On the Performance of Stream-based, Class-based
Time-aware Shaping and Frame Preemption in TSN

David Hellmanns*, Jonathan Falk*, Alexander Glavackij*, René Hummen?, Stephan Kehrert, Frank Diirr*

* University of Stuttgart
Institute of Parallel and Distributed Systems
70569 Stuttgart, Germany
firstname.lastname @ipvs.uni-stuttgart.de

Abstract—Time-sensitive Networking (TSN) is an evolving
group of IEEE standards for deterministic real-time communica-
tion making standard Ethernet technology applicable to safety-
critical application domains such as manufacturing or auto-
motive systems. TSN includes several mechanisms influencing
the timely forwarding of traffic, in particular, a time-triggered
scheduling mechanism called time-aware shaper (TAS) and frame
preemption to reduce the blocking time of high-priority traffic
by low-priority traffic. Although these mechanisms have been
standardized and products implementing them begin to enter
the market, it is still hard for practitioners to select and apply
suitable mechanisms fitting the problem at hand. For instance,
TAS schedules can be calculated for individual streams or classes
of traffic, and frame preemption with strict priority scheduling
(w/o TAS) might seem to be an option in networks with extremely
high data rates. In this paper, we make a first step towards
assisting practitioners in making an informed decision when
choosing between stream-based TAS, class-based TAS, and frame
preemption by comparing these mechanisms in selected scenarios
using our TSN network simulation tool NeSTiNg. Moreover, to
facilitate the application of class-based TAS, we derive a formula
for calculating class-based TAS configuration.

Index Terms—real-time communication, time-sensitive net-
working, TSN, scheduling, frame preemption

I. INTRODUCTION

“Hard” realtime communication with deterministic bounds
on network delay and delay variance (jitter) is of paramount
importance for many safety-critical applications from the
realm of cyber-physical systems (CPS). Two prominent do-
mains where deterministic realtime communication can al-
ready be found today are manufacturing systems (Industry 4.0)
and automotive systems, where the violation of time bounds
could lead to damaged machines, work pieces, vehicles, or
even physical harm to people.

Traditionally, realtime communication solutions, so-called
fieldbuses, have been proprietary Ethernet extensions. These
proprietary extensions led to communication silos in facto-
ries, hampering the interoperation between different vendors
since gateways must translate between different protocols. The
IEEE Time-Sensitive Networking (TSN) Task Group (TG) was
initiated to define additional mechanisms providing realtime-
capability to standard Ethernet according to IEEE 802.1 and
IEEE 802.3. Since IEEE Ethernet is the de-facto Layer 2
standard in the IT sector, it now has the potential to become
ubiquitous in industrial realtime communication.

! Hirschmann Automation and Control GmbH
CTO Office
72654 Neckartenzlingen, Germany
firstname.lastname @belden.com

Nevertheless, the standardization of the TSN mechanisms
is only the first step. One of the key components in the TSN
standards is the Time-Aware Shaper (TAS). TAS enables the
implementation of a time division multiple access (TDMA)
scheme on each egress port. Another important concept of
TSN is frame preemption enabling the preemption of best-
effort frames to reduce the blocking time of high-priority
traffic. Equipped with all these new concepts, practitioners
are currently discussing how these can be used to fulfill the
requirements in the industrial sector.

Our paper aims at supporting practitioners and ongoing
TSN-related standardization efforts by exploring characteristic
behaviors of different TAS configurations and frame preemp-
tion. Furthermore, we intend to create awareness for class-
based scheduling. Class-based scheduling is another use-case
of the TAS whose configuration requires less computational
effort compared to stream-based scheduling which is currently
prevailing in academia. Therefore, we provide a qualitative
comparison of stream-based TAS scheduling, class-based TAS
scheduling and frame preemption. For an informed discussion,
we also derive a formula for class-based TAS configuration.
In addition, we present the results of a simulation-based
evaluation of these mechanisms in a concrete scenario using
our open-source TSN network simulator NeSTiNg [1].

The remainder of this paper is structured as follows. Sec. II
gives an overview over the related work. In Sec. III, we present
the system model. Next, we introduce the different packet
scheduling approaches in Sec. IV, and analyze the approaches
qualitatively. In Sec. V, we evaluate the different approaches
in a simulation. Finally, we conclude the paper in Sec. VI.

II. RELATED WORK

TSN is a topic of high interest in academia and industry. A
recent overview of TSN can be found in [2]. With regard to
TAS, the related work consists of two clusters, namely worst-
case analysis and schedule synthesis.

Worst-case analysis is used to formally derive deterministic
bounds for an existing system. For example, in [3], [4],
individual (asynchronous) shaping mechanisms are analyzed.
Other work focuses on the various integration effects of
combining TAS with credit-based shaping [5].

Another approach is to provide deterministic bounds “by
design”, i.e., by a suitable synthesis of the network config-

of any copyrighted component of this work in other works.

Accepted for publication in Proceedings of 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentinia, February 26-28, 2020
©2020 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

switching
FIB fabric
cloc

~

—
—
— l

Fig. 1: Simplified switch schematic.

uration. Schedule synthesis is required, e.g., to implement a
TDMA scheme with TAS. In the context of TAS, this schedule
is referred to as Gate Control List (GCL). The calculation of
GCLs for stream-based scheduling is challenging because it
is in general an NP-hard problem, and is often solved by
constraint-based programming or heuristics [6]-[8]. In [9],
[10], the schedule synthesis problem is extended by computing
routes and GCLs jointly.

However, these papers only consider stream-based schedul-
ing and require that applications and network are fully syn-
chronized, which is not necessary for class-based scheduling.
Here, we broaden the scope by discussing the advantages and
drawbacks of different ways to use TAS and frame preemption,
to help practitioners to understand, which mechanism is well-
suited for which requirements.

III. SYSTEM MODEL

In this section, we introduce our system model, which is
a condensed version of the IEEE TSN standards [11]. We
describe the architecture of a TSN switch, our definition of
streams, and our model of end stations. Finally, we discuss
which delays a frame experiences on its path.

A. Switch Architecture

We start by introducing the architecture of a TSN switch
conforming to [11]. To this end, we give a brief overview
over the processing pipeline in the switch and present TAS
and frame preemption in detail in the following. For better
understanding, we refer to individual mechanisms by the
names of the amendments to the IEEE standards (even though
by now, all discussed amendments have been merged into
IEEE Std 802.1Q-2018 [11] or IEEE Std 802.3-2018 [12]).

We consider multi-port switches with full-duplex links and
egress queuing (cf. Fig. 1). Incoming frames are subject to
filtering, metering, etc., before they are forwarded to the
appropriate egress port. At the egress port, frames are sorted
into up to 8 (FIFO) egress queues to differentiate different
traffic classes (cf. Fig. 2). The switch assigns frames to queues
based on their priority code point (PCP) values. Transmission
Selection (TS) retrieves eligible frames from the head of the
queue with highest priority for transmission over the link. A
frame is eligible for transmission if the shaper of the queue
has released it (cf. Fig. 2). The TSN TG standardized different
shapers, e.g., strict-priority and credit-based shaping (formerly
IEEE Std 802.1Qav). As Fig. 2 indicates, the Time-Aware
Shaper (TAS) takes effect after the other shapers. After passing

i
3@%%###&

Transmission Select[on

]pMAc|]eMAc|

{} Egress port

Fig. 2: Simplified TSN switch output port schematic.

TS, Media Access Control (MAC) is responsible to transmit
the frame. Frame preemption is also implemented at this stage.
Next, we present the TAS and, thereafter, we describe frame
preemption in more detail.

1) Time-Aware Shaper (TAS): Intuitively, TAS functions as
a gate for its egress queue. This gate can enable or disable its
egress queue by opening or closing it, respectively. Frames in
disabled queues are not eligible for transmission. A gate driver
changes the gate state according to a cyclic schedule called
Gate Control List (GCL). In the GCL, the opening time and
opening duration of gates are specified. Here, the time it takes
to iterate once through the GCL is identical to the network
cycle time. In general, we assume that the clocks of all gate
drivers in the network are synchronized, e.g., using IEEE Std
802.1AS [13]. TAS allows to isolate traffic classes or single
streams in time.

2) Frame Preemption: Frame preemption (IEEE Std
802.1Qbu and IEEE Std 802.3br) enables so-called express
frames to preempt the transmission of preemptible frames.
Without frame preemption, an MTU-sized frame (1500 B)
could block a port for about 12.5 us@1 Gbit/s, whereas frame
preemption limits the maximum blocking time to ca. 1ps.
If preemption occurs, the resulting parts of the preempted
frame are called fragments. The fragment size must be at least
64 B. To determine if a frame should be handled as express
frame, the egress queues of the port are marked as express
queue or preemptible queue. Express frames and preemptible
frames are handled in a dedicated express MAC (eMAC) and
a preemptible MAC (pMAC), respectively (cf. Fig. 2).

B. Stream

We call a directional flow of data stream. The sending end
stations are called talkers, and the receiving end stations
are called 1isteners. The roles of end stations are stream-
specific, meaning a host can be a talker for one stream and
a listener for another stream. Moreover, we distinguish
between isochronous streams, cyclic streams, and best effort
streams. For isochronous streams, the talker cycle and the
network cycle are aligned, and the transmission time of the
stream is precisely specified as an offset to the network cycle

start. Isochronous streams typically require minimal end-to-
end delays and minimal jitter bounds, e.g., for motion control
applications. In contrast, cyclic streams do not require a syn-
chronization of talker cycle and network cycle. Consequently,
the start of transmission of a cyclic stream cannot be specified
with regard to the network cycle. For cyclic traffic, we assume
that the end-to-end delay may not exceed one network cycle
time and that the jitter may be in the magnitude of one cycle
time. We also assume that isochronous and cyclic streams
transmit one frame per cycle and have a maximum size of
300B, which is a common value for control traffic. The
network needs to guarantee delay bounds for isochronous and
cyclic streams irregardless of the best-effort traffic load. For
additional information regarding the traffic classes, we refer
to [14].

C. Frame Delays

To enable an informed discussion about end-to-end delays
and jitter bounds, we introduce the considered delay compo-
nents which make up the total delay and an according nomen-
clature based on IEEE Std 802.1Qcc [15]. As an introductory
example, consider a stream with path length 3: Talker -
Switch - Listener. To begin with, the talker transmits
a frame of the stream. The time span from the start of the
transmission of the frame by the talker to the moment the
frame is fully received at the 1istener is denoted as end-
to-end delay (e2e delay). We denote the time between start of
transmission by the talker and receiving of the first bit at
the switch as propagation delay. The propagation delay is a
physical quantity and depends on the material of the cable and
its length (= 5 ns/m). We denote the time span from receiving
the first bit of the frame to having received the complete frame
as frame-dependent delay also known as store-and-forward
delay because the frame needs to be fully received before it
can be forwarded. The frame-dependent delay depends on the
frame length and the data rate: 7}}"1“{:3‘;@ After receiving the
frame, the switch processes the frame and assigns it to an
egress port. We denote the time of processing and assignment
to the egress port as frame-independent delay because it is
independent of the frame size. At the egress port, the frame
waits until it is selected by the Transmission Selection. Since
the frame waits in an egress queue, we denote this delay
as queuing delay. The queuing delay depends on how many
frames are ahead in the queue and depends on the schedule of
the TAS gate of the egress queue. Therefore, we further split
up the queuing delay into the gate delay and the interference
delay. The gate delay describes the time span a frame is
queued due to closed gates and, thus, it is deterministically
bounded. The interference delay denotes the time a frame is
queued because of transmissions of other frames. As a result,
the interference delay depends on the current load of the egress
port and, thus, it is subject to variations which need to be
upper-bounded to give e2e delay guarantees. We aggregate
propagation delay, frame-dependent and frame-independent
delay as path delay. The path delay is constant for every stream
because it only depends on the path length and frame size.

" 2 » # 2 ’ # s ’ 2
R AR T g Y g Y s g e e

Y21222221;

Fig. 3: Example line topology with 10 switches and 10 hosts
as seen in NeSTiNg.

Finally, we assume that the link speeds and frame-independent
delays are constant.

D. Network Topology

In this paper, we focus on line topologies, which are
prevalent in industrial use cases. If redundancy is required,
a line can be extended to a ring by connecting the two ends
to prevent network partitioning. Despite the simplicity of the
line topology, we can still observe the different properties of
the considered scheduling approaches. Here, we consider the
special case where to each switch a single host (with dual
role of talker/listener) is attached, and each switch
(excluding the terminal switches) is connected to its neighbor-
ing switches (cf. Fig. 3). We therefore can define the size of a
network with line topology by n;, which denotes the number
of switches in the topology.

IV. PACKET SCHEDULING IN TSN

In the previous section, we introduced the Time-Aware
Shaper (TAS) and frame preemption. However, the design
space for how to use these mechanisms to fulfill the stream
requirements with regards to e2e delay and jitter is vast.
Therefore, we start by discussing the simplest mechanism
from the planning perspective, which is frame preemption, and
increase the complexity by looking at class-based and finally
stream-based scheduling.

A. Frame Preemption

To use frame preemption, only little planning effort (con-
figuring the express queues) and no time synchronization
are required. Frame preemption reduces the queuing time
for express frames by preempting best-effort transmissions.
Therefore, frame preemption can provide worst-case bounds
for e2e delay and jitter of a single frame (taking the worst-
case interference time on each hop into account). However,
with increasing number of express frames in a network, frame
preemption degrades to strict-priority scheduling since express
frames cannot preempt each other. In the worst case, all
express streams in the network use the same egress port
and, therefore, express frames are transmitted based on strict-
priority order. Note that the interference delay decreases with
increasing data rate since the transmission time of a frame
reduces. Consequently, the e2e delay and jitter bounds of
frame preemption mainly depend on the knowledge about the
behavior of talkers. Assuming that all express streams are
cyclic and a-priori known, upper bounds for the queuing delay
at each hop can be calculated by considering the worst case.

With regard to bandwidth usage, frame preemption is a
work-conserving mechanism, i.e., if there are queued frames
for an output port the link never idles. Furthermore, frame

Worst Case
Transmissions

Average Case
Transmissions

Talker litter

S a1 1

aass.eater closedr dosedr cIosedJ

Network Network Network
Cycle;, Cycle; Cyclej;

Eligible for
transmission

Fig. 4: Class-based scheduling: The talkers are sending un-
synchronizedly but only once per cycle time. Worst-Case
assumption: All talkers transmit at the worst case transmission
time in Cycle i and in Cycle i + /. To this end, the class-
window in the i-th cycle is unused and in the i+1-th the
network needs to transport twice of the usual amount of traffic.
As a result, the class-window needs to be designed to be
capable of delivering twice the amount of traffic.

preemption does not have specific buffer requirements. All in
all, frame preemption is capable of distinguishing two types
of traffic, namely express and preemptible traffic without any
synchronization or planning effort but the guarantees strongly
depend on the knowledge about all potentially conflicting
express streams in the network.

B. Class-based Scheduling

Class-based scheduling is a TAS-based approach to give e2e
delay and jitter guarantees to cyclic streams. We assume the
following talker behavior for cyclic streams (cf. Fig. 4): 1) The
talker cycle has the same length as the network cycle. 2) The
talker cycle and network cycle are not aligned. 3) The sending
time of the talker can deviate £50% of the talker cycle, i.e.,
a complete cycle in total.

In class-based scheduling, streams sharing jitter and dead-
line requirements are scheduled as a group. To provide iso-
lation among different groups, all streams of one group are
assigned to a dedicated traffic class. This class needs to be
mapped to a dedicated egress queue, because the TAS can
only distinguish between egress queues. We propose to open
the gate of this traffic class once per cycle. We call the gate
opening duration for the considered class class-window. The
class-window can be placed arbitrarily in the schedule but
it needs to be aligned among all switches in the topology.
Since the gate is only open once, the class-window must be
sufficiently large to guarantee that all streams are delivered
within one cycle time considering the defined talker behavior.
In the following, we propose a proof-of-concept formula to
calculate the size of the class-window.

We begin with the constraint that the e2e delay may not be
larger than one network cycle time for all cyclic streams s:

(1) Vs€S:dg, <teyele,
(2) or, equivalently ma;c(djk) <teyele
s€

Based on this constraint, we present a simple derivation of the
class-window size t,, subject to Eq. 2. Since the derivation
presented below serves as a proof-of-concept rather than a

TABLE I: Notation

Symbol Meaning
Ve CV set of vertices denoting hosts
Vs CV set of vertices denoting switches

S set of streams
Ps(s)CVs,s€S sequence of swifches on path of stream s
Pg(s)Cé&,seS sequence of edges on path of stream s

Se(e) CS,e€& set of streams using egress port e
tw size of the class-window

teycle cycle time

df.ind frame-independent delay

df_dep frame-dependent delay

full-fledged scheduling algorithm, it over-dimensions %,, for
most scenarios.

Even though we focus on line topologies in this paper, the
derivation holds for arbitrary networks, which we model by
a directed graph G(V,£). Vertices V represent switches and
hosts. A full-duplex link attached to a switch is represented by
an outbound edge and an inbound edge. Switches are equipped
with queues and gates at the egress ports (cf. Fig. 2). Further
notation is summarized in Tab. L.

Recalling Sec. III, the e2e delay dJ,. in Eq. 2 consists of a

path delay d,, and time-varying queuing delay dg

queue:
s __ 8 s
(3) e2e — dpath + dqueue .

s
queue

The time-varying queuing delay d,

. S — S S S
two components: dgeye = dgae + Ainterferences 161M dgye denotes

the time a frame is “stuck” behind a closed gate, whereas
d: models that part of the queuing delay which is

interference
caused by waiting for the completion of the transmission of

frames in front of the frame of stream s when the gate is open.

We can bound dg,,. because we open the gate once per cyle

for t,,. Thus the frame must wait dgy. <tcycle —tw if a frame
arrives right after the class window. Taking this into account

and splitting dJ,. into its components, we can rewrite Eq. 2 as

is itself composed of

) max (A + Berterence T teyele —tu) <teyete-
Since tcycte and t,, are independent of a particular stream s,
& max(dpun+ derterence) +leyete ~tw < teyele
(6) 4 tw > Iilea;((d;ath +disnterference)

follows. Starting from Eq. 6, we can successively derive the
closed form (coarse) upper bound on ¢,
)

tw >max(dS,, +d >max(d?,,) +max(d;
W seS (path 1merference> = s (palh) seS (1nlerference)

by separately considering upper bounds on d,, and djj erference-

The path delay d,, can be bounded by considering the longest
path and the largest stream size in the network, i.e.,

max (dpyp) =max ((|Ps (s)])- (drina +dprop+ i aep))

(8) + (dPTOP + df—dep)
) Sgleag(ﬂPS(S)Hl)'(df—ind+dpr0p+df§-dep))

(10) <max(|Ps(s)|+1)- (dfmd+dpmp Hgleag((d?-dep)) :

Similarly, we assume that in the worst-case, a frame of stream

s is delayed by all other streams which are transmitted on each
egress port on the stream’s path, to get a (coarse) upper bound
on di iference- FUIthermore, we take into account that in the
worst-case, all talkers transmit in cycle i after the gates closed
and in cycle i + I before the gates open (cf. Fig. 4). Thus,
in the worst case one frame of stream s has to wait for two

instances of every other stream, i.e., we have

(11)
r;lea‘;((disnterference) < 2- Igleag.(Z Z d?—dep
e€Pg(s)s’€Sg(e)
(12) <2:max(|Pp(s))) max | Y diy,
seS e€Pg(s) seSm(e)

Inserting Eq. 10 and Eq. 12 into Eq. 7 thus yields

>

s'eSg(e)

ty >2-max(|Pg(s)|): max

d.
seS e€Pg(s) f-dep

(13)
+I§1€3§((|PS(S) | +1) . (df_ind+dprop +I§1€a§<(d?—dep))

ie., t,, is sufficiently large to guarantee that every stream
can reach its destination taking into account the length of the
path and the potential interference with (in the worst-case two
frames of) all other streams in the class of s. This formula
provides a coarse upper bound for the size of ¢,,. From our
point of view, there are three major points to achieve a tighter
bound: first, calculating max(d;, . ference) O @ per hop basis.
Secondly, limiting the the transmission jitter allowed by the
talker model. Thirdly, using traffic shaping and policing
accordingly to enforce a more predictable behavior.

Class-based scheduling gives guarantees in the range of one
cycle time e2e delay and jitter. These guarantees are sufficient
for cyclic traffic, and by deriving a simple formula for cal-
culation of t,,, we showed that the planning effort for class-
based scheduling is low. Furthermore, the talker only needs
coarse time synchronization. As result, class-based schedul-
ing allows enabling and disabling talkers dynamically at
runtime because smaller synchronization accuracy needs less
time for synchronization. Moreover, class-based scheduling
needs few GCL entries (one open and one close entry per
scheduled class). Nevertheless, class-based scheduling requires
large high-priority buffers at the switches since no dropping
of realtime streams must occur, and in the worst case two
instances of every stream can be in the network at the same
time. The bandwidth efficiency of class-based scheduling is
low since for the calculation of t,,, the worst case queuing is
taken into account leading to a large class-window. The idling
periods during ¢,, cannot be used by best-effort traffic.

In summary, class-based scheduling provides a trade-off be-
tween end-to-end delay and jitter guarantees, synchronization
overhead, and planning effort, but comes at the cost of looser
bounds and the requires large buffers.

C. Stream-based Scheduling

Stream-based scheduling is another way to use the TAS. In
contrast to class-based scheduling, it considers each stream
individually rather than groups of streams. Therefore, it is
well-suited for isochronous traffic. To implement temporal
isolation for each stream, stream-based schedules requires that
the talker cycle is aligned to the network cycle and the
transmission start of the talker is precisely configurable. A
global configuration tool precisely plans the transmission start
and route for each stream. This approach guarantees minimal
queuing delays by isolating streams temporally and spatially
through configured GCLs and routes. Since the queuing delay
is minimal or even non-existing (zero-queuing), the path delay
of a stream often dominates the e2e delay leading to a high
deterministic behavior of the stream. For detailed descriptions
of the implementation of such a global configuration tool and
algorithms, we refer to Section II.

Due to the fact that, by design, no or only small queuing
of stream-based scheduled frames occurs, the switches do not
need large buffers. Furthermore, bandwidth efficiency is high
because the gates for the best effort traffic are only closed for
the time the high priority traffic is being forwarded. On the
other hand, the planning of stream-based scheduling is an NP-
hard problem (cf. Sec II). Especially for large network topolo-
gies and many streams, the planning process is challenging. In
addition, the involved entities need time synchronization with
very high accuracy, such that the t alker application provides
the data just in-time and the network can deliver the data
within the reserved time slots. Already small deviations from
the schedule can lead to cascading violations of all deadlines,
resulting in downtime for resynchronization. To prevent such
situations, all streams need to be strictly policed. Moreover,
stream-based scheduling requires two gate operations per
stream on each switch on its path and, thus, the number of
GCL entries is larger than for class-based scheduling.

In conclusion, stream-based scheduling is well-suited for
the scheduling of isochronous streams, but it comes at the
cost of high planning complexity, and with practical scaling
issues (planning, length of GCL).

V. SIMULATIVE ANALYSIS

While we can analytically derive best- and worst-case
bounds of the scheduling mechanisms, a simulation tool is
useful to investigate statistical properties for specific scenarios,
or the effects on soft-real time or best-effort traffic. For the
simulative analysis, we use discrete-event simulation with
NeSTiNg. NeSTiNg [1] extends the OMNeT++/INET stack
with TSN capabilities, including frame preemption, TAS,
and credit-based shaping. In this paper, we use NeSTiNg in
conjunction with OMNeT++ 5.4.1 and INET 4.1.0.

A. Evaluation Scenario

For the simulation of the three discussed approaches, we use
line topologies (cf. Fig. 3) with size n; € (10,20,30,50). Link
bandwidth is set to 1 Gbit/s for all links. For each value of
n;, we randomly generated 30 different scenarios, and for each

scenario we randomly generated n; streams, i.e., there are as
many streams as hosts in the scenario. Streams are generated
as follows: We randomly choose a talker from Vp, and
then randomly choose the 1istener from Vy\talker. In
case of stream-based scheduling, every host is the source of
one single stream, but can be 1istener of multiple streams.
The stream size, i.e., the Ethernet payload is drawn uniformly
at random from the interval [64B,300B]. For the evaluation
with frame preemption, we add one host at each end of the
line topology sending preemptible best-effort frames at line
rate to the host on the other side.

B. Simulation Results

Figure 5 depicts the accumulated queuing delay for the dif-
ferent packet scheduling approaches. The accumulated queu-
ing delay is the total time which a single frame spends waiting
in the queues on its path from talker to listener. In Fig. Sa,
we can see that stream-based scheduling can reliably achieve
near zero-queuing with a maximal accumulated queuing delay
of 5.1us in our evaluation scenarios.

If we look at the results for frame preemption (cf. Fig. 5b),
we can see that in our evaluation scenarios, frame preemption
yields low average values for the accumulated queuing delay
(in the order of few ps). However, we also observe worst-case
values of more than 300 us, which are orders of magnitudes
larger compared to the average accumulated queuing delay.
That is, even with a single traffic class using express frames,
there is a variance in the e2e delay caused by varying queuing
delay. We also observe that a larger value of n; does not
necessarily result in a smaller queuing delay. This can be
caused by the random stream distribution. Our statistical
evaluation shows that it is hard to make a statement about
the behavior of frame preemption.

Lastly, Fig. 5c shows the results for class-based scheduling.
As in Fig. 5b, we see that a bigger value of n; results in
smaller values of the accumulated queuing delay. Besides the
random stream distribution, there are two reasons for this.
Firstly, since fcycie is constant (5 ms), but the network diameter
and the number of scheduled streams increases, the class-
window t,, becomes bigger for larger n;, i.e., the queuing
delay caused by arriving when the gate is closed becomes
smaller. Secondly, with larger n;, the value of d;ath grows, i.e.,
the size of t¢,, increases proportional reducing the probability
of transmissions during the gate closed period.

Y
350 30—
] @ 44
_ 300 _ 300 g
5 250 5 250 >
@ 2001 o 200 [a}
a a o
E’ISO- 8150- .qE)z‘
3 3 100 g
] 100 g 8 14
<4 <4
50 1 50
ol = = = 0 T ot L = B
10 20 30 50 10 20 30 50 10 20 30 50
Hops Hops Hops

(a) Stream-based (b) Frame preempt. (c) Class-based

Fig. 5: Evaluation results from NeSTiNg simulation.

VI. CONCLUSION

We presented class-based and stream-based scheduling as
two ways to use the TAS, and frame preemption as third
alternative. The discussion of the approaches showed that
each approaches has its strengths and weaknesses. Stream-
based scheduling is well-suited for isochronous traffic but
cannot cope with the loosened t alker model of cyclic traffic.
Class-based scheduling is easy to plan but due to its large
class-window, but the bandwidth efficiency is low. Frame
preemption does not require planning or synchronization but
the guarantees depend strongly on the knowledge about the
network. In conclusion, each approach can serve a specific
use case. In modern factories different requirements on the
network exist. Since none of the discussed approaches is capa-
ble to serve all use cases, a combination of these approaches is
required. Therefore, assessing interactions between these and
additional approaches, provides ample opportunity for further
research.

REFERENCES

[1] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Diirr, S. Kehrer, and
K. Rothermel, “NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++,” in Proceedings of the 2019 Int. Conf. on Net-
worked Systems (NetSys), Garching b. Miinchen, Germany, Mar. 2019.

[2] L. L. Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, Jun. 2019.

[3] J. L. Boudec, “A Theory of Traffic Regulators for Deterministic Net-
works With Application to Interleaved Regulators,” IEEE/ACM Trans-
actions on Networking, vol. 26, no. 6, Dec. 2018.

[4] J. Cao, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien, “Independent
WCRT analysis for individual priority classes in Ethernet AVB,” Real-
Time Systems, vol. 54, no. 4, Oct. 2018.

[5] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-Case Latency Analysis
for IEEE 802.1Qbv Time Sensitive Networks Using Network Calculus,”
IEEE Access, vol. 6, 2018.

[6] F. Diirr and N. G. Nayak, “No-wait Packet Scheduling for IEEE Time-
sensitive Networks (TSN),” in Proceedings of the 24th Int. Conf. on
Real-Time Networks and Systems, ser. RTNS ’16, 2016.

[71 F. Pozo, G. Rodriguez-Navas, and H. Hansson, “Schedule Reparability:
Enhancing Time-Triggered Network Recovery Upon Link Failures,” in
2018 IEEE 24th Int. Conf. on Embedded and Real-Time Computing
Systems and Applications (RTCSA), Aug. 2018.

[8] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv Gate
Control List Synthesis Using Array Theory Encoding,” in 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), Apr. 2018.

[91 N. G. Nayak, F. Diirr, and K. Rothermel, “Routing Algorithms for

IEEE802.1Qbv Networks,” SIGBED Rev., vol. 15, no. 3, Aug. 2018.

Jonathan Falk, Frank Diirr, and Kurt Rothermel, “Exploring Practical

Limitations of Joint Routing and Scheduling for TSN with ILP,” in 2018

IEEE 24th Int. Conf. on Embedded and Real-Time Computing Systems

and Applications, Hakodate, Japan, Aug. 2018.

I. C. Society, “IEEE Standard for Local and Metropolitan Area Net-

work—Bridges and Bridged Networks,” IEEE Std 802.10-2018 (Revision

of IEEE Std 802.1Q-2014), Jul. 2018.

IEEE Computer Society, “IEEE Standard for Ethernet,” IEEE Std 802.3-

2018 (Revision of IEEE Std 802.3-2015), Aug. 2018.

, “IEEE Standard for Local and Metropolitan Area Networks -

Timing and Synchronization for Time-Sensitive Applications in Bridged

Local Area Networks,” IEEE Std 802.1AS-2011, Mar. 2011.

IIC, “Time Sensitive Networks for Flexible Manufacturing Testbed-

Description of Converged Traffic Types,” Tech. Rep., 2018.

“IEEE standard for local and metropolitan area networks—bridges and

bridged networks — amendment 31: Stream reservation protocol (srp)

enhancements and performance improvements,” IEEE Std 802.1Qcc-

2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std

802.1Qcp-2018), Oct 2018.

[10]

(11]

(12]

[13]

[14]

[15]

