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Abstract—Networked control systems (NCS) consist of sensors
and actuators that are connected to a controller through a
packet-switched network in a feedback loop to control physical
systems in diverse application areas such as industry, automotive,
or power infrastructure. The control of critical real-time systems
places strong requirements on the latency and reliability of both
the communication network and the controller. In this paper,
we consider the problem of increasing the reliability of an NCS
subject to crash failures and message loss by replicating the
controller component. Previous replication schemes for real-time
systems have focused on ensuring that no conflicting values are
sent to the actuators by different replicas. Since this property,
which we call output consistency, only refers to the values within
one time step, it is insufficient for reasoning about the formal
conditions under which a group of replicated controllers behaves
equivalent to a non-replicated controller. Therefore, we propose
the stronger state consistency property, which ensures that the
sequence of values produced by the replicated controller exhibits
the same dynamical behaviour as a non-replicated controller.
Moreover, we present SCRaM, a protocol for replicating generic
periodically sampled controllers that satisfies both of these
consistency requirements. To demonstrate the effectiveness of
our approach, we evaluated it experimentally for the control of
a cart-driven inverted pendulum.

I. Introduction

Networked control systems (NCS) [1], [2] are an important
class of cyber-physical systems (CPS) in manifold application
areas such as the industrial Internet of Things (Industry 4.0),
smart grids, telesurgery, or assisted and autonomous driving.
They consist of sensors, actuators, and digital controllers that
are connected over a packet-switched network, forming a
feedback control loop to stabilize a physical process.

Considering their applications, it is obvious that many
NCS are safety-critical. Component malfunctions might lead
to severe monetary loss, environmental damage, or even
human injury. Sensors, actuators, and controllers run on nodes
that may fail, and communicate over faulty communication
channels, which may lose messages or deliver them too late.
Loss and delay of sensor outputs or actuator inputs can affect
the performance and stability of the NCS.

Thus, reliability is one of the most important requirements
of NCS. Clearly, the reliability of an NCS depends on all of
its components, i.e., sensors, actuators, controller, and network.
The fault-tolerance of a control loop with regard to sensor,
actuator, and network failures can be addressed at the appli-
cation layer, by employing a control design that is inherently
robust to a certain degree of sensor and actuator message loss

[1], [3]. Such design approaches typically yield some (proba-
bilistic) bounds for the necessary availability of the involved
components that ensures stability or required performance.

The availability of sensors can be increased through fusion of
redundant sensors [4], [5]. Similarly, the availability of actuators
can be increased by suitable redundant designs, e.g., [6]. In this
paper, we focus on the availability of the controller function.
For communication, we explicitly do not assume a perfectly
reliable network since this is an unrealistic assumption [7].

In order to avoid a single point of failure, the controller
has to be replicated over different nodes. In each control step,
the controller replicas receive the sensor input and apply the
control function to generate the controller output, which is
then transmitted to the actuators. Obviously, an important
requirement for a replication scheme is to ensure output
consistency [8], meaning that all controller replicas send the
same sequence of output messages. In this paper, we use a
relaxed output consistency condition like in [9], where we allow
replicas to occasionally produce no output. This is motivated
by the fact that intermittent message loss in NCS—also from
controller to actuator—is well-studied [10]-[12].

In general, output consistency could also be achieved by
following the State Machine Replication (SMR) approach for
implementing the controller function, where each control step
corresponds to calling an operation that takes the sensor values
as input and generates the controller output. In this case, a
standard SMR protocol such as Viewstamped Replication [13]
or RAFT [14] could be used to achieve consensus about the
controller outputs. Unfortunately, as pointed out in [9], SMR is
unsuitable for controller replication due to the time-constraints
of NCS. Since each control step has to be finished within
a certain time bound, the replicas only have limited time to
achieve consensus on each output. If consensus cannot be
achieved in time, no output can be sent. While a fault-tolerant
controller can accept missing outputs in some control steps,
the problem with SMR is that a replica cannot start processing
a new control step before having completed the previous one.
Therefore, a delay violation of consensus processing in one
control step affects all the following steps.

In this paper, we investigate how the problems of SMR
subject to real-time constraints can be avoided when consensus
algorithms are used for controller replication. To this end, we
first discuss the necessary consistency concepts for replicated
control systems. While output consistency addresses the
spatial correctness concerning the set of messages delivered to
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the actuators in one time step, it does not relate to any notion
of temporal correctness regarding the sequence of controller
outputs. However, any stateful control law specifies such
temporal behaviour. Since the controller’s dynamics is part
of the closed-loop model, which is the basis for stability and
performance analysis, it should be reproduced faithfully by the
replicated controller. In other words, output consistency alone
is not sufficient to ensure replication transparency for NCS.
Therefore, we argue that it should be complemented by an ad-
ditional condition, which we call state consistency, that requires
any new output to be based on the controller state that generated
the most recent previous output. State consistency ensures that
the replicated controller produces a sequence of outputs that ap-
pears to have been generated by a single controller that always
executes uninterruptedly, and that any intermittent unavailability
of the controller is indistinguishable from an omission of output
messages. Consequently, the properties that have been proven
for a non-replicated controller also hold for a replicated version
of the same controller, with no need for modifying the controller
design.! While SMR offers equivalent properties in the failure-
free case, state consistency provides a well-defined correctness
condition also for incomplete controller output sequences,
which facilitates the temporal decoupling of consensus process-
ing for consecutive control steps to avoid the problems of SMR.
We propose SCRaM, a State-Consistent Replication Man-
agement protocol for NCS controllers. For each iteration of the
replicated control function, a single-value consensus algorithm
based on a standard protocol [15], [16] is executed to ensure out-
put consistency. However, SCRaM ensures that the replicated
controller is not blocked unnecessarily waiting for consensus
instances to terminate, and that the state of controller replicas
producing new output is based on the state of replicas that have
produced output previously, thus ensuring state consistency.
In summary, we make the following contributions:

« A formal definition of state consistency for replicated
controllers, providing sufficient guarantees to make a
replicated controller functionally indistinguishable from
a non-replicated controller.

« SCRaM, a replication protocol for NCS ensuring state
and output consistency with high availability.

« An experimental comparison of SCRaM with the Quarts
protocol [9], which is—to the best of our knowledge—the
most effective replication protocol for NCS to date,
demonstrating the benefits of state consistency.

The rest of this paper is organized as follows. In Sec. II we
discuss related work. In Sec. III we introduce a generic model
for time-triggered control systems. In Sec. IV we extend this
model for replicated controllers and derive our consistency
conditions. In Sec. V we derive requirements for a replication
protocol to satisfy these consistency conditions and present the
SCRaM protocol. In Sec. VI we show our evaluation results.
Sec. VII concludes the paper with a short summary and outlook.

I...assuming that the non-replicated controller is designed to tolerate output

omissions to a degree that is equivalent to that achieved by the replicated
controller for a given network.

II. Related Work

It is well known that in synchronous systems with bounded
network and processing delay, consensus can be reached in
bounded time, even for stronger failure models than we assume
in this paper, such as Byzantine failures [17]. Therefore, some
replicated systems rely on real-time communication networks
such as Time-Triggered Ethernet [18] or Token Ring [8],
adding sufficient redundancy in the network to practically avoid
delay failures, which would otherwise violate the fundamental
assumption of a synchronous system. However, real-time
networks with deterministically bounded delay are mostly
restricted to local or possibly metropolitan area. Therefore, we
cannot assume a synchronous system to be available for CPS
distributed over a larger geographic area, where one has to
communicate over unreliable Internet connections.

Considering that in asynchronous systems one cannot
guarantee both, agreement and termination within bounded
delay, Saab et al. recently proposed the Quarts protocol [9]. It
guarantees that in each time step, replicated controllers agree
on a single output vector sent to actuators (output consistency)
through plurality voting. The delay of attempting agreement is
bounded such that non-agreement in one step cannot indefinitely
block the next steps. The authors show that Quarts is superior to
the classic asynchronous consensus protocol FastPaxos in terms
of availability and latency. However, Quarts does not address the
issue that the agreed actuator values of one step should also be
consistent with the agreed values of another round. In contrast,
in addition to output consistency, we enforce state consistency
to ensure that the state of a replica producing the agreed output
values of the current round is based on the state of the replica
that has produced the previously agreed values. This makes the
functional behavior of the replicated controller indistinguishable
from a non-replicated controller. This fundamentally simplifies
the design and analysis of the replicated controller based on
a functionally equivalent non-replicated controller.

III. Control System Model

An NCS consists of a plant, which denotes the physical system
to be controlled, a set of sensors that take measurements of
the plant, a set of actuators that apply actions to the plant,
and a controller that calculates actuator values (denoted as its
output vector OV) based on the sensor values (denoted as its
input vector IV) and an internal controller state. This basic
setup is shown in Figure 1. The controller communicates with
the sensor and actuator components over a packet-switched
network. Therefore, the inputs and outputs of the controller
are discrete-time sequences of sensor and actuator values.

Accordingly, we assume that the plant is described by some
dynamical system model that is sampled periodically at times
tx, which are determined by a sampling interval Ty =tz — #%.
We denote the measurements from all sensors at sampling
time #; by yx, and the actuator values by uy.

The controller maintains its own internal state S7. As
described above, the controller periodically updates its state
depending on the values received by the sensors, and generates
a corresponding vector of actuator values. Because the sensor
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Figure 1. Setup showing sensors, controller, actuators and communication
channels. The physically connected plant is omitted for clarity.

values are transmitted over a communication network, values
may be lost or arrive too late, i.e., the input vector IV, € Rzy
received by the controller may contain only a subset of the
sensor values yx € R, such that IV [i] = L if y, [i] was not
received.” The input vector is used to update the controller’s
state Si - Si RE from which an output vector OVkC 4 € R
is then generated and sent to the actuator nodes. The actuator
vector ug+ € R may contain only a subset of the output vec-
tor components, again, due to delay and loss. More specifically,
each actuator node is responsible (w.l.o.g.) for one component
u[i] of the actuator vector. Due to the real-time behaviour of the
control system, the actuator node applies uy+1[i] = OV, [i]
if it receives the output vector by time 7.1, otherwise the
corresponding component u4[i] = L is undefined.’
The state and output of the controller evolve according to

%1 = Update(Sg, 1Vy), (1)
OV,fJrl = Output(SiH). 2)
We assume that both functions are deterministic. For

convenience of notation, we use the following shorthand for
the repeated Update function:

Update™ (S, IV, IV1, ..., 1V,)

3
= Update” (Update(S, IVp), Vi, . . )

L 1Vy),
where Update’(§) = S. In the following, unless noted
otherwise, we consider period k to be synonymous with the
time interval (fx_1,¢], i.e., the time interval during which the
controller updates its state to Sk.

Clearly, the behaviour of the NCS depends on the sequence
of actuator values u; delivered to the actuators. As mentioned
above, an output vector sent by a controller may be lost due to
faulty communication channels. Consequently, even in the case
of a perfectly reliable controller, communication failures may
leave actuators with undefined values. Since the possibility
of missing actuator values is inevitable, we introduce the
following definition.

2 Notation: Indexing is denoted by bracket notation, so x[i] indicates the
i™ component of a vector x. In most cases, subscripts denote sampling
periods, i.e., time, and superscripts denote replicas, so x) indicates the
value of (a vector) x on (or associated with) replica r at time #x. Undefined
values are denoted by L. The set R; = RU {L} is used to denote possibly
missing scalars. In pseudocode, an ampersand preceding arguments indicate
call-by-reference semantics, i.e., &var denotes a reference to the variable var.

3 Application-layer methods for dealing with missing values in NCS depend
on the control design and are therefore beyond the scope of this paper. We
refer, e.g., to [5], [10] for a discussion of missing sensor and actuator values.

Definition 1 (Faithful Controller): A controller is faithful
if it maintains a state that evolves according to (1) but may
omit output vectors sporadically, i.e.,

oVy € {output(S¢), L }. 4)
The notion of a faithful controller facilitates the definition
of state consistency in Sec. IV by allowing us to account
also for a controller (replica) being unable to send an output
(reach agreement) due to node failures or deadline misses.
Most importantly, subject to faulty communication channels,
the values of output vectors that are received by the actuators
from a faithful controller are indistinguishable from those of
a perfectly reliable controller. In short, faithful behaviour of
the replicated controller ensures replication transparency [19].
It is important to note that key properties of control
systems—such as stability, performance, and robustness w.r.t.
disturbances—are sensitive to the end-to-end loss and latency
characteristics of the entire control loop, which should always
be taken into account, also when designing an NCS with
replicated controller. For instance, if the the non-replicated
controller is designed under the assumption of i.i.d. losses
(including deadline violations) with a certain distribution, then
the closed-loop system with the replicated controller can only be
guaranteed to behave equivalently if it also exhibits i.i.d. losses
with the same distribution. This is sometimes referred to as
performance transparency [20]. However, these characteristics
are not determined by the (replicated) controller alone but by
all CPS components, i.e., sensors, actuators, and the network.
In this paper, we focus on the replicated controller, making
as few assumptions as possible on the other components.
From this perspective, we stress that faithful behaviour of
the replicated controller is a necessary condition for the
replication-agnostic NCS design, independent of the control
design method being used. While modelling end-to-end losses
is an orthogonal but equally important design prerequisite, it
is beyond the scope of this paper. Its treatment for special
cases (i.e., particular control system, component failure, and
network models) should be considered in future research.

IV. Consistency Models

Now, we consider a group of N replicated controllers, which
we denote by the set G. All controllers execute the same
control functions, i.e., Update and Output. However, each
controller replica r € G may experience different input
vector sequences due to different (partial) arrival patterns of
measurement components. Therefore, also the controller states
Sy and outputs OV; may differ in general among replicas.
Moreover, replicas may be unavailable, e.g., due to crash
failures, in which case they do not generate an output. For
each period, we denote the subset of influential replicas that

generate an output OV in period k as G{, i.e.,
reGy — OV] # 1.

&)

Our goal is to design a replication scheme where the
behaviour of a group of replicated controllers is equivalent to



that of a faithful controller. In the following, we describe two
consistency models which together provide this equivalence.

Definition 2 (Output Consistency): A controller group G is
called output consistent if

Vis0Y, segp OVY = OV}, (6)

i.e., all influential replicas generate the same output.

Output consistency guarantees that the group does not send
“conflicting” commands to different actuators at any time (nor
that any actuator receives several different commands). To
illustrate the importance of output consistency in the context
of NCS, let us consider tracking control for a milling machine
as a simple example. Each controller estimates the current
position and speed of the milling head and determines as its
output a vector of forces [Fy, Fy] along the x and y axes
required to keep the tool moving along the desired trajectory.
Assume that the target trajectory is a line at 45° and two
controller replicas estimate the same position but slightly
different speeds, leading to two different control outputs that
both represent a force tangent to the trajectory, say [0.9,0.9]
and [1.1,1.1], respectively. If the corresponding actuators
should now receive outputs from different replicas, e.g.,
Fx =0.9 and Fy = 1.1, the resulting force (at approximately
50.7°) is clearly not in alignment with the desired trajectory,
at least in the current time step, leading to a reduced quality.

Note, however, that Definition 2 does not make any state-
ments about the sequence OV itself over time. Since a faithful
controller updates its state according to (1) in every period, any
output vector is based on a state that can be obtained through
a series of Update steps from the state on which the previous
output vector was based, even if an arbitrary number of output
vectors were omitted in the interim. We say that the correspond-
ing state is reachable from the state from which the previous
output was generated according to the following definition.*

Definition 3 (Reachability): The set of states Si4, in period
k + n that are reachable from a state S; in period k is
Ru(Sk) = {Update” (Sk, IVk, ..., IViwn-1) | IV-€ L(y7)}.

Here, L(y) is the set of possible input vectors received
for the measurement vector y € R’ transmitted over the
network, i.e., IV € L(y) < V;IV[i] = y[i] vV IV[i] = L.
We are now ready to introduce the stronger concept of state
consistency, which reflects the state interdependencies of a
controller group that behaves faithfully.

Definition 4 (State Consistency): A controller group G is
called state consistent if

)
®)

where d(k) = min{r | 7 > 0, G*_ # 0}, i.e., all influential
replicas share a controller state that is reachable from the
controller state of the most recent influential replicas.

State consistency implies output consistency, since the
state S} determines the output OV[, cf. (2). To illustrate

r _ QS
sz()vr’Serul Sk = Sk

Vk>0vreG2“‘VsEG2“jd(k) Sk € Rak) (S}i—d(k))

4This definition differs from the usual reachability notion in control theory
in that the input sequences are constrained.

the importance of state consistency, let us again consider
the milling example from earlier. One important concern in
machining (or other mechanical systems such as aircraft [21])
is the suppression of so-called chatter, which may impair
quality or even lead to actuator damage, and controllers are
often designed accordingly [22]. In our example, we therefore
assume that each controller replica produces an output sequence
where the rate of change in actuator force is limited. However,
without state consistency the replicated controller could
alternate in the worst case between outputs from both replicas
such that the magnitude of the output oscillates, leading to
an undesirable chattering motion of the actuator. In general,
violation of state consistency may introduce (high-frequency)
dynamics that amount to an unmodelled disturbance that was
not considered during the controller design.

By contrast, the output sequence produced by a controller
group that satisfies Definition 4 is equivalent to that of a
faithful controller. Since a faithful controller can omit to
send output vectors, we can show equivalence by considering
output vectors in periods where G¢"* # 0.

Lemma 1: Consider a controller group G with uniform
initial controller state V, <G S(’) = 8o and a faithful controller
¢ with initial controller state Sg = So. If G is state consistent,
then there exists a sequence of input vectors IV, € L(yx) for
the faithful controller such that

Va0V egm OVf = OV, 9)

i.e., the outputs OV} generated by the group G are identical
to the corresponding outputs generated by a faithful controller.
The proof is described in Appendix A.

V. Replication Algorithm

Our goal is to design a replication protocol for a group G of
replicated controllers whose behaviour is equivalent to that of
a faithful controller. As we have shown, a sufficient condition
for this is that the underlying replication protocol offers both
output and state consistency. Before describing the SCRaM
protocol in detail, we first present an outline of the algorithm
and discuss the requirements it should satisfy.

A. Outline and Requirements

First and foremost, replicas must implement the execution
model of the generic controller as described in Sec. III. Hence,
the basic algorithm executed by each replica consists of a
controller loop that repeats the following steps:

1) receive an input vector [Vy,

2) update the controller state,

3) calculate the output vector and send it to the actuators,
4) wait for the next sampling time fz,; and go to step 1.

However, since output consistency is required, we need to
ensure that all replicas agree on a unique output vector in
step 3 of each period. For this reason, we also execute one
instance of a single-value consensus [15], [23] algorithm
in each iteration of the controller loop, which is the basic
building block of our replication scheme.



Let us denote the consensus instance for period k (i.e., for
output vector OVy) as Cx. We consider Ci to be the problem
of agreeing on the state Si, from which the unique output
vector OV} can be calculated deterministically. Any algorithm
for solving the single-value consensus problem must satisfy
the following standard properties [15], [23]:

Agreement All correct replicas decide the same value for Cy.

Integrity If a correct replica decides the value Si for Ck, Sk
must have been proposed for C; by some replica.

Termination Every correct replica eventually decides a value
for C.

The agreement and integrity properties ensure output consis-
tency, provided that replicas may only send an output vector
after the corresponding consensus instance has been decided.

However, the termination property only requires that a deci-
sion is made eventually, and is therefore not sufficient for deter-
mining a unique output within one sampling period. Indeed, it
is impossible to guarantee upper bounds on the time required to
complete consensus in asynchronous distributed systems [23]
or in synchronous systems subject to omission failures [24].
Because any component of an output vector OV}, produced from
a state Sy is discarded if it does not arrive at the corresponding
actuator by time 7, a consensus instance that terminates any
later will not provide any useful output. But since output vectors
may be omitted by a faithful controller, consensus instances can
be aborted at the end of their corresponding sampling period
without jeopardizing output consistency.

Conversely, state consistency requires that the controller
states from which consecutive outputs are generated satisfy the
reachability condition expressed in (8). Therefore, whenever a
consensus instance does terminate within its period, the decided
state S; becomes influential in the sense of Definition 4 and
all future decided states must be reachable from S;. We denote
such an instance as successful.

Definition 5 (Successful Consensus Instance): Let the
unique value decided by consensus instance Cx be denoted by
Decision(Cy), and the time at which Cj yields its decision
be defined as the earliest time at which any correct replica
decides this value. A consensus instance Cy is successful if
and only if it yields Decision(Cy) at some time ¢ < f.

While a replica that decides a value Si can infer that
the consensus instance Ci was successful, the opposite is
not true, i.e., a replica not deciding by time #; cannot be
sure whether C; was successful, nor whether its controller
state Si is reachable from the most recently decided state.
Since proposing a state that does not satisfy this reachability
condition could threaten to violate state consistency, we
must suitably restrict the set of controller states that may be
proposed for subsequent consensus instances.

Based on these observations, we define the following
requirements that the controller loop should satisfy with
respect to the consensus instance executed in each period.

Requirement 1 (Output Constraint) The output vectors of

each replica r € G must satisfy

oV} € {output(Decision(Cr)), L},
OVy # L = Cy successful.

(10)
Y

Requirement 2 (Proposal Constraint) Any replica r € G
may only propose values §} for Cy that satisfy

SZ € Rk_kr(Decision(Ck/)), (12)

where kK’ = max{T | T < k,C; successful}. (Assume

that there exists a successful consensus instance Cy with
Decision(Cy) £ S for the initial state.)

Clearly, Requirement 1 together with the agreement
property ensures output consistency since it guarantees that no
conflicting output vectors may be generated by different replicas
for the same sampling period. Requirement 2 together with the
integrity property ensures state consistency since it guarantees
that only controller states that are reachable from previous
influential controller states can be proposed and hence decided.

Finally, it is worth noting that replicas should seek to start
a new consensus instance Ci,; as soon as new input from the
sensors is available since this maximizes the likelihood of the
new instance being successful and producing an output within
the corresponding sampling period. This requires replicas to
make a proposal at that point. Requirement 2 already ensures
that any such proposal must not contradict the possible outcome
of the previous consensus instance Cy (and, in fact, any earlier
instance). Therefore, each replica can abort the previous
consensus instance at the beginning of the new sampling period.

B. System Model

For describing the algorithm, we consider an asynchronous
distributed system where replicas may suffer crash failures and
the network may suffer omission failures. For simplicity, we as-
sume that processing latency is negligible. Moreover, we refine
our communication model by assuming that most messages are
delivered with a network delay of at most ¢, while p < 1 is the
probability that a message is lost or experiences a delay greater
than ¢, which is denoted as probabilistic synchronous in [25].

Moreover, we assume that every replica is equipped with
an unreliable failure detector [15], and let Suspects, denote
the set of replicas that » currently suspects to have failed. We
assume that the failure detector satisfies strong completeness
and eventual weak accuracy [16], which facilitates the use of
an existing consensus algorithm as part of our protocol.’

Finally, we assume that clocks are synchronized among
sensors, actuators, and controller replicas. Synchronization of
sensors and actuators is an implicit assumption of the control
system model, while sufficiently accurate synchronization of
replicas is useful for obtaining tight bounds on the timeouts
on listening for input vectors and sending output vectors.

5Such failure detectors can be implemented using timeout mechanisms [15].



C. Algorithm

We now present the SCRaM replication protocol by explaining
the controller loop and the consensus instances executed by
each replica in more detail. Algorithm 1 shows the algorithm
executed by each replica. Lines 1-7 show the initialization
of the necessary variables. As before, k denotes the current
sampling period, S the replica’s local controller state, and 1V its
current input vector. In addition, the “base” period k; indicates
the period of the most recent consensus instance Ck, on whose
(possible) decision the controller state S is based.® This value
is updated whenever a replica modifies its state information
through consensus and is used to satisfy Requirement 2 as
will be shown in the following. The remaining variables, mode,
v, and vy, are related to the consensus algorithm and will be
explained in the corresponding sections.

At this point we note that, although we defined a consensus
instance Cy as a procedure for agreeing on a state Sy for
simplicity, our algorithm is designed to agree on the tuple
(Sk-1,1Vr_1). However, since the controller state Sj; can
be calculated deterministically as Update(Sk_i, IVx_1), both
descriptions are equivalent. We advocate the latter form since
it leaves open the possibility of exchanging input vectors sepa-
rately from controller states, either for the purpose of message
reduction in the failure-free case when replicas already possess
Sk-1 from the previous period (assuming IV requires less
memory than S), or for combining input vectors from multiple
replicas in order to fill in missing components like in [9].

1) Controller Loop: The remainder of Algorithm 1 shows
the controller loop executed by each replica. At the beginning
of a sampling period, the input vector is received (1. 10), where
the function ReceiveAndConstructIV(k) assembles the input
vector IV from all received components of the measurement
vk It returns after one network delay J, setting components
not received so far to L. The counter k is incremented (1.11)
after receiving the input vector in order to reflect the active
period (i.e., to produce OVy).

At this point, the replica starts a consensus instance. The
quantities that are the subject of consensus, namely S, IV, and
kp, are collected into a data structure est (called the estimate7),
which is passed as an argument to the consensus procedure.

In Line 15 the Consensus function is called for period &,
and a reference to est is passed along with references to mode,
v, and v, which are parameters of the consensus protocol
described in Sec. V-C2. If Consensus returns within the current
sampling period, the consensus instance was successful and
est contains the agreed-upon values for S and IV. However, if
the current sampling period expires before completion (1. 17),
Consensus is aborted. (Of course, an abort does not imply

SNote that Ckb need not have been successful. Rather, the base period
expresses that S is reachable from the most recent influential state Sy<g,,
up to period kj, while there may have been a more recent influential state
Sk>k;, from which S is not necessarily reachable.

"Terminology cf. [15]. An estimate may be proposed or decided by the
consensus instance, and is therefore the replica’s “best guess” of the consensus’
outcome. We use a leader-based consensus protocol, cf. Sec. V-C2, where
only one replica makes a proposal at a time. However, estimates of different
replicas may be proposed when the leader changes.

Algorithm 1: SCRaM protocol executed on each replicar € G

1 k<0 // current period
2§« Sp; // controller state
31V e—[L1,...,1]; // input vector
4 kp < 0; // "base" period of estimate
5 mode «— normal; // operation mode
6ve«—0; // current view number
7 vp < 0; // "base” view (most recent proposal)

/* =============== MAIN LOOP ================ */
8 while rrue do
9 wait until ¢ > 7;; // await sampling period
10 1V « ReceiveAndConstructIV(k);
1 k—k+1; // advance period counter
12 decided « false;

13 est « (S,IV,kp); // prepare estimate

14 try // within current period
15 Consensus(k, &est, &mode, &v, &vp); /! Cyg
16 decided « true;

17 | catch timeout at ty

| // Consensus Cj aborted
18 end

/* Recover state from estimate and update: */
19 S « Update(est.S,est.IV);

20 IV — [L,...,1];

21 kp — est.kp;

22 if decided then

// period expired

23 ‘ send OV} = (Output(est.S), k) to actuators;
24 | end
25 end

that the corresponding consensus instance was unsuccessful,
merely that no decision was received by the replica.)

Note that, even if Consensus is aborted, est may have
been modified. This is important for ensuring state consistency
since aborted instances could have received proposals which
were potentially decided. In order to ensure that a decided
controller state is used as the basis for the controller state to
be proposed (and possibly decided) in the following period,
even under crash failures, it must be guaranteed that a majority
of replicas are aware of that decided state. While it cannot be
guaranteed that a successful decision is received by a majority
of replicas within the current sampling period, a decision
implies that a majority of replicas received and acknowledged
the corresponding proposal, which is then contained in those
replicas’ estimate at the end of the sampling period.

Therefore, the new controller state S at the end of the sam-
pling period is determined as the Update of the state and input
vector contained in est (1.19), IV is cleared (1. 20), and the base
period kj, of the current state is set to that of the estimate (1.21).
Note that this update is performed regardless of the success of
the consensus instance, so that S contains a controller state that
is reachable from the decided state of any possibly successful
consensus instance Cy, . Finally, if Consensus was not aborted,
then the replica calculates the output vector OVj and sends it to
the actuators (1.23) before waiting for the next sampling period.

2) Consensus: For each instance Ci, we use a modified
version of the consensus algorithm by Dolev et al. [16], which
is an adaptation of the algorithm by Chandra and Toueg



Algorithm 2: Consensus algorithm executed by r € G for
period k. Modifications w.r.t. [15], [16] are shown in blue.

1 Function Consensus(k, &est, &mode, &v, &vp)
while true do
if mode = viewchange then
Vvev+1;
NextView(k, &est, &mode, &v, &vp);
end
«— coord(v);
if » = ¢ then
est.kp «— k; // set base period of est
send (Propose, k,v,est) to G;
end
wait until received Propose from ¢ or ¢ € Suspects,;
if received (Propose, k, v, est’) then

est « est’;

Vp — v;

send (ACK, k,v) to c;
Ise if received message with v/ > v then

v v,

NextView(k, &est, &mode, &v, &vp);

continue;
end
if » = ¢ then
wait until received { 5 ] (ACK k,v);
send (Decide, k,v,est) to G
end
wait until received Decide from c or ¢ € Suspects,;
if received (Decide, k,v,est’) then
est « est’;
Vp < v;
return ;
else if received message with v’ > v then
| v
else
‘ Vvev+1;
end
NextView(k, &est, &mode, &v, &vp);
37 end
38 end

// ¢ = current coordinator
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[15] (Sec. 6.2) for considering omission failures. It is shown
in Algorithm 2.8 We strive to keep the presentation close
to the original algorithms, with our core modifications—for
distinguishing consensus instances of different periods and for
achieving state consistency—highlighted in blue. However, we
split the algorithm into two parts described separately in the
following, in order to better explain the (failure-free) normal
operation of the algorithm as opposed to the handling of node
failures. Instances of the modified consensus algorithm are
aborted after the corresponding sampling period has ended, as
described in the previous section.

The protocol uses a dedicated coordinator replica that is
responsible for deciding on an estimate. In such leader-based

8 Notation: Received messages are matched to a certain format, indicated

in the pseudocode. Fields marked prime are placeholders for arbitrary values.

For instance, the predicate received (Propose, k, v, est’) specifies that a
Propose message with the specified values for k and v is expected, accepting
an arbitrary value est’ for field est. Non-matching messages are discarded
or treated specially where indicated. In particular, messages with the wrong
period k are discarded.

protocols, we can distinguish between the normal operation
mode when there is a single persistent coordinator without
failures, and a special view change mode where a new
coordinator has to take over (e.g., due to a crash failure of
the previous coordinator) before normal operation can resume.
We will first describe normal operation before discussing the
mechanism for changing the coordinator.

a) Normal Operation Mode: For the moment, we ignore
lines 3-6, as they do not pertain to normal operation. At the be-
ginning of the consensus instance Ck, the coordinator ¢ sets the
base period est.k;, of its estimate to the period k of the current
consensus instance (1.9) since this estimate is to be proposed
and may end up being decided. (This value is used to maintain
state consistency when electing a new coordinator, as described
later.) It then multicasts a Propose message containing its es-
timate (1. 10). Upon receiving a proposal for the current period,
all replicas (including ¢) accept it by logging the contained
values and acknowledge this to ¢ (ll. 14—16). After receiving
acknowledgments from a majority of replicas, the coordinator
confirms the decision by multicasting a Decide message (1.24).
Upon receiving a decision for the current period, all replicas (in-
cluding c) accept it by logging the contained values (in case the
corresponding Propose had not yet been received) and return to
the controller loop, indicating successful termination (11. 28-30).

In normal operation, state consistency is satisfied by design
since the decided state S; is always reachable from the
coordinator’s previous state Si_;. Incidentally, this is either
the previous decided state if the coordinator decided in the
previous period, or it is reachable from the last decided
state since the coordinator always performs the state update
in Algorithm 1, 11.19-20 otherwise. Output consistency is
satisfied since outputs are only generated upon deciding, and
we assume that actuators apply output vectors labelled for
period k only if received within the time interval (¢x_1,;].

b) View Change Mode: Normal operation is interrupted
if at least one replica suspects the coordinator to have failed.
Coordinator failures (real or suspected) are handled by electing
a different replica to be the coordinator and starting over
in normal operation mode. As in [15], [16], our algorithm
uses a rotating coordinator approach, such that coordinators
are chosen deterministically. To this end, a monotonically
increasing view’ number v is incremented upon suspected
coordinator failure and used to agree upon the next coordinator
coord(v) = (v mod N) + 1. This “view change” is performed
in the procedure NextView shown in Algorithm 3, which is
invoked either if no Decide message was received (Alg.2,
11.34,36) or if a message with a higher view number was
received (Alg.2, 11.18-20,32,36). Note that messages with
outdated view number are always discarded.

In normal operation, the persistent coordinator decides a
single state for each period that is reachable from previously
decided states. In contrast, when switching to a different
coordinator, special care has to be taken that

9While the term round is used in [15], [16], we use the term view introduced
in [13] because it is less likely to be confused with a period. The same
concept is also referred to as ferm in [14].



Algorithm 3: View change executed on r € G. Modifications
w.r.t. [15], [16] are shown in blue.

1 Procedure NextView(k, &est, &mode, &v, &vp)
2 mode « viewchange;

3 | send (Estimate, k,v,vp,est) to coord(v);
4 if » = coord(v) then
5

wait until received
{(Estimate, k,v, v, est’)} from G\ Suspects,;

6 if received [NT“] Estimate messages then
7 select message with max (v}, est’.kp);
8 est « est’;
9 Vp < Vs
10 else if received message with v/ > v then
1 Vv —v';
12 NextView(k, &est, &mode, &v, &vp);
13 else
14 vev+1;
15 NextView(k, &est, &mode, &v, &vp);
16 end
17 end

18 mode «— normal;
19 return;
20 end

(a) no two coordinators decide different states Si for the
same sampling period k (agreement), and

(b) no coordinator proposes a state S that is not reachable
from all states Sy decided in earlier periods k’ < k.

The agreement concern (case a) is only relevant for view
changes within the same consensus instance. It is already
addressed by the standard consensus algorithm and described
in [15], [16]. The interested reader can find a brief description
of how that algorithm avoids conflicting decisions within a
consensus instance in Appendix C.

In contrast to agreement, the second concern (case b) is
also relevant when proceeding from one period to the next,
and therefore requires special treatment. While the agreement
property is maintained by the consensus algorithm when
coordinators change within the same period (i.e., consensus
instance), we must also prevent newly elected coordinators from
proposing any state that is not reachable from the decided
states of previous periods, which is crucial for maintaining
state consistency. Since this introduces a dependency between
subsequent consensus instances, we modified the view change
mechanism to ensure that the new coordinator always selects an

estimate containing a state that is valid w.r.t. state consistency.

For this reason, each estimate contains the base period est.ky
of the corresponding state, which is equal to the last received
Propose or Decide message (cf. Alg.2, 11.15,29). Because
the only way to modify a replica’s state (S or est.S) without
touching est.kj or v, is through an Update in the main loop,
and because k is monotonically increasing on each replica,
we know that any controller’s state estimate est.S must be
reachable from a state S’ that was contained in an estimate
proposed or decided in period est.k; and view v,. Conversely,
if any coordinator decided a state S” in period £’ and view v/,
then a majority of replicas must have received the corresponding

NextView []

R1 R2 R3

Figure 2. Example for state-consistent viewchange with three replicas.
Coordinators are indicated by a shaded state node. Period k = 2 starts with
different states and equal base period k; = 0. R1 (coordinator) proposes Szl,
which is acknowledged by R3 and then decided. R3 adopts the proposed state
(and base period) for its next update, without generating an output. The Decide
messages from R1 are lost. In the next period, R1 becomes unavailable and
R2 is elected. The new coordinator’s state is not reachable from the state
S2l decided in k = 2. However, it receives an estimate with S31 (which is

reachable from Szl). Because this estimate has a higher base period (k;, = 2)
than its own (kp = 0), R2 adopts the state and proposes it for period k = 3.

Propose message and therefore have est.k, > k” and vp, > v'.
The majority of estimates collected by the new coordinator in
the NextView procedure necessarily contains at least one “wit-
ness” to the most recent proposal. Now, the new coordinator can
identify the most recent possibly successful consensus instance
Ci by choosing the largest est.k;, = k’ among the received
estimates with the most recent view'® v, (1.7). If Ci» was suc-
cessful, the corresponding state est.S is necessarily reachable
from Sy = Decision(Cy ). Finally, note that coordinators can
only propose values as long as they are in normal operation
mode. If a new coordinator was still waiting for estimates
when the previous consensus instance was aborted (i.e., mode
= viewchange at the beginning of the new period), it performs
another view change (cf. Alg.2, 11.3-6). Figure 2 shows a small
example of how view change maintains state consistency.

Note that NextView is aborted whenever the -calling
consensus instance is aborted, and that receiving a message
with a higher view number within NextView triggers another
viewchange (1. 11, 12). Note also that viewchange is part of
the single consensus loop in the original consensus algorithm,
e.g., comprising Phase 1 and Phase 2 (except for the last line
where the proposal is sent) in Fig.6 of [15]. Our presentation
of the algorithm is equivalent since every round of consensus
with a different coordinator must be preceded by a completed
view change, except for the initial round where the coordinator
proposes its own estimate.

D. Correctness

Now we asses the presented algorithm with respect to the
requirements laid down in Sec. V-A. The correctness of
individual consensus instances using Algorithms 2-3 with
respect to agreement, integrity, and termination follows from

10Choosing an est with largest vp, is necessary for agreement [15].



the correctness of the original consensus algorithm which
is proved in [15], [16]. We note that we make only three
essential modifications to the algorithm, none of which affect
the properties of individual consensus instances. First, we add
a period counter k to all relevant messages for distinguishing
between different instances, which ensures that messages
not belonging to the current consensus instance are rejected
but does not alter the message pattern within the isolated
instance. Second, we set the base period field est.k; of
proposed estimates to k, which would be equivalent to setting
the same part of all estimates to a fixed value in an isolated
consensus instance. Third, we refine the selection of estimates
during view change in Algorithm 3, 1.7 by adding a secondary
criterion based on est.k;. However, the chosen estimate is still
from the set of messages with maximum v;,, and in the original

algorithm an arbitrary estimate from this set would be selected.

The termination property may be violated because consensus
instances are aborted in Algorithm 1 when the next period
begins. But as shown in Sec. V-A, we do not require the

termination property to hold for individual consensus instances.

(Indeed, consensus termination within one period cannot be
guaranteed [23], [24], while eventual termination of each
instance is not sufficient to argue about the availability of the
replicated controller.)

Requirement 1 is satisfied due to the agreement property
ensuring (10) and Algorithm 1, 11.22-24, ensuring (11).

Lemma 2: The protocol defined by Algorithms 1-3 satisfies
Requirement 2.

The proof is described in Appendix B.

E. Discussion of the Algorithm

While we presented the SCRaM protocol in a way that is
focused on reasoning about its correctness, it admits several
optimizations for reducing the message overhead: For instance,
the coordinator can omit the estimate from Decide messages
to all replicas that acknowledged the corresponding Propose.
Also, if the coordinator already decided for the previous period,
it can omit the controller state from its estimate in Propose
messages for the current period to replicas that acknowledged
its Propose for the previous period. During view change, the
Estimate messages can be reduced to contain only k, v, vp,
and kp. The new coordinator can then request missing state
information from only one replica.

While crash recovery was neither part of our system model
nor considered in our description of the algorithm, replicas
may also recover from crash failures. If a majority of replicas
are always available, recovering replicas can listen for a
Propose or Decide message and adopt the state information
from the estimates contained therein, or they can receive
Estimate messages from a majority of participants as part of
normal leader election. After obtaining a valid state in that
fashion, replicas can resume the algorithm as usual. However,
if fewer than a majority of replicas may be available, they
are required to log their state information in stable storage.
Upon recovery, the controller state can be brought up to
date (only in terms of the sampling period) by repeatedly
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Figure 3. Empirical CDF of the maximum absolute pendulum angle
maxy |6x| (left) and of the cart position range maxy x; — ming xz (right)
over all experiments for both replication protocols.

applying Update(S, [L, L,..., L]), with values for k; and v,
remaining as prior to crash failure. Of course, the protocol can
only make progress while a majority of replicas are available.

VI. Evaluation

In this section, we present an evaluation of SCRaM using
an experimental CPS setup. The Quarts protocol as described
in [9] is considered for comparison. We implemented both
protocols in the Julia language [26], using the SimJulia
package to build an event-based simulation of the sensor
and actuator components and message exchanges. Message
loss follows a Bernoulli process with probability p = 1073,
while the delay for each message is drawn from a uniform
distribution on (0 ms, 0.5 ms]. Process failures are simulated
as a Gilbert-Elliot process with (stationary) crash probability
0. = 0.1 and mean time to repair (MTTR) R = 3.

The physical part of the experiment is an inverted pendulum
(angle from upright denoted by ) balancing on a cart (position
denoted by x). The cart is driven by a stepper motor using
a belt assembly. A microcontroller drives the stepper, reads 6
using an incremental rotary encoder, and communicates with
the PC running the event-based simulation of the replicated
controller, which is periodically suspended until receiving a
new measurement, to keep in sync with real time.

We used a standard LQG design for the N = 3 controller
replicas, i.e., Update is a Kalman filter iteration, while Output
applies an LQR gain to the filter’s state estimate. The sampling
period is Ty = 50 ms. Closer details of the experimental setup
are provided in Appendix D.

Our experiment consisted of balancing the pendulum for
180s, starting upright with the cart at the origin. We repeated
the experiment 25 times for each protocol, always with the
same realization (seed value) of the crash failure model.
The average availability—i.e., the proportion of periods with
OV # 1—was 99.2% for all experiments. Fig. 3 shows the
cumulative distribution of the maximum absolute pole angle
and the position range covered by the cart pre experiment. Even
though both replication protocols execute the same controller
function and achieve the same availability, the NCS replicated
using SCRaM keeps the angle 2.97° (or 35 %) smaller and the
cart range 17.15cm (or 36 %) smaller on average than with
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Figure 4. Unavailability (top) and messaging cost (bottom) of both replication
protocols for p € [107*,107!], 6. = 1073

Quarts. This demonstrates that providing state consistency
with SCRaM can offer a clear performance advantage.
Furthermore, Fig. 4 shows a comparison of SCRaM and
Quarts for varying message loss probability with respect
to unavailability and messaging cost (in average protocol
messages sent per period) using Sh simulations (i.e., 9 x 103
periods at Ty = 20 ms). The unavailability of both protocols
is comparable at about 3 x 1078 for low message loss rates.
However, the unavailability of Quarts increases at high
message loss rates, while that of SCRaM remains low.
Moreover, the messaging cost of SCRaM is consistently lower
that that of Quarts by 30—45 %. This demonstrates that SCRaM
is efficient and more robust to message loss, which implies
that state consistency comes at no additional cost in general.

VII. Summary and Outlook

In this paper, we defined two consistency concepts for controller
replication in networked control systems (NCS), namely output
and state consistency, which together ensure that a replicated
controller can be used as a functionally indistinguishable drop-
in replacement for a non-replicated controller. With SCRaM,
we presented a corresponding efficient replication protocol.

While SCRaM can be used very generically for periodically
sampled controllers and is agnostic to the underlying
control design methodology, we plan to incorporate semantic
knowledge for specific controller designs into our replication
algorithm in future work. In particular, control-specific
performance metrics could be used to inform the choice of
states to propose by modifying the view change algorithm,
or state consistency could even be replaced with a condition
related to optimal control performance.
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Appendix A

Proof of Lemma 1: We use inductive reasoning to show
that there exists a sequence (IV,? ) x>0 Of input vectors for



which (9) is satisfied. Since the output of ¢ obeys (4), we can
assume Gz‘“ =0 = OV, = L without loss of generality.
Let the periods when G produces an output be denoted by k;,
where k;,1 = min{'r | T> ki, G # (Z)}, ko 2 0.

Basis: Since Sy is fixed, the initial output of replicas
re Gg‘“ is OV] = OV = Output(So). Hence, (9) is satisfied
for k < ko = 0 with an empty input vector sequence oy = €.

Inductive step: Assume that (9) is satisfied for k& < k;
with some input sequence o; = (IV,S)];‘:OI and that all replicas
s € G hold the same state S} =S¢ = Sy, as c.
< G
kis1 = ki + d(ki+1). Because G is state consistent, Sk,
must be reachable from Sy,, cf. (8). Therefore, there exists a

sequence of input vectors o’ = (I V’)k”,'( " such that

Now consider a replica r and note that

St = Sk, = Undate? 8 (5, )
and, consequently, OVIS,+l = OV,:_“. Because of (7), this is true
with identical values for all replicas r € Gz‘fjl. Therefore, (9) is

satisfied for k < k;,; with the input sequence 0] = o;00”’. B

Appendix B

Proof of Lemma 2: Assume that Cy is successful and the
controller state Sx = Update(Sk—1, [Vi—1) is decided in view v.
Therefore, a majority of replicas must have base period kj = k,
base view v, > v, and controller state S = Decision(Ck) at
time t; (i.e., Alg.1 after 1.21).

Now assume any replica r proposes an estimate with
(83, 1V}) in view v/ > v for Ci41. If v/ = v, then r = ¢ and
S;( = Si. If v/ > v, then r must have chosen an estimate with
Sk or (Sg—1,IVk—1) in Alg.3, which was acknowledged by a
majority of replicas for C. Therefore, only an estimate with
state Si (and arbitrary V) can be proposed for Ci1, which
is equivalent to the proposal of a state S, | € R(Sk) in terms
of Property 2 and satisfies (12). By extension of the same
argument, this is true for all Cy/, k" > k. [ |

Appendix C

While the mechanism for guaranteeing agreement in Alg.2-3
is treated in [15], [16], we briefly explain it here for the sake
of completeness. Each replica only accepts messages with
its own current view number v, and stores the view number
of the last received Propose or Decide message as v, (cf.
Alg.2, 11.15,29). Therefore, if any coordinator decided a value
in view v’, then a majority of replicas must have received
the corresponding Propose message and therefore have
vp = v’. For a successful viewchange, the new coordinator
must collect estimates from a majority of replicas (1l.3,6),
which necessarily contains at least one “witness” to the most
recent proposal received by a majority. The new coordinator
adopts this estimate by choosing a message with the largest
vp (11.7-8). Therefore, if a value was decided in the previous
view, it is impossible for a different value to be decided.
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Figure 5. Empirical CDF of LQR cost J for both replication protocols.

Appendix D

The cart-driven inverted pendulum used in our experiments is
0.6m long and runs on a track with a usable range of 1.2m.
We denote the state of the system by & = [x,x, 6, 6]7, where
x is the distance of the cart from the origin (track center) in
meters and 6 is the angle of the pole from upright in radians.
Sensor measurements are y = [x,6]" and the actuation input
is the cart acceleration u = %. For the design of the LQR
controller, we use the continuous-time cost metric
00. 01

f [
0 0 0 0()1

Linearization and dlscretlzatlon at Ty = 50 ms of the nonlinear
pendulum equation yields the discrete-time LTI system

J—hm—

£+0.02-u? dr.

1005 0 0 0.00125
Ece1 =0 0 1.018 005 |k + | 00070 |tk + Wk
0 0 0.7051.018 0.07185
000
yk—[ 0010 ]fk"‘vk

T
= Z E7 Q& +2¢7 Huy + Ru?, where
k:

5.0 0.125 0 0 2 %ggg 5 3
0.1250.054 0 . 10~ —-10~
0= 0 0 75960207 107 5.359 107, R=10"".
0 0 0.207 0.057 1.975

The LQR optimal input for this system is
up = [5.295 5.967 -42.519 —11.239] &k

We use a Kalman filter variant presented in [5] to handle
1Vs with missing components. As noise covariance matrices
for wy and v, we take

0.0504 0.0125 0 O

— | 0.0125 0.5 0 0 -3 —[015017.1073
W= 0 0 5.143 4 107, vV = [ 0 2.5] 107
0 0 4.301 102

Fig. 5 shows the cumulative distribution of the LQR cost J
for all experiments, which is 13.5% higher on average for
Quarts compared to SCRaM.

The Gilbert-Elliot model for crash failures consists of a
two-state Markov chain. In the good state (G), a replica may
be sporadically unavailable with probability p. In the bad state
(B), a replica remains unavailable (crashed) until it recovers to
the good state. The transition probability for G—B (crash) is
R(Tf 90 y = 0.19 %, while that for B—G (recover) is % ~ 1.7 %.
Because the number of concurrently crashed replicas cannot
be bounded in this model, we use a recovery operation based
on the assumption of stable storage as outlined in Sec. V-E.
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