Rg, a Data packet is sent through the reverse path
(cf. blue curve in Figure 3a) while caching the requested data
in each router on that path. Subsequently, the router Ry sends
an Interest requesting the same data at time ¢; = ty+J, where
Tg@ < § < T given that T? is the caching time of data
received by the router R; and Tﬁg is the round trip time of
the Interest sent by R;. For the Interest triggered by Ra, the
BRS forwarding strategy chooses the lowest-cost route for this
data. Accordingly, the Interest goes through routers R4, Rg,
and R; where the requested data is already cached in R7. In
this case, the total cost in this path equals to 2¢; + co, thus
achieving a cost reduction of only one link.

To highly reduce the data retrieval latency and improve

the network throughput, we propose a cooperative forwarding
strategy, referred to as NDN-MPP, which mainly relies on
sharing knowledge among neighboring to properly exploit the
NDN in-network caching, thus selecting shorter routes. As
depicted in Figure 3b, the requested data already exists in
R3. If the request is forwarded to Rg, the routing cost of the
Interest triggered by Rs will be reduced to only 2¢;. In NDN-
MPP, the routers typically forward their requests to the most
probable path (MPP), which most probably will retrieve the
data from closer neighbors rather than employing the best path
determined by the BRS strategy. Figure 4 depicts the NDN-
MPP algorithm, where it comprises two main phases, namely
knowledge sharing and path estimation.

In the knowledge-sharing phase, each NDN router shares
with its direct neighbors information about the received data
packets. Such Data packets D can either be (1) originated
from data producers, e.g. Rg in Figure 3b, or (2) they represent
virtual Data packets generated by neighboring routers to share
their MPP information, i.e. the name n;, the face f;, the routing
cost ¢;, and the hop count f; from the data provider. For
instance, when the router Rj3, in Figure 3b, receives a Data
packet from the router Rg. After parsing the packet, the data
name together with the incoming face are stored in a special
data structure, called the MPP table. Afterward, a virtual Data
packet d; is generated with a special fixed name, i.e. n =
“ndn:/mpp/Share”, to share the MPP information with direct
neighbors, i.e. R; and R,4. In this virtual packet, the routing
cost and hop count are deliberately set to zero.

Once the virtual Data packet d; is received by the router Ry,
a new entry is created in the MPP table only if the name n;
does not already exist in the table (cf. line 4). If this condition
is satisfied, the cost and hop count are updated by considering
the link between R3 and Ry together with its cost ¢k (cf.
lines 5 and 6). It is worth mentioning that an NDN router
may receive a certain data name several times from different
neighbors, i.e. distinct faces. In this case, NDN-MPP utilizes
the routing cost ¢; and the hop count h; to accurately select the
optimal face which yields the lowest overhead. If the overhead
¢; X h; of the newly-arrived face f; is greater than an existent
one f; in the MPP table, then the face f; is ignored. Otherwise,
the newly-arrived face f; replaces the old face to further reduce
the overhead.

The second phase of NDN-MPP is forwarding the received
Interests based on the entries in the constructed MPP table.
At the outset, the data name s; of an incoming Interest is
compared to the names ./\/mpp stored in the MPP table. If
an exact match is found, the face f; corresponding to that
matched name is used to forward the Interest packet (cf.
line 15). If the MPP table does not have enough knowledge
to forward such an Interest packet, NDN-MPP estimates the
probability P,, of each stored face f; to be a probable path
for satisfying this Interest. The intuition is to find a partial
match between an incoming name prefix and the set of stored
names N,,,,. Equation 1 expresses the path probability P,,
in terms of the word matching function ¢(n,,n;) and the
number of data names k, for each neighbor = € Xy;,, where

Require: path threshold ay, link cost ¢k, face fprs
1: for all Data packet d; € D do > MPP Table construction

2: ng, fi, ci, h; < ParsePacket(d;)

3. for all stored name n; € N,,,, do

4: if n; # n; or n; == “ndn:/mpp/Share” then

5: Ci < C; + Clink > Cost update
6: hi < h; +1 > Hop count update
7: Insert d; in the MPP table

8: ForwardMPP(n = “ndn:/mpp/Share”)

9: else if ¢; x h; > ¢; x h; then © Identical names
10: Discard the incoming face f;

—_

else Replace the face f; with f;

12: for all Data packet s; € [do > Forwarding Interests

13: n;, fi, i, hi < ParsePacket(s;)

14: for all stored name n; € N,,,, do

15: if name n; == n; then

16: ForwardInterest(n = n;, f = f;)

17: else if P(n;) > o, then > Equation 1
18: ForwardInterest(n = n;, f = f;)

19: else ForwardInterest(n = n;, f = fBrs)

Fig. 4: Cooperative forwarding algorithm for NDN networks

| X 4:r| denotes the number of direct neighbors. The function
¢(n;,n;) estimates the level of similarity between two name
prefixes n; and n;. For instance, assume an incoming Interest
whose name n; = ndn:/uni/temp/floor/06 is to be
matched to a stored entry in the MPP table whose name is
ndn:/uni/lec/hum/03. In this example, the output of the
matching function ¢(n;, n;) is equal to two since both prefixes
share exactly two fields.

ke (i, ny)
P(n;) = max z (1
(o) = 283, [Xair| §ka ¢(ni, n;)
=1 j=1 ks
In the MPP table, some data names n;,j = 1,--- ,k, are

typically received from the same neighbor z € Xg;,. In this
case, NDN-MPP computes the word matching function for
each name, before averaging the results obtained for such
a neighbor x, as expressed in Equation 1. After estimating
the probability of each neighbor, we compare the maximum
probability to a predefined threshold «, (cf. line 17). If the
probability P, exceeds the threshold «,, we utilize the face,
corresponding to this neighbor, to forward the Interest packet.
Otherwise, NDN-MPP selects the face fprs—determined by
the BRS strategy—to forward the packet (cf. line 19). In case
of receiving a negative acknowledgment (NACK) message for
an Interest packet—sent over an MPP path, the NDN routers
proactively switch back to the default best path strategy.

IV. HEURISTIC-BASED CACHING

Before delving into our proposed caching policy, we first
explain the default NDN caching strategy together with ex-
plaining its shortcomings. Indeed, the primarily reason for
keeping a copy of the requested data in every node is to
increase the chance of data hit in these nodes for incoming

similar Interests. Such a design takes into consideration an
optimistic assumption that the stored data will be requested
before being removed from the cache memory. However,
caching the NDN packets in every router, regardless of the
network size and the routing costs, certainly adds huge burden
to the network resources. For intermediate and large networks,
the NDN routers—Ilocated close from the data sources—will
be extremely exhausted owing to the unnecessary caching
activities, thus consuming the memory budget together with
increasing the energy consumption. For instance,

In addition to the unnecessary caching activities, the re-
quest/response model of NDN networks may cause additional
overhead when dealing with segmented data. In particular, the
request/response model of NDN implies that each Data packet
can be retrieved through sending an Interest packet. However,
the size of the requested data, e.g. video and audio streams, is
mostly larger than the size of a single packet [5]. In this case,
the requested data has to be divided into a number of segments.
Unfortunately, NDN lacks a suitable mechanism for dealing
with the segmented data where each segment requires a single
Interest packet to be retrieved. Accordingly, the bandwidth
efficiency can be negatively harmed due to sending a myriad of
Interest packets to request a sequence of segments constituting
the required data. In addition to the bandwidth efficiency, the
data retrieval latency is drastically increased owing to the time
taken by each Interest to propagate throughout the network.

To overcome these challenges, we introduce our heuristic-
based NDN caching policy (HBC) for the sake of improving
the resources utilization together with reducing the delivery
latency. Figure 5 depicts our proposed heuristic-based caching
algorithm for making two primarily decisions: (1) whether to
cache the received data in every router and (2) whether to
send a series of segmented data once an Interest is received
requesting the first segment. To properly make these decisions,
it is necessary to embed metadata in the header field of each
NDN packet about the downstream path and the significance
of the requested data. In general, each NDN packet is encoded
in a Type-Length-Value (TLV) format where a message body
is mainly a collection of TLVs. Thanks to adopting the TLV
format, NDN packets have the flexibility of adding new fields
and types as the networking protocols evolve. Such flexibility
enabled us from readily extending the header of the Data
packets to keep track of the reverse path’s cost, referred
to as the travel cost cyy. Initially, the cost ¢y, is set to
zero at the data source where its value is updated—at each
router along the downstream path—through considering the
cost of each link ¢y, (cf. line 3). After parsing a received
Data packet, a router compares the updated travel cost ¢y,
against a predefined caching threshold 7. If the threshold is
not exceeded, the router forwards the Data packet without
caching the embedded content (cf. line 4). Otherwise, the
default caching mechanism is adopted to store the content,
before resetting the travel cost ¢y, to zero.

Regarding the segmented data, the first segment d;—for
which an initial Interest packet s;,; has already been received
by the data source—is to be sent along the downstream

Require: caching threshold 7., link cost ¢y
1: for all Data packet d; € D do

2: n;, Cry1 < ParsePacket(d;)

3: Col < Ctol + Clink > Cost update

4: if ¢ty > 1. then

5: cachingData ¢ True > Caching the
incoming Data d;

: Cip1 < 0 > Resetting the travel cost

7: else cachingData < False

8: if isUnsolicited(d;) == True & isSegmented(d;)
== True then

9: if segNumber(d;) == 1 then

10: Insert s;,; in Segmented table

11: else if s;,,;(name = n;) € Segmented table then

12: ForwardData d; to next router

13: else Discard the packet d;

Fig. 5: Heuristic-based caching algorithm

path. In this context, we assume that consumers are mostly
interested in retrieving all pieces of the segmented data
di,-++ ,dmy, € D. Based on this assumption, liteNDN imple-
ments a simple weighted sum model (WSM) [6] at the data
source to determine whether to proactively send a portion of
the remaining segments without receiving their corresponding
Interest packets so,--- ,S,,. To make such a decision, three
distinct metrics are considered, including the data type, the
data size, and the data significance (i.e. low-, medium-, or
high-priority). If the decision is made to send the remaining
segments di,- - ,d,,, the data source forwards the segments
along the downstream path till reaching the closest router to
the data consumer.

After sending the first segmented Data packet d; to the con-
sumer node, the NFD module at each router automatically re-
moves the corresponding entry from its PIT table. Accordingly,
the reverse path going back to the data consumer(s) is com-
pletely lost. To overcome this problem, liteNDN implements in
the NFD module of each NDN router a PIT-like data structure,
referred to as the Segmented table (cf. Listing 1). Such a table
is utilized to temporarily cache the initial Interests—which
request segmented data—and their interfaces, thus guiding
the rest of the segmented data ds,---,d,, while traveling
along the downstream path. Specifically, the table records the
name prefix of the first requested segment d; and the list of
interfaces from which the corresponding Interest(s) S;,; has
been received.

Listing 1: Segmented PIT-like table

/*Structure of the segmented Data packetsx/
struct Segmented_Table{

Name; //Name of the inital Interest
Faceld; //Face identification
Original_Segment_No; //Requested segment number

Nonce; //Nonce of the inital Interest
SegmentList; //Segment list for downstream path

Entry_Creation_Time; //Used for deleting the Timeout};

Once the rest of the segmented data ds, - - - , d,, are received
by an intermediate router, the packets are checked for being

unsolicited messages through searching for corresponding
Interests in the PIT table. If no Interests exist, lite NDN checks
if the received packets are pieces of a data block. According
to the NDN naming convention, each segment is identified
by a unique sequence number appended to the data name,
e.g. ndn:/uni/stgt/video/sequence_number [7].
Thus, the word matching function ¢(n;,n;) can be utilized
to implement the boolean function isSegmented(d;) which
determines whether the packets ds,--- ,d,, are pieces of a
data block. If these two conditions, i.e. isSegmented() and
isUnsolicited(), are satisfied, liteNDN search the Segmented
table for a corresponding initial Interest s;,; (cf. line 8). If
that Interest is found, liteNDN utilizes the interface of such
an Interest to forward the packet ds, - - - , d,,, to the next router
(cf. line 11). This forwarding operation continues till reaching
the closest router to the data consumer. In this case, the packets
are cached waiting for requests from the data consumer. In this
manner, such a router can swiftly respond to future Interests
requesting these segmented packets.

V. PERFORMANCE EVALUATION

In this section, we assess the effectiveness of liteNDN in
improving the performance of NDN networks while delivering
Interest and Data packets. We first describe the setup of our
evaluations. Subsequently, we discuss the obtained results.

A. Experimental Setup

To examine the performance of liteNDN, we utilized a
Mininet-based NDN emulator, referred to as the Mini-NDN
network emulator [8]. The links between various NDN routers
are presented as virtual Ethernet pairs. The size of each Interest
packet, Data packet, and data object is set to 56 KB, 388
KB, and 380 KB, respectively. To run our experiments, we
utilized a machine equipped with Core i5 CPU of 2.50 GHz
and 6 GB of DRAM. Beside the Mini-NDN emulator, we
employed several NDN helper tools, such as ndn-traffic—
generator, ndndump, ndnping, ndnputchunks, and
ndncat- chunks, to generate the network traffic and to ex-
amine the system performance. To test our proposed approach
in different environments, we utilized two network topologies
in each experiment. Figure 6a shows the first topology which
consists of 19 NDN routers divided between two clusters. Such
a topology serves as a realistic implementation of the NDN
architecture as local area networks. Through such a topology,
we can differentiate between local and global data names,
thus overcoming the scalability problem of NDN naming
schemes [9]. Figure 6b demonstrates the second topology
which represents the current NDN testbed consisting of 22
NDN routers distributed over three continents [10]. In both
topologies, the link capacity in is set to 2.37 Gbits/sec.

B. NDN-MPP Forwarding

In this section, we evaluate the performance of our proposed
MPP-based forwarding strategy in terms of the average round
trip time (RTT) for Interest/Data exchange, utilization of the
routers and the network links, and the overall bandwidth usage.

(b) Topology 2: NDN testbed topology

Fig. 6: Topologies adopted in the evaluations

Based on our experiments, we found that the value of o, = 0.6
is convenient for making proper forwarding decisions (cf.
Figure 4). In this set of experiments, five randomly-selected
consumers successively send Interest packets to retrieve the
same data from its provider. In this scenario, we compare
the performance of NDN-MPP against the BRS forwarding
strategy. Figure 7a shows the average RTT time of the five
requests in the first topology. Once the consumer C} retrieved
its requested data, the various routers—along the downstream
path—share the data name to update their MPP tables. As
a result, NDN-MPP requires for the consumers C5 and C5
much less RTT time (91% for C5 and 90% for C3) than
the BRS strategy. Thanks to these exchanged packets, many
nodes in the network have already cached the requested data.
Therefore, both NDN-MPP and BRS approximately require
for the consumers C4 and C5 circa the same RTT time.

In the second topology, similar results were obtained (cf.
Figure 7b). After populating the MPP tables, we found that
NDN-MPP requires 27% and 41% less RTT time than the BRS
strategy for the consumers Cy and Cj, respectively. Figure 7c
compares the RTT distributions of NDN-MPP and the BRS
strategy obtained through repeating such a scenario five times
in both topologies. As the figure shows, NDN-MPP requires
much less RTT time than the baseline method (on average less
RTT time by 43%). Clearly, the RTT distribution of BRS has
high variability, depending on the distance between consumers
and producers. In case of NDN-MPP, the distribution is highly
tight (the RTT density is broadly concentrated below 150 ms)
thanks to sharing the routing knowledge among the various
routers in the network. It is worth mentioning that NDN-MPP
behaves exactly similar to the BRS strategy in two cases: (1)
if the MPP Paths failed to retrieve the requested data or (2)
if the MPP table is not yet populated. Therefore, the RTT
distribution of NDN-MPP extends up to 358 ms. However,
the density of such extreme values of RTT in case of NDN-
MPP is highly constrained, as it can be seen in Figure 7c.

Figure 7d demonstrates the utilization of the various links
and routers in the first topology. In this context, the link utiliza-

300

Average RTT (mSec)

il

0RA0A0A0A0A0/A0RAO0A0/0
0508305050505030503059]
0969590909590262494%4

04
=

NDN-MPP

Consumers

(b) RTT in topology 2

(c) Latency distribution in both topologies

350 == 00 [T NDN-MPP 300/ O NDN-MPP
1 [boo| 00
oo boo i == BRS =a1 BRS
53091 Iloo 0d oo 5 250
a HHfood boo oo a
E£2501 IFbog oo) E 200
{[oo od oo
E 2001 [[[boo| [oo o E
o 100 09 oo 2150
v TIpoo| foo o v
21504 (][00) e
g 11 >o°o° ooco ooo 2 100
Z 1009 [[[[poo| 00 o z
Fboo, ool bot
501 [[Cflood 00| 00 50
T IpoorTTjo0 o
o cod[Tpo joo e} 00 o
o C Cs Ca Cs
Consumers
(a) RTT in topology 1
20 65
pudog; == NDN-MPP) [T NDN-MPP
0000(g [Leie)] =
boooo BRS boooo 6071 = BRS
80 0000(q 0000d
p0000 00000
. 00004 0000(_55
9 00000 00000 9 |
250 0oood 00009 < oopog
c boooo 00000 c 50 podoo
s 0000d 00004 s 00004
-] poo0o0o 00000 = po000
= 00004 00004 Nas {00004
= 60 DO00O 00000 5 0000
3 0000d 00004 5 00004
0000 00000 40 D0000
0000(g 0000d 0000(q
50 00 000 DO00O
00004 00004 35 00004
o 00000 0000
0000(g 0000dg 0000(g
20 00 oYeYoYeYe) 30 e}

o

o
~
[S)

O
e8!
20
2

03030,
nonono
o
w

(e}
30
o
o

o
=}

O
959
OOO

(o)
(o]
(o]

(o)
1)
20206
«
w

O
388
(o]
O

:

3
02
o

Bandwidth Usage (%)

O,
o
0,
(o]
ra
[
t=}

(o]
o
(o]
o
o

IS
o

=

Routers Routers

(d) Utilization in topology 1
Fig. 7:

X
\

Yo 4 2 3 X

400 -%- NDN-MPP

w
S u
S o

Average RTT (mSec)
o
o

o= NN W
o w o
S o o

I
i
i
1
i
I
i
1
i
1
1
i
1
i
I
i
]
]
i
1
i
=

1
i
i
1
1
i
]
1
1
|
i
1
i
i
i
1
|
¥

o
=3

I
e e 2 3 2

0 5 10

HSHEASAK

25 30

15
Time (sec)

Fig. 8: Behavior of NDN-MPP in case of nodes failure

20

tion is defined as the percentage of a network’s bandwidth that
is currently being consumed by the network traffic. Likewise,
the router utilization is the fraction of NDN packets handled by
that router relative to the network traffic. As expected, NDN-
MPP achieves on average 37% and 40% less routers and links
utilization than the baseline method. For the second topology,
NDN-MPP again reduces the routers and links utilization by
13% and 30%, respectively (cf. Figure 7e). Figure 7f compares
the performance of NDN-MPP and the baseline method in
terms of the overall network bandwidth usage, i.e. the fraction
of traffic on the network relative to the peak amount that the
network can support. It is worth noting that high bandwidth
usage may drastically increase the data delivery latency due
to networks congestions. As depicted in Figure 7f, NDN-MPP
achieves a significant reduction in the bandwidth utilization,
on average by 30%, compared to the baseline method.

All these advantages of adopting NDN-MPP come at the
expense of sharing routing information among the various
routers to populate the MPP table. Such an overhead mainly
depends on the network size and the size of the shared name

(e) Utilization in topology 2

NDN-MPP BRS

(f) Network utilization in both topologies

Performance of the proposed cooperative forwarding strategy

prefixes. Nevertheless, we found that the overhead of adopting
NDN-MPP does not exceed 20 KByte in both topologies. As
Figure 7f demonstrates, NDN-MPP still outperforms the BRS
strategy even with considering the overhead of sharing the
name prefixes and other metadata. Finally, Figure 8 demon-
strates the behavior of our proposed forwarding strategy in
the presence of network failures or when receiving NACK or
timeout messages. To examine such a behavior, we carried out
the following scenario: The router R;—in the first topology—
requests multiple distinct data from the router R18, before
Ro requests the same data. According to NDN-MPP, Ry can
be served from R4. During this experiment, we deliberately
deactivated the router R4 and measured the RTT time. As it
can be seen in Figure 8, the RTT time—in case of NDN-
MPP—is highly increased starting from time ¢ = 10 sec from
50 ms to 417 ms when the router R4 has been deactivated.
This behavior occurs due to switching from NDN-MPP to the
BRS strategy to serve these data requests. After reactivating
the router Ry, the RTT time is reduced again to below 50 ms.

C. HBC Caching

In this section, we examine the performance of our proposed
caching strategy with/without the NDN-MPP forwarding strat-
egy. In these experiments, we adopted two scenarios in both
topologies, including (1) the retrieval of low-priority data and
(2) the retrieval of high-priority data. In the first scenario, five
consumers successively send requests to retrieve ten identical
equally-sized data segments whose priority is set to low.
Such a priority level is utilized by the WSM model to decide
upon the transmission of segmented data without receiving
their corresponding Interests. Since the data priority is low,
the WSM model decides to send only 50% of the segmented

E=3 NDN
liteNDN

@ 30001 [T i T @ 3000]]
Easoo HH HH HEH E2s00 i
E 20001 [1 NN E 2000 I 1
()] bt | [} 1 b
o - . S - o - -
© 15004 [[0 © 1500 0

[[
> 11 T 11 > 1 11
<10009 oA A <10007 A PO
Mooy 1] ul s
5001 HHROHH HH 500 M H
oo] R == === [bog 11

0 0

E=8 NDN
DOT |iteNDN 3000
g 2500
(%2}

2000

Average RTT (m
[
o w
o o
o o

u
=}
S

?

B

o
o
o]

Cs
Consumers

Ca Cs

o

2 2

(a) Topology 1: low priority data (b) Topology 1:

Cs
Consumers

Ca Cs NDN liteNDN

Low Priority

(c) Average RTT of liteNDN and NDN

NDN liteNDN
High Priority

high priority data

=3 HBC

liteNDN 20+

159

104

Bandwidth Loss (MByte)
Bandwidth Loss (MByte)

Q0
0O

00
00

I

'
:
8

| A B

00
oo

BE=3 HBC 225

liteNDN

()
-

G
Consumers

Ca Cs

(d) Topology 1: low priority data

Consumers

(e) Topology 1: high priority data

HBC liteNDN
Low Priority

(f) Bandwidth loss of NDN-DAC and liteNDN

HBC liteNDN
High Priority

Fig. 9: Comparing the proposed liteNDN system to the current implementation of NDN

A
==

w
o

N
o

v

N
o

Caching Activities

-
o

0
&

-
o

a
=

liteNDN

BRS NDN-MPP HBC

Fig. 10: Impact of liteNDN on the caching activities

data. Figure 9a depicts the average RTT time measured for
retrieving the ten segments. Thanks to caching 50% of the
remaining segments close to the data consumer, liteNDN
requires much less time, on average by 91%, for retrieving
the segments relative to the conventional NDN caching and
forwarding strategies. Such a result highly depends on the
number of segments within a data block, i.e. the higher the
number of segments, the lower latency savings are obtained
in the first scenario.

Figure 9b depicts the average RTT time in case of retrieving
high-priority segmented data. In this case, the WSM model
decides to send all the remaining segments. Consequently,
liteNDN reduces the RTT time by circa 95% relative to
the conventional NDN caching and forwarding strategies.
Figure 9c summarizes the comparison between liteNDN and
the default NDN strategies for dealing with low- and high-
priority segmented data. Clearly, the distribution of NDN has
a high variability, depending on the distance between the
consumers and the data sources. Conversely, littNDN exhibit
a tight distribution thanks to the prior retrieval of segments.

Additionally, the figure shows that high-priority data is served
relatively faster, on average by 48%, than the low-priority data.

As aforementioned, our strategy for dealing with segmented
data is mainly based on the assumption that consumers are
interested in obtaining all the segmented packets of a data
block whenever they request the first segment. Despite being
a valid assumption, it is worth investigating the overhead
incurred by our caching strategy if this assumption has been
violated. In the next experiment, we answer the question of
what is the penalty—in terms of the bandwidth usage—for
violating this assumption. Again, five consumers successively
send Interests to retrieve the first segment of a data block
consisting of ten segments. However, they do not send further
Interests for the remaining segments. In this case, the retrieved
data is treated as unsolicited packets causing unnecessary
bandwidth usage. Figure 9d compares the performance of
liteNDN with and without the cooperative forwarding strategy
while retrieving low-priority data. Obviously, integrating the
cooperative forwarding strategy and the HBC caching policy
reduces the bandwidth losses, on average, by 44%. For the
high-priority data, such an integration achieves a comparable
result where it reduces the losses, on average, by 45% (cf.
Figure 9e).

Figure 9f demonstrates the advantage of employing the
WSM model for deciding upon the portion of segmented
to be proactively sent according to the data type, size, and
significance. The figure demonstrates that the WSM model
reduces the bandwidth losses, on average, by 45% through
sending only a fraction of the segmented data in case of
dealing with low-priority data. Finally, Figure 10 evaluates
the performance of liteNDN in terms of the caching activities.

According to our HBC caching policy, routers in the vicinity
of data producers can skip caching the exchanged data. In
this experiment, the scenario revolves around sending three
different Interest packets from three consumers requesting data
from the same producer. During our experiment, we set the
value of the caching threshold 7, to 100 ms. As it can be
seen in the Figure, our caching strategy, compared to the
default NDN strategies, highly reduces the overall caching
activities (at least by 59%). To examine the integration of
NDN-MPP and HBC strategies, the scenario has been repeated
with requesting the same data from a certain producer. In this
case, the integration of our proposed caching and forwarding
strategies further reduces the caching activities (by at least
72%) relative to the baseline method.

VI. RELATED WORK

In this section, we discuss related work in the realm of
packet forwarding and caching in NDN networks. In fact, the
problem of improving the performance of the NDN forwarding
and caching strategies has been tackled in several research
works [11]-[15]. For instance, MUCA [11] introduces an NDN
forwarding strategy which forwards similar Interests—sent by
different consumers—over the same route to use the cache re-
sources more efficiently. To this end, MUCA relies on sharing
statistical information to determine the most probable path.
As analogous to MUCA, Chen et al. [12] propose a caching
and forwarding strategy based on rendezvous points. Through
adding a detoured routing capability to NDN, all requests for
similar data are forwarded to the same router. Accordingly,
each NDN router serves only a subset of the whole name
space. Alternatively, liteNDN employ the principle of the most
probable path to serve similar as well as different Interests
through finding cached versions of the requested data in the
vicinity of the corresponding consumers.

Dai et al. [13] propose BFAST, an index data structure
for the name-based FIB tables. BFAST employs a counting
bloom filter to balance the load among hash table slots. As
a result, the searching time in each slot can be reduced, thus
improving the performance in lookup, insertion and deletion.
Similarly, Ghasemi et al. [14] propose a fast and memory-
efficient data structure, referred to as NameTrie, to efficiently
index forwarding table entries, thus accelerating the name
lookups. The core idea behind NameTrie is to employ Patricia
tries to compactly storing data names through removing the
redundant information among name prefixes. We believe that
NameTrie or BFAST can be integrated with liteNDN to
further improve the performance of our cooperative forwarding
strategy. Regarding the in-network caching, Sourlas et al.
[15] introduce a distributed cache management architecture to
reduce the content access latency and to control the network
congestion. To this end, a set of distributed cache managers are
responsible for dynamically reassigning information items to
caches based on the observed item request patterns. Addition-
ally, the authors develop a cooperative algorithm to coordinate
the replacement process. However, such an approach suffers
from being relatively complex due to requiring additional

hardware components. Moreover, it may reduce the bandwidth
utilization as a result of exchanging many control messages
among the distributed cache managers.

VII. CONCLUSION & FUTURE WORK

In this paper, we presented liteNDN, a QoS-aware for-
warding and caching strategy for NDN networks. liteNDN
comprises two main components, including cooperative for-
warding and heuristic-based caching. The former component
leverages shared data names among routers to estimate the
most probable paths towards cached versions of the requested
data. Moreover, liteNDN avoids caching data at routers located
close from the data producers. Besides, liteNDN implements a
WSM model and a new Segmented PIT-like table for guiding
the segmented packets sent without corresponding Interests.
The evaluation results showed that liteNDN highly reduces the
RTT time and bandwidth usage compared to the conventional
NDN forwarding and caching strategies. In the future, we plan
to further improve the RTT time of NDN packets through
integrating our cooperative forwarding strategy with a fast data
structure for the FIB tables, such as BFAST or NAmeTrie.

REFERENCES

[1] W. Shang and et al., “Challenges in iot networking via tcp/ip architec-
ture,” Technical Report NDN-0038. NDN Project, 2016.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, and Wang, “Named data networking,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 6673, 2014.

[3] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto et al, “Nfd
developer’s guide,” Dept. Comput. Sci., Univ. California, Los Angeles,
Los Angeles, CA, USA, Tech. Rep. NDN-0021, 2014.

[4] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: Named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking, 2013.

[5] 1. Moiseenko, “Fetching content in named data networking with embed-
ded manifests,” NDN, Tech. Rep. NDN-0025, 2014.

[6] A. Kolios, V. Mytilinou, and E. Lozano-Minguez, “A comparative study
of multiple-criteria decision-making methods under stochastic inputs,”
Energies, vol. 9, no. 7, 2016.

[71 Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “Ndn technical memo:
Naming conventions,” NDN, NDN Memo, Technical Report, 2014.

[8] M.-N. Contributors, “Mini-ndn github source code,” https://github.com/
named-data/mini-ndn, 2018.

[9]1 H. Yuan and P. Crowley, “Reliably scalable name prefix lookup,” in

Proceedings of the Eleventh ACM/IEEE Symposium on Architectures

for Networking and Communications Systems, 2015, pp. 111-121.

Z. Lailari, H. B. Abraham, B. Aronberg, J. Hudepohl, H. Yuan, J. De-

Hart, J. Parwatikar, and P. Crowley, “Experiments with the emulated

ndn testbed in onl,” in Proceedings of the 2nd ACM Conference on

Information-Centric Networking. ACM, 2015, pp. 219-220.

C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “Muca: New routing

for named data networking,” in 2018 IFIP Networking Conference (IFIP

Networking) and Workshops. 1EEE, 2018.

X. Chen, G. Zhang, Q. Gao, and H. Cui, “Improving ndn forwarding

engine performance by rendezvous-based caching and forwarding,”

Computer Networks, vol. 145, pp. 232-242, 2018.

H. Dai, J. Lu, Y. Wang, T. Pan, and B. Liu, “Bfast: High-speed

and memory-efficient approach for ndn forwarding engine,” IEEE/ACM

Transactions on Networking, vol. 25, no. 2, pp. 1235-1248, 2016.

C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “A fast and memory-

efficient trie structure for name-based packet forwarding,” in 2018 IEEE

26th International Conference on Network Protocols (ICNP), 2018.

V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas, “Distributed cache

management in information-centric networks,” IEEE Transactions on

Network and Service Management, vol. 10, no. 3, pp. 286-299, 2013.

[10]

[11]

[12]

[13]

[14]

[15]

