AutoSec: Multidimensional Timing-Based Anomaly
Detection for Automotive Cybersecurity

Milan Tepi¢*, Mohamed Abdelaal*, Marc Weber!, Kurt Rothermel*
*Institute of Parallel and Distributed Systems, University of Stuttgart, t Vector Informatik GmbH
Email: *first.last@ipvs.uni-stuttgart.de, tfirst.last@vector.com

Abstract—Nowadays, autonomous driving and driver assis-
tance applications are being developed at an accelerated pace.
This rapid growth is primarily driven by the potential of such
smart applications to significantly improve safety on public roads
and offer new possibilities for modern transportation concepts.
Such indispensable applications typically require wireless connec-
tivity between the vehicles and their surroundings, i.e. roadside
infrastructure and cloud services. Nevertheless, such connectivity
to external networks exposes the internal systems of individual
vehicles to threats from remotely-launched attacks. In this realm,
it is highly crucial to identify any misbehavior of the software
components which might occur owing to either these threats or
even software/hardware malfunctioning.

In this paper, we introduce AutoSec, a host-based anomaly
detection algorithm which relies on observing four timing param-
eters of the executed software components to accurately detect
malicious behavior on the operating system level. To this end,
AutoSec formulates the task of detecting anomalistic executions
as a clustering problem. Specifically, AutoSec devises a hybrid
clustering algorithm for grouping a set of collected timing traces
resulted from executing the legitimate code. During the runtime,
AutoSec simply classifies a certain execution as an anomaly, if
its timing parameters are distant enough from the boundaries
of the predefined clusters. To show the effectiveness of AutoSec,
we collected timing traces from a testbed composed of a set of
real and virtual control units communicating over a CAN bus.
We show that using our proposed AutoSec, compared to baseline
methods, we can identify up to 21% less false positives and 18 %
less false negatives.

Index Terms—Anomaly Detection, Real-time Operating Sys-
tems, Timing Constraints, DBSCAN Classifiers

I. INTRODUCTION

The automotive industry is a highly demanding industry
with high level of standards to ensure the safety and security
of the passengers followed by their comfort and entertainment.
In general, digitization within modern vehicles is broadly
increasing at the same fast pace as digital communication with
the environment [1]. Accordingly, several car-to-many (Car2X)
communication protocols have broadly been employed to
enhance the safety of passengers while enriching their drive
comfort. Such protocols harness the wireless medium for
sharing valuable information about the surroundings, road
cases, safety warnings, etc. For instance, the reaction time
of a human driver is ranged between 0.75s to 1.5s [2]. If
individual vehicles are able to communicate with each another,
such reaction times can be highly reduced, thus avoiding
road traffic accidents. In this context, Car2X protocols can

This work is partially supported by the German Federal Ministry of
Education and Research (BMBF) grant 01DH17059.

assist drivers through offering warnings about harsh braking
situations, stationary roadside breakdowns, and emergency
vehicles. Hence, there exists an immense need for sharing
knowledge between the neighboring vehicles and the roadside
infrastructure to improve the safety systems through making
optimal decisions in a timely manner.

In fact, the main side effect of the interconnectivity be-
tween modern vehicles and their surroundings is exposing the
internal systems, including safety-critical sub-systems, of such
vehicles to external threats from malicious cyberattacks. For
instance, Miller and Valasek [3] carried out an experiment
to remotely attack a modern vehicle. Specifically, they were
able to completely overtake the control of the vehicle through
breaching into the vehicle’s network together with interfering
the controller area network (CAN) messages. The primary
security concern of this experiment is their ability to remotely
override the driver’s action via the wireless network despite
being many kilometers away from the vehicle. Indeed, this
experiment opened the door for exerting more efforts in
the realm of automotive cybersecurity. Besides, short range
wireless interfaces, e.g. Bluetooth, and wired ones still offer
diverse attack surfaces. Therefore, much attention has been
given to the development of precise network-based anomaly
detection algorithms for the sake of discovering any malicious
behavior of the intra-vehicle communication networks.

Despite achieving promising results in terms of the detection
precision and false positives, advanced attacks may penetrate
the network to deliberately inject malicious code or even to
disrupt the normal execution [4]. In addition, the legitimate
software components—defined by the car manufactures dur-
ing the design time—may exhibit abnormal behavior due to
software/hardware malfunctioning. Accordingly, the concept
of solely observing the communication network is typically
not sufficient for ensuring high-level of safety and security.
Such a conclusion opened the door for developing several host-
based anomaly detection algorithms on the operating system
level [5], [4], [6]. In this context, observing the computation
time of the software components has been proposed to detect
unexpected or suspicious behavior of such components [6]. In
Section II, we introduce an experiment which shows that mon-
itoring only the computation time and ignoring other important
timing parameters typically deteriorates the detection accuracy,
i.e. large number of false positives and/or false negatives.
Therefore, a challenge of detecting possible breaches in the
various software components of the vehicles emerges.

To tackle this challenge, we introduce AutoSec, a mul-

© IEEE 2020

To be published in Proceedings of the 26th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’20), August 2020.

tidimensional anomaly detection algorithm which relies on
observing the timing parameters of the real-time software com-
ponents running on various electronic control units (ECUs).
To check for malicious behavior of a certain component,
AutoSec considers not only the computation time of such
a component but also the start-to-start (S2S) time between
subsequent instances of execution, the number of preemptions,
and the preemption time. In this manner, AutoSec draws a
complete picture about the circumstances of each execution,
thus making optimal decisions about the abnormal execu-
tions. To this end, AutoSec exploits clustering algorithms
for defining—at the design time—a timing model which is
then used during the runtime for making decisions about
each execution. AutoSec can be used in combination with
an AUTOSAR [7] classic-based ECU software where it can
observe the timing parameters on two different granularity
levels, including the coarse-grained task level and fine-grained
runnable level (cf. Section III). It is worth mentioning that the
main scope of AutoSec is to evaluate our proposed feature
selection method for automotive industry standards as tracking
only the computation time does not achieve the required
accuracy level. To the best of our knowledge, AutoSec is the
first host-based anomaly detection algorithm leveraging four
timing parameters to precisely discover malicious behavior of
the ECU software on two granularity levels.

In detail, the paper provides the following contributions: (1)
We define an architectural framework and multi-step process
for the detection of any malicious behavior of the various
software components. (2) We present an algorithm that, as a
first step, defines a timing model of legitimate executions per-
formed during the design time. (3) We perform a comparative
study to select a clustering algorithm which best fits with our
defined requirements. (4) We devise a novel hybrid clustering
algorithm in which DBSCAN [8] is initially employed as
a preprocessing step for removing outliers and generating a
number of clusters. Subsequently, the K-Means method [9]
together with the Silhouette method [10] are exploited for
discovering possible sub-clusters within each cluster. (5) We
define an algorithm that, in a second step, leverages the
principal component analysis for reducing the dimensions,
before making decision during the runtime about the various
executions. (6) We present a proof-of-concept implementation
and evaluation in a pseudo real-world scenario. To this end,
we created a testbed of a real ECU, connected to two virtual
ECUs through a CAN bus. In these experiments, we collected
over 1.5 GBytes of timing traces on both the task level
and the runnable level. We show that our proposed AutoSec
algorithm, compared to baseline methods, achieves higher
level of detection accuracy measured in terms of the precision,
recall, and false positive rates.

II. RELATED WORK

In this section, we review the most salient related work
in the realm of anomaly detection in real-time systems with
highlighting the novelty of our proposed solution. In fact,
several research activities which leverage different types of

observables, including the power profile, the system calls,
and the timing parameters, have been performed to identify
the malicious behavior of the software components [5], [6],
[4]. For instance, Abbas et al. [5] propose a hardware-based
anomaly detection method which relies on observing the power
profile of the executed software components. To this end,
they utilized an ECU with a built-in feature of precisely
measuring the power consumption. The anomalistic behavior
in the system is detected if the power consumed during the
runtime deviates from the profile recorded during the design
time. However, this approach suffers from the lack of hardware
support were not all ECUs posses highly-precise and fast
enough energy consumption meters required to minimize the
number of false alarms. Along a different line, Tong et al.
[4] introduce LogSed, an anomaly detection method which
monitors the system calls, i.e. the order of tasks execution. To
do so, LogSed generates a time-weighted control flow graph
that captures healthy execution flows of each software com-
ponent. In this case, an anomaly is detected if the execution
order differs from the generated graph. Nevertheless, relying
on the system order is extremely risky since the executions of
the software components may diverge at a certain point, thus
leading to distinct execution paths.

Aside from the power profile and system calls, Yoon et
al. [6] propose SecureCore, an anomaly detection algorithm
which relies on monitoring the execution time of the various
software components. The core idea behind SecureCore is
to estimate the probability distribution of a set of execution
times collected during the design time. During the runtime,
an anomaly can be detected whenever the execution time of
the currently-running task does not fall into the Gaussian dis-
tribution determined in the design time. Nevertheless, relying
solely on the execution time of the software components does
not reveal enough information about the circumstances of each
execution, thus negatively affecting the detection accuracy. To
prove this claim, we carried out an experiment of repeatedly
executing a certain task. During this experiment, we adopted
the same rules defined by SecureCore together with observing
the duration between subsequent executions, i.e. the S2S time.

Figure la demonstrates the probability density function of
the execution times collected while running the examined
task. Figure 1b depicts a two-dimensional scatter plot for the
execution time and the S2S time. As depicted in figure la,
the execution time around 212 ys falls between two Gaussian
distributions, thus it is considered as an anomaly according
to SecureCore. However, through taking a closer look into
Figure 1b, we found that the data points representing this long
computation time have a normal S2S time of 10.05ms and
are not falling apart from other data points in the 2D space.
Conversely, there exists a single point—Iocated at the bottom
left of the 2D space—which has to be classified as an outlier.
However, its execution time (roughly equal to 207 us) lies
on one of the Gaussian distributions defined by SecureCore.
This implies that SecureCore may mistakenly classify such
executions due to considering only the execution time. To
overcome this problem, we propose AutoSec, a timing-based

anomaly detection algorithm which mainly relies on observing
four timing parameters, including the execution time, the S2S
time, the number of preemptions, and the time of preemption.
Considering these parameters enables the detection algorithm
to deeply understand the context of each execution, thus
minimizing the false alarms forwarded to the system.

N
&
3

250

N
®
&

245

N
R
S

240 . P

235 i

N
8
&

F i

N
@
S

5
230 e fl ht ¥
225 BT .

i :
220 s !| h g‘;t
215 }:g{ ‘ﬁ\' !r@ ..’h:‘ 'R;

O e o WA

205
0.2 0.4 0.6 0.8 1 12 1.4 8. 9 10 10.5 "

K 9.5
Probability Density [%] %10 Start-to-Start [ms]

@ (b)

NN
N R
5 &
Computation time [us]

Computation time [us]

~
&

N
S,

N
S
&

)

Fig. 1: Example showing that computation time is not suffi-
cient for detecting anomalistic behaviors

III. SYSTEM OVERVIEW & PRELIMINARIES
A. System Architecture

In this section, we explain the system model together with
our assumptions. Our system consists of a number of ECUs
which are computational units in charge of specific control
functions, such as engine control, suspension control, and
driver assistance. Such ECUs are connected with each other
through CAN buses [11]. To provide safety guarantees, the
software components running on these ECUs have to exhibit
deterministic performance through which the system strictly
adheres to a set of predefined timing constraints. Therefore,
AutoSec leverages the AUTOSAR (stands for automotive open
system architecture) layered architecture for providing real-
time capabilities together with separating the application layer
from the hardware layer [7]. In AutoSec, we assume that the
application software is composed of a number of periodic and
preemptable tasks where each task consists of a number of
atomic runnable entities. Moreover, we assume that the various
tasks are fetched for execution according to a static schedule
defined by a priority-driven scheduling algorithm.

Figure 2 demonstrates the architecture of our proposed
AutoSec method. At the outset, AutoSec devises a tracing
algorithm to collect the various timing parameters of the
legitimate code. The collected traces are then used as an input
to a clustering algorithm which generates a number of clusters,
thus forming the timing model. To reduce the complexity of
clustering the collected dataset, AutoSec exploits the principal
component analysis (PCA) algorithm to reduce the dimensions
without harming the detection accuracy (cf. Section V). During
the runtime, the timing model is used as an input to a decision
making algorithm which decides whether the examined exe-
cutions behave abnormally. To this end, AutoSec is frequently
activated to check the distance between each execution of the
monitored task and the generated clusters.

Figure 3 illustrates an example of such a timing model
where it visualizes the various clusters. In this example, the

Tracing Examined
Executions

!

PCA-Based
Approximation

Dimensions
Reduction (PCA)

Hybrid
Clustering

—

Timings
Tracing Algorithm | 4 preemptions

|

S2Stime preemption time

[— execution time

Anomaly Detector
(Decision Making)

Timings Model

WA SA NA

offline phase online phase

Fig. 2: System architecture of AutoSec showing the offline
and online phases

executions—marked in black dots—Ilocated inside the bound-
aries of a certain cluster represents a class of legitimate code
with normal behavior. Whereas, the black dots—surrounded
by red circles in Figure 3—represents the abnormal executions
which have been annotated as anomalies. Depending on the
distance, AutoSec classifies the examined execution as either
a weak anomaly (WA), a strong anomaly (SA), or a non-
anomaly (NA) point. In the subsequent sections, we elaborate
on the timing parameters and their tracing algorithm, before
delving into the hybrid clustering method and the online
algorithm.

Fig. 3: Clusters describing the timing model where the black
points representing the examined executions and the blue
squares denote the middle point of each cluster,

B. Timing Parameters

In general, it is necessary to understand the anomalistic
behavior which has to be detected via adopting AutoSec. As
explained in Section II, considering solely the computation
time of the various tasks while detecting anomalies is broadly
not effective. Therefore, AutoSec relies on four different tim-
ing parameters, including the computation time, the S2S time,
the preemption time, and the number of preemption. Figure 4
demonstrates the execution of two instances of task S; where
the first instance J1; has been preempted twice by Jo; and J3;.
In this case, the S2S time represents the time elapsed between
the start of execution of two successive instances. In fact,
tracing the S2S time is crucial to detect whether a task skipped
its execution or even executed more often than it was planned
in the schedule. In addition, it implicitly indicates whether
the previous instances were tampered with. For instance, if an
attacker gained access to an ECU within a vehicle to deactivate
a certain task, the system typically fetches the next lower-
priority task for execution. In this case, the short S2S time

between the instances of the lower-priority task has to be
detected by the system to carry out a recovery mechanism.

1%t release preemption by higher-priority tasks ond pelease
of 51 Deadline ©f 51
of J
Jiia Jor |Ji2| Jm | s ‘ 1 Ji2,1

to 1 2] 3 4 ts f6 7
time

S2S time of Sy

Fig. 4: Various timing parameters of a typical task

Through observing the number of preemptions, it is straight-
forward to detect the higher-priority tasks executed outside
their planned time. Moreover, it enables detecting the un-
planned executions. For instance, if a message-flooding attack
has been performed through sending several CAN messages
to a certain ECU, the corresponding service routine will
preempt a currently-running task more often than expected.
Accordingly, the system has to accurately detect the excessive
number of preemptions to sidestep the severe consequences of
such an attack. In addition to the number of preemptions, it
is necessary to monitor the preemption time. For instance, an
attacker may perform a message request using a non-existing
message ID, thus forcing the corresponding control unit to run
extensive computations to process this request. Indeed, such an
attack leads to preempting a currently-running task for longer
time than usual preemptions.

As an example, Figure 5 depicts the execution of the
consecutive instances of a periodic task whose period is set
to 10ms. Such a task is composed of five runnable entities
$1, 89, ,S5. The normal behavior of these runnable entities
is typically to execute consecutively every 10ms (cf. the
left side of Figure 5). Nevertheless, the runnable s, has
frequently been blocked due to long preemption during its
second instance (cf. the right side of Figure 5). As a result,
the second instance of the runnable s; has been postponed,
thus resulting in a deviation of the S2S time. In this case, an
efficient anomaly detection algorithm has to report such an
abnormal behavior occurred due to the relatively long S2S
time. In this paper, we assume no prior knowledge about
the type of anomaly. Therefore, AutoSec treats the timing
parameters evenly, i.e. all parameters have the same priority.

525 = 10ms
Si h i
S, |
Ss__ 1L |
Sse___ M 11 11 110111 [
S;_ Em]

Longer S2S time

Fig. 5: Anomalistic behavior due to long preemptions where
dark blue denotes execution time while light blue represents
preemption time

IV. TIMING MODEL GENERATION

Before delving into the process of generating the timing
model, we explain the tracing algorithm developed for col-
lecting the various timing parameters (cf. Figure 6). Such

Require: entity set S = {s1,-+-, 8y}
1: for all entity s; € S do

2: if curMP(s;) == None or newMP(s;) == None then
3 timestamp < GetMCUTime()

4 newMP <— debugger(timestamp)

5 Start(newMP, timestamp) > S2S time
6: timestamp < GetMCUTime()

7 Finish(newMP, timestamp) > computation time
8 else if newMP(s;).status == running then

9: timestamp < GetMCUTime()

10: Preempt(curMP, newMP, timestamp) > Np,cempt
11: timestamp < GetMCUTime()

12: Continue(curMP, newMP, timestamp) &> Tyrcempt

Fig. 6: Tracing the four timing parameters

an algorithm is granularity-agnostic where it can be adopted
to trace the timing parameters of the tasks or the runnable
entities. Therefore, we refer to the software component being
executed as an entity s;. For this algorithm, we have v entities
where each entity s; can be preempted by a higher-priority
entity s;. The core idea behind our algorithm is to enable
the debugger to collect various timing information at a set of
predefined measuring points. Such measuring points occur in
the following cases: (1) the start of execution of the entity s;,
(2) the preemptions by higher-priority entities, e.g. s;, and (3)
the end of execution of the entity s;.

The algorithm mainly relies on four functions, namely start,
continue, preempt, and finish. As Figure 6 depicts, the start
function is executed when a measuring point curM P for the
currently-running entity s; or a new measuring point newM P
for a preempting entity s; is to be defined (cf. line 2). Once a
new measuring point is defined, the start function stores the
timestamp, before setting the other parameters, i.e. computa-
tion time, number of preemption, and preemption time, to zero.
Afterwards, the start function records the timestamp of starting
the next instance. The difference between these two values
represent the S2S time of the currently-running instance.
The preempt function is typically executed when the current
measuring point of s; is preempted by an entity s; whose
measuring point newM P(s;) was previously defined. once
activated, the preempt function first estimates the computation
time of the executed part of the preempted task s;. In addition,
it increments the number of preemptions, before recording the
current timestamp. Upon resuming the execution of the entity
s;, the continue function is executed where it records the new
timestamp to estimate the preemption time. Finally, the finish
function computes the execution time of s;, before activating
the inference algorithm of AutoSec. Below, we elaborate on
the process of clustering the collected timing parameters.

A. Clustering Requirements

To generate the timing model, we have to employ a clus-
tering algorithm to define the different groups of executions.
However, there exist plenty of clustering algorithms. To select
the most well-suited algorithm for our problem, we defined six
requirements which have to satisfied by the selected clustering

algorithm, including: (R1) supporting unsupervised learning
where the abnormal behavior may occur even during the
normal execution of the legitimate tasks, (R2) requiring no
prior knowledge about the number of clusters, (R3) dealing
with unbalanced dataset in which the points are not evenly
distributed between the different clusters, (R4) supporting non-
linearly separable dataset, (RS) dealing with noisy dataset, and
finally (R6) reducing the training time necessary to generate
the timing mode together with enabling parameters tuning.

While developing AutoSec, we examined six widely-used
clustering algorithms, including the K-Means algorithm [9],
the spectral clustering algorithm [12], the affinity propagation
(AP) algorithm [13], the Gaussian mixture models (GMM)
[14], and the density-based spatial clustering of applications
with noise (DBSCAN) [8]. The principle of operation of such
algorithms is left beyond the scope of this paper. However, it
is necessary to mention that some algorithms, e.g. K-Means,
take the number of clusters as an input. For these algorithms,
we adopted the Silhouette method [10] for obtaining a range
of potential number of clusters. From this range, we select the
value which results in the minimum average distance between
the points in each cluster.

Additionally, the DBSCAN algorithm generally relies on
grouping data points close to each other based on a distance
measure and a minimum number of points in each cluster.
Furthermore, DBSCAN marks the data points existing in the
low-density regions as outliers. To this end, DBSCAN requires
prior knowledge about the minimum number of points in
each cluster MinSamples, the minimum neighboring points
MinNeighbors, and the reachability distance e—defined as
the distance between a point of interest and a seed point.
Indeed, finding well-suited values for these parameters re-
quires achieving a reasonable compromise between the number
of clusters and the points sparsity in each cluster. Based
on our experiments, we found that setting AMinSamples
to MinNeighbors to three and five, respectively, broadly
achieves this requirement. To determine the distance €, we
adopt a semi-automatized technique which relies on expert
knowledge for selecting a value from a range defined by the
k-Distance graph method [8].

B. Clustering Algorithms

In this section, we assess the performance of the afore-
mentioned clustering algorithms for the sake of selecting the
one which satisfies our defined requirements. It is worth
mentioning that the Hopkins statistic A [15] has initially
been used to measure the cluster tendency of our dataset.
Such a metric denotes the probability that a given dataset is
generated by a uniform data distribution, i.e. testing the spatial
randomness of the data. We found that the Hopkins value H
is always above 60%, which implies that our dataset can be
feasibly clustered. Figure 7 demonstrates a comparative study
between the various clustering algorithms in the 2D feature
space, i.e. S2S time versus computation time. Figure 7a depicts
the clusters generated by the K-Means algorithm. Obviously,
K-Means does not offer valid clusters where the yellow dots—

located on the upper right side of the figure—have joined the
yellow cluster despite being relatively distant from the center
of the yellow cluster. Such a result of the K-Means algorithm
occurs owing to the imbalanced point density defined in terms
of the number of points per cluster. Figure 7b demonstrates
the clusters generated by the spectral clustering algorithm.
Clearly, the spectral clustering has a similar performance as
the K-Means algorithm where it is broadly sensitive to the
imbalanced density of the dataset.

Computation tim:
e
Computation time

s25 time 525 time

(a) K-Means (b) Spectral clustering

t

Computation time
r
Computation time
Computation time

; sy @ A\
S % f ‘JL";L‘,T

TR,
. 5 N . 2 s e os os o os
$28 time 828 time

(e) DBSCAN

525 time

(c) Affinity propagation (d) Gaussian mixture

Fig. 7: Comparative study of six clustering algorithms where
each cluster is identified by its color

Along a similar line, the AP algorithm produces solely
three clusters (cf. Figure 7c), which is not consistent with
the number of clusters obtained by the Silhouette method.
Furthermore, we found that some points were misplaced due to
computing the centroid of each cluster (marked x in Figure 7c)
as the mean value of the data points. In case of unbalanced
datasets, considering the mean value as the centroid may
result in obtaining biased center points. Therefore, AP was not
decisive about the belonging of the middle points. Figure 7d
depicts the clusters generated by the GMM algorithm which
requires prior knowledge about the number of clusters in the
dataset. Obviously, the GMM algorithm is sensitive to the
points density, e.g. the yellow cluster is made of points with
relatively high dispersal.

Finally, Figure 7e demonstrates the clusters generated by the
DBSCAN algorithm. As the figure shows, DBSCAN managed
to identify the outliers while exploiting the points density
to properly define the various clusters. Table 1 depicts the
ability of each clustering algorithm to satisfy the defined
requirements. The table shows that DBSCAN is the algorithm
which satisfies all the requirements where it has the smallest
training time, requires no prior knowledge about the number
of clusters, and is insensitive to the noise and the imbalanced
density. Therefore, we adopted the DBSCAN algorithm while
designing our AutoSec approach.

C. Hybrid Clustering Method

After opting for DBSCAN, we observed that it sometimes
combines several clusters when there exist bridge points
between these clusters. Figure 8 demonstrates an example of
clusters generated for a subset of the training dataset. In this

TABLE I: Requirements evaluation of different clustering methods using a dataset of 3183 instances of execution

Requirements

R2: Unknown Number

R4: Non-linearly Sepa-

Classifiers R1: Unsupervised Learning of Clusters R3: Unbalanced Clusters rable Clusters R5: Detected Outliers ~ R6: Training Time
K-Means v’ v’ NG N.A.
Spectral Clustering N N N 1.71 Sec
Affinity Propagation v’ N N v’ 3.12 Sec
Gaussian Mixture v’ v’ N 0.17 Sec
DBSCAN v’ v’ v’ v’ v’ 0.14 Sec

figure, each cluster is described using boundaries embodying
its data points. However, some special clusters, e.g. the red and
blue clusters, are characterized using two distinct boundaries
i.e. two sub-clusters. Clearly, each special cluster typically
consists of two dense regions which have not been recognized
as a single cluster thanks to the data points forming a bridge
between these two neighboring regions. In fact, AutoSec
leverages the distance between an examined point s; and the
midpoint of a cluster sg to decide whether the examined point
s; represents an anomaly. Therefore, it is highly crucial to
determine a fine-grained description of the clusters for the
sake of precisely detecting the anomalistic executions.

. = ,,k

L

X
-

* (]

Fig. 8: Sub-clusters (e.g. red and blue clusters) existence due
to the bridge points

In this context, AutoSec adopts a hybrid clustering algo-
rithm which leverages DBSCAN as a pre-processing tool to
remove possible outliers together with generating the initial
clusters. Figure 9 depicts the hybrid clustering method for
obtaining a fine-grained description of the clusters. In Au-
toSec, we iterate over each cluster generated by DBSCAN to
determine the sub-clusters, if any. To this end, we adopt the
Silhouette method in combination with the K-Means method.
Specifically, the K-Means method is iteratively executed on
each cluster with different values of K, i.e. the number of
possible sub-clusters. In each iteration, the Silhouette index
is utilized to examine the closeness of each point to the
points in the neighboring sub-clusters. If the Silhouette index,
for any value of K, surpasses the predefined threshold, the
corresponding value of K will be taken into the further use.
Based on our evaluations, the Silhouette threshold 5 and the
maximum number of sub-clusters are set to 70% (Hopkins
value) and four, for an accurate estimation of the sub-clusters.

M clusters

Timings (principal components) 0 >)
‘mean, covariance,

N clusters Clusters

Description

DBSCAN Timing Model

2

MinNeighbors
Distance €

o
g
=%
=
©
@
g
=

K-Mean
Clustering

Sub-)Clusters Gaussian
, — (

Sl s Model Generation
K-Distance Method

1

Sub-Clusters Detection o

Fig. 9: Clustering procedure including sub-clusters estimation

A primary limitation of the DBSCAN and K-Means meth-
ods is the lack of uncertainty measure or probability that tells
us how much a new data point is associated with a specific
cluster. To overcome this limitation, the detected (sub-)clusters
have been described as a set of Gaussian models. Accordingly,
new data points can be added to the closest cluster based
on probabilities generated by the relevant Gaussian model.
Finally, the obtained models of each (sub-)cluster, i.e. midpoint
and covariance, are utilized to generate a data description file
compatible with the ECU software. Below, we explain the
different steps of the AutoSec algorithm executed during the
runtime for checking the behavior of the examined executions.

V. AUTOSEC ONLINE ALGORITHM

Figure 10 demonstrates the various steps of our proposed
AutoSec algorithm. Such an algorithm takes as inputs the
timing parameters {Zsos, €;, Npreempt, Ipreempt } Of @ certain
entity s; together with a set of clusters C where each cluster
c; may comprise a number of sub-clusters z1, - - - , 2,,. In fact,
we noticed that the number of preemptions Ny,,cempt and their
duration T}y, cempe become broadly correlated in case of normal
execution (cf. Figure 11). Based on this observation, AutoSec
leverages the PCA algorithm [16] to create new dimensions,
referred to as the principal components Pi,--- , P,, where
each principal component represents a combination of all
original dimensions. Afterward, AutoSec selects, out of these
principal components, the most important ones for detecting
the misbehaved executions (cf. line 2). Thus, PCA reduces
the feature space while preserving the important information
embedded in the dataset. As a result, the clustering time
can be shortened—through reducing the Euclidean distance
computations—without negatively impacting the detection ac-
curacy.

After generating the principal components sp., =
{Py, P5, P;}, they have to be transformed into the local
coordinate system x,y,z of the clusters (cf. line 5). To

Require: clusters set C = {c1, - ,cy}, test points S =
{87,'7 T 751}} where i = T5237 €i, Npreempt, Tpreempt

1: for all test point s; € S do

2 Spca < PCA(s;) > dimensions reduction
3 for all cluster ¢; € C do

4 for all sub-cluster z; € ¢; do

5: Slocal < transform(s,cq, 2;)

6 elocalz ¢local — ﬁndAngles(slocal; Z’L)

7 diocal < findDistance(s;ocar, 2i)

8 Plocal < findRadius(s;ocai, 2is O1ocals Plocal)

9: if the ratio djocai/piocar > 1 then

10: R+ Append(dlocal/plocal)

11: R,pin < minimum(R)

12: if Rin > Qstrong then

13: Sstrong < Si > strong anomaly detection
14 else if Rpin > peat & Rmin < Qstrong then

15: Sweak < Si > weak anomaly detection

Fig. 10: AutoSec algorithm

quantify how close is an examined point to a certain (sub-
)cluster, AutoSec normalizes the distance dj,., using the
radius of each (sub-)cluster pjocq; in the direction of the
examined point x;,y;, 2;. To this end, the algorithm iterates
over all (sub-)clusters to compute the Euclidean distance djocq;
and angles 0jpcal, Procar between s; and the various (sub-
)clusters. Equation 1 defines the distance dj,.,; in terms of the
coordinates of the midpoint g, yg, 20 for each (sub-)cluster.
Whereas, Equation 2 estimates the radius of each (sub-)cluster
in the direction of the examined point in terms of three
radii a, b, c—which define the ellipsoid of the (sub-)cluster—
together with its spherical angular 0;,cq1, ®rocar (cf. lines 7
and 8). If the normalized distance %ecsl does not exceed
one, AutoSec considers the examined pg)ci(ﬁt s; as a legitimate
component executed without anomalistic behavior since it lies
within one of the pre-defined clusters. After iterating over
all (sub-)clusters, AutoSec checks the minimum normalized
distance R,,;, representing the distance to the closest (sub-
)cluster. If the distance R,,;, exceeds an upper threshold
Qtstrong» the examined point s; is classified as a strong
anomaly (cf. line 12). However, it is considered as a weak
anomaly whenever the distance R,,;, lies in the predefined
range [Qupeak; Xstrong) (cf. line 14). Such classification is
crucial to enable the system from making the optimal recovery
mechanism, e.g. reseting the control unit or warning the driver.

diocal = /(@i — 20)> + (i —90)* + (2 —20)> (1)

B abc
P V/(ab)? cos? ¢ + (ac)?(cos O sin ¢)2 + (be)2(cos O sin ¢)2
2

VI. PERFORMANCE EVALUATION

To show the effectiveness of AutoSec, we tested our system
in a pseudo real-world scenario. It is worth noting that the
scenario comprises a simplified simulation setup for demon-
stration purposes and not a real sub-system of a vehicle. We

first describe the setup of our evaluation, before we discuss
the evaluation results.

A. Experimental Setup

To test our proof-of-concept implementation of AutoSec, we
designed a testbed composed of a real ECU, i.e. an AURIX
three-core board running at 200MHz, which communicates
through a CAN bus with two virfual ECUs. In this simulated
setup, the virtual ECUs are responsible for controlling a simple
vehicle’s engine while the real ECU is dedicated to control
the brakes. In our scenario, the input signals coming from
a brake pedal are initially preprocessed by a virtual ECU,
before forwarding the output to the real ECU as a set of CAN
messages. Afterwards, the real ECU estimates the braking
force, before sending it back to the corresponding virtual ECU.
In our evaluations, we are mainly interested in tracing the
timing parameters of the software executed on the real ECU,
while the two virtual nodes are used as communication nodes.

Practically speaking, the CANoe simulation tool [17] has
been used to create the virtual ECUs together with analyzing
their communication with the real ECU. In addition, a VN5610
Ethernet/CAN interface and an iSystem iC5000 debugger have
been connected to an Intel Xeon machine running at 2.9GHz
and equipped with 64GB of RAM. The iSystem debugger is
mainly used for porting our code into the real ECU, debugging
and tracing the timing parameters. The VN5610 Ethernet/CAN
interface has been utilized as a communication mean between
the real and virtual ECUs. It is worth mentioning that the MI-
CROSAR software packages [18] have been used to implement
the requirements and specifications of AUTOSAR.

In general, it is significantly crucial in automotive applica-
tions to minimize the false positives, i.e. false alarms, while
achieving a reasonable number of true positives. The intu-
ition is to sidestep warning the driver with potential security
breaches unless the anomaly detection system is highly certain
that a breach took place. Similarly, it is indeed required to
minimize the false negatives, i.e. missed detections, to capture
all breaches before destabilizing the control decisions. In this
context, AutoSec is evaluated in terms of three accuracy
measures, including the precision, the recall, and the false
positive rate (FPR). The precision P = % denotes the
fraction of true anomalies out of all detected cases, where T'P
denotes the true positives and F'P is the false positives. For
example, a precision = 95% implies that out of 100 detected
cases (i.e. outliers), 95 are true anomalies, whilst the other
five cases represent normal behavior. The second metric, i.e.
recall R = TPZ% denotes the fraction of detected anomalies
out of all injected anomalies, where F'N represents the false
negatives. Finally, the FPR metric represents the fraction of
instances of normal behavior surpassed the adopted threshold
and have been annotated as anomalies, i.e. PR = FPZ%,
where T'N denotes the true negatives.

In fact, the process of evaluating anomaly detection al-
gorithms is predominantly not straightforward owing to the
lack of ground-truth data. As a workaround, we opted for
creating our ground-truth through carrying out the following

three steps: (1) adopting AutoSec to a set of collected timing
traces where the sensitivity thresholds qeqr and agirong are
adjusted so that no anomalies being detected in this dataset, (2)
deliberately injecting a set of different anomalies, and finally
(3) adopting AutoSec to determine its ability in detecting
the injected anomalies. Specifically, the injected malicious
code has been designed to tamper with the S2S time and
the computation time. For instance, an attacker can inject a
malicious code to partially or completely bypass the execution
of certain runnables, thus reducing their computation time. In
our scenario, the injected code performs random computations
whose length increases over time, before writing the output to
the memory. The intuition behind this design is to evaluate the
sensitivity of AutoSec to (1) the variation in the computation
time and (2) the existence of memory dependencies. It is worth
mentioning that the preemption anomalies were hard to be
examined in our evaluations due to the high uncertainty of
external triggers with high priorities. Table II summarizes the
parameters and their values which have been used throughout
the evaluations.

TABLE II: parameters used in the evaluations

System Parameter Value System Parameter Value
trace length 300 s sensor frequency 5 ms
anomalies frequency 1/50 S2S lower bound 8.5 ms
S2S upper bound 11.5 ms clustering threshold 3 70%

upper threshold astrong 4 lower threshold avyeqk 2.5

B. Detection Accuracy

In this section, we evaluate the ability of AutoSec in de-
tecting the various injected anomalies. We describe the results
obtained while tracing the timing parameters on the task level
as well as on the runnable level. It is worth mentioning that
the anomalies Agl), . ,AgN) are injected every 50t instance
of the executed task. In this scenario, the length of such
anomalies L is deliberately increased every ten consecutive
anomalies, e.g. Lgll) = (1+49) x Lgl), where & denotes
the deviation factor. Figure 11 demonstrates the four timing
parameters for different instances of execution in the runnable
level. In this figure, the red dots represent a set of injected
computation time anomalies. Obviously, the S2S times of such
executions lie within the normal ranges, i.e. between the S2S
upper and lower bounds (cf. Table II). Nevertheless, their
computation times are relatively long, i.e. circa 110 us. In
fact, long computation times in the range of 110 us typically
occur when the executed task is frequently preempted.

Through observing the third and fourth timelines, i.e. the
number of preemptions and the accumulated preemption time,
we found that these red executions were not interrupted, i.e.
number of preemptions is equal to zero. Hence, there exists
no valid reason for the red executions to have a relatively
long computation time. In these cases, AutoSec annotates
these malicious executions as possible anomalies. Table III
summarizes the detection accuracy results where the shown
recall, precision, and FPR values represent average readings

over six test cases for the runnable level and three test cases
for the task level. In this table, the third row shows the
deviation factor ¢ of the subsequent anomalies relative to the
length of the initial anomaly, i.e. L(Sl). At small values of
the deviation factor ¢, the timing parameters of the injected
anomalies become relatively close to the normal executions,
thus making it challenging to detect those anomalies.

[
£
S
0
o
%
[
E
=]
(=3
S0.115
=]
S
So.10 U .J
go.ms L‘M AL AL S i i A Ar A s Al 7 1_.d
o
1.00
=
£
&
£0.50
z
0.00 .
0.04
g
E
£ 0.02
s
i
0.00 1§ -
200 300 400 500 600 700

Instance ID

Fig. 11: Traced timing parameters with marking the computa-
tion time anomalies in red

For the S2S time anomalies, AutoSec has extremely few
false positives where the precision metric approaches 100%
and FPR approaches 0.01%, thus drastically reducing the
number of false alarms forwarded to the system/driver. Addi-
tionally, the evaluations show that AutoSec achieves less false
negatives (at least by 47%) in both levels when the devia-
tion factor is increased. For the computation time anomalies
with small values of the deviation factor, AutoSec achieves
less false positives (on average by 39%) in the fine-grained
runnable level compared to the coarse-grained task level. How-
ever as the deviation factor is increased, AutoSec produces
approximately the same amount of false positives in both
granularity levels. As expected, increasing the deviation factor
within the runnable level leads to further reducing the FPR
rate (at most by 50%) while having no false negatives, i.e. R
= 100%. Accordingly, we can conclude that AutoSec offers a
reasonable detection accuracy even with small values of the
deviation factor 4.

To further understand the behavior of AutoSec, Figures 12a—
12f visualize another set of experiments in which several tests
have been run for different values of the deviation factor §.
The figures depict the recall and precision results on both
granularity levels. In the scatter plots, each point represents
the average value of the results obtained from repeating the
test ten times. At the outset, Figure 12a demonstrates the recall
on the runnable level (i.e. R-level) in case of the S2S time and
the computation time anomalies. Obviously, AutoSec achieves
higher recall (on average by 55%) while reacting to the
computation time anomalies. Accordingly, AutoSec detects the

TABLE III: Detection accuracy in case of the S2S time and the computation time anomalies

S2S Time Anomalies

Computation Time Anomalies

Runnable Level Task Level Runnable Level Task Level
Deviation ¢ [1..25%] [25..40%] [1..25%] [25..40%] H [1..10%] [5..15%] [1..10%] [5..15%]
FPR 0.00605632% 0.02004812% 0.01976089% 0.01978351% 0.030305% 0.015% 0.0499% 0.010068%
Recall 33% 79% 34% 64.52% 76.5% 100% 22% 56.5%
Precision 99% 98.77% 97.18% 98.46% 98.115% 99.26% 98.81% 99.09%

computation time anomalies more efficiently than the S2S time
in the R-level. Such a result predominantly occurs since the
computation time anomalies—in our settings—directly affect
the S2S time of the periodic runnable entities. Whereas, the
S2S time anomalies may have no impact on the computation
time of these entities. Figure 12b shows that AutoSec achieves
on the task level, i.e. T-level, comparable recall results while
reacting to both anomaly types. Figure 12c demonstrates the
recall distribution on both granularity levels. As it can be seen
in the figure, AutoSec on the R-level has higher recall (on
average by 28%) compared to the T-level. The main reason
behind this result is the coarse resolution of the traced timings
on the T-level. This implies that small deviations in the range
of few microseconds within one runnable entity traced under
the T-level mostly will not be detected. Such deviations can be
easily detected if that runnable entity is monitored separately,
i.e. tracing on the R-level.

Similarly, Figure 12d depicts the precision achieved by
AutoSec while detecting the S2S time and computation time
anomalies on the R-level. Clearly, AutoSec has an extremely
small number of false positives while reacting to both anomaly
types. Such a result has also been obtained while tracing the
timing parameters on the task level, as it can be seen in
Figure 12e. Such a result confirms the ability of AutoSec to
efficiently differentiate between the legitimate and the mali-
cious executions thanks to considering a multi-dimensional
feature space. Figure 12f shows the precision distribution
of AutoSec on the two granularity levels. Despite having
a relatively high variability, the precision on the R-level is
mostly concentrated in the range between 98.5% and 100%.
Hence, AutoSec produces extremely few false positives and
false negatives while reacting to the S2S time and computation
time anomalies.

Table IV illustrates another set of experiments whose goal
is to provide a comparative study between AutoSec in the
R-level and two baseline methods, including SecureCore [6]
and LogSed [4]. In this experiment, two different runnable
entities have been monitored, including (1) an aperiodic entity
and (2) a periodic entity with 10 ms period. Each test has
been run for two minutes and then repeated ten times where
the obtained results are averaged. Clearly, AutoSec achieves
higher recall on average by 26% and 8% relative to SecureCore
and LogSed, respectively. Thus, AutoSec has higher ability to
reduce the false alarms sent to the system/driver. In addition,
AutoSec has much smaller false positives compared to the
two baseline methods. Along a similar line, AutoSec achieves

higher precision (on average by 21%) than LogSed while
having approximately similar performance as SecureCore.
Nevertheless, these results—achieved by AutoSec—still have
to be further improved to drastically reduce the probability of
triggering false alarms in order to meet the strict requirements
in the automotive industry.

TABLE IV: Comparing AutoSec and the baseline methods

Methods FPR Recall Precision
SecureCore 0.39385% 66.775% 99.215%
LogSed 1.12500% 82.500% 78.500%
AutoSec 0.00750% 90.000% 98.950%

C. Overhead of AutoSec

In this section, we discuss the overhead of executing our
AutoSec approach. Although the processing overhead sig-
nificantly depends on the hardware under which AutoSec
is running, an insight can still be gained on the overhead
from observing the processing time required for getting the
timestamps together with performing the inference. In our
testbed, the speed of the adopted control unit is 200 MHz
where AutoSec has been executed on a single core out of three
available cores. Under these settings, the processing time of
our implementation can be simply measured using the internal
clock of the control unit. We found that AutoSec requires
between 40 and 200 ps for processing a single runnable.
Specifically, the processing time depends on the number of
clusters where longer processing time is mostly needed as
the number of available clusters is increased. Furthermore,
the processing time also depends on whether the examined
runnable entity represents an actual anomaly. If the tested
runnable entity behaves in an malicious manner, AutoSec has
to measure its distance, in the feature space, to each cluster.
Such computations involve multiple multiplications, divisions
and using square root functions. Otherwise, the distance
measurements are avoided if the entity resides in one of the
predefined clusters. Accordingly, executing AutoSec on the
runnable level may incur relatively high overhead compared
to the T-level tracing. Hence, it is highly recommended to
perform T-level tracing to reduce such an overhead while
achieving a reasonable detection accuracy.

VII. CONCLUSION & FUTURE WORK

In this paper, we presented AutoSec, a host-based
AUTOSAR-compliant anomaly detection algorithm. AutoSec

100 ® ® ® X 100 _
704
20 o X X 90
80 ® ° 60| @ X 80
— - [J —
g 70 S (] g7
= X S2S Anomalies =501 X -
S 60 @® Computation Time Anomalies g 8 60
Q Q
o« 50 = 40 ® @< 50
X 40
40 X 301
X X X S2S Anomalies 30
30 x % 201 [Y @ Computation Time Anomalies 2 T
0.00 0.01 0.02 0.03 0.04 0 0.05 0.1 0.15 0.2 R-level T-level
FPR [%] FPR [%] Granularity
(a) R-level (b) T-level (c) Recall distribution
100.0 = x X 10001 @ X 525 Anomalies 100.0 T
@ Computation Time Anomalies 99.5
99:5 o 99.5 X
= 99.0 o © _ [28 = 99.0
8 ® £ 9.0 @ 8
5 985 5 X 5 985
2 @ 985 2
g 98.0 ® X @ 980
a & [a
97.5 [98.0 07.5 1
97.0 X S2S Anomalies 97.5 ®o X 97.0 ——
x @ Computation Time Anomalies X 4
96.5 96.5
0.00 0.01 0.02 0.03 0.04 0 0.05 0.1 0.15 0.2 R-level T-level
FPR [%] FPR [%] Granularity
(d) R-level (e) T-level (f) Precision distribution

Fig. 12: Evaluating the detection accuracy on both granularity levels

employs four timing parameters to observe the behavior of the
software executions. In this context, the abnormal executions
are detected through comparing them with a timing model gen-
erated during design time. To generate such a model, AutoSec
introduces a hybrid clustering algorithm which generates a
fine-grained representation of the timing parameters collected
from a set of legitimate executions. As a proof-of-concept, we
created a testbed composed of three ECUs which communicate
with each other through a CAN bus. The evaluation results
showed that AutoSec is highly effective in reducing the false
positives and the false negatives. Additionally, the results
indicated that executing AutoSec on the R-level achieves better
recall and precision at the expense of incurring additional over-
head due to the fine-grained tracing. A logical extension of this
work involves examining AutoSec on the adaptive AUTOSAR
layered architecture where dynamic scheduling strategies are
employed. Finally, we plan to investigate the integration of
more timing parameters, e.g. arrival time, blocking time, and
completion time, while generating the timing model.

REFERENCES

[1] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1243-1274, 2018.

X. Yang, L. Liu, N. H. Vaidya, and F. Zhao, “A vehicle-to-vehicle
communication protocol for cooperative collision warning,” in MOBIQ-
UITOUS. 1EEE, 2004, pp. 114-123.

C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

T. Jia, L. Yang, P. Chen, Y. Li, F. Meng, and J. Xu, “LogSed: Anomaly
diagnosis through mining time-weighted control flow graph in logs,”
in 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD). IEEE, jun 2017.

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]

[18]

M. F. B. Abbas, A. Prakash, and T. Srikanthan, “Power profile based
runtime anomaly detection,” in 2017 TRON Symposium (TRONSHOW).
IEEE, 2017, pp. 1-9.

M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “SecureCore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). 1EEE, apr 2013.

S. Fiirst and M. Bechter, “Autosar for connected and autonomous
vehicles: The autosar adaptive platform,” in 2016 46th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
Workshop (DSN-W). IEEE, 2016, pp. 215-217.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Kdd, vol. 96, no. 34, 1996, pp. 226-231.

M. David, “Chapter 20. an example inference task: Clustering,” Infor-
mation Theory, Inference and Learning Algorithm, 2003.

R. C. de Amorim and C. Hennig, “Recovering the number of clusters in
data sets with noise features using feature rescaling factors,” Information
Sciences, vol. 324, pp. 126-145, 2015.

S. Fiirst, “Challenges in the design of automotive software,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2010, pp. 256-258.

U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395416, 2007.

B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” science, vol. 315, no. 5814, pp. 972-976, 2007.

S. Jafatnejad, G. Castignani, and T. Engel, “Revisiting gaussian mixture
models for driver identification,” in 2018 IEEE International Conference
on Vehicular Electronics and Safety (ICVES). 1EEE, 2018, pp. 1-7.
A. Banerjee and R. N. Dave, “Validating clusters using the hopkins
statistic,” in 2004 IEEE International conference on fuzzy systems (IEEE
Cat. No. 04CH37542), vol. 1. IEEE, 2004, pp. 149-153.

L. Jolliffe, Principal Component Analysis. Wiley Online Library, 2002.
“CANoe 8.2: ECU & Network Testing on Highest Level,” Vector
Informatik GmbH, online; accessed April-2019. [Online]. Available:
http://vector.com/vi_canoe_en.html

“MICROSAR — The Smart Implementation of the AUTOSAR
Classic Standard,” Vector Informatik GmbH, online; accessed
April-2019. [Online]. Available: https://www.vector.com/de/en/products/
products-a-z/embedded-components/microsar/

