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ABSTRACT
In complex event processing (CEP), load shedding is performed to
maintain a given latency bound during overload situations when
there is a limitation on resources. However, shedding load implies
degradation in the quality of results (QoR). Therefore, it is crucial
to perform load shedding in a way that has the lowest impact on
QoR. Researchers, in the CEP domain, propose to drop either events
or partial matches (PMs) in overload cases. They assign utilities
to events or PMs by considering either the importance of events
or the importance of PMs but not both together. In this paper, we
propose a load shedding approach for CEP systems that combines
these approaches by assigning a utility to an event by considering
both the event importance and the importance of PMs. We adopt
a probabilistic model that uses the type and position of an event
in a window and the state of a PM to assign a utility to an event
corresponding to each PM.We, also, propose an approach to predict
a utility threshold that is used to drop the required amount of
events to maintain a given latency bound. By extensive evaluations
on two real-world datasets and several representative queries, we
show that, in the majority of cases, our load shedding approach
outperforms state-of-the-art load shedding approaches, w.r.t. QoR.
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• Information systems→ Data streams; Stream management; •
Theory of computation→ Streaming models.
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1 INTRODUCTION
Complex event processing (CEP) systems are used in many appli-
cations to detect patterns in input event streams [3, 11, 23]. The
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criticality of detected patterns (also called complex events) depends
on the application. For example, in fraud detection systems in banks,
detected complex events might indicate that a fraudster tries to
withdraw money from a victim’s account. Naturally, the complex
events in this application are critical. On the other hand, in applica-
tions like network monitoring, soccer analysis, and transportation
[12, 17, 18], the detected complex events might be less critical. As a
result, these applications might tolerate imprecise detection or loss
of some complex events.

In CEP systems, input events are streamed continuously to CEP
operators where the input events (or simply events) are partitioned
into windows of events. Events within windows are processed by
CEP operators to detect patterns (called pattern matching). For
most applications, it is important to detect complex events within a
certain latency bound (LB) where the late detected complex events
become useless [13, 16]. However, if the rate of input events exceeds
the processing capacity of CEP operators, the input events queue
up and the detection latency of complex events increases, possibly
resulting in violation of the given latency bound. For CEP applica-
tions that tolerate imprecise detection of complex events and have
limited processing resources, one way to keep the given latency
bound is by using load shedding [5, 17, 18, 24]. Load shedding re-
duces the overload on a CEP operator by either dropping events
from the operator’s input event stream or by dropping a portion of
the operator’s internal state. This results in decreasing the number
of queued events and in increasing the operator processing rate,
hence maintaining the given latency bound.

Of course, load shedding may impact the quality of results (QoR)
as it might falsely drop complex events (denoted by false negatives)
or/and falsely detect complex events (denoted by false positives).
Therefore, it is crucial to shed load with minimum adverse impact
on QoR. In [5, 18], the authors propose two black-box load shed-
ding approaches for CEP systems where their approaches drop
input events that have the lowest utility. The approach in [18]
uses event type and position within windows as features to prob-
abilistically learn about the utility of events in windows. In [5],
the event utility depends on the frequency of events in patterns
and in the input event stream. In [17, 24], the authors propose two
white-box approaches to perform load shedding in CEP where the
focus is on dropping partial matches. A partial match is a detected
part of a pattern that could become a complex event if the full
pattern is matched. However, the approach in [24] might also drop
input events if the given latency bound might be violated. Both
approaches depend on the following features to learn about the
utility of PMs: the progress/state of the PM in the window and the
number of remaining events in the window. These two features are
used to predict the completion probability and the processing cost
of the PMs and hence the PM utilities.
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In the black-box approach, load shedding is performed in a finer
granularity (event granularity), i.e., it drops individual events from
windows, in comparison to white-box dropping approaches which
mainly drop PMs, i.e, dropping in a coarser granularity. As a result,
the white-box approaches might drop PMs that have relatively high
utilities which adversely impacts QoR even if there exist events that
may be dropped without impacting QoR. On the other hand, the
black-box approaches neither consider the importance nor the state
of PMs. An event might have different utilities for individual PMs,
depending on the importance and the state of PMs. Thus, in this
paper, we propose a new white-box load shedding strategy called
hSPICE that combines the best of both black-box and white-box
approaches.

In particular, hSPICE is a white-box load shedding approach that
drops events from PMs– it sheds on the event-granularity– while
considering the operator’s internal state. hSPICE predicts the utility
of the events using a probabilistic model. The model uses the event
type, the event position within a window, and the state of partial
matches in a window to learn about the utility of events within
windows. An important factor that influences the effectiveness
of a load shedding approach is its overhead in performing the
load shedding. A high load shedding overhead implies that a high
percentage of the available processing powerwill be used to take the
shedding decision. This results in reducing the available processing
power to perform pattern matching, thus adversely impacting QoR.
As we will show, hSPICE is a lightweight, efficient load shedding
approach.

More specifically, our contributions in this paper are as follows:
• We propose a white-box load shedding approach for com-
plex event processing called hSPICE. hSPICE performs load
shedding by dropping events from PMs. hSPICE uses a prob-
abilistic model to learn the utility of an event for a PM within
a window. As learning features, we use the type and position
of the event within the window and the state of the PM.
• We provide an algorithm to estimate the number of events to
drop to maintain the given latency bound. Additionally, we
propose an approach that enables hSPICE to perform load
shedding in a lightweight manner.
• We provide extensive evaluations on two real-world datasets
and a representative set of CEP queries to prove the effec-
tiveness of hSPICE and to show its performance, w.r.t. its
adverse impact on QoR, in comparison to state-of-the-art
load shedding approaches.

2 PRELIMINARIES AND PROBLEM
STATEMENT

2.1 Complex Event Processing
A CEP system consists of a set of operators that are connected
in the form of a directed acyclic graph (DAG). An operator in a
CEP system correlates input events to detect patterns. The detected
patterns are called complex events. An event in the input event
stream (denoted by Sin ) consists of meta-data and attribute-value
pairs. The meta-data contains event type, sequence number and/or
timestamp, while the attribute-value pairs represent the event data.
For example, the type (denoted by Te ) of event e might represent
a company name in a stock application, a player ID in a soccer

application, or a bus ID in a transportation application. The event
data might contain stock quotes, player positions, or bus locations
in these applications. Events in the input event streams have global
order, for example, by using the sequence number or the timestamp
and a tie-breaker.

Our focus in this paper is on CEP systems consisting of a sin-
gle operator, where the operator matches one or more patterns
(i.e., multi-query). We define the set of patterns that the operator
matches as Q = {qi : 1 ≤ i ≤ n}, where n is the number of pat-
terns. Since patterns might have different importances, each pattern
has a weight reflecting its importance. The patterns’ weights are
determined by a domain expert and they are defined as follows:
WQ = {wqi : 1 ≤ i ≤ n}, where wqi is the weight of pattern qi .
In CEP systems, the input event stream Sin is continuous and infi-
nite, where the input event stream is partitioned into windows of
events. Windows in CEP are opened depending on predicates such
as time-based, count-based, or logical predicates. Moreover, the
length of windows might be defined by time, event count, or logical
conditions [3, 20]. The number of events in a window is defined
as window size (denoted by ws). Each event in window w has a
position where the position Pe of event e represents the number of
events that precedes event e in windoww . Windows might overlap
which means that there may exist more than one open window at
the same time. Hence, event e might belong to multiple windows,
where it has different positions Pe within different windows. To
clarify the system model, let us introduce the following example.

Example 1. In a stock application, an operator matches pattern
q which correlates stock events from three companies. Pattern q is
defined as follows: generate a complex event if a change in the stock
quote of company A results in a change in the stock quote of com-
pany B, followed by a change in the stock quote of company C . We
may write this pattern as a sequence operator [4]: q = seq(A;B;C ).
Hence, the set of patterns that the operator matches is Q = {q}.
In this example, the event type Te might represent the company
name, i.e., A, B, andC . Assume that a count-based predicate is used
to open windows where a window is opened every two events,
i.e., window slide size is two. Figure 1 depicts this example. Figure
1(a) shows that events in the input event stream (Sin ) are ordered
by the sequence number. Moreover, it shows that there are three
open windows which overlap. As an example to show how the
same event may have different positions within different windows,
we see that the event A4 from the input event stream belongs to
all three windows, where it has the positions 4, 2, and 0 within
windowsw1,w2, andw3, respectively.

Windows of events are first pushed to the input queue of a CEP
operator. The operator continuously gets events from the input
queue where, within every window to which an event belongs,
the operator checks if the event matches the given pattern(s). We
refer to this checking as processing the event within the window.
As mentioned above, windows might overlap. However, events
within each window are processed independently. A pattern in
CEP is modeled as a finite state machine [11, 14] (cf. Figure 1(a)).
The set of all possible states Sqi of pattern qi ∈ Q is defined as:
Sqi = {sk : j ≤ k < j +mi }, where mi represents the number
of all possible states of pattern qi and j represents the sum of the
number of all possible states of all patterns ql ∈ Q where l < i , i.e.,
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State machine of pattern q = seq (A; B;C ).
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(a)
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cplx1 s0 s1 s2 s3
A0 B2 C5

γ2 s0 s1 s2
A1 B3

γ3 s0 s1 s2
A4 B6

γ4 s0

w2

γ1 s0 s1 s2
A2 B4

γ2 s0

w3

γ1 s0 s1 s2
A0 B2

γ2 s0

(b )

Figure 1: Example 1.

j =
∑i−1
l=1ml . In Example 1, pattern q has four states (i.e.,mi = 4)

where Sq = {s0, s1, s2, s3} as shown in Figure 1(a). In the figure,
s0 represents the initial state of pattern q and s3 represents its
final state. We define the set of all possible states for all patterns
as follows: SQ =

⋃n
i=1 Sqi . In Example 1, since there is only one

pattern (i.e., Q = {q}), SQ = Sq = {s0, s1, s2, s3}.
Whenever an operator starts to process events within a window,

it starts an instance of the state machine of every pattern qi ∈ Q at
the initial state. During event processing within a window, an event
is matched with the state machine instances of pattern qi ∈ Q. The
event might cause the state machine instance(s) of pattern qi to
transit between different states of Sqi . Please recall that we have
already defined a partial match. However, let us define it more
formally. An instance of the state machine of pattern qi is called a
partial match (short PM), where the partial match completes and
becomes a complex event if the state machine instance transits to
the final state. Hence, processing an event within a window implies
that the event is matched with PMs within the window. We define
a partial match γ of pattern qi as γ ⊂ qi . Moreover, we refer to
matching event e with PM γ ∈ qi as processing event e with PM γ ,
denoted by e ⊗ γ . In Example 1, assume that the operator matches
the events in windows chronologically [4] and the operator has
already processed all available events in all open windows, i.e., the
operator has processed the last event of type B (B6 in the input
event stream) in all windows. Figure 1(b) shows the result of pattern
matching in all windows. In windoww1, the operator has detected
one complex event (cplx1) while there are still three open PMs in
windoww1: γ2, γ3, and γ4 . Similarly, there are two PMs in windows
w2 andw3 each: γ1 and γ2.

Partial match γ ⊂ qi might be at any state of pattern qi except
the final state, where PM γ at the final state has already completed
and become a complex event. Therefore, the set of all possible states
(Sγ ) of PM γ is defined as follows: Sγ = Sqi \ {final states}. Hence,
the set of all possible states SΓ of all PMs of all patterns is defined
as follows: SL =

⋃n
i=1 Sγi : γi ⊂ qi . In example 1, for PM γ ⊂ q,

Sγ = {s0, s1, s2} and SL = Sγ = {s0, s1, s2}, as there is only one
pattern in this example. We refer to the current state of PM γ as Sγ .
Additionally, we refer to PM γ at state s as γs . If processing event e

with PM γ ⊂ qi at state s (i.e., e ⊗ γs ) causes γ to progress, i.e., e
matchesqi and causes the state machine instance to transit, we refer
to this as event e contributes to PM γ at state s , denoted by e ∈ γs .
In Example 1, event B0 in windoww2 has been processed with γ1 at
state s0 (i.e., B0 ⊗ γ1s0 ) but it did not cause γ1 to progress. While in
the same windoww2, event A2 has been processed with γ1 at state
s0 (i.e., A2 ⊗ γ1s0 ) and it caused γ1 to progress to state s1. Hence,
event A2 contributes to PM γ1 at state s0, i.e., A2 ∈ γ1s0 . In window
w , at a certain window position P , there might exist one or more
PMs belonging to the same or different patterns qi ∈ Q. We denote
the set of PMs that are currently active at window position P by LPw .
Also, we denote the total number of PMs that are opened until the
end of windoww by LTw . In Example 1 Figure1(b), the set of current
PMs in windows w1, w2 and w3 are as follows:

L6
w1 = {γ2,γ3,γ4},L4

w2 = {γ1,γ2}, and
L2
w3 = {γ1,γ2}. Please note that in the negation

operator [14, 22] if the negated event e ′ contributes to PM γ (i.e.,
e ′ ∈ γ ), PM γ is abandoned. For ease of presentation, hereafter, we
also refer to the abandoned PMs as completed PMs.

2.2 Problem Statement
A CEP operator might have limited resources where, in overload
cases, it must perform load shedding by dropping a portion of the
input events to avoid violating a given latency bound (LB). However,
dropping events might degrade QoR, i.e., resulting in false positives
and false negatives. Therefore, the load sheddingmust be performed
in a way that has minimum adverse impact on QoR.

As we mentioned above, an operator might detect multiple pat-
terns Q and each pattern has its weight (i.e., WQ). For pattern
qi ∈ Q, we define the number of false positives as FPqi and the
number of false negatives as FNqi . The total number of false pos-
itives (denoted by FPQ) for all patterns is defined as the sum of
the number of false positives for each pattern multiplied by the
pattern’s weight (cf. Equation 1). Similarly, the total number of false
negatives (denoted by FNQ) for all patterns is defined as the sum
of the number of false negatives for each pattern multiplied by the
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pattern’s weight (cf. Equation 2).

FPQ =
∑
qi ∈Q

wqi .FPqi (1)

FNQ =
∑
qi ∈Q

wqi .FNqi (2)

As a result, the impact of load shedding on QoR is measured by
the sum of the total number of false positives (FPQ) and the total
number of false negatives (FNQ). The objective is to minimize the
adverse impact on QoR, i.e., minimize (FPQ+FNQ), while dropping
events such that the given latency bound LB is met. More formally,
the objective is defined as follows.

minimize (FPQ + FNQ)

s.t. le ≤ LB ∀ e ∈ Sin
(3)

where le is the latency of event e that represents the sum of the
queuing latency of event e and the time needed to process event e
within all windows to which event e belongs.

3 LOAD SHEDDING IN CEP
We extend a CEP operator with our proposed load shedding system
(hSPICE) that in overload cases drops a portion of the input events
to maintain the given latency bound (LB). In CEP, a load shedding
system must perform the following three tasks: 1) deciding when
input events must be dropped, 2) computing the time interval and
the number of events that must be dropped in every time interval
(denoted by drop interval) to maintain LB, and 3) dropping input
events that have the lowest adverse impact on QoR. Tasks 1 and
2 have already been well studied in literature [17, 18]. Therefore,
our focus in this paper is on task 3, i.e, deciding which events to
drop. In the following, we shortly explain how tasks 1 and 2 might
be performed. Figure 2 depicts a CEP operator extended with two
components to enable load shedding: 1) overload detector and 2)
load shedder (LS).

The given latency bound (LB), the rate of incoming input events,
and the operator throughput (maximum service rate) can be used
as parameters to decide when to drop events. The overload detector
periodically monitors these parameters. If the input event rate
(R) is higher than the operator throughput (µ) for a long enough
period, the given latency bound (LB) might be violated. To prevent
violating LB, the overload detector requests the load shedder to
drop a certain amount of input events. As a drop interval (λ), we
might use the window size ws or a part of it as proposed in [18].
Our approach works with any drop interval. However, in this paper,
to simplify the presentation, we consider that the drop interval
equals the window size, i.e., λ = ws . The number of events that
must be dropped in every window to maintain LB can be computed
depending on the input event rate R and the operator throughput
µ, where the overload detector computes the drop amount ρ per
window (i.e., per drop interval) as follows: ρ = (1 −

µ

R
).ws . After

that, the overload detector sends a command containing the drop
interval λ and the number of events ρ to drop per λ to the load
shedder. The load shedder drops ρ events per drop interval λ to
maintain LB.

windows

input queue process

operator

PMs
LS

complex
events

overload
detector commands

Figure 2: The hSPICE Architecture.

hSPICE
During overload, to maintain the given latency bound (LB),

hSPICE drops input events that have the lowest adverse impact
on QoR, i.e, on the number of false positives and negatives. To do
that, hSPICE assigns utility values to the events where an event
that has a high impact on QoR has a high utility and vice versa.
On a high abstraction level, hSPICE works as follows. 1) As men-
tioned above, an event in a window is processed with PMs within
the window. Therefore, in a window, hSPICE assigns utility values
to an event for each PM within the window individually, i.e., the
event gets a certain utility value for each PM within the window.
2) hSPICE performs load shedding by dropping events from partial
matches within windows. In a window, dropping event e from PM
γ means that hSPICE prevents processing event e with PM γ within
the window.

hSPICE, primarily, performs two tasks: 1) model building and
2) load shedding. In the model building task, hSPICE predicts the
event utilities and summarizes the event utilities to reduce the
degradation in QoR in overload situations. In the load shedding
task, hSPICE drops events to avoid violating the given latency
bound. The model building task is not time-critical and can afford
to be heavyweight. On the other hand, the load shedding task is
time-critical and hence must be lightweight. In the next sections,
we describe the above tasks in detail. First, we describe how the
utility of an event for a partial match is defined. Then, we explain
the way hSPICE predicts the event utility using a probabilistic
model. After that, we describe how hSPICE computes the number
of events to drop per partial match within windows to maintain
the given latency bound. To perform load shedding efficiently, we
explain how to predict a utility value that can be used as a threshold
utility to drop the required number of events from PMs. Finally, we
describe the functionality of the load shedder in hSPICE.

3.1 Event Utility
In a window, only some PMs might complete and become complex
events. Hence, PMs in a window might have different importances,
w.r.t. QoR. If a PM completes, it is an important PM for QoR. Other-
wise, it has no impact on QoR. Moreover, as mentioned above, an
event might be processed with one or more PMs within a window,
where the event might contribute only to some of these PMs. An
event that contributes to a PM might be an important event for the
PM since dropping the event from the PM might hinder the PM
completion and hence adversely impact QoR. On the other hand,
an event that does not contribute to a PM is not important for the
PM since dropping the event from the PM does not influence its
completion. Therefore, for different PMs in a window, an event
might have different importances. As a result, in a window, for
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event e and PM γ within the window, hSPICE assigns a utility value
to event e (denoted by the utility of event e for PM γ ) depending
on the importance of PM γ in the window and on the importance
of event e for γ . Higher is the importance of γ in the window and
higher is the importance of event e for γ , higher is the utility of
event e for γ .

The utility of event e for PM γ of pattern qi ∈ Q within a win-
dow (denoted by Ue,γ ) depends on three factors: 1) contribution
probability—the probability that event e contributes to PM γ , i.e.,
e ∈ γ , 2) completion probability—the probability that PM γ com-
pletes, and 3) patternweightwqi (given by a domain expert). Clearly,
if event e has a high probability to contribute to PM γ , event e is an
important event for PM γ . We consider the completion probability
of a PM in computing the event utility as well since the PM is only
useful if it completes. Therefore, if event e has a high probability to
contribute to PM γ and γ has a high probability to complete, event
e is an important event and should be assigned a high utility value.
This is because dropping event e may hinder PM γ to complete and
hence it may adversely impact QoR.

As a result, the utility Ue,γ of event e for PM γ ⊂ qi within
a window depends on the pattern weight wqi and the following
probability: P (e ∈ γ ∩ γ completes ), i.e., the probability that PM γ
completes and event e contributes to PM γ . In windoww , to predict
P (e ∈ γ ∩ γ completes ) and henceUe,γ , hSPICE uses three features:
1) current state Sγ of PM γ , 2) event type Te , and 3) position Pe of
event e in windoww . Therefore, the utilityUe,γ of event e for PM
γ of pattern qi (i.e., γ ⊂ qi ) is defined as a function (called utility
function) of these three features as shown in Equation 4:

Ue,γ = f (Te , Pe , Sγ ) = wqi .P (e ∈ γ ∩ γ completes ) (4)

The current state Sγ of PMγ determines which event type(s) enables
PM γ to progress, i.e., to transit to a new state(s). Therefore, those
two features, i.e., current state Sγ of the PM and event type Te are
important features for computingUe,γ . For instance, in Example 1,
PM γ at state s0 (i.e., γs0 ), might transit to state s1 only if event e of
type Te = A is processed with PM γ (i.e., e ⊗ γs0 ).

The position Pe of event e in windoww is an important feature to
compute Ue,γ as well since it determines the number of remaining
events in the window. If there are still many events remaining in a
window, the probability of a PM to complete might be higher than
the case where there are only a few remaining events in the window.
This is because, in case of many remaining events in a window, a
PM has a chance to be processed with more events than in case
of only a few remaining events in the window and hence the PM
has a higher chance to progress. Moreover, the event position Pe
represents the temporal distance between events within the same
window. It determines which event instance(s) of the same event
type has a higher probability to contribute to a PM in the window
as shown in [18]. This is because there exists a correlation between
events of certain types at certain positions within a window. A
change in an event of a certain type influences the change of events
of other types within a certain time interval, i.e., certain position(s)
within the window. In Example 1, in window w , a change in the
stock quote of company A, i.e., Te = A, at a certain point of time
t1 (i.e., at a certain position in window), might cause a change in
the stock quote of company B, i.e., Te = B, within a certain time
interval ]t1, t2], i.e., within certain position(s) in the window.

s0start s1 s2
A

B

B

A

State machine for pat-
tern q = seq (A;B).

Te/Pe 0 1 2 3 4
A x x x x
B x x x

Table 1: Event distribution within
windows.

A0 obe ⟨1 − 2, s0, s1,A0⟩ : 2
6

A2 obe ⟨3 − 4, s0, s1,A2⟩ : 2
4

A3 obe ⟨5 − 6, s0, s1,A3⟩ : 2
2

B3 obe ⟨1, s1, s2,B3⟩ : 1
4

B4 obe ⟨2 − 3, s1, s2,B4⟩ : 2
5

obγ ⟨1 − 3, completed⟩

obγ ⟨4 − 6, not completed⟩

Table 2: Contribution obe and completion obγ observations.

Figure 3: Observations gathered from six PMs.

s0
Te/Pe 0 1 2 3 4
A 33 0 25 0 0
B 0 0 0 0 0

s1
Te/Pe 0 1 2 3 4
A 0 0 0 0 0
B 0 0 0 25 40

Figure 4: Computing event utilityUe,γ for a partial match.

3.2 Predicting Event Utility
Having defined the utilityUe,γ of event e for PMγ , now, we describe
how hSPICE predicts the utility Ue,γ within a window, i.e., P (e ∈
γ ∩ γ completes ), hence predicting the value of utility function
f (Te , Pe , Sγ ) in Equation 4. For ease of presentation, we introduce
a simple running example which is depicted in Figures 3 and 4.
Example 2. Let us assume that an operator matches a pattern
q = seq (A;B), where Sq = {s0, s1, s2} and Sγ = {s0, s1}, γ ⊂ q. The
used window length is 5 events (i.e.,ws = 5) and there are only two
event types in the input event stream: A and B.

To predict the utility Ue,γ of event e for PM γ of pattern qi in
window w , we first need to predict the completion probability of
PM γ , i.e., find the probability that PM γ at state Sγ and at position
Pe in window w will complete. Additionally, we need to predict
the contribution probability of event e to PM γ , i.e., the probability
that event e of type Te at position Pe in windoww contributes to
PM γ (e ∈ γ ). If the contribution and completion probabilities are
high, then the event utility Ue,γ is high. On the other hand, if the
contribution and/or completion probabilities are low, then the event
utility Ue,γ is low. hSPICE uses statistics gathered over already
processed windows to predict the completion and contribution
probabilities, thus predicting the event utility for PMs. Next, we
first show which statistics hSPICE gathers. Then, we explain the
way the event utilityUe,γ for PMs is predicted depending on those
gathered statistics.

Statistic Gathering. To predict the contribution and comple-
tion probabilities (i.e., to predict P (e ∈ γ ∩ γ completes )), thus
predicting the value of utility function f , hSPICE gathers statistics
on the progress of PMs within windows during event processing
in an operator. To do that, hSPICE uses two types of observations:
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1) contribution observation, denoted by obe , and 2) completion ob-
servation, denoted by obγ . In window w , for each event e within
w , whenever event e is processed with PM γ at state s = Sγ (i.e,
e ⊗ γs ), the operator builds an observation of type contribution
obe ⟨id, s, s

′, e⟩, where id is the id of PM γ . s ′ represents the state
of PM γ after processing event e . If s , s ′, event e has contributed
to PM γ at state s , i.e., e ∈ γs . Additionally, in windoww , if PM γ
completes, the operator builds an observation of type completion
obγ ⟨id, completed⟩, where again id is the id of PM γ . When window
w closes ( i.e., all its events are processed), all still open PMs in
windoww , i.e., LPw , (here P is the last position inw) are considered
as not completed PMs.

Figure 3 shows an example of gathered observations on six PMs.
Table 1 shows the distribution of event types in different positions
within a windowwhere a cell with x sign in the table means that the
corresponding event type might be present at the corresponding
position within a window. Please note that event types might not be
present in all positions within a window. In the table, for example,
the event type A never comes at position 4 in any window and
event type B does not come at positions 0 and 1 in any window.
Table 2 shows observations on event e of type Te at position Pe
in a window and PM γ at state s only if e contributes to γ (i.e.,
e ∈ γs ). For example, in the table, event B3 of type Te = B at
position Pe = 3 within windows has never contributed to PM γ at
state s0. Therefore, there are no observations shown in the table on
event B3 with a PM at state s0. Clearly, if event e is not present at
a certain position within windows, event e can not contribute to
any PM at this window position. For example, as shown in Table
1, the event of type B never comes at position 1 within windows.
Therefore, there are no observations on the event type B at position
1 within windows with a PM at any state. In Table 2, next to each
observation of type contributionobe , we show the number of PMs at
state s to which an event contributed divided by the total number of
PMs at state s with which an event is processed, i.e., | {e :e ∈γs } |

| {e :e⊗γs } | . For
example, in the table, obe ⟨3 − 4, s0, s1,A2⟩ : 2

4 means that the event
of type Te = A at position 2 within windows has been processed
with four PMs at state s0. However, it has contributed only to two
PMs, in particular, it has contributed to PMs 3 and 4. The table also
shows which PMs have completed. For example, in the table, PMs
γ1, γ2, and γ3 have completed while PMs γ4, γ5, and γ6 have not
completed.

After gathering statistics from η observations, hSPICE uses these
observations to predict the utilityUe,γ of event e for PM γ within
windoww , i.e., to predict the utility function f (cf. Equation 4).

Utility Prediction. hSPICE uses the gathered observations of
both types (contribution obe and completion obγ ) to predict the
probability value P (e ∈ γ ∩ γ completes ), hence predicting Ue,γ .
First, from both these observation types, hSPICE computes the
utility of event e for the set of all possible states of PM γ (i.e., Sγ )
as follows:

Ue,s =
|{e : e ∈ γs & γ completed }|

|{e : e ⊗ γs }|
(5)

whereUe,s = P (e ∈ γs ∩ γ completes ). For event e of certain type
Te at certain position Pe within windoww and for PM γ at certain
state s ,Ue,s is computed as a ratio between the number of times PM
γ completes and event e contributes to PM γ at state s (i.e., e ∈ γs )

and the total number of times event e is processed with PM γ at
state s (i.e., e ⊗ γs ).

Figure 4 shows the computed utility values Ue,s from the ob-
servations shown in Table 2. The values are shown as percentage
values. The table shows the utility value of event e of typeTe at po-
sition Pe within a window for PMs at states s0 and s1. For example,
in the table, event e = A2 of type Te = A at position Pe = 2 within
a window is processed with four PMs at state s0 (PMs 3, 4, 5, and 6).
However, it has contributed only to two PMs ( 3 and 4). Moreover,
since only PM 3 completed, we account for the contribution of
event e = A2 only to PM 3. Therefore, in the table, the utility of
event type Te = A at position Pe = 2 within a window for a PM at
state s0 equals to 25%, i.e.,Ue,s0 =

1
4 = 25%. The event type Te = A

has never contributed to a PM at state s1 since only the event type
Te = B may contribute to a PM at state s1. Therefore, the utility of
an event of type Te = A at any position within a window for a PM
at state s1 is always zero as shown in the table. Similarly, the event
typeTe = B never contributes to a PM at state s0. Hence, the utility
of an event of type Te = B at any position within a window for a
PM at state s0 is always zero.

The utility values for all states of PM γ of pattern qi ∈ Q to-
gether multiplied by the pattern weightwqi represent the predicted
utility Ue,γ of event e for PM γ ⊂ qi , whereUe,γs = f (Te , Pe , s ) =
wqi .Ue,s . Now, we need to store these predicted utility valuesUe,γ
for all patterns (i.e., forQ) so that, during load shedding, hSPICE can
retrieve them. To reduce the storage overhead, in case of large win-
dow size, we use bins to group event utilities. Within windoww , the
utility values of event e of type Te at several consecutive window
positions (i.e., bin size bs) for PM γs at state s are grouped together
by taking the average utility value of this event type Te over all
these positions for PM γs . For ease of presentation, we will use the
bin of size bs = 1 if not otherwise stated. To efficiently retrieve the
utility values during load shedding, we store the utilities in a table
(called utility table UT ) of three dimensions (M x N x K), where
M represents the number of different event types, N = ws

bs , and K
is the number of all possible states of all PMs of all patterns, i.e.,
K = |SL |. Therefore, the storage overhead of the utility tableUT is
O (M .N .|SL |). Each cellUT (Te , Pe , Sγ ) in the utility table stores the
utility value Ue,γ of event e of type Te at position Pe within a win-
dow for PMγ at state Sγ , i.e.,Ue,γ = f (Te , Pe , Sγ ) = UT (Te , Pe , Sγ ).
Hence, to get the utilityUe,γ of event e for PM γ , hSPICE needs to
perform only a single lookup in the utility table UT . This means
that the time complexity to get Ue,γ is O (1) which considerably
reduces the overhead of load shedding.

The input event stream might change over time, hence the pre-
dicted utilities of events for PMs might become inaccurate. One
way to capture the changes in the input event stream and keep
the event utility accurate is by periodically gathering statistics and
recomputing the utility valueUe,γ .

3.3 Drop Amount
As we mentioned above, to maintain the given latency bound (LB)
in an overload situation, we must drop ρ events from every window.
However, hSPICE drops events from PMs, not fromwindows, where
an event might be dropped from a PM while it is processed with
another PM within the same window. Therefore, we must find a
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mapping between the number of events to drop per window (ρ)
and the number of events to drop per PM within the window. To
do that, let us first define the virtual window.

VirtualWindow. The virtual window (vw) of windoww is a set
which contains triplets (e, s,O ) consisting of event e of type Te at
position Pe withinw , state s ∈ SL, and the number of occurrences
O > 0 which represents the number of times event e has been
processed with a PM at state s within window w . More formally:
vw = {(e, s,O ) : ∀ e ∈ w, ∀ γ ∈

LT
w , O = |{γ : e ⊗ γs }| > 0}.

The virtual window vw of windoww contains information on the
number of times event e within windoww is processed with each
distinct state s of a PM in windoww . The virtual window depends
on the states of PMs in a window. Therefore, it is only possible
to know the exact virtual window of window w when all events
in window w are processed, i.e., when the set of all PMs LTw and
their states in window w are known. However, we need to know
the virtual window of window w before processing all events in
window w since we use the virtual window to decide how many
and which events must be dropped from PMs within windoww .

Therefore, hSPICE predicts virtual window vw of windoww by
gathering statistics from the operator on already processed win-
dows, denoted byWstat . As mentioned above, in different windows,
event distribution might be different (cf. Table 1). Additionally, the
occurrences of PM states at certain window positions might also
be different in different windows. Hence, different windows might
have different corresponding virtual windows. Therefore, to pre-
dict virtual window vw of window w , hSPICE first computes vir-
tual window vw j for each window w j in the gathered statistics
Wstat , where j = 1, .., |Wstat |. Then, hSPICE combines all triplets
(e, s,O ) from these virtual windows vw j to construct the virtual
window vw by taking the average value for the number of occur-
rence O of each triplet, i.e., vw = {(e, s,O ) : e = ej , s = sj ,O =

O +
O j
|Wstat |

, ∀ (ej , sj ,O j ) ∈ vw j }. The size of virtual window vw

(denoted bywsv ) is computed as the total number of occurrences
of each triplet in vw as follows:wsv =

∑
(e,s,O )∈vw O . The virtual

window size represents the number of times events are processed
with PMs in a window. Therefore, the average number of times
(avдO ) an event is processed with a PM in windoww is computed
as follows: avдO = wsv

ws . For example, if every event is processed
with two PMs within windoww , then the virtual window sizewsv
is twice the window sizews (i.e.,wsv = 2.ws) and avдO = 2.

Dropping an event from window w implies that the event is
dropped from the set of all current PMs LPw within window w .
Therefore, if ρ events must be dropped from windoww , it implies
that, in total, ρv ≈ ρ .avдO ≈ ρ.wsv

ws events must be dropped from
all PMs LTw in windoww (from virtual window vw of windoww ,
as a shorthand). Hence, dropping ρ events from a window is similar
to dropping ρv events from its virtual window. One approach to
drop ρv events from a virtual window (i.e., ρv events in total from
all PMs in a window) is to drop events equally (for example, equal
percentage) from every PM in the window. However, not all PMs in
a window have the same importance/same completion probability.
Therefore, the drop amount per PM should take into consideration
the importance of PMs in the window which in turn minimizes
the adverse impact of dropping on QoR. Please note that it is not
possible to get the utility of all events for all PMs in a window and

then sort them. After that, drop those ρv events from PMs that have
the lowest utilities. The reason for this is that the event utilities
for PMs in a window are only known after processing all events
in the window. This is because the event utilities depend on the
current state of PMs (LPw ) in the window which is only known after
processing the events in the window. Next, we explain how to drop
the required number of events (ρv ) from the virtual window of each
window while considering the importance of PMs in the window.

Utility Threshold. The approach is to find a utility value (called
utility threshold uth ) that is used as a threshold value to drop the
needed amount of events from virtual windowvw of windoww . For
each triplet (e, s,O ) in virtual window vw , we get the utility value
u = Ue,γs = f (Te , Pe , s ) from the utility table UT . As the number
of occurrencesO in the triplet represents the number of times state
s might occur at window position Pe , the number of occurrences
O implies that the utility value u = Ue,γs might occur O times in
virtual windowvw , denoted by the utility occurrencesOu for utility
u, i.e, Ou = O . We accumulate the number of utility occurrences
Ou for all utility values in vw in ascending order, denoted by the
accumulative utility occurrences OCu for the utility u, as follows:
OCu =

∑
u′≤u O

′
u . The accumulative utility occurrences OCu for

utility u means that there exist OCu events in virtual window vw
which have a utility value less or equal to the utility value u.

Therefore, using u as a threshold utility uth enables hSPICE to
drop OCu events from PMs in a window. Hence, to drop ρv events
from the virtual window, wemust find a utility valueu = uth , where
OCu = ρv . To efficiently retrieve the utility threshold, we store
the accumulative utility occurrences in an array (denoted by utility
threshold array (UTth )) of the same size as the virtual window size
wsv as follows: UTth (i ) = u, where i = 1, ..,wsv and OCu ≥ i
and OCu < OCu′ ∀ u < u ′. Therefore, to drop ρv events from
the virtual window, uth = UTth (ρv ). Hence, the time complexity
to get uth is O (1). Please note that predicting the virtual window
and building the utility threshold array are done during the model
building task. While during the load shedding, hSPICE performs
the following two tasks that have a time complexity of O (1): 1)
computing how many events to drop (i.e., ρv ) per virtual window,
and 2) determining what utility threshold (i.e., uth ) to use.

3.4 Load Shedding
In the above sections, we showed how to compute the utility of
events for PMs within a window and how to predict the utility
threshold. Now, we describe how hSPICE performs the load shed-
ding, i.e., deciding whether an event should be dropped from a PM
or not. Algorithm 1 clarifies how load shedding is performed.

For each event e within windoww , before processing e with PM
γ in window w , the operator asks the load shedder (LS) whether
to drop event e from PM γ . If the LS returns True, the operator
drops event e from PM γ , otherwise, it processes event e with
PM γ . If there is no overload on the operator, there is no need
to drop events and hence LS returns False which means that the
operator can process event e with PM γ (cf. Algorithm 1, lines
2-3). On the other hand, if there is an overload on the operator,
LS checks whether the utility Ue,γ of event e for PM γ is higher
than the utility threshold uth . Therefore, the LS first gets the utility
Ue,γ of event e for PM γ from the utility table UT , where Ue,γ =
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f (Te , Pe , Sγ ) = UT (Te , Pe , Sγ ). After that, hSPICE compares the
utility value with the utility threshold uth , where it returns True
if Ue,γ ≤ uth , otherwise hSPICE returns False (cf. Algorithm 1,
lines 4-7). This shows that hSPICE is lightweight in performing
load shedding where the time complexity to decide whether or not
to drop an event from a PM is O (1).

Algorithm 1 Load shedder.

1: drop (Te , Pe , Sγ ) begin
2: if !isOverloaded then ▷ there is no overload hence no need to drop events
3: return False
4: else if UT (Te , Pe , Sγ ) ≤ uth then
5: return T rue
6: else
7: return False
8: end function

4 PERFORMANCE EVALUATIONS
In this section, we evaluate the performance of hSPICE by using
two real-world datasets and several representative queries.

4.1 Experimental Setup
Evaluation Platform. We run our evaluations on a machine that
is equipped with 8 CPU cores (Intel 1.6 GHz) and a main memory
of 24 GB. The OS used is CentOS 6.4. We run a CEP operator in
a single thread on this machine, where this single thread is used
as a resource limitation. Please note, the resource limitation can
be any number of threads/cores and the behavior of hSPICE does
not depend on a specific limitation. We implemented hSPICE by
extending a prototype CEP framework that is implemented using
Java.

Baseline. We compare the performance of hSPICE with three
state-of-the-art load shedding strategies: 1) eSPICE: it is a black-box
load shedding approach that drops events from windows [18]. 2) BL:
we also implemented a black-box load shedding strategy (denoted
by BL) similar to the one proposed in [5]. Additionally, it captures
the notion of weighted sampling techniques in stream processing
[19]. BL drops events from windows, where an event type (e.g.,
player ID or stock symbol) receives a higher utility proportional
to its repetition in patterns and in windows. Then, depending on
event type utilities, it uses uniform sampling to decide which event
instances to drop from the same event type. 3) pSPICE: it is a white-
box load shedding strategy that drops PMs [17].

Datasets. We use two real-world datasets. 1) A stock quote
stream from the New York Stock Exchange, which contains real
intra-day quotes of different stocks from NYSE collected over two
months from Google Finance [2]. 2) A position data stream from a
real-time locating system (denoted by RTLS) in a soccer game [1].
Players, balls, and referees are equipped with sensors that generate
events containing their position, velocity, etc.

Queries.We apply four queries (Q1, Q2, Q3, and Q4) that cover
an important set of operators in CEP as shown in Table 3: sequence
operator, sequence operator with repetition, sequence with nega-
tion operator, and sequence with any operator, all with skip-till-
next/any-match [3, 4, 22]. Moreover, the queries use time-based
sliding window strategy.

Stock queries

Q1

pattern seq(C1;C2; ..;C10)
where all Ci rise by x% or all Ci f all by x%, i = 1..10
within ws minutes

Q2

pattern seq(C1;C1;C2;C3;C2;C4;C2; C5;C6;C7;C2;C8;C9;C10)
where all Ci rise by x% or all Ci f all by x%, i = 1..10
within ws minutes

Q3

pattern seq(C1;C2;C3;C4; !C5;C6;C7;C8;C9;C10)
where all Ci rise by x% and C5 does not rise by y%
or all Ci f all by x% and C5 does not f all by y%
, i = 1..10 and i , 5

within ws minutes
Soccer queries

Q4

pattern seq(S ; any(3,D1,D2, ..,Dn ))
where S possesses ball and distance (S,Di ) ≤ x meters
, i = 1..n and n is the number of players in a team

withinws seconds
Table 3: Queries.

In Table 3, we use ws to refer to the window length. For stock
queries (Q1,Q2,Q3),Ci represents the stock quote of company i .Q1
detects a complex event when rising or falling stock quotes of 10
certain stock symbols, by a given percentage, are detected within
ws minutes in a certain sequence. Q2 detects a complex event when
10 rising or 10 falling stock quotes of certain stock symbols with
repetition, by a given percentage, are detected within ws minutes
in a certain sequence. Q3 is similar to Q1 but it detects a complex
event only if the stock quote of a certain company (i.e., C5) does
not change by a given percentage. Q4 uses the RTLS dataset and it
detects a complex event when any 3 defenders of a team (defined
as Di) defend against a striker (defined as S) from the other team
within ws seconds from the ball possessing event by the striker.
The defending action is defined by a certain distance between the
striker and the defenders. For this query, we use two strikers, one
from each team.

4.2 Experimental Results
In this section, we evaluate the performance of hSPICE in compari-
son with other load shedding strategies. First, we show its impact
on QoR, i.e., the number of false negatives and the number of false
positives. Then, we show how good hSPICE is in maintaining the
given latency bound (LB).

If not stated otherwise, we use the following settings. For all
queries Q1, Q2, Q3, and Q4, we use a time-based sliding window
and a time-based predicate. A new window is opened for Q1, Q2,
Q3 every 1 minute, i.e., the slide size is 1 minute. For Q4, a new
window is opened every 1 second. We stream events to the operator
from the datasets that are stored in files. We first stream events at
input event rates which are less or equal to the operator throughput
µ (maximum service rate) until the model is built. After that, we
increase the input event rate to enforce load shedding as we will
mention in the following experiments. The used latency bound
LB = 1 second. We configure all load shedding strategies (i.e.,
hSPICE, eSPICE, BL, and pSPICE) to have a safety bound, where
they start dropping events/PMs when the event queuing latency is
greater than or equal to 80 % of LB, i.e., the safety bound equals to
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200 milliseconds. We execute several runs for each experiment and
show the mean value and standard deviation.

An important factor that might influence QoR is the input event
rate. Higher is the input event rate, higher is the amount of events
that must be dropped and hence higher is the impact of load shed-
ding on QoR. Additionally, other factors that might impact QoR are
the query properties, e.g., the used window size. Therefore, next, we
show the impact of these factors on QoR, i.e., on false negatives and
positives. Please note that applying load shedding might result in
false negatives for all queriesQ1,Q2,Q3, andQ4. However, it might
result in false positives only in case of Q3 since Q3 has a negation
operator. If the negated event is dropped by the load shedder, it
might result in a false positive.

4.2.1 Impact of Event Rate on QoR. To evaluate the performance
of hSPICE, we run experiments with queriesQ1,Q2,Q3, andQ4. To
show the impact of input event rate, we stream both datasets to the
operator with input event rates that are higher than the operator
throughput µ by 20%, 40%, 60%, 80%, and 100% (i.e., event rate=
120%, 140%, 160%, 180%, and 200% of the operator throughput µ).
Moreover, for Q1, Q2, and Q3, we use the following window sizes,
respectively: 18, 35, and 25 minutes. For Q4, the used window size
is 30 seconds. The measured operator throughput µ (without load
shedding) for queries Q1, Q2, Q3, and Q4 are as follows: 23K, 14K,
36K, 27K events/second, respectively.

Impact on False Negatives. Figure 5 depicts the impact of
event rates on false negatives for all queries. Figure 6 shows the
ratio of dropped events/PMs with different event rates for Q1 and
Q4. We observed similar results for Q2 and Q3, hence we do not
show them. In both figures, the x-axis represents the event rate.
The y-axis in Figure 5 represents the percentage of false negatives
while, in Figure 6, it represents the ratio of dropped events/PMs.

The percentage of false negatives might increase if the input
event rate increases since more events/PMsmust be dropped. Figure
5a and Figure 6a show the percentage of false negatives and the
percentage of drop ratio for Q1, respectively. As shown in Figure
5a, hSPICE has almost no impact on false negatives when the event
rate is less or equal to 160% although hSPICE drops up to 80%
of events when the event rate is 160% as depicted in Figure 6a.
Increasing the event rate by more than 160% forces hSPICE to
produce false negatives where the percentage of false negatives
is 15% and 22% using event rates of 180% and 200%, respectively.
The drop ratio starts to decrease when using a high event rate as
shown in Figure 6a when using the event rate of 200%. The reason
behind this is that whenmore events should be dropped, events with
high utilities might be dropped. Dropping events with high utilities
might hinder opening new PMs which in turn reduces the number
of events that must be dropped. Since hSPICE drops more events
compared to other load shedding strategies, i.e., eSPICE and BL, the
impact of shedding in hSPICE on opening new PMs is higher which
results in decreasing its drop ratio when the event rate is 200%.
However, not opening those PMsmight increase the number of false
negatives. The percentage of false negatives caused by other load
shedding strategies also increases when the event rate increases. As
depicted in Figure 5a, when the event rate increases from 120% to
200%, the percentage of false negatives for eSPICE, BL, and pSPICE
increases from 2% to 35%, from 31% to 77%, and from 15% to 72%,

respectively. Moreover, the drop ratio increases with the event
rate as shown in Figure 6a. This shows that hSPICE significantly
outperforms all other load shedding strategies for Q1 (sequence
operator). The results for Q2 (sequence operator with repetition)
are similar to the results for Q1 as depicted in Figure 5b where
hSPICE also outperforms, w.r.t. the percentage of false negatives,
all other load shedding strategies.

Figure 5c depicts the percentage of false negatives for Q3 (se-
quence with negation operator). In Q3, we limit the number of
complex events to only one event per window, where the window
is closed if a complex event is detected. We do that to determine
the impact of the negation operator on the matching output. The
performance of hSPICE, w.r.t. the percentage of false negatives,
overQ3 is considerably better than the performance of hSPICE over
Q1 and Q2. The reason behind this is that, in Q3, there is at most
one complex event per window in comparison to Q1 and Q2 that
detect all possible complex events in a window. Hence, in the case
ofQ3, there exist many events in the window that have low utilities
where dropping those events do not influence the percentage of
false negatives. Figure 5c shows that using hSPICE with different
event rates introduces almost zero false negatives. The percentage
of false negatives caused by using other load shedding strategies
increases with increasing event rate. In Figure 5c, the percentage of
false negatives produced by eSPICE, BL, and pSPICE increases from
3% to 35%, from 62% to 84%, and from 59% to 79% when increasing
the event rate from 120% to 200%, respectively. This shows that, for
Q3, hSPICE drastically reduces the percentage of false negatives
compared to the other load shedding strategies.

Figures 5d and 6b show the percentage of false negatives and
the percentage of drop ratio for Q4 (sequence with any operator),
respectively. The drop ratio in Figure 6b increases when the event
rate increases. However, the drop ratio of hSPICE for Q4 is lower
than its drop ratio for Q1. This is because the cost of processing
events in Q4 is higher than the cost of processing events in Q1.
Therefore, inQ4, the overhead of performing load shedding in com-
parison to the event processing cost is lower which results in a low
drop ratio. In Figure 5d, the percentage of false negatives caused
by hSPICE increases from 13% to 52% when increasing the event
rate from 120% to 200%, respectively. Whereas, the percentage of
false negatives caused by eSPICE, BL, and pSPICE increases from
13% to 37%, from 17% to 50%, and from 12% to 26% when increas-
ing the event rate from 120% to 200%, respectively. This shows
that hSPICE performs almost worse than all other load shedding
strategies. The reason behind this is that the overhead of hSPICE is
high in comparison to other load shedding strategies. For every
event in a window, hSPICE checks whether to drop the event or not
from every individual PM within the window which increases the
overhead of performing load shedding in hSPICE. While eSPICE
and BL, for example, check whether to drop the event or not from
the window regardless of the number of PMs within the window
which reduces the overhead of performing load shedding in these
approaches. The overhead of hSPICE is high in all queries, however,
the impact of hSPICE overhead is worse inQ4. This is because inQ4
the utility values are spread and less accurately predicted since Q4
represents an any operator in comparison to other queries that use
a sequence operator. Q4 matches an event of any type (any player)
with a PM at any state, unlike the sequence operator that matches
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Figure 5: Impact of event rate on false negatives.
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Figure 6: Impact of event rate on drop ratio.

only an event of a certain type with a PM at a certain state. Hence,
in the case of Q4, the majority of events in a window have similar
utilities for all PM states.

Impact on False Positives. As we mentioned above, only Q3
(sequence with negation operator) might have false positives. There-
fore, next, we analyze the impact of load shedding on the false
positives usingQ3. Figure 7 depicts the percentage of false positives
with different event rates when using load shedding overQ3. In the
figure, the x-axis represents the event rate and the y-axis represents
the percentage of false positives. Figure 7 shows that hSPICE per-
forms very well with the negation operator where the percentage of
false positives is almost zero for different event rates. Please recall
that Q3 detects at most one complex event per window.

In the figure, increasing the event rate results in increasing the
percentage of false positives when using eSPICE. The percentage of
false positives caused by eSPICE increases from 12% to 24% when
increasing the event rate from 120% to 200%. However, the figure
shows that the percentage of false positives produced when using
BL decreases from 12% to 3% when increasing the event rate from
120% to 200%. The reason behind this is that, for low event rates, BL
needs to drop fewer events and hence more redundant events might
exist in windows that might match the pattern. On the other hand,
with a high event rate, BL must drop more events which makes it
hard to have redundant events that might match the pattern. Higher
is the probability to match the pattern, higher is the probability to
get false positives. pSPICE drops PMs, hence it can not produce any
false positive.

4.2.2 Impact of Window Size on QoR. In this section, we analyze
the impact of window size on QoR. To do that, we run experiments
with queries Q1 and Q3 where we use a fixed event rate of 180%,
i.e., the input event rate is higher than the operator throughput µ
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Figure 7: Impact of event rate on false positives.

by 80%. To show the impact of window size, we vary the window
size for both Q1 and Q3. The used window sizes for Q1 and Q3
are as follows: 18, 20, 22, 25, and 28 minutes. Figure 8 depicts the
results for both queries. Figure 8a shows the operator throughput
µ (without load shedding) for Q1 with different window sizes. If
the window size increases, the number of overlapped windows
increases and hence an event becomes a part of more windows.
This implies that the operator throughput decreases since events
must be processed in more windows. This is observed in Figure 8a
where the operator throughput decreases from 23K to 10K when
the window size increases from 18 to 28 minutes. The operator
throughput for Q3 has a similar behavior, hence we do not show it.

Figure 8b depicts the percentage of false negatives for Q1. In-
creasing the window size might result in increasing the completion
probability of PMs within the window. This implies that more
events in the window might acquire a high utility value. There-
fore, in this case, the load shedding impact on QoR might increase.
Moreover, increasing the window size might increase the number
of concurrent PMs within the window where more PMs might open.
This implies that the overhead of load shedding of hSPICE might
increase with increasing window size since the overhead of load
shedding in hSPICE is proportional to the number of PMs in win-
dows. This might result in dropping more events hence increasing
the impact on QoR. This is observed in Figure 8b where the per-
centage of false negatives caused by hSPICE increases from 18% to
21% when the window size increases from 18 to 28 minutes. This
also happens when using eSPICE where the percentage of false
negatives increases from 23% to 38% when increasing the window
size from 18 to 28 minutes. The results for pSPICE are also similar.
However, the results for BL shows that the window size has almost
no influence on the percentage of false negatives. This shows that
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Figure 8: Impact of window size on QoR.
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Figure 9: Maintaining latency bound.
hSPICE outperforms, w.r.t. the percentage of false negatives, all
other load shedding strategies regardless of the used window sizes.

Figure 8c shows the percentage of false negatives for Q3. In the
figure, the percentage of false negatives using hSPICE is always
negligible. This is because, as we mentioned above, Q3 matches
at most one complex event per window, hence there might exist
many events with low utilities where dropping those events has
no impact on QoR. In the figure, the percentage of false negatives
using eSPICE slightly increases when increasing the window size.
The results for BL and pSPICE show that the percentage of false
negatives stay almost stable with different window sizes. Again
for Q3, hSPICE outperforms, w.r.t. false negatives, all other load
shedding strategies irrespective of the used window sizes. Figure 8d
depicts the percentage of false positives for Q3. The figure shows
that the percentage of false positives caused by hSPICE is, again,
negligible for different window sizes. In the figure, the percentage of
false positives for eSPICE slightly decreases while it stays stable for
BL. As mentioned above, pSPICE does not result in false positives.

4.2.3 Maintaining Latency Bound. The main objective of hSPICE is
to minimize the degradation in QoR while maintaining a given
latency bound (LB). As mentioned above, LB is 1 second and hSPICE
drops events when the event queuing latency is greater than or
equal to 80% of LB (i.e., 800 milliseconds). The event rate is an
important factor that influences the ability of hSPICE to maintain
LB. Therefore, next, we show the ability of hSPICE to maintain
the given latency bound (LB) with different event rates. To do that,
we evaluate hSPICE with all queries using the same setting as in
Section 4.2.1. Figure 9 shows the event latency forQ1 andQ2 where
the event latency is the sum of the event queuing latency and the
event processing latency. In the figure, the x-axis represents the
event rate and the y-axis represents the induced event latency. We
observed similar results forQ3 andQ4, hence we do not show them.

Figures 9a and 9b depict results for Q1 and Q2, respectively. The
figures show that hSPICE always maintains the given latency bound
regardless of the event rate. In the figure, the induced event latency
stays around 800 milliseconds (i.e., 80% of LB which is used to have
a safety bound).

4.2.4 Discussion. hSPICE shows its ability to maintain the given
latency bound while minimizing the degradation in QoR. Through
extensive evaluations, we show that hSPICE outperforms, w.r.t. QoR,
eSPICE, BL, and pSPICE for the majority of queries– especially
for sequence operators. The performance of hSPICE for the any
operator is worse than the performance of other load shedding
strategies. We also show that increasing the window size might
increase the impact of hSPICE on QoR due to the following reasons.
The overhead of load shedding might increase and hSPICE might
have to drop more events from PMs in the window. Moreover, the
PM completion probability might increase when the window size
increases, hence more events in a window might become more
important/get high utilities.

5 RELATEDWORK
Complex event processing (CEP) systems are used in many ap-
plications to detect interesting patterns in input event streams
[3, 9, 11, 23]. There exist several well-defined patterns in CEP (also
called operators), e.g., sequence, negation, any, disjunction, and
conjunction [4, 10, 22]. In CEP systems, the input event stream is
continuous and may have a high volume. Moreover, the events are
usually required to be processed in near real-time [13, 16]. There-
fore, in CEP, there exist several techniques aiming to process the
input events in a given latency bound such as parallelism, optimiza-
tions, and pattern sharing [3, 11, 14, 22]. However, these techniques
are not always sufficient or even possible, therefore, researchers
propose to use load shedding.

Recently, there have been several works on load shedding in CEP
[5, 17, 18, 24]. All these approaches aim to minimize the impact
of load shedding on QoR. The approaches in [5, 18] propose to
drop events with the lowest utility from a CEP operator while
the works in [17, 24] mainly drop PMs with the lowest utility in
overload situations. Besides, the authors in [24] propose to drop
also events if the given latency bound might be violated. In [5],
the utility of an event depends on the event type and its frequency
in the input event stream. While in [18] the utility of an event
depends on the event type and its position in the window. In [17, 24],
the utility of a PM depends on its completion probability and its
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estimated processing cost. To predict the utility of a PM, the authors
propose to use as learning features the current state of the PM and
the remaining events in the window. Unlike all these approaches,
our approach drops events from PMs where an event might have
different importance for different PMs. As a result, our approach
predicts the event utilities more accurately and performs dropping
more precisely, thus reducing the adverse impact of load shedding
on QoR.

In the domain of approximate CEP, the authors in [8] propose a
white-box approach (called RC-ACEP) to drop events from PMs in
overload cases. The approach aims to minimize the degradation in
QoR. They assign utilities to PMs depending on completion proba-
bilities of the PMs– higher is the completion probability, higher is
the utility. The idea is to process input events firstly with PMs that
have the highest utilities. For each newly coming input event, RC-
ACEP stops processing the previous event, recalculates and sorts
PM utilities, and then processes the new events with the sorted
PMs. However, recalculating and sorting PM utilities for every in-
put event imposes a high overhead. Moreover, they do not consider
the importance of input events for PMs where input events might
have different importance for different PMs.

Load shedding is also extensively researched in the stream pro-
cessing domain [6, 7, 12, 13, 13, 15, 19–21]. In [7, 12, 19], the authors
assume that the importance of a tuple depends on the tuple’s con-
tent. [19] assumes the mapping between the utility and tuple’s con-
tent is given, for example, by an application expert, while [12, 19]
learn this mapping online depending on the used query. The au-
thors in [15] assume that the importance of a tuple depends on the
processing latency of the tuple– higher is the processing latency of
a tuple, lower is its importance. Therefore, they drop those tuples
that have the highest processing latencies. In [13], the authors fairly
select tuples to drop from different input streams by combining
two techniques: stratified sampling and reservoir sampling. The
authors in [21] also propose to use stratified sampling and reservoir
sampling to perform the approximate join. In both these papers,
the authors assume that tuples have the same utility values and
impose the same processing latency. All these works do not capture
the correlation between events in patterns which is important in
CEP. For example, if the pattern is seq(A;B), then events of type
A are only important if the stream contains events of type B and
vise-versa. Our approach implicitly captures this correlation.

6 CONCLUSION
In this paper, we proposed an efficient, lightweight load shedding
strategy called hSPICE which combines the advantages of both
black-box and white-box state-of-the-art load shedding strategies.
In overload cases, hSPICE drops events from partial matches to
maintain a given latency bound. To assign a utility value to an
event for a partial match, hSPICE uses three features: 1) event type,
2) event position in the window, and 3) the current state of the
partial match. By using a probabilistic model, hSPICE uses these
features to predict the event utility. Through extensive evaluations
on two real-world datasets and several representative queries, we
show that, for the majority of queries, hSPICE outperforms, w.r.t.
QoR, state-of-the-art load shedding strategies. Moreover, we show
that hSPICE always maintains the given latency bound regardless
of the incoming input event rate.
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