
SCRaM – State-Consistent Replication

Management for Networked Control Systems

Ben W. Carabelli, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems, University of Stuttgart, Germany

{ben.carabelli | frank.duerr | kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract—Networked control systems (NCS) consist of sensors
and actuators that are connected to a controller through a
packet-switched network in a feedback loop to control physical
systems in diverse application areas such as industry, automotive,
or power infrastructure. The control of critical real-time systems
places strong requirements on the latency and reliability of both
the communication network and the controller. In this paper,
we consider the problem of increasing the reliability of an NCS
subject to crash failures and message loss by replicating the
controller component. Previous replication schemes for real-time
systems have focused on ensuring that no conflicting values are
sent to the actuators by different replicas. Since this property,
which we call output consistency, only refers to the values within
one time step, it is insufficient for reasoning about the formal
conditions under which a group of replicated controllers behaves
equivalent to a non-replicated controller. Therefore, we propose
the stronger state consistency property, which ensures that the
sequence of values produced by the replicated controller exhibits
the same dynamical behaviour as a non-replicated controller.
Moreover, we present SCRaM, a protocol for replicating generic
periodically sampled controllers that satisfies both of these
consistency requirements. To demonstrate the effectiveness of
our approach, we evaluated it experimentally for the control of
a cart-driven inverted pendulum.

Accepted for publication in Proc. 11th IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS), April 2020.
© IEEE 2020

I. Introduction

Networked control systems (NCS) [1], [2] are an important

class of cyber-physical systems (CPS) in manifold application

areas such as the industrial Internet of Things (Industry 4.0),

smart grids, telesurgery, or assisted and autonomous driving.

They consist of sensors, actuators, and digital controllers that

are connected over a packet-switched network, forming a

feedback control loop to stabilize a physical process.

Considering their applications, it is obvious that many

NCS are safety-critical. Component malfunctions might lead

to severe monetary loss, environmental damage, or even

human injury. Sensors, actuators, and controllers run on nodes

that may fail, and communicate over faulty communication

channels, which may lose messages or deliver them too late.

Loss and delay of sensor outputs or actuator inputs can affect

the performance and stability of the NCS.

Thus, reliability is one of the most important requirements

of NCS. Clearly, the reliability of an NCS depends on all of

its components, i.e., sensors, actuators, controller, and network.

The fault-tolerance of a control loop with regard to sensor,

actuator, and network failures can be addressed at the appli-

cation layer, by employing a control design that is inherently

robust to a certain degree of sensor and actuator message loss

[1], [3]. Such design approaches typically yield some (proba-

bilistic) bounds for the necessary availability of the involved

components that ensures stability or required performance.

The availability of sensors can be increased through fusion of

redundant sensors [4], [5]. Similarly, the availability of actuators

can be increased by suitable redundant designs, e.g., [6]. In this

paper, we focus on the availability of the controller function.

For communication, we explicitly do not assume a perfectly

reliable network since this is an unrealistic assumption [7].

In order to avoid a single point of failure, the controller

has to be replicated over different nodes. In each control step,

the controller replicas receive the sensor input and apply the

control function to generate the controller output, which is

then transmitted to the actuators. Obviously, an important

requirement for a replication scheme is to ensure output

consistency [8], meaning that all controller replicas send the

same sequence of output messages. In this paper, we use a

relaxed output consistency condition like in [9], where we allow

replicas to occasionally produce no output. This is motivated

by the fact that intermittent message loss in NCS—also from

controller to actuator—is well-studied [10]–[12].

In general, output consistency could also be achieved by

following the State Machine Replication (SMR) approach for

implementing the controller function, where each control step

corresponds to calling an operation that takes the sensor values

as input and generates the controller output. In this case, a

standard SMR protocol such as Viewstamped Replication [13]

or RAFT [14] could be used to achieve consensus about the

controller outputs. Unfortunately, as pointed out in [9], SMR is

unsuitable for controller replication due to the time-constraints

of NCS. Since each control step has to be finished within

a certain time bound, the replicas only have limited time to

achieve consensus on each output. If consensus cannot be

achieved in time, no output can be sent. While a fault-tolerant

controller can accept missing outputs in some control steps,

the problem with SMR is that a replica cannot start processing

a new control step before having completed the previous one.

Therefore, a delay violation of consensus processing in one

control step affects all the following steps.

In this paper, we investigate how the problems of SMR

subject to real-time constraints can be avoided when consensus

algorithms are used for controller replication. To this end, we

first discuss the necessary consistency concepts for replicated

control systems. While output consistency addresses the

spatial correctness concerning the set of messages delivered to

the actuators in one time step, it does not relate to any notion

of temporal correctness regarding the sequence of controller

outputs. However, any stateful control law specifies such

temporal behaviour. Since the controller’s dynamics is part

of the closed-loop model, which is the basis for stability and

performance analysis, it should be reproduced faithfully by the

replicated controller. In other words, output consistency alone

is not sufficient to ensure replication transparency for NCS.

Therefore, we argue that it should be complemented by an ad-

ditional condition, which we call state consistency, that requires

any new output to be based on the controller state that generated

the most recent previous output. State consistency ensures that

the replicated controller produces a sequence of outputs that ap-

pears to have been generated by a single controller that always

executes uninterruptedly, and that any intermittent unavailability

of the controller is indistinguishable from an omission of output

messages. Consequently, the properties that have been proven

for a non-replicated controller also hold for a replicated version

of the same controller, with no need for modifying the controller

design.1 While SMR offers equivalent properties in the failure-

free case, state consistency provides a well-defined correctness

condition also for incomplete controller output sequences,

which facilitates the temporal decoupling of consensus process-

ing for consecutive control steps to avoid the problems of SMR.

We propose SCRaM, a State-Consistent Replication Man-

agement protocol for NCS controllers. For each iteration of the

replicated control function, a single-value consensus algorithm

based on a standard protocol [15], [16] is executed to ensure out-

put consistency. However, SCRaM ensures that the replicated

controller is not blocked unnecessarily waiting for consensus

instances to terminate, and that the state of controller replicas

producing new output is based on the state of replicas that have

produced output previously, thus ensuring state consistency.

In summary, we make the following contributions:

• A formal definition of state consistency for replicated

controllers, providing sufficient guarantees to make a

replicated controller functionally indistinguishable from

a non-replicated controller.

• SCRaM, a replication protocol for NCS ensuring state

and output consistency with high availability.

• An experimental comparison of SCRaM with the Quarts

protocol [9], which is—to the best of our knowledge—the

most effective replication protocol for NCS to date,

demonstrating the benefits of state consistency.

The rest of this paper is organized as follows. In Sec. II we

discuss related work. In Sec. III we introduce a generic model

for time-triggered control systems. In Sec. IV we extend this

model for replicated controllers and derive our consistency

conditions. In Sec. V we derive requirements for a replication

protocol to satisfy these consistency conditions and present the

SCRaM protocol. In Sec. VI we show our evaluation results.

Sec. VII concludes the paper with a short summary and outlook.

1…assuming that the non-replicated controller is designed to tolerate output
omissions to a degree that is equivalent to that achieved by the replicated
controller for a given network.

II. Related Work

It is well known that in synchronous systems with bounded

network and processing delay, consensus can be reached in

bounded time, even for stronger failure models than we assume

in this paper, such as Byzantine failures [17]. Therefore, some

replicated systems rely on real-time communication networks

such as Time-Triggered Ethernet [18] or Token Ring [8],

adding sufficient redundancy in the network to practically avoid

delay failures, which would otherwise violate the fundamental

assumption of a synchronous system. However, real-time

networks with deterministically bounded delay are mostly

restricted to local or possibly metropolitan area. Therefore, we

cannot assume a synchronous system to be available for CPS

distributed over a larger geographic area, where one has to

communicate over unreliable Internet connections.

Considering that in asynchronous systems one cannot

guarantee both, agreement and termination within bounded

delay, Saab et al. recently proposed the Quarts protocol [9]. It

guarantees that in each time step, replicated controllers agree

on a single output vector sent to actuators (output consistency)

through plurality voting. The delay of attempting agreement is

bounded such that non-agreement in one step cannot indefinitely

block the next steps. The authors show that Quarts is superior to

the classic asynchronous consensus protocol FastPaxos in terms

of availability and latency. However, Quarts does not address the

issue that the agreed actuator values of one step should also be

consistent with the agreed values of another round. In contrast,

in addition to output consistency, we enforce state consistency

to ensure that the state of a replica producing the agreed output

values of the current round is based on the state of the replica

that has produced the previously agreed values. This makes the

functional behavior of the replicated controller indistinguishable

from a non-replicated controller. This fundamentally simplifies

the design and analysis of the replicated controller based on

a functionally equivalent non-replicated controller.

III. Control System Model

An NCS consists of a plant, which denotes the physical system

to be controlled, a set of sensors that take measurements of

the plant, a set of actuators that apply actions to the plant,

and a controller that calculates actuator values (denoted as its

output vector $+) based on the sensor values (denoted as its

input vector �+) and an internal controller state. This basic

setup is shown in Figure 1. The controller communicates with

the sensor and actuator components over a packet-switched

network. Therefore, the inputs and outputs of the controller

are discrete-time sequences of sensor and actuator values.

Accordingly, we assume that the plant is described by some

dynamical system model that is sampled periodically at times

C: , which are determined by a sampling interval)B = C:+1 − C: .

We denote the measurements from all sensors at sampling

time C: by H: , and the actuator values by D: .

The controller maintains its own internal state (2
:
. As

described above, the controller periodically updates its state

depending on the values received by the sensors, and generates

a corresponding vector of actuator values. Because the sensor

2

Controller
�+ 2

:
$+ 2

:+1

(1 H: [1]

(2

H: [2]

(=H

H: [=H]

�1
D:+1 [1]

�2

D:+1 [2]

�=D

D:+1 [=D]

...
...

Figure 1. Setup showing sensors, controller, actuators and communication
channels. The physically connected plant is omitted for clarity.

values are transmitted over a communication network, values

may be lost or arrive too late, i.e., the input vector �+2
:
∈ R

=H

⊥

received by the controller may contain only a subset of the

sensor values H: ∈ R
=H , such that �+2

:
[8] = ⊥ if H: [8] was not

received.2 The input vector is used to update the controller’s

state (2
:
→ (2

:+1
, from which an output vector $+2

:+1
∈ R=D

is then generated and sent to the actuator nodes. The actuator

vector D:+1 ∈ R
=D
⊥ may contain only a subset of the output vec-

tor components, again, due to delay and loss. More specifically,

each actuator node is responsible (w.l.o.g.) for one component

D[8] of the actuator vector. Due to the real-time behaviour of the

control system, the actuator node applies D:+1 [8] = $+2
:+1
[8]

if it receives the output vector by time C:+1, otherwise the

corresponding component D:+1 [8] = ⊥ is undefined.3

The state and output of the controller evolve according to

(2:+1 = Update
(

(2: , �+
2
:

)

, (1)

$+2
:+1 = Output

(

(2:+1
)

. (2)

We assume that both functions are deterministic. For

convenience of notation, we use the following shorthand for

the repeated Update function:

Update=+1 ((, �+0, �+1, . . . , �+=)

= Update=
(

Update((, �+0), �+1, . . . , �+=

)

,
(3)

where Update0 (() = (. In the following, unless noted

otherwise, we consider period : to be synonymous with the

time interval (C:−1, C:], i.e., the time interval during which the

controller updates its state to (: .

Clearly, the behaviour of the NCS depends on the sequence

of actuator values D: delivered to the actuators. As mentioned

above, an output vector sent by a controller may be lost due to

faulty communication channels. Consequently, even in the case

of a perfectly reliable controller, communication failures may

leave actuators with undefined values. Since the possibility

of missing actuator values is inevitable, we introduce the

following definition.

2Notation: Indexing is denoted by bracket notation, so G [8] indicates the
8th component of a vector G. In most cases, subscripts denote sampling
periods, i.e., time, and superscripts denote replicas, so GA

:
indicates the

value of (a vector) G on (or associated with) replica A at time C: . Undefined
values are denoted by ⊥. The set R⊥ = R ∪ {⊥} is used to denote possibly
missing scalars. In pseudocode, an ampersand preceding arguments indicate
call-by-reference semantics, i.e., &var denotes a reference to the variable var.

3Application-layer methods for dealing with missing values in NCS depend
on the control design and are therefore beyond the scope of this paper. We
refer, e.g., to [5], [10] for a discussion of missing sensor and actuator values.

Definition 1 (Faithful Controller): A controller is faithful

if it maintains a state that evolves according to (1) but may

omit output vectors sporadically, i.e.,

$+2
: ∈

{

Output
(

(2:
)

,⊥
}

. (4)

The notion of a faithful controller facilitates the definition

of state consistency in Sec. IV by allowing us to account

also for a controller (replica) being unable to send an output

(reach agreement) due to node failures or deadline misses.

Most importantly, subject to faulty communication channels,

the values of output vectors that are received by the actuators

from a faithful controller are indistinguishable from those of

a perfectly reliable controller. In short, faithful behaviour of

the replicated controller ensures replication transparency [19].

It is important to note that key properties of control

systems—such as stability, performance, and robustness w.r.t.

disturbances—are sensitive to the end-to-end loss and latency

characteristics of the entire control loop, which should always

be taken into account, also when designing an NCS with

replicated controller. For instance, if the the non-replicated

controller is designed under the assumption of i.i.d. losses

(including deadline violations) with a certain distribution, then

the closed-loop system with the replicated controller can only be

guaranteed to behave equivalently if it also exhibits i.i.d. losses

with the same distribution. This is sometimes referred to as

performance transparency [20]. However, these characteristics

are not determined by the (replicated) controller alone but by

all CPS components, i.e., sensors, actuators, and the network.

In this paper, we focus on the replicated controller, making

as few assumptions as possible on the other components.

From this perspective, we stress that faithful behaviour of

the replicated controller is a necessary condition for the

replication-agnostic NCS design, independent of the control

design method being used. While modelling end-to-end losses

is an orthogonal but equally important design prerequisite, it

is beyond the scope of this paper. Its treatment for special

cases (i.e., particular control system, component failure, and

network models) should be considered in future research.

IV. Consistency Models

Now, we consider a group of # replicated controllers, which

we denote by the set �. All controllers execute the same

control functions, i.e., Update and Output. However, each

controller replica A ∈ � may experience different input

vector sequences due to different (partial) arrival patterns of

measurement components. Therefore, also the controller states

(A
:

and outputs $+A
:

may differ in general among replicas.

Moreover, replicas may be unavailable, e.g., due to crash

failures, in which case they do not generate an output. For

each period, we denote the subset of influential replicas that

generate an output $+A
:

in period : as �out
:

, i.e.,

A ∈ �out
: ⇐⇒ $+A

: ≠ ⊥. (5)

Our goal is to design a replication scheme where the

behaviour of a group of replicated controllers is equivalent to

3

that of a faithful controller. In the following, we describe two

consistency models which together provide this equivalence.

Definition 2 (Output Consistency): A controller group � is

called output consistent if

∀:>0∀A ,B∈�out
:

$+A
: = $+ B

: , (6)

i.e., all influential replicas generate the same output.

Output consistency guarantees that the group does not send

“conflicting” commands to different actuators at any time (nor

that any actuator receives several different commands). To

illustrate the importance of output consistency in the context

of NCS, let us consider tracking control for a milling machine

as a simple example. Each controller estimates the current

position and speed of the milling head and determines as its

output a vector of forces [�G , �H] along the x and y axes

required to keep the tool moving along the desired trajectory.

Assume that the target trajectory is a line at 45° and two

controller replicas estimate the same position but slightly

different speeds, leading to two different control outputs that

both represent a force tangent to the trajectory, say [0.9, 0.9]

and [1.1, 1.1], respectively. If the corresponding actuators

should now receive outputs from different replicas, e.g.,

�G = 0.9 and �H = 1.1, the resulting force (at approximately

50.7°) is clearly not in alignment with the desired trajectory,

at least in the current time step, leading to a reduced quality.

Note, however, that Definition 2 does not make any state-

ments about the sequence $+: itself over time. Since a faithful

controller updates its state according to (1) in every period, any

output vector is based on a state that can be obtained through

a series of Update steps from the state on which the previous

output vector was based, even if an arbitrary number of output

vectors were omitted in the interim. We say that the correspond-

ing state is reachable from the state from which the previous

output was generated according to the following definition.4

Definition 3 (Reachability): The set of states (:+= in period

: + = that are reachable from a state (: in period : is

R=

(

(:
)

=

{

Update= ((: , �+: , . . . , �+:+=−1)
�

� �+g ∈L(Hg)
}

.

Here, L(H) is the set of possible input vectors received

for the measurement vector H ∈ R
=H

⊥ transmitted over the

network, i.e., �+ ∈ L(H) ⇐⇒ ∀8 �+ [8] = H[8] ∨ �+ [8] = ⊥.

We are now ready to introduce the stronger concept of state

consistency, which reflects the state interdependencies of a

controller group that behaves faithfully.

Definition 4 (State Consistency): A controller group � is

called state consistent if

∀:≥0∀A ,B∈�out
:

(A: = (B: (7)

∀:>0∀A ∈�out
:
∀B∈�out

:−3 (:)
(A: ∈ R3 (:)

(

(B
:−3 (:)

)

(8)

where 3 (:) = min
{

g
�

� g > 0, �out
:−g

≠ ∅
}

, i.e., all influential

replicas share a controller state that is reachable from the

controller state of the most recent influential replicas.

State consistency implies output consistency, since the

state (A
:

determines the output $+A
:

, cf. (2). To illustrate

4This definition differs from the usual reachability notion in control theory
in that the input sequences are constrained.

the importance of state consistency, let us again consider

the milling example from earlier. One important concern in

machining (or other mechanical systems such as aircraft [21])

is the suppression of so-called chatter, which may impair

quality or even lead to actuator damage, and controllers are

often designed accordingly [22]. In our example, we therefore

assume that each controller replica produces an output sequence

where the rate of change in actuator force is limited. However,

without state consistency the replicated controller could

alternate in the worst case between outputs from both replicas

such that the magnitude of the output oscillates, leading to

an undesirable chattering motion of the actuator. In general,

violation of state consistency may introduce (high-frequency)

dynamics that amount to an unmodelled disturbance that was

not considered during the controller design.

By contrast, the output sequence produced by a controller

group that satisfies Definition 4 is equivalent to that of a

faithful controller. Since a faithful controller can omit to

send output vectors, we can show equivalence by considering

output vectors in periods where �out
:

≠ ∅.

Lemma 1: Consider a controller group � with uniform

initial controller state ∀A ∈� (A
0
= (0 and a faithful controller

2 with initial controller state (2
0
= (0. If � is state consistent,

then there exists a sequence of input vectors �+2
:
∈ L(H:) for

the faithful controller such that

∀:>0∀A ∈�out
:

$+A
: = $+2

: , (9)

i.e., the outputs $+: generated by the group � are identical

to the corresponding outputs generated by a faithful controller.

The proof is described in Appendix A.

V. Replication Algorithm

Our goal is to design a replication protocol for a group � of

replicated controllers whose behaviour is equivalent to that of

a faithful controller. As we have shown, a sufficient condition

for this is that the underlying replication protocol offers both

output and state consistency. Before describing the SCRaM

protocol in detail, we first present an outline of the algorithm

and discuss the requirements it should satisfy.

A. Outline and Requirements

First and foremost, replicas must implement the execution

model of the generic controller as described in Sec. III. Hence,

the basic algorithm executed by each replica consists of a

controller loop that repeats the following steps:

1) receive an input vector �+: ,

2) update the controller state,

3) calculate the output vector and send it to the actuators,

4) wait for the next sampling time C:+1 and go to step 1.

However, since output consistency is required, we need to

ensure that all replicas agree on a unique output vector in

step 3 of each period. For this reason, we also execute one

instance of a single-value consensus [15], [23] algorithm

in each iteration of the controller loop, which is the basic

building block of our replication scheme.

4

Let us denote the consensus instance for period : (i.e., for

output vector $+:) as C: . We consider C: to be the problem

of agreeing on the state (: , from which the unique output

vector $+: can be calculated deterministically. Any algorithm

for solving the single-value consensus problem must satisfy

the following standard properties [15], [23]:

Agreement All correct replicas decide the same value for C: .

Integrity If a correct replica decides the value (: for C: , (:
must have been proposed for C: by some replica.

Termination Every correct replica eventually decides a value

for C: .

The agreement and integrity properties ensure output consis-

tency, provided that replicas may only send an output vector

after the corresponding consensus instance has been decided.

However, the termination property only requires that a deci-

sion is made eventually, and is therefore not sufficient for deter-

mining a unique output within one sampling period. Indeed, it

is impossible to guarantee upper bounds on the time required to

complete consensus in asynchronous distributed systems [23]

or in synchronous systems subject to omission failures [24].

Because any component of an output vector $+: produced from

a state (: is discarded if it does not arrive at the corresponding

actuator by time C: , a consensus instance that terminates any

later will not provide any useful output. But since output vectors

may be omitted by a faithful controller, consensus instances can

be aborted at the end of their corresponding sampling period

without jeopardizing output consistency.

Conversely, state consistency requires that the controller

states from which consecutive outputs are generated satisfy the

reachability condition expressed in (8). Therefore, whenever a

consensus instance does terminate within its period, the decided

state (: becomes influential in the sense of Definition 4 and

all future decided states must be reachable from (: . We denote

such an instance as successful.

Definition 5 (Successful Consensus Instance): Let the

unique value decided by consensus instance C: be denoted by

Decision(C:), and the time at which C: yields its decision

be defined as the earliest time at which any correct replica

decides this value. A consensus instance C: is successful if

and only if it yields Decision(C:) at some time C ≤ C: .

While a replica that decides a value (: can infer that

the consensus instance C: was successful, the opposite is

not true, i.e., a replica not deciding by time C: cannot be

sure whether C: was successful, nor whether its controller

state (: is reachable from the most recently decided state.

Since proposing a state that does not satisfy this reachability

condition could threaten to violate state consistency, we

must suitably restrict the set of controller states that may be

proposed for subsequent consensus instances.

Based on these observations, we define the following

requirements that the controller loop should satisfy with

respect to the consensus instance executed in each period.

Requirement 1 (Output Constraint) The output vectors of

each replica A ∈ � must satisfy

$+A
: ∈

{

Output(Decision(C:)), ⊥
}

, (10)

$+A
: ≠ ⊥ =⇒ C: successful. (11)

Requirement 2 (Proposal Constraint) Any replica A ∈ �

may only propose values (A
:

for C: that satisfy

(A: ∈ R:−:′
(

Decision(C:′)
)

, (12)

where : ′ = max
{

g
�

� g < :, Cg successful
}

. (Assume

that there exists a successful consensus instance C0 with

Decision(C0) , (0 for the initial state.)

Clearly, Requirement 1 together with the agreement

property ensures output consistency since it guarantees that no

conflicting output vectors may be generated by different replicas

for the same sampling period. Requirement 2 together with the

integrity property ensures state consistency since it guarantees

that only controller states that are reachable from previous

influential controller states can be proposed and hence decided.

Finally, it is worth noting that replicas should seek to start

a new consensus instance C:+1 as soon as new input from the

sensors is available since this maximizes the likelihood of the

new instance being successful and producing an output within

the corresponding sampling period. This requires replicas to

make a proposal at that point. Requirement 2 already ensures

that any such proposal must not contradict the possible outcome

of the previous consensus instance C: (and, in fact, any earlier

instance). Therefore, each replica can abort the previous

consensus instance at the beginning of the new sampling period.

B. System Model

For describing the algorithm, we consider an asynchronous

distributed system where replicas may suffer crash failures and

the network may suffer omission failures. For simplicity, we as-

sume that processing latency is negligible. Moreover, we refine

our communication model by assuming that most messages are

delivered with a network delay of at most X, while ? < 1 is the

probability that a message is lost or experiences a delay greater

than X, which is denoted as probabilistic synchronous in [25].

Moreover, we assume that every replica is equipped with

an unreliable failure detector [15], and let SuspectsA denote

the set of replicas that A currently suspects to have failed. We

assume that the failure detector satisfies strong completeness

and eventual weak accuracy [16], which facilitates the use of

an existing consensus algorithm as part of our protocol.5

Finally, we assume that clocks are synchronized among

sensors, actuators, and controller replicas. Synchronization of

sensors and actuators is an implicit assumption of the control

system model, while sufficiently accurate synchronization of

replicas is useful for obtaining tight bounds on the timeouts

on listening for input vectors and sending output vectors.

5Such failure detectors can be implemented using timeout mechanisms [15].

5

C. Algorithm

We now present the SCRaM replication protocol by explaining

the controller loop and the consensus instances executed by

each replica in more detail. Algorithm 1 shows the algorithm

executed by each replica. Lines 1–7 show the initialization

of the necessary variables. As before, : denotes the current

sampling period, (the replica’s local controller state, and �+ its

current input vector. In addition, the “base” period :1 indicates

the period of the most recent consensus instance C:1 on whose

(possible) decision the controller state (is based.6 This value

is updated whenever a replica modifies its state information

through consensus and is used to satisfy Requirement 2 as

will be shown in the following. The remaining variables, mode,

E, and E1 , are related to the consensus algorithm and will be

explained in the corresponding sections.

At this point we note that, although we defined a consensus

instance C: as a procedure for agreeing on a state (: for

simplicity, our algorithm is designed to agree on the tuple

((:−1, �+:−1). However, since the controller state (: can

be calculated deterministically as Update((:−1, �+:−1), both

descriptions are equivalent. We advocate the latter form since

it leaves open the possibility of exchanging input vectors sepa-

rately from controller states, either for the purpose of message

reduction in the failure-free case when replicas already possess

(:−1 from the previous period (assuming �+ requires less

memory than (), or for combining input vectors from multiple

replicas in order to fill in missing components like in [9].

1) Controller Loop: The remainder of Algorithm 1 shows

the controller loop executed by each replica. At the beginning

of a sampling period, the input vector is received (l. 10), where

the function ReceiveAndConstructIV(:) assembles the input

vector �+: from all received components of the measurement

H: . It returns after one network delay X, setting components

not received so far to ⊥. The counter : is incremented (l. 11)

after receiving the input vector in order to reflect the active

period (i.e., to produce $+:).

At this point, the replica starts a consensus instance. The

quantities that are the subject of consensus, namely (, �+ , and

:1 , are collected into a data structure est (called the estimate7),

which is passed as an argument to the consensus procedure.

In Line 15 the Consensus function is called for period : ,

and a reference to est is passed along with references to mode,

E, and E1, which are parameters of the consensus protocol

described in Sec. V-C2. If Consensus returns within the current

sampling period, the consensus instance was successful and

est contains the agreed-upon values for (and �+ . However, if

the current sampling period expires before completion (l. 17),

Consensus is aborted. (Of course, an abort does not imply

6Note that C:1 need not have been successful. Rather, the base period
expresses that (is reachable from the most recent influential state (:≤:1
up to period :1 , while there may have been a more recent influential state
(:>:1

from which (is not necessarily reachable.
7Terminology cf. [15]. An estimate may be proposed or decided by the

consensus instance, and is therefore the replica’s “best guess” of the consensus’
outcome. We use a leader-based consensus protocol, cf. Sec. V-C2, where
only one replica makes a proposal at a time. However, estimates of different
replicas may be proposed when the leader changes.

Algorithm 1: SCRaM protocol executed on each replica A ∈ �

1 : ← 0; // current period

2 (← (0; // controller state

3 �+ ← [⊥, . . . ,⊥]; // input vector

4 :1 ← 0; // "base" period of estimate

5 mode ← normal; // operation mode

6 E ← 0; // current view number

7 E1 ← 0; // "base" view (most recent proposal)

/* =============== MAIN LOOP ================ */

8 while true do
9 wait until C ≥ C: ; // await sampling period

10 �+ ← ReceiveAndConstructIV(:);
11 : ← : + 1; // advance period counter

12 decided ← false;
13 est ← ((, �+, :1); // prepare estimate

14 try // within current period

15 Consensus(: , &est, &mode, &E, &E1); // C:
16 decided ← true;
17 catch timeout at C: // period expired

// Consensus C: aborted

18 end
/* Recover state from estimate and update: */

19 (← Update(est.(, est.�+);
20 �+ ← [⊥, . . . ,⊥];
21 :1 ← est.:1 ;
22 if decided then
23 send $+: = 〈Output(est.(), :〉 to actuators;
24 end
25 end

that the corresponding consensus instance was unsuccessful,

merely that no decision was received by the replica.)

Note that, even if Consensus is aborted, est may have

been modified. This is important for ensuring state consistency

since aborted instances could have received proposals which

were potentially decided. In order to ensure that a decided

controller state is used as the basis for the controller state to

be proposed (and possibly decided) in the following period,

even under crash failures, it must be guaranteed that a majority

of replicas are aware of that decided state. While it cannot be

guaranteed that a successful decision is received by a majority

of replicas within the current sampling period, a decision

implies that a majority of replicas received and acknowledged

the corresponding proposal, which is then contained in those

replicas’ estimate at the end of the sampling period.

Therefore, the new controller state (at the end of the sam-

pling period is determined as the Update of the state and input

vector contained in est (l. 19), �+ is cleared (l. 20), and the base

period :1 of the current state is set to that of the estimate (l. 21).

Note that this update is performed regardless of the success of

the consensus instance, so that (contains a controller state that

is reachable from the decided state of any possibly successful

consensus instance C:1 . Finally, if Consensus was not aborted,

then the replica calculates the output vector $+: and sends it to

the actuators (l. 23) before waiting for the next sampling period.

2) Consensus: For each instance C: , we use a modified

version of the consensus algorithm by Dolev et al. [16], which

is an adaptation of the algorithm by Chandra and Toueg

6

Algorithm 2: Consensus algorithm executed by A ∈ � for
period : . Modifications w.r.t. [15], [16] are shown in blue.

1 Function Consensus(: , &est, &mode, &E, &E1)
2 while true do
3 if mode = viewchange then
4 E ← E + 1;
5 NextView(: , &est, &mode, &E, &E1);
6 end
7 2 ← coord(E); // 2 = current coordinator

8 if A = 2 then
9 est.:1 ← :; // set base period of est

10 send 〈Propose, :, E, est〉 to �;
11 end
12 wait until received Propose from 2 or 2 ∈ SuspectsA ;
13 if received 〈Propose, :, E, est′〉 then
14 est← est′;
15 E1 ← E;
16 send 〈ACK, :, E〉 to 2;
17 else if received message with E′ > E then
18 E ← E′;
19 NextView(: , &est, &mode, &E, &E1);
20 continue;
21 end
22 if A = 2 then

23 wait until received
⌈

#+1
2

⌉

〈ACK, :, E〉;

24 send 〈Decide, :, E, est〉 to �;
25 end
26 wait until received Decide from 2 or 2 ∈ SuspectsA ;
27 if received 〈Decide, :, E, est′〉 then
28 est← est′;
29 E1 ← E;
30 return ; // decided

31 else if received message with E′ > E then
32 E ← E′;
33 else // coordinator failure suspected

34 E ← E + 1;
35 end
36 NextView(: , &est, &mode, &E, &E1);
37 end
38 end

[15] (Sec. 6.2) for considering omission failures. It is shown

in Algorithm 2.8 We strive to keep the presentation close

to the original algorithms, with our core modifications—for

distinguishing consensus instances of different periods and for

achieving state consistency—highlighted in blue. However, we

split the algorithm into two parts described separately in the

following, in order to better explain the (failure-free) normal

operation of the algorithm as opposed to the handling of node

failures. Instances of the modified consensus algorithm are

aborted after the corresponding sampling period has ended, as

described in the previous section.

The protocol uses a dedicated coordinator replica that is

responsible for deciding on an estimate. In such leader-based

8Notation: Received messages are matched to a certain format, indicated
in the pseudocode. Fields marked prime are placeholders for arbitrary values.
For instance, the predicate received 〈Propose, :, E, est′〉 specifies that a
Propose message with the specified values for : and E is expected, accepting
an arbitrary value est′ for field est. Non-matching messages are discarded
or treated specially where indicated. In particular, messages with the wrong
period : are discarded.

protocols, we can distinguish between the normal operation

mode when there is a single persistent coordinator without

failures, and a special view change mode where a new

coordinator has to take over (e.g., due to a crash failure of

the previous coordinator) before normal operation can resume.

We will first describe normal operation before discussing the

mechanism for changing the coordinator.

a) Normal Operation Mode: For the moment, we ignore

lines 3–6, as they do not pertain to normal operation. At the be-

ginning of the consensus instance C: , the coordinator 2 sets the

base period est.:1 of its estimate to the period : of the current

consensus instance (l. 9) since this estimate is to be proposed

and may end up being decided. (This value is used to maintain

state consistency when electing a new coordinator, as described

later.) It then multicasts a Propose message containing its es-

timate (l. 10). Upon receiving a proposal for the current period,

all replicas (including 2) accept it by logging the contained

values and acknowledge this to 2 (ll. 14–16). After receiving

acknowledgments from a majority of replicas, the coordinator

confirms the decision by multicasting a Decide message (l. 24).

Upon receiving a decision for the current period, all replicas (in-

cluding 2) accept it by logging the contained values (in case the

corresponding Propose had not yet been received) and return to

the controller loop, indicating successful termination (ll. 28–30).

In normal operation, state consistency is satisfied by design

since the decided state (: is always reachable from the

coordinator’s previous state (:−1. Incidentally, this is either

the previous decided state if the coordinator decided in the

previous period, or it is reachable from the last decided

state since the coordinator always performs the state update

in Algorithm 1, ll. 19–20 otherwise. Output consistency is

satisfied since outputs are only generated upon deciding, and

we assume that actuators apply output vectors labelled for

period : only if received within the time interval (C:−1, C:].

b) View Change Mode: Normal operation is interrupted

if at least one replica suspects the coordinator to have failed.

Coordinator failures (real or suspected) are handled by electing

a different replica to be the coordinator and starting over

in normal operation mode. As in [15], [16], our algorithm

uses a rotating coordinator approach, such that coordinators

are chosen deterministically. To this end, a monotonically

increasing view9 number E is incremented upon suspected

coordinator failure and used to agree upon the next coordinator

coord(E) =
(

E mod #
)

+ 1. This “view change” is performed

in the procedure NextView shown in Algorithm 3, which is

invoked either if no Decide message was received (Alg. 2,

ll. 34, 36) or if a message with a higher view number was

received (Alg. 2, ll. 18–20, 32, 36). Note that messages with

outdated view number are always discarded.

In normal operation, the persistent coordinator decides a

single state for each period that is reachable from previously

decided states. In contrast, when switching to a different

coordinator, special care has to be taken that

9While the term round is used in [15], [16], we use the term view introduced
in [13] because it is less likely to be confused with a period. The same
concept is also referred to as term in [14].

7

Algorithm 3: View change executed on A ∈ �. Modifications
w.r.t. [15], [16] are shown in blue.

1 Procedure NextView(: , &est, &mode, &E, &E1)
2 mode ← viewchange;
3 send 〈Estimate, :, E, E1 , est〉 to coord(E);
4 if A = coord(E) then
5 wait until received

{

〈Estimate, :, E, E′
1
, est′〉

}

from � \ SuspectsA ;

6 if received
⌈

#+1
2

⌉

Estimate messages then

7 select message with max(E′
1
, est′.:1);

8 est← est′;
9 E1 ← E′

1
;

10 else if received message with E′ > E then
11 E ← E′;
12 NextView(: , &est, &mode, &E, &E1);
13 else
14 E ← E + 1;
15 NextView(: , &est, &mode, &E, &E1);
16 end
17 end
18 mode ← normal;
19 return;
20 end

(a) no two coordinators decide different states (: for the

same sampling period : (agreement), and

(b) no coordinator proposes a state (: that is not reachable

from all states (:′ decided in earlier periods : ′ ≤ : .

The agreement concern (case a) is only relevant for view

changes within the same consensus instance. It is already

addressed by the standard consensus algorithm and described

in [15], [16]. The interested reader can find a brief description

of how that algorithm avoids conflicting decisions within a

consensus instance in Appendix C.

In contrast to agreement, the second concern (case b) is

also relevant when proceeding from one period to the next,

and therefore requires special treatment. While the agreement

property is maintained by the consensus algorithm when

coordinators change within the same period (i.e., consensus

instance), we must also prevent newly elected coordinators from

proposing any state that is not reachable from the decided

states of previous periods, which is crucial for maintaining

state consistency. Since this introduces a dependency between

subsequent consensus instances, we modified the view change

mechanism to ensure that the new coordinator always selects an

estimate containing a state that is valid w.r.t. state consistency.

For this reason, each estimate contains the base period est.:1
of the corresponding state, which is equal to the last received

Propose or Decide message (cf. Alg. 2, ll. 15, 29). Because

the only way to modify a replica’s state ((or est.() without

touching est.:1 or E1 is through an Update in the main loop,

and because : is monotonically increasing on each replica,

we know that any controller’s state estimate est.(must be

reachable from a state (′ that was contained in an estimate

proposed or decided in period est.:1 and view E1 . Conversely,

if any coordinator decided a state (′ in period : ′ and view E′,

then a majority of replicas must have received the corresponding

: = 2

: = 3

: = 4

(1

2

(1

3

'1

(2

2

(2

3

'2

(3

2

Y
1

3

'3

Y
1

3

:1 = 0 :1 = 0 :1 = 0

Decide

(1

2
, :1←2

NextView

(1

3
, :1←2

Figure 2. Example for state-consistent viewchange with three replicas.
Coordinators are indicated by a shaded state node. Period : = 2 starts with
different states and equal base period :1 = 0. '1 (coordinator) proposes (1

2
,

which is acknowledged by '3 and then decided. '3 adopts the proposed state
(and base period) for its next update, without generating an output. The Decide

messages from '1 are lost. In the next period, '1 becomes unavailable and
'2 is elected. The new coordinator’s state is not reachable from the state
(1

2
decided in : = 2. However, it receives an estimate with (1

3
(which is

reachable from (1

2
). Because this estimate has a higher base period (:1 = 2)

than its own (:1 = 0), '2 adopts the state and proposes it for period : = 3.

Propose message and therefore have est.:1 ≥ : ′ and E1 ≥ E′.

The majority of estimates collected by the new coordinator in

the NextView procedure necessarily contains at least one “wit-

ness” to the most recent proposal. Now, the new coordinator can

identify the most recent possibly successful consensus instance

C:′ by choosing the largest est.:1 = : ′ among the received

estimates with the most recent view10 E1 (l. 7). If C:′ was suc-

cessful, the corresponding state est.(is necessarily reachable

from (:′ = Decision(C:′). Finally, note that coordinators can

only propose values as long as they are in normal operation

mode. If a new coordinator was still waiting for estimates

when the previous consensus instance was aborted (i.e., mode

= viewchange at the beginning of the new period), it performs

another view change (cf. Alg. 2, ll. 3–6). Figure 2 shows a small

example of how view change maintains state consistency.

Note that NextView is aborted whenever the calling

consensus instance is aborted, and that receiving a message

with a higher view number within NextView triggers another

viewchange (ll. 11, 12). Note also that viewchange is part of

the single consensus loop in the original consensus algorithm,

e.g., comprising Phase 1 and Phase 2 (except for the last line

where the proposal is sent) in Fig. 6 of [15]. Our presentation

of the algorithm is equivalent since every round of consensus

with a different coordinator must be preceded by a completed

view change, except for the initial round where the coordinator

proposes its own estimate.

D. Correctness

Now we asses the presented algorithm with respect to the

requirements laid down in Sec. V-A. The correctness of

individual consensus instances using Algorithms 2–3 with

respect to agreement, integrity, and termination follows from

10Choosing an est with largest E1 is necessary for agreement [15].

8

the correctness of the original consensus algorithm which

is proved in [15], [16]. We note that we make only three

essential modifications to the algorithm, none of which affect

the properties of individual consensus instances. First, we add

a period counter : to all relevant messages for distinguishing

between different instances, which ensures that messages

not belonging to the current consensus instance are rejected

but does not alter the message pattern within the isolated

instance. Second, we set the base period field est.:1 of

proposed estimates to : , which would be equivalent to setting

the same part of all estimates to a fixed value in an isolated

consensus instance. Third, we refine the selection of estimates

during view change in Algorithm 3, l. 7 by adding a secondary

criterion based on est.:1 . However, the chosen estimate is still

from the set of messages with maximum E1 , and in the original

algorithm an arbitrary estimate from this set would be selected.

The termination property may be violated because consensus

instances are aborted in Algorithm 1 when the next period

begins. But as shown in Sec. V-A, we do not require the

termination property to hold for individual consensus instances.

(Indeed, consensus termination within one period cannot be

guaranteed [23], [24], while eventual termination of each

instance is not sufficient to argue about the availability of the

replicated controller.)

Requirement 1 is satisfied due to the agreement property

ensuring (10) and Algorithm 1, ll. 22–24, ensuring (11).

Lemma 2: The protocol defined by Algorithms 1–3 satisfies

Requirement 2.

The proof is described in Appendix B.

E. Discussion of the Algorithm

While we presented the SCRaM protocol in a way that is

focused on reasoning about its correctness, it admits several

optimizations for reducing the message overhead: For instance,

the coordinator can omit the estimate from Decide messages

to all replicas that acknowledged the corresponding Propose.

Also, if the coordinator already decided for the previous period,

it can omit the controller state from its estimate in Propose

messages for the current period to replicas that acknowledged

its Propose for the previous period. During view change, the

Estimate messages can be reduced to contain only : , E, E1,

and :1. The new coordinator can then request missing state

information from only one replica.

While crash recovery was neither part of our system model

nor considered in our description of the algorithm, replicas

may also recover from crash failures. If a majority of replicas

are always available, recovering replicas can listen for a

Propose or Decide message and adopt the state information

from the estimates contained therein, or they can receive

Estimate messages from a majority of participants as part of

normal leader election. After obtaining a valid state in that

fashion, replicas can resume the algorithm as usual. However,

if fewer than a majority of replicas may be available, they

are required to log their state information in stable storage.

Upon recovery, the controller state can be brought up to

date (only in terms of the sampling period) by repeatedly

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

maximum angle [°]

E
C

D
F

0 10 20 30 40 50 60 70

cart range [cm]

SCRaM

Quarts [9]

Figure 3. Empirical CDF of the maximum absolute pendulum angle
max: |\: | (left) and of the cart position range max: G: − min: G: (right)
over all experiments for both replication protocols.

applying Update((, [⊥,⊥, . . . ,⊥]), with values for :1 and E1
remaining as prior to crash failure. Of course, the protocol can

only make progress while a majority of replicas are available.

VI. Evaluation

In this section, we present an evaluation of SCRaM using

an experimental CPS setup. The Quarts protocol as described

in [9] is considered for comparison. We implemented both

protocols in the Julia language [26], using the SimJulia

package to build an event-based simulation of the sensor

and actuator components and message exchanges. Message

loss follows a Bernoulli process with probability ? = 10
−3,

while the delay for each message is drawn from a uniform

distribution on (0 ms, 0.5 ms]. Process failures are simulated

as a Gilbert-Elliot process with (stationary) crash probability

\2 = 0.1 and mean time to repair (MTTR) ' = 3 s.

The physical part of the experiment is an inverted pendulum

(angle from upright denoted by \) balancing on a cart (position

denoted by G). The cart is driven by a stepper motor using

a belt assembly. A microcontroller drives the stepper, reads \

using an incremental rotary encoder, and communicates with

the PC running the event-based simulation of the replicated

controller, which is periodically suspended until receiving a

new measurement, to keep in sync with real time.

We used a standard LQG design for the # = 3 controller

replicas, i.e., Update is a Kalman filter iteration, while Output

applies an LQR gain to the filter’s state estimate. The sampling

period is)B = 50 ms. Closer details of the experimental setup

are provided in Appendix D.

Our experiment consisted of balancing the pendulum for

180s, starting upright with the cart at the origin. We repeated

the experiment 25 times for each protocol, always with the

same realization (seed value) of the crash failure model.

The average availability—i.e., the proportion of periods with

$+ ≠ ⊥—was 99.2% for all experiments. Fig. 3 shows the

cumulative distribution of the maximum absolute pole angle

and the position range covered by the cart pre experiment. Even

though both replication protocols execute the same controller

function and achieve the same availability, the NCS replicated

using SCRaM keeps the angle 2.97° (or 35%) smaller and the

cart range 17.15cm (or 36%) smaller on average than with

9

10
−5

10
−4

10
−3

u
n

av
ai

la
b

il
it

y
SCRaM

Quarts [9]

10
−4

10
−3

10
−2

10
−1

0

10

20

message loss probability ?

m
sg

.
co

st

Figure 4. Unavailability (top) and messaging cost (bottom) of both replication
protocols for ? ∈ [10

−4, 10
−1], \2 = 10

−3

Quarts. This demonstrates that providing state consistency

with SCRaM can offer a clear performance advantage.

Furthermore, Fig. 4 shows a comparison of SCRaM and

Quarts for varying message loss probability with respect

to unavailability and messaging cost (in average protocol

messages sent per period) using 5h simulations (i.e., 9 × 10
5

periods at)B = 20 ms). The unavailability of both protocols

is comparable at about 3 × 10
−6 for low message loss rates.

However, the unavailability of Quarts increases at high

message loss rates, while that of SCRaM remains low.

Moreover, the messaging cost of SCRaM is consistently lower

that that of Quarts by 30–45 %. This demonstrates that SCRaM

is efficient and more robust to message loss, which implies

that state consistency comes at no additional cost in general.

VII. Summary and Outlook

In this paper, we defined two consistency concepts for controller

replication in networked control systems (NCS), namely output

and state consistency, which together ensure that a replicated

controller can be used as a functionally indistinguishable drop-

in replacement for a non-replicated controller. With SCRaM,

we presented a corresponding efficient replication protocol.

While SCRaM can be used very generically for periodically

sampled controllers and is agnostic to the underlying

control design methodology, we plan to incorporate semantic

knowledge for specific controller designs into our replication

algorithm in future work. In particular, control-specific

performance metrics could be used to inform the choice of

states to propose by modifying the view change algorithm,

or state consistency could even be replaced with a condition

related to optimal control performance.

Acknowledgments

We thank Steffen Linsenmayer for his valuable feedback. This

work was funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) – 285825138.

References

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[2] X.-M. Zhang, Q.-L. Han, and X. Yu, “Survey on recent advances in
networked control systems,” IEEE Trans. Industrial Informatics, vol. 12,
no. 5, pp. 1740–1752, Oct. 2016.

[3] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Foundations of control and estimation over lossy networks,” Proc. IEEE,
vol. 95, no. 1, pp. 163–187, Jan. 2007.

[4] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “Fault
tolerance techniques for wireless ad hoc sensor networks,” in IEEE Int.

Conf. Sensors, vol. 2, Jun. 2002, pp. 1491–1496.
[5] X. Liu and A. Goldsmith, “Kalman filtering with partial observation

losses,” in 43rd IEEE Conf. Decision and Control (CDC), Dec. 2004,
pp. 4180–4186.

[6] J. W. Bennett, G. J. Atkinson, B. C. Mecrow, and D. J. Atkinson,
“Fault-tolerant design considerations and control strategies for aerospace
drives,” IEEE Trans. Industrial Electronics, vol. 59, no. 5, pp. 2049–2058,
May 2012.

[7] P. Bailis and K. Kingsbury, “The network is reliable,” Communications

of the ACM, vol. 57, no. 9, pp. 48–55, Sep. 2014.
[8] M. Chérèque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, “Active

replication in Delta-4,” in 22nd Int. Symp. Fault-Tolerant Computing,
Jul. 1992, pp. 28–37.

[9] W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec, “Quarts:
Quick agreement for real-time control systems,” in 22nd IEEE Conf.

Emerging Technologies & Factory Automation, Sep. 2017, pp. 1–8.
[10] L. Schenato, “To zero or to hold control inputs with lossy links?” IEEE

Trans. Automatic Control, vol. 54, no. 5, pp. 1093–1099, 2009.
[11] W.-A. Zhang and L. Yu, “Stabilization of sampled-data control systems

with control inputs missing,” IEEE Trans. Automatic Control, vol. 55,
no. 2, pp. 447–452, Feb. 2010.

[12] D. E. Quevedo and D. Nešić, “Robust stability of packetized predictive
control of nonlinear systems with disturbances and markovian packet
losses,” Automatica, vol. 48, no. 8, pp. 1803–1811, 2012.

[13] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary
copy method to support highly-available distributed systems,” in 7th

ACM Symp. Principles of Distributed Computing, 1988, pp. 8–17.
[14] D. Ongaro and J. Ousterhout, “In search of an understandable consensus

algorithm,” in USENIX Annual Technical Conf., Philadelphia, PA, Jun.
2014, pp. 305–319.

[15] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.

[16] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, “Failure detectors in
omission failure environments,” Cornell University, Ithaca, NY, USA,
Tech. Rep. 1813/7263, Sep. 1996.

[17] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Programming Languages and Systems, vol. 4, no. 3, pp.
382–401, 1982.

[18] A. Ballesteros, J. Proenza, M. Barranco, and L. Almeida,
“Reconfiguration strategies for critical adaptive distributed embedded
systems,” in 48th IEEE/IFIP Int. Conf. Dependable Systems and

Networks Workshops, Jun. 2018, pp. 57–58.
[19] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:

Concepts and Design, 3rd ed. Addison-Wesley, 2001.
[20] J. Crowcroft, Open Distributed Systems. Artech House, 1996.
[21] A. Levant, A. Pridor, R. Gitizadeh, I. Yaesh, and J. Z. Ben-Asher,

“Aircraft pitch control via second-order sliding technique,” J. Guidance,

Control, and Dynamics, vol. 23, no. 4, pp. 586–594, 2000.
[22] J. L. Dohner, J. P. Lauffer, T. D. Hinnerichs, N. Shankar, M. Regelbrugge,

C.-M. Kwan, R. Xu, B. Winterbauer, and K. Bridger, “Mitigation of
chatter instabilities in milling by active structural control,” J. Sound and

Vibration, vol. 269, no. 1, pp. 197–211, 2004.
[23] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of

distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985.

[24] U. Schmid, B. Weiss, and I. Keidar, “Impossibility results and lower
bounds for consensus under link failures,” SIAM J. Computing, vol. 38,
no. 5, pp. 1912–1951, 2009.

[25] D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet, “Never
say never – probabilistic and temporal failure detectors,” in IEEE Int.

Parallel and Distributed Processing Symp., May 2016, pp. 679–688.
[26] J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek, and

L. Zoubritzky, “Julia: Dynamism and performance reconciled by design,”
Proc. ACM Program. Lang., vol. 2, no. OOPSLA, Oct. 2018.

Appendix A

Proof of Lemma 1: We use inductive reasoning to show

that there exists a sequence
(

�+2
:

)

:≥0
of input vectors for

10

which (9) is satisfied. Since the output of 2 obeys (4), we can

assume �out
:

= ∅ =⇒ $+2
:
= ⊥ without loss of generality.

Let the periods when � produces an output be denoted by :8 ,

where :8+1 = min
{

g
�

� g > :8 , �
out
g ≠ ∅

}

, :0 , 0.

Basis: Since (0 is fixed, the initial output of replicas

A ∈ �out
0

is $+A
0
= $+2

0
= Output((0). Hence, (9) is satisfied

for : ≤ :0 = 0 with an empty input vector sequence f0 = Y.

Inductive step: Assume that (9) is satisfied for : ≤ :8
with some input sequence f8 =

(

�+2
:

) :8−1

:=0
and that all replicas

B ∈ �out
:8

hold the same state (B
:8
≡ (2

:8
, (:8 as 2.

Now consider a replica A ∈ �out
:8+1

and note that

:8+1 = :8 + 3
(

:8+1
)

. Because � is state consistent, (A
:8+1

must be reachable from (:8 , cf. (8). Therefore, there exists a

sequence of input vectors f′ =
(

�+ ′
:

) :8+1−1

:=:8
such that

(2:8+1 = (A:8+1 = Update3 (:8+1)
(

(:8 , f
′
)

and, consequently, $+2
:8+1

= $+A
:8+1

. Because of (7), this is true

with identical values for all replicas A ∈ �out
:8+1

. Therefore, (9) is

satisfied for : ≤ :8+1 with the input sequence f8+1 = f8 ◦f
′.

Appendix B

Proof of Lemma 2: Assume that C: is successful and the

controller state (: = Update
(

(:−1, �+:−1

)

is decided in view E.

Therefore, a majority of replicas must have base period :1 = : ,

base view E1 ≥ E, and controller state (= Decision
(

C:
)

at

time C: (i.e., Alg. 1 after l. 21).

Now assume any replica A proposes an estimate with

((′
:
, �+ ′

:
) in view E′ ≥ E for C:+1. If E′ = E, then A = 2 and

(′
:
= (: . If E′ > E, then A must have chosen an estimate with

(: or ((:−1, �+:−1) in Alg. 3, which was acknowledged by a

majority of replicas for C: . Therefore, only an estimate with

state (: (and arbitrary �+) can be proposed for C:+1, which

is equivalent to the proposal of a state (′
:+1
∈ R

(

(:
)

in terms

of Property 2 and satisfies (12). By extension of the same

argument, this is true for all C:′ , :
′ > : .

Appendix C

While the mechanism for guaranteeing agreement in Alg. 2–3

is treated in [15], [16], we briefly explain it here for the sake

of completeness. Each replica only accepts messages with

its own current view number E, and stores the view number

of the last received Propose or Decide message as E1 (cf.

Alg. 2, ll. 15, 29). Therefore, if any coordinator decided a value

in view E′, then a majority of replicas must have received

the corresponding Propose message and therefore have

E1 ≥ E′. For a successful viewchange, the new coordinator

must collect estimates from a majority of replicas (ll. 3,6),

which necessarily contains at least one “witness” to the most

recent proposal received by a majority. The new coordinator

adopts this estimate by choosing a message with the largest

E1 (ll. 7–8). Therefore, if a value was decided in the previous

view, it is impossible for a different value to be decided.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.2

0.4

0.6

0.8

1

� · 10
2

E
C

D
F

SCRaM

Quarts [9]

Figure 5. Empirical CDF of LQR cost � for both replication protocols.

Appendix D

The cart-driven inverted pendulum used in our experiments is

0.6m long and runs on a track with a usable range of 1.2m.

We denote the state of the system by b = [G, ¤G, \, ¤\]⊤, where

G is the distance of the cart from the origin (track center) in

meters and \ is the angle of the pole from upright in radians.

Sensor measurements are H = [G, \]⊤ and the actuation input

is the cart acceleration D = ¥G. For the design of the LQR

controller, we use the continuous-time cost metric

� = lim
)→∞

1

)

∫)

0

b⊤
[

1 0 0 0

0 0.01 0 0

0 0 1.5 0

0 0 0 0.01

]

b + 0.02 · D2
dC.

Linearization and discretization at)B = 50 ms of the nonlinear

pendulum equation yields the discrete-time LTI system

b:+1 =

[

1 0.05 0 0

0 1 0 0

0 0 1.018 0.05

0 0 0.705 1.018

]

b: +

[

0.00125

0.05

0.00179

0.07185

]

D: + F:

H: =

[

1 0 0 0

0 0 1 0

]

b: + E:

�) =
1

)

)
∑

:=0

b⊤:&b: + 2b⊤: �D: + 'D
2

: , where

&=

[

5.0 0.125 0 0

0.125 0.054 0 0

0 0 7.596 0.207

0 0 0.207 0.057

]

·10
−2, �=

[

2.083

1.328

5.359

1.975

]

·10
−5, '=10

−3.

The LQR optimal input for this system is

D: =

[

5.295 5.967 −42.519 −11.239
]

· b: .

We use a Kalman filter variant presented in [5] to handle

�+s with missing components. As noise covariance matrices

for F: and E: we take

, =

[

0.0504 0.0125 0 0

0.0125 0.5 0 0

0 0 5.143 4

0 0 4.301 102

]

· 10
−3, + =

[

0.15 0

0 2.5

]

· 10
−3.

Fig. 5 shows the cumulative distribution of the LQR cost �

for all experiments, which is 13.5% higher on average for

Quarts compared to SCRaM.

The Gilbert-Elliot model for crash failures consists of a

two-state Markov chain. In the good state (G), a replica may

be sporadically unavailable with probability ?. In the bad state

(B), a replica remains unavailable (crashed) until it recovers to

the good state. The transition probability for G→B (crash) is
)B \2

' (1−\2)
≈ 0.19 %, while that for B→G (recover) is

)B
'
≈ 1.7 %.

Because the number of concurrently crashed replicas cannot

be bounded in this model, we use a recovery operation based

on the assumption of stable storage as outlined in Sec. V-E.

11

	Introduction
	Related Work
	Control System Model
	Consistency Models
	Replication Algorithm
	Outline and Requirements
	System Model
	Algorithm
	Controller Loop
	Consensus

	Correctness
	Discussion of the Algorithm

	Evaluation
	Summary and Outlook
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D

