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Abstract—Traffic planning is the key enabler of time-triggered
real-time communication in distributed systems, and it is known
to be notoriously hard. Current approaches predominantly tackle
the problem in the domain of the traffic planning problem, e.g.,
by formulating constraints on the transmission schedules for
individual data streams, or the links used by the data streams.
This results in a high degree of coupling of the configuration
of an individual data stream and the global (network-wide)
traffic configuration with detrimental effects on the scalability
and runtime of the planning phase.

In contrast, we present a configuration-conflict graph based
approach, which solves the original traffic planning problem by
searching an independent vertex set in the conflict graph. We
show how to derive the configuration-conflict graph, and discuss
the conceptual advantages of this approach. To show the practical
advantages of the conflict-graph based traffic planning approach
we additionally present a proof-of-concept implementation and
evaluate it against a reference ILP-based implementation. In our
evaluations, our proof-of-concept implementation of the conflict-
graph based approach outperforms the reference ILP and is more
memory efficient, making it a promising alternative to current
constraint-based traffic planning approaches.

Index Terms—time-triggered traffic, conflict graph, routing,
scheduling

I. INTRODUCTION

Many distributed applications rely on guaranteed real-

time communication. Examples of such applications can be

found in many domains, e.g., vehicular on-board networks,

industrial manufacturing, or power-grid automation. A well-

established paradigm to achieve real-time communication is the

combination of time-triggered transmissions with a network-

wide coordinated configuration of routes and schedules.

Currently, the ongoing work of the Time-Sensitive Network-

ing (TSN) working group has brought several mechanisms for

real-time communication into standard IEEE Ethernet networks.

In this paper, we focus on a key mechanism introduced by the

TSN working group, the so-called Time-Aware Shaper (TAS)

which is suitable for time-triggered traffic. The TAS allows to

exert fine-grained temporal control over the forwarding process

in the switches, i.e., TAS allows to schedule the transmissions

at the switches according to a cyclic time-schedule. We use
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this combination of the TAS with meshed Ethernet networks

as the technological backdrop of this paper and revisit the

traffic planning problem, i.e., the problem of computing routes

and time-schedules. In the traffic planning phase, different

communication requirements, e.g., frequency of transmissions,

amount of data per transmission, delay-bounds, etc., as well

as the network topology have to be accounted for. In TSN

networks TAS requires a time-schedule to be calculated for

every switch. Calculating such schedules is NP-hard in general,

as is the combined problem of joint routing and scheduling [1].

A large body of work has been dedicated to solve the traffic

planning problem with constraint-based programming methods,

such as (integer) linear programming (ILP), satisfiability

theories (SAT, SMT), or constraint-based heuristics. In these

approaches, the traffic planning problem is formulated directly

as a set of constraints on the routing variables and scheduling

variables. A solution to the traffic planning problem is then

equivalent to an assignment of values to the routing and

scheduling variables with which the hosts and the nodes

in the network can be configured such that the conditions

necessary for real-time communication are satisfied. Operating

directly in the domain of the original traffic planning problem,

i.e., formulating constraints directly for the routes of the

packets and the transmission schedules at the network elements,

results in a high-dimensional, highly-coupled problem. For

example, if the variables for a single stream are changed

somewhere in the network, this can trigger a cascade of

constraint violations for many other streams which share the

same network resources (queues, links), e.g., if the change

inflicts collisions in the transmission schedules. Thus, solving

the original traffic problem has the drawback of high coupling

between a configuration of a single stream and the global

configuration for all streams.

In contrast, we present a different, conflict-graph based

approach to solve the problem of traffic planning for time-

triggered traffic. Conflict graphs have been used in the context

of scheduling problems before [2]–[5]. Compared to the classic

constraint-based approach for time-triggered traffic planning,

our conflict-graph based approach does not operate directly

on the level of routing and scheduling variables, but on the

level of stream configurations where one configuration is one

possible assignment of the routing and scheduling variables



for a particular stream. In our approach, we first construct a

configuration-conflict graph from the original traffic planning

problem. Then, we search an independent vertex set in this

conflict graph. A set of independent vertices in the conflict

graph represents conflict free stream configurations. If the

independent vertex set contains stream configurations for all

the traffic in the original traffic planning problem, we have

solved the original traffic planning problem, too.

This approach has several advantages. Due to the reduced

coupling compared to the established constraint-based ap-

proaches, we do not need to build the complete conflict graph

covering the whole solution space right from the beginning.

Instead, we can start with a small conflict graph built from

a small set of initial configurations and perpetually grow the

graph until a complete solution is found.

This does not only have the potential to speed-up the solving

process, but also allows to quickly obtain feasible solutions

for a subset of the streams which have to be placed in the

network, if the solving process is aborted prematurely. This

feature becomes important in dynamic scenarios with ephemeral

network topologies. For example, consider a sensing scenario

where a distributed wired sensor grid generates real-time data

streams, e.g., using acoustic sensors. These data streams are

evaluated in real-time by mobile nodes, e.g., with the purpose

of tracing [6] some event. The mobile nodes connect wirelessly

via access points to the sensor grid. Here, a network topology

is only valid until the mobile nodes are handed-over from

one access point to another. If the traffic rate of the sensor

data streams is high compared to the hand-over of the mobile

nodes, but the hand-over is “fast” compared to the time it takes

to compute a complete network configuration, quick partial

solutions where not all streams are scheduled/routed are highly

valuable.

The conflict graph-based approach additionally allows to

incorporate “domain-specific” knowledge. For example, if all

streams start at the same node, it seems intuitively preferable

to start with a set of configurations where the transmissions of

different streams are evenly distributed in time.

Summarized, our contributions in this paper are threefold.

• We show how to solve the traffic planning problem for

time-triggered traffic by a conflict-graph based approach.

• We present a proof-of-concept implementation for the

conflict-graph based approach.

• We numerically evaluate our implementation of the

conflict-graph based approach and compare its perfor-

mance to a constraint-based approach which uses integer

linear programming.

In the remainder of this paper, we first discuss the related work

in Sec. II. We introduce the traffic planning problem and how

to solve it with the conflict-graph based approach in detail in

Sec. III. We describe our proof of concept implementation of

the conflict-graph based approach in Sec. IV and evaluate it

in Sec. V, before we conclude the paper in Sec. VI.

II. RELATED WORK

Traffic planning for time-triggered traffic is not a new

problem and has been extensively researched. Similarly, conflict

graphs have been employed in scheduling problems, albeit for

the purpose of traffic planning it is predominantly applied to

wireless scenarios, cf. [4], [7]–[9].

In this paper, we use conflict graphs for traffic planning of

time-triggered traffic in IEEE TSN networks, where we can

identify two major focal points of the research, constraint-based

programming approaches and heuristics.

The constraint-based programming approaches either con-

sider only the scheduling aspect [10], [11], or scheduling and

routing [12]–[14]. In these approaches, a set of constraints

is formulated using the respective framework (satisfiability

modulo theories, array coding, integer linear programming) in

the domain of the network problem, e.g., constraints directly

restrict the transmission schedule or the paths of packets.

Since traffic planning for time-triggered traffic is NP-hard,

[15], [16] propose heuristics. The heuristics share the character-

istic that a prematurely chosen, sub-optimal configuration for

any individual stream can later on obstruct the placement of

other streams, and the heuristics operate directly in the domain

of the traffic planning problem.

In contrast to previous work, our approach solves the original

traffic planning problem by searching independent vertex sets

in a conflict graph derived from the original traffic planning

problem. This transformation makes the problem suitable for

heuristics, as well as exact algorithms, and lends itself naturally

to iterative approaches, since the conflict graph allows a more

intuitive reasoning about the relation of individual (stream)

configurations to the global solution for all streams.

III. TIME-TRIGGERED TRAFFIC PLANNING

Next, we explain in Sec. III-A the system model of the data

network and the traffic streams and what exactly we refer to as

the traffic planning problem. Then, we show in Sec. III-B how

to translate the original traffic planning problem to the conflict

graph. Finally, we establish fundamental relations between

the conflict graph and the original traffic planning problem in

Sec. III-C.

A. The Original Problem: Routing and Scheduling of Time-

triggered Traffic in a Data Network

The original problem, which we solve with the concept

of conflict-graph based traffic planning, is the problem of

traffic planning for time-triggered traffic in a data network. In

this paper, solving this problem requires finding transmission

schedules and routes for a given set of data streams in a given

network topology. Next, we explain these terms in more detail.

1) Data Network: The system model of the network and

the traffic is derived from networks with IEEE Std 802.1Q-

compliant switches with TSN capabilities (called bridges

in [17]) with full-duplex IEEE Std 802.3 Ethernet links [18].

That is, the network is a packet-switched communication

network, and we consider only a fully-switched scenario,

i.e., physical links (e.g., “Ethernet cables”) are point-to-point
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Fig. 1. Time-aware shaper for one port of an IEEE Std 802.1Q compliant
switch. We use one class exclusively for time-triggered traffic.

connections. Communication between any pair of network

elements is possible, if there exists sequence of links connected

by switches between the source and destination network

element, since switches are those network elements which

can forward data packets. Packet forwarding can be controlled

with the help of the switches’ routing capabilities. We employ

the routing capabilities to control the paths along which the

packets of the individual streams are forwarded through the

network. In IEEE Std 802.1Q-compliant networks this can be

achieved, e.g., with VLAN tagging or explicit path control [19].

Switches can distinguish between different traffic classes and

provide per-traffic class packet queuing with FIFO-semantics,

cf. Fig. 1. This is a prerequisite for the switch’s ability to

control the exact point in time when the head-of-queue packets

from each traffic class are eligible for transmission (cf. Fig. 1)

using a cyclic, per-port switch-local time-schedule. The TAS

from IEEE Std 802.1Q is a prominent example providing this

functionality.

To control the forwarding process temporally across the

network, a common time-base in the network is necessary.

This can be achieved by clock synchronization algorithms,

such as Precision Time Protocol (PTP).

Additionally, we assume, for the sake of simplicity, that all

switches have the same processing delay and that the processing

delay is constant. Likewise, links have the same propagation

delay and data rate in the data network. Thus, without queuing

delay we have the same per-hop delay for equal-sized messages.

2) Stream: The time-triggered traffic in the network consists

of so-called streams. A single stream represents the directed

information flow between two designated host nodes. For each

stream, the so-called talker periodically generates packets and

injects them into the network. We support different transmission

periods for the streams. The network is supposed to forward

the packets to the destination node which is called listener.

Table I summarizes the stream parameters. Stream parame-

ters are externally given, e.g., derived from the requirements

of a distributed application. The ingress network node and

the egress network node are the source and destination of

the packets of the stream, respectively. An ingress network

node can be either the talker node, or the switch where the

talker node is attached to, since the link between the talker

TABLE I
PARAMETERS FOR A SINGLE STREAM.

tcycle transmission period

tduration duration of the transmission of a single packet
te2e end-to-end delay bound
ingress node the first node in the data network for which a newly

generated packet is considered in the traffic planning
egress node the last node in the data network for which a packet

of the stream is considered in the traffic planning
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Fig. 2. Zero-queuing illustrated for two streams with different size and with
the same talker (on the left) and same listener (on the right). We assume that
processing delay is independent of the packet size.

node and the ingress switch of that stream is only a constant

delay factor. The same holds for the egress. In case that the

ingress network node and egress network node are switches,

the end-to-end-delay bound has to be adjusted accordingly.

All streams share a single traffic class which is used exclu-

sively for time-triggered traffic. This isolates time-triggered

traffic, which is often of high-criticality, from other traffic types

and keeps the number of “reserved” queues to a minimum.

With the model of the network and the streams, we can

formally define a stream configuration.

Definition 1. A configuration for stream s is the tuple of

all scheduling variables and routing variables defined for

stream s which fully define the talker behavior and the network

behavior for stream s such that all constraints on the routes

and schedules of the traffic planning problem are satisfied in

the empty network.

Our definition thus prohibits “invalid” variable assignments,

e.g., paths which do not connect talker and listener.

3) Traffic Planning (Routing and Scheduling) for Time-

Triggered Traffic with Zero-Queuing: In this section, we lay

out the problem of traffic planning.

We restrict ourselves to “quasi-static” scenarios. This is

a pragmatic simplification, since consistent network updates

are challenging even without real-time constraints. How to

update the configuration in the switches in a consistent way

while maintaining required real-time guarantees and preventing

other traffic, e.g., unscheduled traffic in a converged network

scenario, to interfere with the time-triggered streams is even

more difficult. In the following, we therefore consider the case

that once route and transmission schedule are assigned to a

stream, its configuration is not changed during its life-time.



The input for the traffic planning problem in this scenario

consists of

• a network, with its topology and specification for switches

(processing delay, transmission speed) and links (propa-

gation delay),

• and a set S of streams with the parameters listed in Tab. I.

The traffic planning problem is to find a global configuration

that guarantees that packets from each talker reach the

respective listener within the required end-to-end delay. More

specifically, we use the zero-queuing paradigm. With zero-

queuing, the traffic planning problem becomes the problem of

finding a global configuration for the streams which guarantees

that packets of time-triggered streams traverse the network

without ever being buffered on the way from talker to listener.

Thus, the global configuration is the solution of the traffic

planning problem and consists of stream configurations for all

streams, and each stream configuration itself is comprised of

a route and a schedule for the talker and switches. Next, we

break down the properties of the problem and its solution:

• Network constraint. The network and its topology con-

strain the movement of a packet through the network.

Packets can reach switches or hosts only via links. For

each movement of a packet, a corresponding amount

of time passes, e.g., the time necessary for processing,

transmission and propagation of the respective packet.

Combined with zero-queuing, the traversal of a packet is

fully determined by the data network properties and the

time it was injected into the network.

• Temporal isolation constraint. At any moment and every

output port and link in the network, there is at most one

packet in transmission, i.e., the transmission of packets is

temporally exclusive.

• Ordering constraint. Due to FIFO semantics, packets

which are transmitted over the same output port arrive

in the order of transmission at the input port of the next

hop, and packets are not reordered inside the switches.

• Routing and delay constraint. Packets of a specific stream

enter the network at the talker network node and have

to reach the listener network node where they leave the

network. All packets of a stream are routed along the

same path. Zero-queuing imposes a limit on the length of

each stream’s route via the end-to-end delay te2e.

• Phase constraint. The talker node of any stream completes

the transmission of the first packet within its first cycle.

This is a technical constraint to exclude solutions which

“abuse” the mathematical concept of infinity.

• Interarrival constraint. The interarrival time of packets at

the talker node of each stream is determined by tcycle.

With zero-queuing, talker schedules and switch schedules

are such that all packets enter an empty switch queue, are

immediately selected for forwarding, and sent to the next

hop (cf. Fig. 2). The talker schedule restricts when talkers

emit packets, and switch schedules control when to forward

packets of each traffic class. This eliminates queuing delay

and binds the end-to-end delay of packets to the path length.

tphase

tphase
one hyper-cycle

time

tcycle

Fig. 3. Scheduling variable tphase determines the transmission of packets along
the network. Here, the transmission frequency of the upper stream (upper) is
twice the transmission frequency of the lower stream, i.e., tcycle of the lower
stream is equal to the hyper-cycle.

We therefore define the scheduling variable tphase (cf. Fig. 3).

The phase tphase of s is defined as the start of the transmission

of the first packet of streams s after t = 0 at the talker.

From tphase, we can derive the network schedules for the

TAS. For example, if transmission of first packet starts on

outgoing link of talker at t0 = tphase, we have to allow

transmission until t0 + tduration when the transmission of this

packet ends on this link via appropriate schedule entries.

Similarly, we can derive the remaining schedule entries from

the transmission intervals of the packets along its route.

The transmission on the next link starts without queuing at

t1 = t0 + tduration + tprop + tproc, the transmission on the

subsequent link starts at t1 + tduration + tprop + tproc, and so on,

and the talker transmits the next packet at t0 + tcycle.

We analogously introduce the routing variable ipath to

identify one of the candidate paths of stream s. Candidate

paths are pre-computed paths from talker to listener, or, to be

more exact, from the ingress node of s to the egress node of

s. According to the routing and delay constraint and Def. 1,

paths which are “too long” such that packets traversing them

do not reach the egress network node within their stream’s

te2e must not be candidate paths.

B. Mapping the Original Problem to Cvertices and the Conflict

Graph

Our first contribution is to show how we translate the original

traffic planning problem into an independent vertex set problem

in a conflict graph.

In the conflict-graph based traffic planning approach, we first

construct a conflict graph from the original traffic planning prob-

lem. The nodes of the conflict graph are called configuration

vertices (in short: cvertices). A single cvertex represents one

possible configuration of a single plannable, i.e., routable and

schedulable, entity (here: a stream). Edges between cvertices

in the conflict graph encode a violation of the traffic planning

constraints, cf. Fig. 4. The traffic plan can then be obtained

from an independent vertex set in the conflict graph, which

contains at least one cvertex for each plannable entity.

Next, we formally introduce the cvertices in the context of

our concrete system model from Sec. III-A, and we explain

how to build a conflict graph from these cvertices.

1) Cvertex (Configuration Vertex): A cvertex is the funda-

mental building block of the conflict graph.
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Fig. 4. Independent vertex set in conflict graph is a solution to the original
traffic planning problem. Vertices in the conflict graph correspond to stream
configurations (here: symbolized by routes).
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Fig. 5. Relation between stream and cvertices and candidate paths.

Definition 2. A cvertex vc is a vertex in the conflict graph

which represents a single feasible configuration of a stream s.

Since there can exist multiple cvertices for stream s, there

exists a surjective mapping from cvertices to streams, cf. Fig. 5.

In the following, we will say a cvertex vc belongs to a stream

s, iff vc represents a configuration for s and similarly s belongs

to vc, iff vc is a configuration for s. It is easy to see, that

we can generate cvertices independently for each stream, just

by taking into account the properties of the network and the

respective stream.

2) Conflict and the Configuration Conflict Graph: Conflicts

are the “glue” between cvertices and the original traffic planning

problem.

Definition 3. There exists a conflict between two cvertices v1c
and v2c , iff applying both configurations to the network and

the talkers of v1c and v2c results in violating the constraints for

the routes and schedules of the traffic planning problem.

Algorithm 1 describes a method to check whether two

cvertices are in conflict for our system model.

By definition, cvertices which belong to the same stream

Algorithm 1: Checking for conflict between two cvertices.

input : v1
c
, v2

c

output : true, if v1
c

and v2
c

conflict, else false

1 if v1
c

and v2
c

belong to the same stream s then return
false;

2 else if candidate paths of v1
c

and v2
c

are link-disjunct then
return false;

3 else if ∀ intersecting links of the candidate paths of v1
c

and

v2
c

the transmission of all packets of v1
c

and v2
c

is scheduled
for mutually exclusive time intervals then return false;

4 else return true;

0 1 0 0 0 1 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0

... ...

delay-

induced cell-

array shift

Fig. 6. Discrete time intervals are modeled via arrays, where each entry
corresponds to a time-interval in the transmission period. Delay is modeled
via circular shift of the array. If packets are scheduled such that the same
time-interval is used by more than one stream, the temporal isolation constraint
is violated.

cannot conflict (cf. line 1 in Alg. 1), since as per our original

traffic planning problem, we apply only a single configuration

for each stream. Due to output-port queuing and links being

point-to-point connections between network elements, cvertices

which are associated with link-disjunct paths (cf. line 2 in

Alg. 1) are conflict-free, too, because packets are spatially

isolated for contested network resources (output ports, links).

At last, if there are links which occur in the candidate paths

associated with both, v1c and v2c , the two cvertices are conflict

free, if packet transmissions are temporally isolated (cf. line 3

in Alg. 1). One possibility to check for temporal isolation is

illustrated in Fig. 6 where time is discretized, and intervals

where a link is occupied by a transmission are marked (here: by

value 1). If tphase for v1c and v2c is such that the same interval

is marked by both streams, v1c and v2c conflict. Note that all

of these conditions in Alg. 1 are computationally “cheap” to

evaluate.

At last, we can define the conflict graph itself.

Definition 4. A configuration conflict graph CG(C, E) is

an undirected graph where C is a set of cvertices, and

E ⊆ C × C is set of edges between cvertices in C. Every

edge (v1c , v
2

c ) ∈ E represents a mutual conflict between

the configuration associated with v1c and the configuration

associated with v2c .

In this paper, we use configuration conflict graph and conflict

graph as synonyms. However, the conflict graph is not to be

confused with the graph representing the network topology

of the original problem. CG is undirected, and an edge

between two cvertices indicates a mutual conflict between the

two configurations. In other words, two cvertices in CG are

connected with an edge, if one or multiple of the constraints of

the original traffic planning problem are violated if the solution

includes both of these connected cvertices.

Note that Alg. 1 can also be used to construct a conflict

graph from scratch from a set of cvertices C by adding an edge

for any “conflicting” pair of cvertices (v1c , v
2

c ) ∈ C × C.

C. Relation between the Original Traffic Planning Problem

and the Independent Cvertex Set in the Conflict Graph

From the previous section we know that a cvertex represents

a configuration of a stream, i.e., defines when packets of that

stream are traversing along which path through the network.

The conflict graph CG is a graph where the vertices are

cvertices, and there is an edge between v1c and v2c iff there is a



conflict between v1c and v2c . Next, we establish the fundamental

relations between the cvertices and the conflict graph on the

one hand, and the streams and the data network of the original

traffic problem on the other hand.

Theorem 1. Let CG(C, E) be a conflict graph for the original

traffic planning problem for a set of streams S in a network.

If Cind ⊆ C is a set of independent cvertices in CG, then Cind

yields a conflict-free traffic configuration for Sfeasib ⊆ S, iff

∀s ∈ Sfeasib : ∃vc ∈ Cind : (vc belongs to s).

Proof. (By construction.) If Cind 6= ∅, we define Sfeasib =
{s ∈ S|∃vc ∈ Cind : (vc belongs to s)} and Cfeasib ⊆ Cind :
∀s ∈ S feasib : card ({vc ∈ Cfeasib|(vc belongs to s)}) = 1, i.e.,

S feasib is a subset of S which contains all streams covered

by Cind, and Cfeasib is a subset of Cind which contains exactly

one cvertex for every stream s ∈ S feasib. Since Cind is an

independent vertex set in CG, Cfeasib is an independent vertex

set in CG, too. From the definition of the independent vertex

set property and the construction of CG follows directly that

all vc ∈ Cfeasib are mutually conflict free. Thus, by configuring

every stream s ∈ S feasib according to the configuration

associated with one corresponding vc ∈ Cfeasib, it is guaranteed

that none of the constraints on the routes, and schedules of

S feasib are violated. If Cind = ∅, all traffic planning constraints

are trivially satisfied since S feasib = ∅.

Remark: An independent cvertex set Cind covers the stream

set Scovered, if ∀s ∈ Scovered : ∃vc ∈ Cind : (vc belongs to s).
Theorem 1 is the basis for heuristics which provide partial

solutions to the original traffic planning problem. A partial

solution to the traffic planning problem is a global configuration

for a subset of streams ∈ S. According to Theorem 1 any

(non-empty) independent cvertex set provides us with valid

configurations (schedules and routes) for at least those streams

which it covers. This is an advantage over traffic planning in the

original stream/data network domain which often searches for

one variable assignment that satisfies all constraints at once, if

the high-coupling results in an “all-or-nothing” solving process.

The transformation of the original traffic planning problem to

the conflict graph problem reduces this coupling, because we

can decide whether two configurations are mutually exclusive

just by evaluating the stream parameters and the configuration

parameters of the two cvertices in question. Hence, this decision

does not require knowledge about the configurations of any

other streams or the global configuration.

The special case, where Cind covers S tells us how to solve

the original traffic planning problem.

Theorem 2. Let CG(C, E) be a conflict graph for the original

traffic planning problem for a set of streams S in a network. A

set of independent cvertices Csol ⊆ C in CG solves the original

traffic planning problem, if there exists at least one vc ∈ Csol

for every stream s ∈ S .

Proof. For S = ∅, C = Csol = ∅. If S 6= ∅, then ∀s ∈ S :
∃vc ∈ Csol : (vc belongs to s), and all vc ∈ Csol are mutually

conflict free, because Csol is an independent cvertex set in

CG, i.e., ∀(v1c , v
2

c ) ∈ Csol × Csol : ∄(v
1

c , v
2

c ) ∈ E . Thus, by

selecting one vc ∈ Csol for every stream s ∈ S and applying its

configuration to the network and the talkers, it is guaranteed

that none of the constraints on the routes and schedules of S
are violated.

This means, we can solve the original traffic planning

problem by searching for a set of independent cvertices which

covers S. We call the problem of finding Csol the stream-

aware independent cvertex set-problem. The final independent

cvertex set Csol returned by the algorithm may contain multiple

cvertices for a stream. For example, we have CA ⊂ Csol for

stream A. Then, only a single cvertex from CA is selected and

included in the global configuration which is finally applied to

the network and talkers, since we need one route and one phase

(schedule) for stream A. Here, any arbitrary choice from the

cvertices in CA is valid. If Csol contains multiple configurations

for multiple streams, one might also pick particularly “suitable”

configurations for the application at hand from Csol, e.g., to

optimize for best-effort traffic in converged networks.

The concept of conflict-graph based traffic planning is

generic in the sense that it can be applied to traffic planning

problems beyond our specific traffic planning problem, if they

satisfy the following two conditions. Firstly, configurations of

individual plannable entities need to be “additive” in the sense

that it is possible to apply multiple configurations to individual

network elements (here: switches) without “destroying” the

previously applied configurations, and secondly it has to

be possible to independently detect conflicts between any

pair of configurations for the plannable entities. In our case,

configurations are additive, for both routes—“addition” means

adding a routing entry—and schedules. For the schedules, the

additivity results from the temporal isolation constraint which

allows us to merge the individual schedules on each switch.

IV. EXEMPLARY CONFLICT-GRAPH BASED ALGORITHM

In this section, we back-up our arguments for the conflict-

graph based approach by presenting an implementation of a

conflict-graph based algorithm that solves the original traffic

planning problem. Fig. 7 gives an overview over this proof-of-

concept conflict-graph based traffic planning (CGTP) algorithm.

Our CGTP algorithm is iterative. In each iteration, we first

grow the conflict graph. Our method to grow the conflict graph

is discussed in Sec. IV-A.

After growing the conflict graph, we use a combination

of different algorithms to try to find the independent cvertex

set Csol in the current conflict graph. By default, we use a

quick algorithm (here: a modified maximal independent vertex

set algorithm) in every iteration. This default algorithm (cf.

Sec. IV-B) is computationally cheap, but its speed comes at the

cost of giving no guarantee regarding the number of streams

covered. Therefore, the execution of a second, slower algorithm

(here: intermediate ILP) to try to compute Csol can be triggered.

The second algorithm is computationally much more expensive,

but it will surely find an independent cvertex set in the current



Fig. 7. Overview of the iterative, conflict-graph based traffic planning (CGTP)
algorithm. The green, opaque arrow indicates one iteration.

graph which covers the maximum amount of streams given

enough time. Hence, we call it the “sure” algorithm. However,

intermediate executions of the sure algorithm have a runtime

limit. We discuss this second algorithm and its trigger condition

in Sec. IV-C.

Both, the quick algorithm and the sure algorithm can be

followed up by the completion heuristic, cf. Sec. IV-D. When

the completion heuristic is triggered, it tries to complete an

almost complete independent cvertex set by generating new

cvertices for those streams which have not been covered by

the preceding algorithms.

All trigger rules make use of a history hfound which is a

list tracking the number of streams covered in the independent

cvertex set in each iteration. While iterating, we also remember

the previously computed maximal independent cvertex set

which covers the most streams. This set is used to initialize

the ILP and can be returned as partial solution if the CGTP

algorithm is aborted.

We expect “simpler” problem instances in many applications

(e.g., converged networks) where time-triggered traffic makes

up only fraction of the network load, compared to scenarios

where a diverse set of time-triggered streams shall saturate the

network. However, since the underlying problem is known

to be inherently NP-hard, we can end up with “difficult”

instances ultimately requiring something alike an exhaustive

search. Thus, if we did not find Csol in the “normal” iterations,

even if the conflict graph contains all cvertices, i.e., encodes the

whole configuration space, we execute the sure algorithm (here:

ILP) one final time, with a relaxed runtime limit compared

to the intermediate executions of the sure algorithm. Note

that optionally, the final run of the sure algorithm can be

executed without runtime limit. Without runtime limit, the

sure algorithm is guaranteed to provide a solution covering

the maximum amount of streams, barring practical problems

such as running out of memory. This means, we can modify

the parameters of the algorithm to guarantee that the CGTP

algorithm yields an exact solution, i.e., a global configuration

for as many as streams as possible for a particular problem

instance.

After this overview, we present the details of the components

of the CGTP algorithm. We start by detailing how the conflict

graph is built. Next, we explain the two algorithms to find

independent cvertex sets and the completion heuristic.

A. Building and Expanding the Conflict Graph

For the initial generation and the subsequent growth of

the conflict graph in the CGTP algorithm, we define one

stateful generator function per stream. Each generator function

returns a new cvertex for its stream every time it is called as

long as there exists a new cvertex for the respective stream.

The state tracks for which parts of the feasible configuration

space of the associated stream the generator function already

created cvertices. The state is updated when the generator

function generates a new cvertex. For our prototypical generator

functions, the state comprises most importantly the path index

and the phase of the last generated cvertex. For each invocation,

a new cvertex is returned with an incremented ipath until all

candidate path indices for the current tphase are covered. If

all candidates paths for the current tphase have been covered,

tphase is incremented and the candidate path index is reset to

ipath = 0. This way, the generator functions sweep over the

range of feasible values for their respective stream. With a

discrete time representation, every generator returns a finite

amount of cvertices.

In the CGTP algorithm, we start with an initial conflict graph

that contains a single cvertex for each stream in the stream set,

i.e., we invoke every per-stream generator function once, and

construct the conflict graph from those cvertices by adding the

corresponding edges.

During the iterations of the CGTP algorithm, we grow the

conflict graph on-the-fly. This exploits the property, that it is

possible to obtain a solution to the original traffic planning

problem without a conflict graph including all cvertices for all

streams. We grow the conflict graph in the beginning of each

iteration by invoking the cvertex generator functions for the

stream set and inserting the obtained vertices into the existing

conflict graph (cf. Alg. 2).

B. Quick Algorithm: Adapted Maximal Independent Vertex Set

Computation

According to Theorem 2, any independent cvertex set which

covers all streams can be the solution Csol to the stream-aware

independent cvertex set problem. Usually, |C| ≫ |S|, thus

there is a chance for any independent cvertex set Cind with

|Cind| ≥ |S| to cover S. In other words, any algorithm which



Algorithm 2: Cvertex insertion into conflict graph.

input :CG, vc
output :CG

1 foreach ve
c
∈ vertices(CG) do

2 if conflict(vc, v
e

c
) then add edge (vc, v

e

c
) to CG;

3 end
4 add vertex vc to CG;

Algorithm 3: Adapted Luby’s algorithm for MIVS [20].

input :CG, a
output : independent cvertex set I

1 I ← ∅ ; CG
′(C′, E ′)← copy(CG(C, E)) ;

2 while C′ 6= ∅ do
3 X ← ∅; // candidate set

4 foreach vc ∈ C
′ do

5 pdeg ←
1

(2·deg(vc))
; psc ← 1− sc[s]

max(sc)
;

6 add to X with probability p = a ·pdeg +(1−a) ·psc ;
7 end

8 I′ ← X ;

9 foreach (v1
c
, v2

c
) ∈ I′ × I′ : (v1

c
, v2

c
) ∈ E ′ do

10 if deg(v1
c
) ≤ deg(v2

c
) then I′ ← I′ −

{

v1
c

}

;

11 else I′ ← I′ −
{

v2
c

}

;
12 update(sc) ;
13 end

14 I ← I ∪ I′ ; Y ← I′ ∪ neighborhood(I′) ;
15 CG

′(C′, E ′)← subgraph on C′ − Y ;
16 end

returns a sufficiently large independent cvertex set may possibly

solve the traffic planning problem.

Therefore, we adapt Luby’s algorithm [20] for the computa-

tion of the maximal independent vertex set (MIVS). Luby’s

algorithm is intuitive to understand and can be parallelized.

Luby’s algorithm is an iterative algorithm (cf. Alg. 3), which

terminates with high probability in O(log |C|) rounds.

Each iteration of the algorithm consists of two steps. In

the first step (cf. l. 4, Alg. 3), the algorithm randomly selects

candidate cvertices. In our adapted algorithm (changes are

highlighted in Alg. 3), the probability of cvertex vc to become

a candidate vertex depends on the degree of cvertex, and

we consider how many cvertices that belong to the same

stream as vc are already part of the result set I. For this,

we use variable sc[s], which tracks the number of cvertices

that belong to s and which were previously included in I.

The final probability accounts for both terms, weighted by

a factor a with 0 ≤ a ≤ 1 (by default a = 0.7) and thus

can raise the probability of cvertices not yet covered in the

result set I to become candidates. In step 2 (cf. l. 9, Alg. 3),

cvertices from the candidate set are selected as cvertices for

the maximal independent vertex set. The steps repeat until a

maximal independent vertex set is found, i.e., all vertices are

either in the result set I , or neighbor vertices in the result set.

Unfortunately, the adapted MIVS algorithm returns “only” a

maximal independent cvertex set. There is no guarantee that the

maximal independent cvertex set will ever cover all streams.

C. Sure Algorithm: Finding Independent Cvertex Sets covering

as many Streams as possible

Since the quick algorithm may not solve the problem

completely, we employ an ILP as an alternative method. The

ILP is guaranteed to find an independent cvertex set that covers

as many streams as possible, albeit it may take very long.

Therefore, this sure algorithm is only executed in two cases,

a) if it appears that the quick algorithm does not make any

progress over multiple iterations, i.e., the number of covered

streams is not increasing, or b) when the conflict graph contains

all possible cvertices and still no solution has been found.

Next, we explain the ILP formulation that finds the indepen-

dent cvertex set that covers as many streams as possible. Then

we explain the trigger rule for the sure algorithm.

1) Integer-Linear Program for the Stream-Aware Indepen-

dent Cvertex Set Problem: The ILP to compute the independent

cvertex set that covers as many streams as possible is different

from the ILP-based approaches for the original traffic planning

problem in the related work which operate directly on the

routing variables and the scheduling variables. It is much

simpler and can be stated in the three lines.

max
∑

xs∈XS

xs subject to (1)

∀(x1

v, x
2

v) ∈ edges(CG) : x1

v + x2

v ≤ 1 (2)

∀xs ∈ XS :
∑

xv∈X s

V

xv ≥ xs (3)

The ILP uses two sets of binary decision variables. Every

decision variable xv ∈ {0, 1} in the decision variable set Xcv

represents one cvertex in the conflict graph. If xv = 1, then

the associated cvertex is part of the independent cvertex set.

Conversely, if xv = 0, then the associated cvertex is not part of

the independent cvertex set. Similarly, every decision variable

xs ∈ {0, 1} in the second decision variable set XS represents

a stream s ∈ S. If xs = 1, the respective stream is covered

by the independent cvertex set. Consequently, if xs = 0 the

associated streams s is not covered by the independent cvertex

set. Additionally, we define the helper set X s
V

, which includes

all xv ∈ Xcv which belong to a specific stream s. The set

edges(CG) contains all edges in the conflict graph CG.

The objective function returns an independent cvertex set

which covers as many streams as possible. If there is an

independent cvertex set that covers all streams, the ILP will

find it provided with enough computing resources. Note that

the NP-hard maximum independent vertex set problem [21] is

reduced to this ILP, if there is one cvertex per stream.

2) Intermediate ILP Execution: Even though the ILP is

“just three lines” long, solving the ILP may take an unknown,

large amount of time, which may be spent better by growing

the graph and executing the quick algorithm. Therefore, we do

not execute it in every iteration. However, it may happen, that

the quick algorithm fails over the course of multiple iterations

to return independent cvertex sets which cover an increasing

number of streams despite a growing conflict graph. This

can be caused e.g., by conflict graphs with an “unfortunate”



Algorithm 4: Trigger rule for sure algorithm.

input : history hfound, window size wILP,
output : trigger variable rILP, window size wILP

1 window← slice of wILP last entries of hfound;
2 dpast =

∑

diff(window) ;
3 if dpast > 0 then
4 rILP ← false ; window size wILP ← wILP + 1 ;
5 else rILP ← true ; wILP ← minimal window size ;
6 return rILP, wILP;

cvertex degree distribution where the quick algorithm yields

independent sets with many cvertices which all belong to a

small set of few streams. If the number of covered streams

found by the quick algorithm stagnates, or even decreases over

time despite a growing conflict graph, then we want to execute

the sure algorithm.

This rationale is encoded in Alg. 4. Alg. 4 evaluates the

development of the number of covered streams in a (variable-

sized) window of the history. Alg. 4 returns a Boolean rILP

indicating whether the sure algorithm shall be executed and

updates the windows size. The window grows, when the

quick algorithm “makes progress”, because we do not want a

single “bad” iteration to trigger the sure algorithm. If the sure

algorithm is triggered, we reset the window size, such that the

trigger condition is again more sensitive to changes.

If the ILP is triggered, it is allowed to run only for a limited

time (by default 5min). Additionally, there is a limiter which

suspends the sure algorithm for a certain number of iterations

if it has been triggered successively for a certain number of

iterations in the past. The motivation for limiting the number of

successive ILP execution, i.e., suspending the ILP executions

for some iterations, stems from the fact that there are two

reasons for the ILP execution to not find an independent cvertex

set in the current conflict graph, a) either finding the solution

in the current conflict graph is so hard that we hit the time-out,

or b) the current conflict graph does not contain an independent

cvertex set which covers all streams (yet). In the latter case, the

ILP execution wastes 5min. However, we do not know which

is the case. Thus expanding the graph (instead of executing the

ILP) improves the chance that the graph contains a solution

and that it can be found be the ILP in overall shorter time. By

default, we suspend the sure algorithm for five iterations, if it

has been triggered twice in succession.

D. Completion Heuristic

The completion heuristic can be triggered after both, the

quick algorithm and the sure algorithm. It is triggered, if the

number of missing streams, i.e., streams which are not covered

in the independent cvertex set, in the current iteration is less

or equal to a threshold. The completion heuristic invokes the

generator functions to get a limited set of new cvertices for the

missing streams and adds them to the current conflict graph,

in the hope of finding cvertices without a conflict with the

independent cvertex set found in the current iteration.

Algorithm 5: Update threshold for completion heuristic.

input : history hfound, window size wcplt., threshold pthresh.

output : windows size wcplt., threshold pthresh.

1 window
old ← slice of wcplt. entries up to (including)

penultimate entry of hfound;
2 window

new ← slice of wcplt. last entries of hfound;

3 n̄old
found ← round(mean(window

old)) ;
4 n̄new

found ← round(mean(window
new)) ;

5 if n̄new
found < n̄old

found then
6 reduce pthresh.; reduce wcplt. linearly ;

7 else if n̄new
found < n̄old

found then
8 increase pthresh.; increase wcplt. by (wmax,cplt. − wcplt.)/2 ;
9 else reduce pthresh.;

10 return pthresh., wcplt.;

A fixed threshold may result in excessive execution of the

completion heuristic, once it is exceeded, and is difficult to

determine a-priori. Therefore, we use a dynamic threshold. The

threshold is adjusted depending on the past iterations by Alg. 5.

Alg. 5 looks at a variable-sized window of the history hfound.

If the number of covered stream is increasing, the threshold

is raised, i.e., more streams have to be covered, before the

completion heuristic is triggered, and the window size grows,

i.e., a single worse iteration has less impact. If the number of

covered stream is decreasing, we do the opposite. The threshold

is lowered to the effect that the completion heuristic is triggered

with more missing streams, and the window size is reduced,

i.e., the threshold adjustment becomes more responsive. If the

change is too small (cf. the rounding in line 3 and line 4 in

Alg. 5) indicating a lack of progress, the threshold is lowered,

too.

Considering the case that the completion heuristic is trig-

gered, but fails to cover the remaining streams, we can interpret

the completion heuristic and its trigger rule as a secondary,

optional growth-phase of the conflict graph in an iteration.

This second growth-phase is restricted to streams which were

left uncovered in the preceding conflict-checking step, thus

the completion heuristic also serves as a primitive feedback

mechanism to “guide” the conflict-graph growth.

V. EVALUATION

In this section, we quantitatively evaluate the conflict-graph

based traffic planning approach.

A. Evaluation Scenarios

We obtain problem scenarios by first generating a network

topology and then creating a set of streams. The network topol-

ogy is a ring graph where the nearest n-neighbors are connected

(cf. Fig. 8). Besides its simplicity and close relation to ring

topologies which are often found in industrial environments

or in sensor arrays for direction-of-arrival tracking [22], this

topology ensures that there exist multiple different candidate

paths for every pair of streams.

Unless specified differently, n = 3 neighboring nodes

are connected, processing delay is set to 2 µs (here: time is

discretized in 1 µs-intervals). Propagation delay is neglected.



Fig. 8. Example of the network topology: ring graph with 15 nodes and
n = 3 neighboring nodes (in each direction) are connected.

The stream parameters tcycle, tduration, and number of candi-

date paths are equal for all streams in an evaluation scenario.

Talker and listener node for each stream are randomly selected

among the nodes of the network. This keeps the number

of parameters low, and reduces the probability of infeasible

scenarios, e.g., caused by relative prime tcycle. By default, we

consider 3 candidate paths per flow. We write the network

properties and the stream parameters to plain-text files which

are ingested by the traffic planning programs.

B. Evaluation Methodology

We implemented the conflict-graph based traffic planning

algorithm from Sec. IV in Julia [23] and refer to this

implementation of the conflict-graph based traffic planning

program as CGTP. CGTP uses the LightGraphs library for

the computation of the k-shortest paths for each stream and

interfaces with the ILP solver Gurobi [24] via JuMP [25].

Additionally, we also implemented an adapted version of

a recently proposed, typical ILP [14] for the traffic planning

problem to compare the conflict-graph based traffic planning

approach to a constraint-based approach which operates directly

in the domain of network and streams. We adapted the ILP to

use the same system model of the traffic planning problem as

CGTP, i.e., multiple candidate paths are considered, and we use

a time-discretization to model temporal constraints. We refer to

this constrained-based approach as reference ILP (short, RILP,

not to be confused with the ILPs used for the sure algorithm

in CGTP). To run the RILP, we use a Python program and the

modeling library Pyomo [26] to build the RILP model for the

traffic planning problem. Pyomo also interfaces with the ILP

solver Gurobi, and we compute the k-shortest paths for each

stream with the graph-tool library [27].

Tab. II summarizes the computing setup of our evaluations.

C. Evaluation Results

Next, we present the evaluation results, starting with a

performance comparison of CGTP and RILP, before looking at

different properties of CGTP. For all results in our evaluations

the CGTP-algorithm yielded optimal results in the sense that

it returned an independent cvertex set covering all streams.

1) Comparison CGTP vs. RILP: For the comparison of

CGTP and RILP, we use a network with 50 nodes. We increase

the number of streams in steps of 10, starting at 50 streams,

with tcycle = 300 µs and tduration = 5 µs for all streams. We

TABLE II
SPECIFICATION OF COMPUTE NODES.

PCsmall PCbig

CPU 1 Intel Xeon E5-1650v3,
3.50GHz

4 Intel Xeon E7-4850 v4,
2.1GHz

RAM 16GB 1TB
host OS CentOS Linux 7.7.1908,

Kernel 3.10.0-1062,
Arch Linux, Kernel 5.2.5

container docker v19.03, Fedora 30-based container image
SW (CGTP) Julia 1.2.0, LightGraphs, JuMP with Gurobi 8.1.0
SW (RILP) Python 3.7, graph tool, Pyomo with Gurobi 8.1.0
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Fig. 9. Comparison of runtime on compute nodes of type PCsmall.

solve 20 problems per step, and each problem is solved once

with CGTP and once with RILP on compute nodes of type

PCsmall (cf. Tab. II).

The wall clock total runtime, i.e., the time from importing

the problem from the files to writing the solution to disk for

these scenarios is divided in the time for setup and I/O, and

the time for the actual solving process. In case of CGTP, setup

and I/O includes the time to read and write the files and to

pre-compute the candidate paths for the streams. Time spent in

the CGTP-kernel consists of the time for growing the conflict

graph and searching for independent cvertex sets. For RILP,

setup and I/O includes, besides file operations and path pre-

computations, the time required for the construction of the ILP

model. The time spent on solving the ILP is measured around

the function call, which interfaces with the solver.

The average runtimes are depicted in Fig. 9. The vertical line

on top of each composite bar indicates the standard deviation

of the total runtime.

While it is apparent that CGTP solves the problem in much

shorter time, e.g., the average total runtime of CGTP for 100

streams is with 103.2 s almost five times less compared to the

average total runtime of RILP (493.4 s) for only 50 streams, we

want to highlight another advantage of CGTP over constraint-

based implementations. On the PCsmall compute nodes, the

RILP software stack quickly hit the “memory bound”. For

already 70 streams, RILP could not solve 5 of 20 scenarios

due to a shortage of memory and for 80 or more streams no

scenario was solved as indicated by the missing bars in Fig. 9.

Constraint-based approaches which solve the traffic planning
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Fig. 10. Comparison of runtime on compute node PCbig.

problem in the network domain inherently result in a large set

of constraints [1], and solvers often occupy a large chunk of

memory for tracking the already covered solution space.

In contrast, CGTP runs to completion for the same evaluation

scenarios on the PCsmall compute nodes. CGTP is more mem-

ory efficient during the solving process, because the cvertices

have a high information-density compared to the individual

variables in the RILP. To solve the stream-aware independent

cvertex problem, we only need the cvertex identifiers, the edges

in CG and a mapping of cvertices to stream identifiers, i.e.,

“a few” integers. All the details in the network domain are

only necessary when constructing or growing the graph, or

when finally assembling the solution. Thus, the conflict-graph

based approach has the very practical advantage of pushing

out the borders of tractable problems in scenarios with limited

memory. Admittedly, out-of-core implementations can extend

the memory bound for both approaches.

We re-ran the evaluations on a compute node of type

PCbig (cf. Tab. II) with much more RAM. The results (averaged

over 20 scenarios per step) are depicted in Fig. 10.

Up to 130 streams, the whole runtime of CGTP is on average

faster than the time spend for just calling the ILP solver

(excluding setup and I/O), even though the ILP solver is able to

make use of all processor cores, whereas CGTP is implemented

mostly single-threaded. While CGTP still outperforms RILP by

a significant margin for all evaluation scenarios, we observe a

steep increase in runtime and the variance of the total runtime

for CGTP from 130 streams on. The average total runtime

more than triples for CGTP from 130 streams (177.1 s) to 140

streams (625.0 s) and reaches 812.4 s for 150 streams.

In our evaluations, CGTP outperforms RILP, but we also

observe that the region of scenarios which can be solved in

practice with RILP is limited by the sheer size of the ILP

model and the time spent on its construction. The iterative

approach of CGTP does not exhibit this drawback.

2) Network Density: Next, we investigate the performance

of CGTP and the previously observed increase in runtime

and runtime variance for larger stream sets. We use the same

network topology with 50 nodes and with the same properties

as in the previous section. We vary the number of streams

from 25 to 200 with an increment of 25 streams per step (each
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Fig. 11. Behavior for varying ratio of streams to nodes in the network.

with tcycle = 1000 µs, tduration = 5 µs), effectively changing the

total ratio of streams to nodes in the data network from 1:2 to

4:1. We generate and solve 40 problem instances per step on

the PCsmall compute nodes.

In Fig. 11, we plot the total runtime over the number of

cvertices of the conflict graph at the time when the solution

was found. Each point in Fig. 11 represents an individual

scenario. Points are colored according to the ratio of streams

to nodes in the network. We observe comparably short mean

runtimes for scenarios with 25 streams (12.0 s) to 100 streams

(86.9 s) which form almost a line in the lower left corner of

the plot. However, from 125 streams (ratio 5:2) on, individual

runtimes increase strongly and spread farther apart, indicating

also an increasing variance of the runtimes. From 125 streams

(ratio 5:2) on, we measured the following average runtimes:

297.5 s for 125 streams, 851.1 s for 150 streams, 1982.3 s for

175 streams and 3134.7 s for 200 streams.

There are two factors contributing to this behavior. Firstly, by

increasing the number of streams while maintaining the network

size, the network load, and thus the difficulty of the traffic

planning problem, is increasing, since conflicts become more

likely. Secondly, we also see implementation-specific effects.

As explained in Sec. IV, our proof-of-concept implementation

of CGTP is an iterative approach which by default uses the

adapted maximal independent vertex set algorithm in each

iteration and, depending on the trigger condition, also executes

an intermediate ILP. For scenarios with 100 or more streams,

the intermediate ILP executions did not only get triggered

multiple times, but we also observed several instance where

the intermediate ILP solving had to be aborted due to hitting

the runtime limit. The higher the number of streams, the more

often this happened. Every intermediate ILP execution which

was aborted due to the time-constraints therefore adds 300 s
to the total runtime, i.e., for similar-sized conflict graphs the

number of unsuccessful intermediate ILP executions can cause

strongly varying total runtimes.

3) Scaling: Finally, we keep the ratio of streams to nodes

in the network fixed to 1:1, i.e., the more streams, the larger

the network. We vary the number of streams (and nodes in

the network) from 50 to 400, (each with tcycle = 1000 µs,
tduration = 5 µs). We generate and solve in total 80 problem

instances per step on PCsmall compute nodes.

This time, we use two different settings for the ILP trigger
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Fig. 12. Total runtime for increasing problem size with different intermediate
ILP settings. Left plot: after two successive executions of intermediate ILP for
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execution of intermediate ILP every 10 iterations for at most 10min.
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Fig. 13. Runtime normalized to the number of edges in the conflict graph for
increasing problem sizes.

limiter. Half of the problem instances (left plot in Fig. 12) use

the default setting where the intermediate ILP can be executed

at most twice in succession, and the ILP solver runtime is

limited to 5min, before ILP triggering pauses for five iterations

(labeled exec.2, p.5). For the other half of the problem instances

(right plot in Fig. 12), the intermediate ILP can be triggered at

most once every ten iterations and is allowed to run at most

10min (labeled exec.1, p.10).

Despite the different settings for the ILP trigger limiter, we

observe similar values for the average runtimes, as well as the

variance of the runtime. The increase in runtime is dominated

by two factors, namely the time it takes to grow the graph

and the time it takes to search for the independent cvertex

set. The growing of the conflict graph, or more exact, the

time it takes to insert a single cvertex into the conflict graph

grows with increasing number of cvertices in the conflict graph

(cf. Alg. 2). The time required for searching the independent

cvertex set also grows with an increasing conflict graph, but

has the possibility to vary much stronger, depending on the

actual structure of the conflict graph, the rounds in the quick

algorithm, and the time spent in the sure algorithm.

In Fig. 13, we plot the total runtime normalized to the

number of edges in CG over the size of CG. Also, here

the two settings for the intermediate ILP behave similarly.

For small numbers of cvertices (∼ 102 to 103 cvertices), the

overhead (I/O, path computation) dominates, hence we see a

decline for increasing number of cvertices for these problem

instances. For larger conflict graphs, the time spent for growing

the conflict graph and finding the solution dominates, and we

TABLE III
MEAN AND STANDARD DEVIATION OF CONFLICT GRAPH SIZES FOR

INCREASING PROBLEM SIZES, CF. FIG. 13.

|S|,# nodes 50 100 200 300 400

mean(|C|) 1.297E3 3.043E3 6.256E3 9.438E3 1.267E4
std(|C|) 824 616 464 762 584

mean(|E|) 1.445E4 3.633E4 8.368E4 1.333E5 1.838E5
std(|E|) 1.338E4 1.038E4 1.187E4 2.293E4 2.000E4

observe a similar clustering (visible, e.g., around the average

number of cvertices for 200 and more stream, cf. Tab III) in

Fig. 11. The average size of the conflict graph is similar for

both settings (cf. Tab. III), and there are few outliers in Fig. 13.

This indicates that the combination of the quick algorithm,

the sure algorithm, and the respective trigger rules succeed

to consistently finding solutions without “over-growing the

graph”.

VI. CONCLUSION

In this paper, we presented an approach to solve the traffic

planning problem for time-triggered traffic in data networks

with conflict graphs. We explained how to derive these conflict

graphs from the original traffic planning problems, and we

showed how to solve the traffic planning problem by finding

independent cvertex sets which cover all streams. With the

conflict-graph based approach it is comparably cheap to get

feasible (partial) solutions, since there exist efficient algorithms

for finding independent sets even in large graphs.

Furthermore, we presented a proof-of-concept implemen-

tation of a traffic planning algorithm for the conflict-graph

based approach and evaluated its performance. The performance

evaluations showed practical advantages of the conflict-graph

based approach, which can find solutions of the traffic planning

problem faster and more memory efficiently.

The concept of conflict-graph based traffic planning problems

can be advanced in several directions in future work. The

most obvious one are performance improvements, e.g., by

increasing the parallelization of the current implementation

during construction of the conflict graph or when searching for

independent vertex sets, or tuning trigger rules. Also, it seems

promising to replace Luby’s algorithm entirely by a bespoke

algorithm which searches specifically for independent cvertex

sets covering all streams, e.g., using techniques from [28].

Exploring, if the conflict-graph based approach for traffic

planning is also suitable for different system models, e.g.,

without zero-queuing assumption, is another direction of future

work.
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