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Abstract—Traffic planning is the key enabler of time-triggered
real-time communication in distributed systems, and it is known
to be notoriously hard. Current approaches predominantly tackle
the problem in the domain of the traffic planning problem, e.g.,
by formulating constraints on the transmission schedules for
individual data streams, or the links used by the data streams.
This results in a high degree of coupling of the configuration
of an individual data stream and the global (network-wide)
traffic configuration with detrimental effects on the scalability
and runtime of the planning phase.

In contrast, we present a configuration-conflict graph based
approach, which solves the original traffic planning problem by
searching an independent vertex set in the conflict graph. We
show how to derive the configuration-conflict graph, and discuss
the conceptual advantages of this approach. To show the practical
advantages of the conflict-graph based traffic planning approach
we additionally present a proof-of-concept implementation and
evaluate it against a reference ILP-based implementation. In our
evaluations, our proof-of-concept implementation of the conflict-
graph based approach outperforms the reference ILP and is more
memory efficient, making it a promising alternative to current
constraint-based traffic planning approaches.

Index Terms—time-triggered traffic, conflict graph, routing,
scheduling

I. INTRODUCTION

Many distributed applications rely on guaranteed real-
time communication. Examples of such applications can be
found in many domains, e.g., vehicular on-board networks,
industrial manufacturing, or power-grid automation. A well-
established paradigm to achieve real-time communication is the
combination of time-triggered transmissions with a network-
wide coordinated configuration of routes and schedules.

Currently, the ongoing work of the Time-Sensitive Network-
ing (TSN) working group has brought several mechanisms for
real-time communication into standard IEEE Ethernet networks.
In this paper, we focus on a key mechanism introduced by the
TSN working group, the so-called Time-Aware Shaper (TAS)
which is suitable for time-triggered traffic. The TAS allows to
exert fine-grained temporal control over the forwarding process
in the switches, i.e., TAS allows to schedule the transmissions
at the switches according to a cyclic time-schedule. We use
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this combination of the TAS with meshed Ethernet networks
as the technological backdrop of this paper and revisit the
traffic planning problem, i.e., the problem of computing routes
and time-schedules. In the traffic planning phase, different
communication requirements, e.g., frequency of transmissions,
amount of data per transmission, delay-bounds, etc., as well
as the network topology have to be accounted for. In TSN
networks TAS requires a time-schedule to be calculated for
every switch. Calculating such schedules is NP-hard in general,
as is the combined problem of joint routing and scheduling [1].

A large body of work has been dedicated to solve the traffic
planning problem with constraint-based programming methods,
such as (integer) linear programming (ILP), satisfiability
theories (SAT, SMT), or constraint-based heuristics. In these
approaches, the traffic planning problem is formulated directly
as a set of constraints on the routing variables and scheduling
variables. A solution to the traffic planning problem is then
equivalent to an assignment of values to the routing and
scheduling variables with which the hosts and the nodes
in the network can be configured such that the conditions
necessary for real-time communication are satisfied. Operating
directly in the domain of the original traffic planning problem,
i.e., formulating constraints directly for the routes of the
packets and the transmission schedules at the network elements,
results in a high-dimensional, highly-coupled problem. For
example, if the variables for a single stream are changed
somewhere in the network, this can trigger a cascade of
constraint violations for many other streams which share the
same network resources (queues, links), e.g., if the change
inflicts collisions in the transmission schedules. Thus, solving
the original traffic problem has the drawback of high coupling
between a configuration of a single stream and the global
configuration for all streams.

In contrast, we present a different, conflict-graph based
approach to solve the problem of traffic planning for time-
triggered traffic. Conflict graphs have been used in the context
of scheduling problems before [2]-[5]. Compared to the classic
constraint-based approach for time-triggered traffic planning,
our conflict-graph based approach does not operate directly
on the level of routing and scheduling variables, but on the
level of stream configurations where one configuration is one
possible assignment of the routing and scheduling variables
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for a particular stream. In our approach, we first construct a
configuration-conflict graph from the original traffic planning
problem. Then, we search an independent vertex set in this
conflict graph. A set of independent vertices in the conflict
graph represents conflict free stream configurations. If the
independent vertex set contains stream configurations for all
the traffic in the original traffic planning problem, we have
solved the original traffic planning problem, too.

This approach has several advantages. Due to the reduced
coupling compared to the established constraint-based ap-
proaches, we do not need to build the complete conflict graph
covering the whole solution space right from the beginning.
Instead, we can start with a small conflict graph built from
a small set of initial configurations and perpetually grow the
graph until a complete solution is found.

This does not only have the potential to speed-up the solving
process, but also allows to quickly obtain feasible solutions
for a subset of the streams which have to be placed in the
network, if the solving process is aborted prematurely. This
feature becomes important in dynamic scenarios with ephemeral
network topologies. For example, consider a sensing scenario
where a distributed wired sensor grid generates real-time data
streams, e.g., using acoustic sensors. These data streams are
evaluated in real-time by mobile nodes, e.g., with the purpose
of tracing [6] some event. The mobile nodes connect wirelessly
via access points to the sensor grid. Here, a network topology
is only valid until the mobile nodes are handed-over from
one access point to another. If the traffic rate of the sensor
data streams is high compared to the hand-over of the mobile
nodes, but the hand-over is “fast” compared to the time it takes
to compute a complete network configuration, quick partial
solutions where not all streams are scheduled/routed are highly
valuable.

The conflict graph-based approach additionally allows to
incorporate “domain-specific” knowledge. For example, if all
streams start at the same node, it seems intuitively preferable
to start with a set of configurations where the transmissions of
different streams are evenly distributed in time.

Summarized, our contributions in this paper are threefold.

e We show how to solve the traffic planning problem for
time-triggered traffic by a conflict-graph based approach.

o We present a proof-of-concept implementation for the
conflict-graph based approach.

e« We numerically evaluate our implementation of the
conflict-graph based approach and compare its perfor-
mance to a constraint-based approach which uses integer
linear programming.

In the remainder of this paper, we first discuss the related work
in Sec. II. We introduce the traffic planning problem and how
to solve it with the conflict-graph based approach in detail in
Sec. III. We describe our proof of concept implementation of
the conflict-graph based approach in Sec. IV and evaluate it
in Sec. V, before we conclude the paper in Sec. VI.

II. RELATED WORK

Traffic planning for time-triggered traffic is not a new
problem and has been extensively researched. Similarly, conflict
graphs have been employed in scheduling problems, albeit for
the purpose of traffic planning it is predominantly applied to
wireless scenarios, cf. [4], [7]-[9].

In this paper, we use conflict graphs for traffic planning of
time-triggered traffic in IEEE TSN networks, where we can
identify two major focal points of the research, constraint-based
programming approaches and heuristics.

The constraint-based programming approaches either con-
sider only the scheduling aspect [10], [11], or scheduling and
routing [12]-[14]. In these approaches, a set of constraints
is formulated using the respective framework (satisfiability
modulo theories, array coding, integer linear programming) in
the domain of the network problem, e.g., constraints directly
restrict the transmission schedule or the paths of packets.

Since traffic planning for time-triggered traffic is NP-hard,
[15], [16] propose heuristics. The heuristics share the character-
istic that a prematurely chosen, sub-optimal configuration for
any individual stream can later on obstruct the placement of
other streams, and the heuristics operate directly in the domain
of the traffic planning problem.

In contrast to previous work, our approach solves the original
traffic planning problem by searching independent vertex sets
in a conflict graph derived from the original traffic planning
problem. This transformation makes the problem suitable for
heuristics, as well as exact algorithms, and lends itself naturally
to iterative approaches, since the conflict graph allows a more
intuitive reasoning about the relation of individual (stream)
configurations to the global solution for all streams.

III. TIME-TRIGGERED TRAFFIC PLANNING

Next, we explain in Sec. III-A the system model of the data
network and the traffic streams and what exactly we refer to as
the traffic planning problem. Then, we show in Sec. III-B how
to translate the original traffic planning problem to the conflict
graph. Finally, we establish fundamental relations between
the conflict graph and the original traffic planning problem in
Sec. HI-C.

A. The Original Problem: Routing and Scheduling of Time-
triggered Traffic in a Data Network

The original problem, which we solve with the concept
of conflict-graph based traffic planning, is the problem of
traffic planning for time-triggered traffic in a data network. In
this paper, solving this problem requires finding transmission
schedules and routes for a given set of data streams in a given
network topology. Next, we explain these terms in more detail.

1) Data Network: The system model of the network and
the traffic is derived from networks with IEEE Std 802.1Q-
compliant switches with TSN capabilities (called bridges
in [17]) with full-duplex IEEE Std 802.3 Ethernet links [18].
That is, the network is a packet-switched communication
network, and we consider only a fully-switched scenario,
i.e., physical links (e.g., “Ethernet cables”) are point-to-point
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Fig. 1. Time-aware shaper for one port of an IEEE Std 802.1Q compliant
switch. We use one class exclusively for time-triggered traffic.

connections. Communication between any pair of network
elements is possible, if there exists sequence of links connected
by switches between the source and destination network
element, since switches are those network elements which
can forward data packets. Packet forwarding can be controlled
with the help of the switches’ routing capabilities. We employ
the routing capabilities to control the paths along which the
packets of the individual streams are forwarded through the
network. In IEEE Std 802.1Q-compliant networks this can be
achieved, e.g., with VLAN tagging or explicit path control [19].
Switches can distinguish between different traffic classes and
provide per-traffic class packet queuing with FIFO-semantics,
cf. Fig. 1. This is a prerequisite for the switch’s ability to
control the exact point in time when the head-of-queue packets
from each traffic class are eligible for transmission (cf. Fig. 1)
using a cyclic, per-port switch-local time-schedule. The TAS
from IEEE Std 802.1Q is a prominent example providing this
functionality.

To control the forwarding process temporally across the
network, a common time-base in the network is necessary.
This can be achieved by clock synchronization algorithms,
such as Precision Time Protocol (PTP).

Additionally, we assume, for the sake of simplicity, that all
switches have the same processing delay and that the processing
delay is constant. Likewise, links have the same propagation
delay and data rate in the data network. Thus, without queuing
delay we have the same per-hop delay for equal-sized messages.

2) Stream: The time-triggered traffic in the network consists
of so-called streams. A single stream represents the directed
information flow between two designated host nodes. For each
stream, the so-called talker periodically generates packets and
injects them into the network. We support different transmission
periods for the streams. The network is supposed to forward
the packets to the destination node which is called listener.

Table I summarizes the stream parameters. Stream parame-
ters are externally given, e.g., derived from the requirements
of a distributed application. The ingress network node and
the egress network node are the source and destination of
the packets of the stream, respectively. An ingress network
node can be either the talker node, or the switch where the
talker node is attached to, since the link between the talker

TABLE I
PARAMETERS FOR A SINGLE STREAM.

Loycle transmission period
tduration duration of the transmission of a single packet
te2e end-to-end delay bound

ingress node  the first node in the data network for which a newly
generated packet is considered in the traffic planning
the last node in the data network for which a packet

of the stream is considered in the traffic planning

egress node

R processing streama [o.Jstreamb ‘

time

Fig. 2. Zero-queuing illustrated for two streams with different size and with
the same talker (on the left) and same listener (on the right). We assume that
processing delay is independent of the packet size.

node and the ingress switch of that stream is only a constant
delay factor. The same holds for the egress. In case that the
ingress network node and egress network node are switches,
the end-to-end-delay bound has to be adjusted accordingly.

All streams share a single traffic class which is used exclu-
sively for time-triggered traffic. This isolates time-triggered
traffic, which is often of high-criticality, from other traffic types
and keeps the number of “reserved” queues to a minimum.

With the model of the network and the streams, we can
formally define a stream configuration.

Definition 1. A configuration for stream s is the tuple of
all scheduling variables and routing variables defined for
stream s which fully define the talker behavior and the network
behavior for stream s such that all constraints on the routes
and schedules of the traffic planning problem are satisfied in
the empty network.

Our definition thus prohibits “invalid” variable assignments,
e.g., paths which do not connect talker and listener.

3) Traffic Planning (Routing and Scheduling) for Time-
Triggered Traffic with Zero-Queuing: In this section, we lay
out the problem of traffic planning.

We restrict ourselves to “quasi-static” scenarios. This is
a pragmatic simplification, since consistent network updates
are challenging even without real-time constraints. How to
update the configuration in the switches in a consistent way
while maintaining required real-time guarantees and preventing
other traffic, e.g., unscheduled traffic in a converged network
scenario, to interfere with the time-triggered streams is even
more difficult. In the following, we therefore consider the case
that once route and transmission schedule are assigned to a
stream, its configuration is not changed during its life-time.



The input for the traffic planning problem in this scenario
consists of

« a network, with its topology and specification for switches
(processing delay, transmission speed) and links (propa-
gation delay),

o and a set S of streams with the parameters listed in Tab. L.

The traffic planning problem is to find a global configuration
that guarantees that packets from each talker reach the
respective listener within the required end-to-end delay. More
specifically, we use the zero-queuing paradigm. With zero-
queuing, the traffic planning problem becomes the problem of
finding a global configuration for the streams which guarantees
that packets of time-triggered streams traverse the network
without ever being buffered on the way from talker to listener.
Thus, the global configuration is the solution of the traffic
planning problem and consists of stream configurations for all
streams, and each stream configuration itself is comprised of
a route and a schedule for the talker and switches. Next, we
break down the properties of the problem and its solution:

e Network constraint. The network and its topology con-
strain the movement of a packet through the network.
Packets can reach switches or hosts only via links. For
each movement of a packet, a corresponding amount
of time passes, e.g., the time necessary for processing,
transmission and propagation of the respective packet.
Combined with zero-queuing, the traversal of a packet is
fully determined by the data network properties and the
time it was injected into the network.

o Temporal isolation constraint. At any moment and every
output port and link in the network, there is at most one
packet in transmission, i.e., the transmission of packets is
temporally exclusive.

e Ordering constraint. Due to FIFO semantics, packets
which are transmitted over the same output port arrive
in the order of transmission at the input port of the next
hop, and packets are not reordered inside the switches.

o Routing and delay constraint. Packets of a specific stream
enter the network at the talker network node and have
to reach the listener network node where they leave the
network. All packets of a stream are routed along the
same path. Zero-queuing imposes a limit on the length of
each stream’s route via the end-to-end delay teo..

o Phase constraint. The talker node of any stream completes
the transmission of the first packet within its first cycle.
This is a technical constraint to exclude solutions which
“abuse” the mathematical concept of infinity.

o Interarrival constraint. The interarrival time of packets at
the talker node of each stream is determined by Zcycle.

With zero-queuing, talker schedules and switch schedules
are such that all packets enter an empty switch queue, are
immediately selected for forwarding, and sent to the next
hop (cf. Fig. 2). The talker schedule restricts when talkers
emit packets, and switch schedules control when to forward
packets of each traffic class. This eliminates queuing delay
and binds the end-to-end delay of packets to the path length.
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Fig. 3. Scheduling variable Zpp,se determines the transmission of packets along
the network. Here, the transmission frequency of the upper stream (upper) is
twice the transmission frequency of the lower stream, i.e., tcycle Of the lower
stream is equal to the hyper-cycle.

We therefore define the scheduling variable tppase (cf. Fig. 3).
The phase fpnase Of s is defined as the start of the transmission
of the first packet of streams s after ¢ = 0 at the talker.
From tppase, We can derive the network schedules for the
TAS. For example, if transmission of first packet starts on
outgoing link of talker at fy = %phase, We have to allow
transmission until g + tguration When the transmission of this
packet ends on this link via appropriate schedule entries.
Similarly, we can derive the remaining schedule entries from
the transmission intervals of the packets along its route.
The transmission on the next link starts without queuing at
t1 = to + tduration + fprop + Tproc. the transmission on the
subsequent link starts at t1 + tquration + prop + Tproc, and so on,
and the talker transmits the next packet at to + Zcycle-

We analogously introduce the routing variable ipa to
identify one of the candidate paths of stream s. Candidate
paths are pre-computed paths from talker to listener, or, to be
more exact, from the ingress node of s to the egress node of
s. According to the routing and delay constraint and Def. 1,
paths which are “too long” such that packets traversing them
do not reach the egress network node within their stream’s
te2e must not be candidate paths.

B. Mapping the Original Problem to Cvertices and the Conflict
Graph

Our first contribution is to show how we translate the original
traffic planning problem into an independent vertex set problem
in a conflict graph.

In the conflict-graph based traffic planning approach, we first
construct a conflict graph from the original traffic planning prob-
lem. The nodes of the conflict graph are called configuration
vertices (in short: cvertices). A single cvertex represents one
possible configuration of a single plannable, i.e., routable and
schedulable, entity (here: a stream). Edges between cvertices
in the conflict graph encode a violation of the traffic planning
constraints, cf. Fig. 4. The traffic plan can then be obtained
from an independent vertex set in the conflict graph, which
contains at least one cvertex for each plannable entity.

Next, we formally introduce the cvertices in the context of
our concrete system model from Sec. III-A, and we explain
how to build a conflict graph from these cvertices.

1) Cvertex (Configuration Vertex): A cvertex is the funda-
mental building block of the conflict graph.
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traffic planning problem. Vertices in the conflict graph correspond to stream
configurations (here: symbolized by routes).
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Fig. 5. Relation between stream and cvertices and candidate paths.

Definition 2. A cvertex v, is a vertex in the conflict graph

which represents a single feasible configuration of a stream s.

Since there can exist multiple cvertices for stream s, there

exists a surjective mapping from cvertices to streams, cf. Fig. 5.

In the following, we will say a cvertex v. belongs to a stream
s, iff v, represents a configuration for s and similarly s belongs
to v, iff v, is a configuration for s. It is easy to see, that
we can generate cvertices independently for each stream, just
by taking into account the properties of the network and the
respective stream.

2) Conflict and the Configuration Conflict Graph: Conflicts
are the “glue” between cvertices and the original traffic planning
problem.

Definition 3. There exists a conflict between two cvertices v}

and v2, iff applying both configurations to the network and
the talkers of v} and v? results in violating the constraints for
the routes and schedules of the traffic planning problem.

Algorithm 1 describes a method to check whether two
cvertices are in conflict for our system model.
By definition, cvertices which belong to the same stream

Algorithm 1: Checking for conflict between two cvertices.

input :ovl 02

output :true, if v} and v?2 conflict, else false

1 if v} and v? belong to the same stream s then return
false;

2 else if candidate paths of v} and v2 are link-disjunct then
return false;

3 else if V intersecting links of the candidate paths of v} and
v2 the transmission of all packets of v} and v? is scheduled
Sfor mutually exclusive time intervals then return false;

4 else return true;

delay-
[ induced c.ell- .|
[ojaTfofe][o][2][o][o] ==r*"* [o]loja] o] o] o] 1] o]

(1] 2][e]lo][o]lo][o] 0] g\l oflofl1j1][o]fo]o]f0]

Fig. 6. Discrete time intervals are modeled via arrays, where each entry
corresponds to a time-interval in the transmission period. Delay is modeled
via circular shift of the array. If packets are scheduled such that the same
time-interval is used by more than one stream, the temporal isolation constraint
is violated.

cannot conflict (cf. line 1 in Alg. 1), since as per our original
traffic planning problem, we apply only a single configuration
for each stream. Due to output-port queuing and links being
point-to-point connections between network elements, cvertices
which are associated with link-disjunct paths (cf. line 2 in
Alg. 1) are conflict-free, too, because packets are spatially
isolated for contested network resources (output ports, links).
At last, if there are links which occur in the candidate paths
associated with both, vi and fuf, the two cvertices are conflict
free, if packet transmissions are temporally isolated (cf. line 3
in Alg. 1). One possibility to check for temporal isolation is
illustrated in Fig. 6 where time is discretized, and intervals
where a link is occupied by a transmission are marked (here: by
value 1). If ¢phase for v} and v? is such that the same interval
is marked by both streams, v! and v? conflict. Note that all
of these conditions in Alg. 1 are computationally “cheap” to
evaluate.
At last, we can define the conflict graph itself.

Definition 4. A configuration conflict graph CG(C,€&) is
an undirected graph where C is a set of cvertices, and
E C C x C is set of edges between cvertices in C. Every
edge (vl,v%) € & represents a mutual conflict between
the configuration associated with v! and the configuration

associated with v?.

In this paper, we use configuration conflict graph and conflict
graph as synonyms. However, the conflict graph is not to be
confused with the graph representing the network topology
of the original problem. CG is undirected, and an edge
between two cvertices indicates a mutual conflict between the
two configurations. In other words, two cvertices in CG are
connected with an edge, if one or multiple of the constraints of
the original traffic planning problem are violated if the solution
includes both of these connected cvertices.

Note that Alg. 1 can also be used to construct a conflict
graph from scratch from a set of cvertices C by adding an edge
for any “conflicting” pair of cvertices (v},v2) € C x C.

C. Relation between the Original Traffic Planning Problem
and the Independent Cvertex Set in the Conflict Graph

From the previous section we know that a cvertex represents
a configuration of a stream, i.e., defines when packets of that
stream are traversing along which path through the network.
The conflict graph CG is a graph where the vertices are
cvertices, and there is an edge between v} and v? iff there is a



conflict between v and v2. Next, we establish the fundamental
relations between the cvertices and the conflict graph on the
one hand, and the streams and the data network of the original
traffic problem on the other hand.

Theorem 1. Let CG(C, E) be a conflict graph for the original
traffic planning problem for a set of streams S in a network.
If Cing C C is a set of independent cvertices in CG, then Cing
vields a conflict-free traffic configuration for Spasiy € S, iff
Vs € Speasip : FVe € Cind : (v belongs to s).

Proof. (By construction.) If Cing # 0, we define Speasip =
{s € §|Fv. € Cing : (v belongs to s)} and Creusiv € Cing

Vs € Steasiv : card ({ve € Creasiv| (ve belongs to s)}) = 1, i.e.,
Steasib 1S a subset of S which contains all streams covered
by Cing, and Cpesip 1S a subset of Cing which contains exactly
one cvertex for every stream s € Sgegp. Since Cipg 1S an
independent vertex set in CQG, Cpeasip 1S an independent vertex
set in CQ, too. From the definition of the independent vertex
set property and the construction of CG follows directly that
all v, € Creqsip are mutually conflict free. Thus, by configuring
every stream s € Sgeasip according to the configuration
associated with one corresponding v, € Cpeasip, it is guaranteed
that none of the constraints on the routes, and schedules of
Steasib are violated. If Cing = (), all traffic planning constraints
are trivially satisfied since Sgeasip = 0. O

Remark: An independent cvertex set Cing covers the stream
set Scovereds if V8 € Scovered : Ve € Cing : (ve belongs to s).

Theorem 1 is the basis for heuristics which provide partial
solutions to the original traffic planning problem. A partial
solution to the traffic planning problem is a global configuration
for a subset of streams € S. According to Theorem 1 any
(non-empty) independent cvertex set provides us with valid
configurations (schedules and routes) for at least those streams
which it covers. This is an advantage over traffic planning in the
original stream/data network domain which often searches for
one variable assignment that satisfies all constraints at once, if
the high-coupling results in an “all-or-nothing” solving process.
The transformation of the original traffic planning problem to
the conflict graph problem reduces this coupling, because we
can decide whether two configurations are mutually exclusive
just by evaluating the stream parameters and the configuration
parameters of the two cvertices in question. Hence, this decision
does not require knowledge about the configurations of any
other streams or the global configuration.

The special case, where Cing covers S tells us how to solve
the original traffic planning problem.

Theorem 2. Let CG(C, E) be a conflict graph for the original
traffic planning problem for a set of streams S in a network. A
set of independent cvertices Cso) C C in CG solves the original
traffic planning problem, if there exists at least one v, € Cgg
for every stream s € S.

Proof. For 8 = 0, C = Csoy = 0. If S # (), then Vs € S :
Fue € Coop : (ve belongs to s), and all v, € Cgg are mutually
conflict free, because Cgp is an independent cvertex set in

CG, ie., Y(v},v?) € Cso X Cso : B(v},v?) € &. Thus, by
selecting one v, € Cgq for every stream s € S and applying its
configuration to the network and the talkers, it is guaranteed
that none of the constraints on the routes and schedules of S
are violated. O]

This means, we can solve the original traffic planning
problem by searching for a set of independent cvertices which
covers S. We call the problem of finding Cgq the stream-
aware independent cvertex set-problem. The final independent
cvertex set Cgop returned by the algorithm may contain multiple
cvertices for a stream. For example, we have C4 C Cgq for
stream A. Then, only a single cvertex from C4 is selected and
included in the global configuration which is finally applied to
the network and talkers, since we need one route and one phase
(schedule) for stream A. Here, any arbitrary choice from the
cvertices in C4 is valid. If Cgo contains multiple configurations
for multiple streams, one might also pick particularly “suitable”
configurations for the application at hand from Cgq, €.g., to
optimize for best-effort traffic in converged networks.

The concept of conflict-graph based traffic planning is
generic in the sense that it can be applied to traffic planning
problems beyond our specific traffic planning problem, if they
satisfy the following two conditions. Firstly, configurations of
individual plannable entities need to be “additive” in the sense
that it is possible to apply multiple configurations to individual
network elements (here: switches) without “destroying” the
previously applied configurations, and secondly it has to
be possible to independently detect conflicts between any
pair of configurations for the plannable entities. In our case,
configurations are additive, for both routes—"“addition” means
adding a routing entry—and schedules. For the schedules, the
additivity results from the temporal isolation constraint which
allows us to merge the individual schedules on each switch.

IV. EXEMPLARY CONFLICT-GRAPH BASED ALGORITHM

In this section, we back-up our arguments for the conflict-
graph based approach by presenting an implementation of a
conflict-graph based algorithm that solves the original traffic
planning problem. Fig. 7 gives an overview over this proof-of-
concept conflict-graph based traffic planning (CGTP) algorithm.

Our CGTP algorithm is iterative. In each iteration, we first
grow the conflict graph. Our method to grow the conflict graph
is discussed in Sec. IV-A.

After growing the conflict graph, we use a combination
of different algorithms to try to find the independent cvertex
set Cgo in the current conflict graph. By default, we use a
quick algorithm (here: a modified maximal independent vertex
set algorithm) in every iteration. This default algorithm (cf.
Sec. IV-B) is computationally cheap, but its speed comes at the
cost of giving no guarantee regarding the number of streams
covered. Therefore, the execution of a second, slower algorithm
(here: intermediate ILP) to try to compute Csj can be triggered.
The second algorithm is computationally much more expensive,
but it will surely find an independent cvertex set in the current
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Fig. 7. Overview of the iterative, conflict-graph based traffic planning (CGTP)
algorithm. The green, opaque arrow indicates one iteration.

graph which covers the maximum amount of streams given
enough time. Hence, we call it the “sure” algorithm. However,
intermediate executions of the sure algorithm have a runtime
limit. We discuss this second algorithm and its trigger condition
in Sec. IV-C.

Both, the quick algorithm and the sure algorithm can be
followed up by the completion heuristic, cf. Sec. IV-D. When
the completion heuristic is triggered, it tries to complete an
almost complete independent cvertex set by generating new
cvertices for those streams which have not been covered by
the preceding algorithms.

All trigger rules make use of a history hyyng Which is a
list tracking the number of streams covered in the independent
cvertex set in each iteration. While iterating, we also remember
the previously computed maximal independent cvertex set
which covers the most streams. This set is used to initialize
the ILP and can be returned as partial solution if the CGTP
algorithm is aborted.

We expect “simpler” problem instances in many applications
(e.g., converged networks) where time-triggered traffic makes
up only fraction of the network load, compared to scenarios
where a diverse set of time-triggered streams shall saturate the
network. However, since the underlying problem is known
to be inherently NP-hard, we can end up with “difficult”
instances ultimately requiring something alike an exhaustive
search. Thus, if we did not find Cgq in the “normal” iterations,
even if the conflict graph contains all cvertices, i.e., encodes the
whole configuration space, we execute the sure algorithm (here:
ILP) one final time, with a relaxed runtime limit compared

to the intermediate executions of the sure algorithm. Note
that optionally, the final run of the sure algorithm can be
executed without runtime limit. Without runtime limit, the
sure algorithm is guaranteed to provide a solution covering
the maximum amount of streams, barring practical problems
such as running out of memory. This means, we can modify
the parameters of the algorithm to guarantee that the CGTP
algorithm yields an exact solution, i.e., a global configuration
for as many as streams as possible for a particular problem
instance.

After this overview, we present the details of the components
of the CGTP algorithm. We start by detailing how the conflict
graph is built. Next, we explain the two algorithms to find
independent cvertex sets and the completion heuristic.

A. Building and Expanding the Conflict Graph

For the initial generation and the subsequent growth of
the conflict graph in the CGTP algorithm, we define one
stateful generator function per stream. Each generator function
returns a new cvertex for its stream every time it is called as
long as there exists a new cvertex for the respective stream.
The state tracks for which parts of the feasible configuration
space of the associated stream the generator function already
created cvertices. The state is updated when the generator
function generates a new cvertex. For our prototypical generator
functions, the state comprises most importantly the path index
and the phase of the last generated cvertex. For each invocation,
a new cvertex is returned with an incremented ipaty until all
candidate path indices for the current fphase are covered. If
all candidates paths for the current Zphase have been covered,
tphase is incremented and the candidate path index is reset to
tpath = 0. This way, the generator functions sweep over the
range of feasible values for their respective stream. With a
discrete time representation, every generator returns a finite
amount of cvertices.

In the CGTP algorithm, we start with an initial conflict graph
that contains a single cvertex for each stream in the stream set,
i.e., we invoke every per-stream generator function once, and
construct the conflict graph from those cvertices by adding the
corresponding edges.

During the iterations of the CGTP algorithm, we grow the
conflict graph on-the-fly. This exploits the property, that it is
possible to obtain a solution to the original traffic planning
problem without a conflict graph including all cvertices for all
streams. We grow the conflict graph in the beginning of each
iteration by invoking the cvertex generator functions for the
stream set and inserting the obtained vertices into the existing
conflict graph (cf. Alg. 2).

B. Quick Algorithm: Adapted Maximal Independent Vertex Set
Computation

According to Theorem 2, any independent cvertex set which
covers all streams can be the solution Cgg to the stream-aware
independent cvertex set problem. Usually, |C| > |S|, thus
there is a chance for any independent cvertex set Cing with
|Cing| > |S] to cover S. In other words, any algorithm which



Algorithm 2: Cvertex insertion into conflict graph.

input :CG, v,
output : CG
foreach v € vertices(CG) do
| if conflict(ve, ve) then add edge (ve,vs) to CG;
end
add vertex v. to CG;

L I ST

Algorithm 3: Adapted Luby’s algorithm for MIVS [20].
input :CG, a
output :independent cvertex set Z

1 Z+0;CG(C,E") + copy(CG(C,E)) ;

2 while C' # 0 do

3 X+ 0; // candidate set
4 foreach v. € C' do

S Pdeg <— WM 3 Psc < 1 — mZi[(SS]C) ;

6 add to X’ with probability p = a - pdeg + (1 —a) - psc ;
7 end

8 T +— X;

9 foreach (vi,v2) € ' x I’ : (vi,v2) € & do

10 if deg(v;) < deg(v?) then T' T’ — {v}} ;

11 else Z' « 7' — {v2 };

12 update(sc) ;

13 end

14 T+ ZUT ;Y « T' Uneighborhood(Z') ;

15 CG/(C',&") + subgraphon C' — Y ;

16 end

returns a sufficiently large independent cvertex set may possibly
solve the traffic planning problem.

Therefore, we adapt Luby’s algorithm [20] for the computa-
tion of the maximal independent vertex set (MIVS). Luby’s
algorithm is intuitive to understand and can be parallelized.

Luby’s algorithm is an iterative algorithm (cf. Alg. 3), which
terminates with high probability in O(log |C|) rounds.

Each iteration of the algorithm consists of two steps. In
the first step (cf. 1. 4, Alg. 3), the algorithm randomly selects
candidate cvertices. In our adapted algorithm (changes are
highlighted in Alg. 3), the probability of cvertex v, to become
a candidate vertex depends on the degree of cvertex, and
we consider how many cvertices that belong to the same
stream as v. are already part of the result set Z. For this,
we use variable sc[s], which tracks the number of cvertices
that belong to s and which were previously included in Z.
The final probability accounts for both terms, weighted by
a factor a with 0 < a < 1 (by default @ = 0.7) and thus
can raise the probability of cvertices not yet covered in the
result set Z to become candidates. In step 2 (cf. 1. 9, Alg. 3),
cvertices from the candidate set are selected as cvertices for
the maximal independent vertex set. The steps repeat until a
maximal independent vertex set is found, i.e., all vertices are
either in the result set Z, or neighbor vertices in the result set.

Unfortunately, the adapted MIVS algorithm returns “only” a
maximal independent cvertex set. There is no guarantee that the
maximal independent cvertex set will ever cover all streams.

C. Sure Algorithm: Finding Independent Cvertex Sets covering
as many Streams as possible

Since the quick algorithm may not solve the problem
completely, we employ an ILP as an alternative method. The
ILP is guaranteed to find an independent cvertex set that covers
as many streams as possible, albeit it may take very long.

Therefore, this sure algorithm is only executed in two cases,
a) if it appears that the quick algorithm does not make any
progress over multiple iterations, i.e., the number of covered
streams is not increasing, or b) when the conflict graph contains
all possible cvertices and still no solution has been found.

Next, we explain the ILP formulation that finds the indepen-
dent cvertex set that covers as many streams as possible. Then
we explain the trigger rule for the sure algorithm.

1) Integer-Linear Program for the Stream-Aware Indepen-
dent Cvertex Set Problem: The ILP to compute the independent
cvertex set that covers as many streams as possible is different
from the ILP-based approaches for the original traffic planning
problem in the related work which operate directly on the
routing variables and the scheduling variables. It is much
simpler and can be stated in the three lines.

max Z T4 subject to (D

T EXS
V(zk, 2?) € edges(CG) : z} +22 <1 2
Vo, € Xs: Y @y >, 3)

T, EXY

The ILP uses two sets of binary decision variables. Every
decision variable z,, € {0, 1} in the decision variable set A,
represents one cvertex in the conflict graph. If x,, = 1, then
the associated cvertex is part of the independent cvertex set.
Conversely, if z,, = 0, then the associated cvertex is not part of
the independent cvertex set. Similarly, every decision variable
xs € {0,1} in the second decision variable set X5 represents
a stream s € S. If x5 = 1, the respective stream is covered
by the independent cvertex set. Consequently, if z; = 0 the
associated streams s is not covered by the independent cvertex
set. Additionally, we define the helper set X7, which includes
all z, € X, which belong to a specific stream s. The set
edges(CG) contains all edges in the conflict graph CG.

The objective function returns an independent cvertex set
which covers as many streams as possible. If there is an
independent cvertex set that covers all streams, the ILP will
find it provided with enough computing resources. Note that
the NP-hard maximum independent vertex set problem [21] is
reduced to this ILP, if there is one cvertex per stream.

2) Intermediate ILP Execution: Even though the ILP is

“just three lines” long, solving the ILP may take an unknown,

large amount of time, which may be spent better by growing
the graph and executing the quick algorithm. Therefore, we do
not execute it in every iteration. However, it may happen, that
the quick algorithm fails over the course of multiple iterations
to return independent cvertex sets which cover an increasing
number of streams despite a growing conflict graph. This
can be caused e.g., by conflict graphs with an “unfortunate”



Algorithm 4: Trigger rule for sure algorithm.

Algorithm S: Update threshold for completion heuristic.

input :history hiung, window size wyip,
output : trigger variable rj p, window size wyp

window < slice of wyp last entries of hiyyng;
dpast = Y, diff (window) ;
if dpasr > 0 then

‘ rLp < false ; window size wyp + wip +1 ;
else rp < true ; wyp < minimal window size ;
return TILP, WILP,

AU AW N =

cvertex degree distribution where the quick algorithm yields
independent sets with many cvertices which all belong to a
small set of few streams. If the number of covered streams
found by the quick algorithm stagnates, or even decreases over
time despite a growing conflict graph, then we want to execute
the sure algorithm.

This rationale is encoded in Alg. 4. Alg. 4 evaluates the
development of the number of covered streams in a (variable-
sized) window of the history. Alg. 4 returns a Boolean r p
indicating whether the sure algorithm shall be executed and
updates the windows size. The window grows, when the
quick algorithm “makes progress”, because we do not want a
single “bad” iteration to trigger the sure algorithm. If the sure
algorithm is triggered, we reset the window size, such that the
trigger condition is again more sensitive to changes.

If the ILP is triggered, it is allowed to run only for a limited
time (by default 5min). Additionally, there is a limiter which
suspends the sure algorithm for a certain number of iterations
if it has been triggered successively for a certain number of
iterations in the past. The motivation for limiting the number of
successive ILP execution, i.e., suspending the ILP executions
for some iterations, stems from the fact that there are two
reasons for the ILP execution to not find an independent cvertex
set in the current conflict graph, a) either finding the solution
in the current conflict graph is so hard that we hit the time-out,
or b) the current conflict graph does not contain an independent
cvertex set which covers all streams (yet). In the latter case, the
ILP execution wastes 5 min. However, we do not know which
is the case. Thus expanding the graph (instead of executing the
ILP) improves the chance that the graph contains a solution
and that it can be found be the ILP in overall shorter time. By
default, we suspend the sure algorithm for five iterations, if it
has been triggered twice in succession.

D. Completion Heuristic

The completion heuristic can be triggered after both, the
quick algorithm and the sure algorithm. It is triggered, if the
number of missing streams, i.e., streams which are not covered
in the independent cvertex set, in the current iteration is less
or equal to a threshold. The completion heuristic invokes the
generator functions to get a limited set of new cvertices for the
missing streams and adds them to the current conflict graph,
in the hope of finding cvertices without a conflict with the
independent cvertex set found in the current iteration.

input :history hioung, window size wepit., threshold pinresh.
output : windows size wepi., threshold pinresh.

1 window® « slice of Wept. entries up to (including)
penultimate entry of hsoyng;
window"" < slice of wepi, last entries of houng;
ﬁ%ﬂnd — round(mean(window°ld)) ;
Tioung < round(mean(window"")) ;
e —New —old
if Tigung < Tiouna then .
‘ reduce pinresh.; reduce wepir. linearly ;
< —NEwW —old
else if Nfging < 7ijgyng then
| increase presh.; increase wept. by (Wmaxepit. — Wepit.)/2 ;
else reduce pinresh.;
return pinresh., Weplt. >

E-EN-CRE - Y L )

[
=

A fixed threshold may result in excessive execution of the
completion heuristic, once it is exceeded, and is difficult to
determine a-priori. Therefore, we use a dynamic threshold. The
threshold is adjusted depending on the past iterations by Alg. 5.
Alg. 5 looks at a variable-sized window of the history hyyyng.
If the number of covered stream is increasing, the threshold
is raised, i.e., more streams have to be covered, before the
completion heuristic is triggered, and the window size grows,
i.e., a single worse iteration has less impact. If the number of
covered stream is decreasing, we do the opposite. The threshold
is lowered to the effect that the completion heuristic is triggered
with more missing streams, and the window size is reduced,
i.e., the threshold adjustment becomes more responsive. If the
change is too small (cf. the rounding in line 3 and line 4 in
Alg. 5) indicating a lack of progress, the threshold is lowered,
t0o.

Considering the case that the completion heuristic is trig-
gered, but fails to cover the remaining streams, we can interpret
the completion heuristic and its trigger rule as a secondary,
optional growth-phase of the conflict graph in an iteration.
This second growth-phase is restricted to streams which were
left uncovered in the preceding conflict-checking step, thus
the completion heuristic also serves as a primitive feedback
mechanism to “guide” the conflict-graph growth.

V. EVALUATION

In this section, we quantitatively evaluate the conflict-graph
based traffic planning approach.

A. Evaluation Scenarios

We obtain problem scenarios by first generating a network
topology and then creating a set of streams. The network topol-
ogy is a ring graph where the nearest n-neighbors are connected
(cf. Fig. 8). Besides its simplicity and close relation to ring
topologies which are often found in industrial environments
or in sensor arrays for direction-of-arrival tracking [22], this
topology ensures that there exist multiple different candidate
paths for every pair of streams.

Unless specified differently, n = 3 neighboring nodes
are connected, processing delay is set to 2us (here: time is
discretized in 1 ps-intervals). Propagation delay is neglected.



Fig. 8. Example of the network topology: ring graph with 15 nodes and
n = 3 neighboring nodes (in each direction) are connected.

The stream parameters feycle, tduration» and number of candi-
date paths are equal for all streams in an evaluation scenario.
Talker and listener node for each stream are randomly selected
among the nodes of the network. This keeps the number
of parameters low, and reduces the probability of infeasible
scenarios, e.g., caused by relative prime tcycle. By default, we
consider 3 candidate paths per flow. We write the network
properties and the stream parameters to plain-text files which
are ingested by the traffic planning programs.

B. Evaluation Methodology

We implemented the conflict-graph based traffic planning
algorithm from Sec. IV in Julia [23] and refer to this
implementation of the conflict-graph based traffic planning
program as CGTP. CGTP uses the LightGraphs library for
the computation of the k-shortest paths for each stream and
interfaces with the ILP solver Gurobi [24] via JuMP [25].

Additionally, we also implemented an adapted version of
a recently proposed, typical ILP [14] for the traffic planning
problem to compare the conflict-graph based traffic planning
approach to a constraint-based approach which operates directly
in the domain of network and streams. We adapted the ILP to
use the same system model of the traffic planning problem as
CGTP, i.e., multiple candidate paths are considered, and we use
a time-discretization to model temporal constraints. We refer to
this constrained-based approach as reference ILP (short, RILP,
not to be confused with the ILPs used for the sure algorithm
in CGTP). To run the RILP, we use a Python program and the
modeling library Pyomo [26] to build the RILP model for the
traffic planning problem. Pyomo also interfaces with the ILP
solver Gurobi, and we compute the k-shortest paths for each
stream with the graph-tool library [27].

Tab. IT summarizes the computing setup of our evaluations.

C. Evaluation Results

Next, we present the evaluation results, starting with a
performance comparison of CGTP and RILP, before looking at
different properties of CGTP. For all results in our evaluations
the CGTP-algorithm yielded optimal results in the sense that
it returned an independent cvertex set covering all streams.

1) Comparison CGTP vs. RILP: For the comparison of
CGTP and RILP, we use a network with 50 nodes. We increase
the number of streams in steps of 10, starting at 50 streams,
with feye = 300ps and tayraion = 5 ps for all streams. We

TABLE II
SPECIFICATION OF COMPUTE NODES.

PCsmall PCbig
CPU 1 Intel Xeon E5-1650v3, 4 Intel Xeon E7-4850 v4,
3.50 GHz 2.1 GHz
RAM 16 GB 1TB
host OS CentOS Linux 7.7.1908, Arch Linux, Kernel 5.2.5
Kernel 3.10.0-1062,
container docker v19.03, Fedora 30-based container image
SW (CGTP)  Julia 1.2.0, LightGraphs, JuMP with Gurobi 8.1.0
SW (RILP) Python 3.7, graph_tool, Pyomo with Gurobi 8.1.0
B time setup, 1/0 (sec.) I time CGTP-kernel (sec.)
time ILP solver (sec.)
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Fig. 9. Comparison of runtime on compute nodes of type PCsmall.

solve 20 problems per step, and each problem is solved once
with CGTP and once with RILP on compute nodes of type
PCsmall (cf. Tab. II).

The wall clock total runtime, i.e., the time from importing
the problem from the files to writing the solution to disk for
these scenarios is divided in the time for setup and I/O, and
the time for the actual solving process. In case of CGTP, setup
and I/O includes the time to read and write the files and to
pre-compute the candidate paths for the streams. Time spent in
the CGTP-kernel consists of the time for growing the conflict
graph and searching for independent cvertex sets. For RILP,
setup and I/O includes, besides file operations and path pre-
computations, the time required for the construction of the ILP
model. The time spent on solving the ILP is measured around
the function call, which interfaces with the solver.

The average runtimes are depicted in Fig. 9. The vertical line
on top of each composite bar indicates the standard deviation
of the total runtime.

While it is apparent that CGTP solves the problem in much
shorter time, e.g., the average total runtime of CGTP for 100
streams is with 103.2's almost five times less compared to the
average total runtime of RILP (493.4 s) for only 50 streams, we
want to highlight another advantage of CGTP over constraint-
based implementations. On the PCsmall compute nodes, the
RILP software stack quickly hit the “memory bound”. For
already 70 streams, RILP could not solve 5 of 20 scenarios
due to a shortage of memory and for 80 or more streams no
scenario was solved as indicated by the missing bars in Fig. 9.
Constraint-based approaches which solve the traffic planning
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Fig. 10. Comparison of runtime on compute node PCbig.

problem in the network domain inherently result in a large set
of constraints [1], and solvers often occupy a large chunk of
memory for tracking the already covered solution space.

In contrast, CGTP runs to completion for the same evaluation
scenarios on the PCsmall compute nodes. CGTP is more mem-
ory efficient during the solving process, because the cvertices
have a high information-density compared to the individual
variables in the RILP. To solve the stream-aware independent
cvertex problem, we only need the cvertex identifiers, the edges
in CG and a mapping of cvertices to stream identifiers, i.e.,
“a few” integers. All the details in the network domain are
only necessary when constructing or growing the graph, or
when finally assembling the solution. Thus, the conflict-graph
based approach has the very practical advantage of pushing
out the borders of tractable problems in scenarios with limited
memory. Admittedly, out-of-core implementations can extend
the memory bound for both approaches.

We re-ran the evaluations on a compute node of type
PCbig (cf. Tab. II) with much more RAM. The results (averaged
over 20 scenarios per step) are depicted in Fig. 10.

Up to 130 streams, the whole runtime of CGTP is on average
faster than the time spend for just calling the ILP solver
(excluding setup and I/0), even though the ILP solver is able to
make use of all processor cores, whereas CGTP is implemented
mostly single-threaded. While CGTP still outperforms RILP by
a significant margin for all evaluation scenarios, we observe a
steep increase in runtime and the variance of the total runtime
for CGTP from 130 streams on. The average total runtime
more than triples for CGTP from 130 streams (177.1s) to 140
streams (625.0s) and reaches 812.4s for 150 streams.

In our evaluations, CGTP outperforms RILP, but we also
observe that the region of scenarios which can be solved in
practice with RILP is limited by the sheer size of the ILP
model and the time spent on its construction. The iterative
approach of CGTP does not exhibit this drawback.

2) Network Density: Next, we investigate the performance
of CGTP and the previously observed increase in runtime
and runtime variance for larger stream sets. We use the same
network topology with 50 nodes and with the same properties
as in the previous section. We vary the number of streams
from 25 to 200 with an increment of 25 streams per step (each
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Fig. 11. Behavior for varying ratio of streams to nodes in the network.

with teyele = 1000 ps, tduration = 9 ps), effectively changing the
total ratio of streams to nodes in the data network from 1:2 to
4:1. We generate and solve 40 problem instances per step on
the PCsmall compute nodes.

In Fig. 11, we plot the total runtime over the number of
cvertices of the conflict graph at the time when the solution
was found. Each point in Fig. 11 represents an individual
scenario. Points are colored according to the ratio of streams
to nodes in the network. We observe comparably short mean
runtimes for scenarios with 25 streams (12.0s) to 100 streams
(86.9s) which form almost a line in the lower left corner of
the plot. However, from 125 streams (ratio 5:2) on, individual
runtimes increase strongly and spread farther apart, indicating
also an increasing variance of the runtimes. From 125 streams
(ratio 5:2) on, we measured the following average runtimes:
297.5s for 125 streams, 851.1s for 150 streams, 1982.3s for
175 streams and 3134.7s for 200 streams.

There are two factors contributing to this behavior. Firstly, by
increasing the number of streams while maintaining the network
size, the network load, and thus the difficulty of the traffic
planning problem, is increasing, since conflicts become more
likely. Secondly, we also see implementation-specific effects.
As explained in Sec. IV, our proof-of-concept implementation
of CGTP is an iterative approach which by default uses the
adapted maximal independent vertex set algorithm in each
iteration and, depending on the trigger condition, also executes
an intermediate ILP. For scenarios with 100 or more streams,
the intermediate ILP executions did not only get triggered
multiple times, but we also observed several instance where
the intermediate ILP solving had to be aborted due to hitting
the runtime limit. The higher the number of streams, the more
often this happened. Every intermediate ILP execution which
was aborted due to the time-constraints therefore adds 300 s
to the total runtime, i.e., for similar-sized conflict graphs the
number of unsuccessful intermediate ILP executions can cause
strongly varying total runtimes.

3) Scaling: Finally, we keep the ratio of streams to nodes
in the network fixed to 1:1, i.e., the more streams, the larger
the network. We vary the number of streams (and nodes in
the network) from 50 to 400, (each with fcyge = 1000 ps,
turation = D US). We generate and solve in total 80 problem
instances per step on PCsmall compute nodes.

This time, we use two different settings for the ILP trigger
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Fig. 13. Runtime normalized to the number of edges in the conflict graph for
increasing problem sizes.

limiter. Half of the problem instances (left plot in Fig. 12) use
the default setting where the intermediate ILP can be executed
at most twice in succession, and the ILP solver runtime is
limited to 5 min, before ILP triggering pauses for five iterations
(labeled exec.2, p.5). For the other half of the problem instances
(right plot in Fig. 12), the intermediate ILP can be triggered at
most once every ten iterations and is allowed to run at most
10 min (labeled exec.1, p.10).

Despite the different settings for the ILP trigger limiter, we
observe similar values for the average runtimes, as well as the
variance of the runtime. The increase in runtime is dominated
by two factors, namely the time it takes to grow the graph
and the time it takes to search for the independent cvertex
set. The growing of the conflict graph, or more exact, the
time it takes to insert a single cvertex into the conflict graph
grows with increasing number of cvertices in the conflict graph
(cf. Alg. 2). The time required for searching the independent
cvertex set also grows with an increasing conflict graph, but
has the possibility to vary much stronger, depending on the
actual structure of the conflict graph, the rounds in the quick
algorithm, and the time spent in the sure algorithm.

In Fig. 13, we plot the total runtime normalized to the
number of edges in CG over the size of CG. Also, here

the two settings for the intermediate ILP behave similarly.

For small numbers of cvertices (~ 102 to 102 cvertices), the
overhead (I/O, path computation) dominates, hence we see a
decline for increasing number of cvertices for these problem
instances. For larger conflict graphs, the time spent for growing
the conflict graph and finding the solution dominates, and we

TABLE III
MEAN AND STANDARD DEVIATION OF CONFLICT GRAPH SIZES FOR
INCREASING PROBLEM SIZES, CF. FIG. 13.

|S|.# nodes 50 100 200 300 400
mean(|C|) 1297E3 3.043E3 6.256E3 9.438E3  1.267E4
std(|c|) 824 616 464 762 584
mean(|E]) 1445E4 3.633E4 8.368E4 1.333E5  1.838E5

std(|€]) 133884 1.038E4 1.187E4 2293E4  2.000E4

observe a similar clustering (visible, e.g., around the average
number of cvertices for 200 and more stream, cf. Tab III) in
Fig. 11. The average size of the conflict graph is similar for
both settings (cf. Tab. III), and there are few outliers in Fig. 13.
This indicates that the combination of the quick algorithm,
the sure algorithm, and the respective trigger rules succeed
to consistently finding solutions without “over-growing the
graph”.

VI. CONCLUSION

In this paper, we presented an approach to solve the traffic
planning problem for time-triggered traffic in data networks
with conflict graphs. We explained how to derive these conflict
graphs from the original traffic planning problems, and we
showed how to solve the traffic planning problem by finding
independent cvertex sets which cover all streams. With the
conflict-graph based approach it is comparably cheap to get
feasible (partial) solutions, since there exist efficient algorithms
for finding independent sets even in large graphs.

Furthermore, we presented a proof-of-concept implemen-
tation of a traffic planning algorithm for the conflict-graph
based approach and evaluated its performance. The performance
evaluations showed practical advantages of the conflict-graph
based approach, which can find solutions of the traffic planning
problem faster and more memory efficiently.

The concept of conflict-graph based traffic planning problems
can be advanced in several directions in future work. The
most obvious one are performance improvements, e.g., by
increasing the parallelization of the current implementation
during construction of the conflict graph or when searching for
independent vertex sets, or tuning trigger rules. Also, it seems
promising to replace Luby’s algorithm entirely by a bespoke
algorithm which searches specifically for independent cvertex
sets covering all streams, e.g., using techniques from [28].
Exploring, if the conflict-graph based approach for traffic
planning is also suitable for different system models, e.g.,
without zero-queuing assumption, is another direction of future
work.
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