
Universität Stuttgart

Sonderforschungsbereich 627

Umgebungsmodelle für

mobile kontextbezogene Systeme

www.nexus.uni-stuttgart.de

NEXUS

SFB 627 Bericht Nr. 2005/01

Autor(en):

Datum:

Das Nexus Relationen-
und Topologiekonzept

(c) 2004 Bruno Arbter, Tobias Drosdol,
Frank Dürr, Matthias Großmann,
Nicola Hönle, Steffen Volz

Bruno Arbter, Tobias Drosdol,
Frank Dürr, Matthias Großmann,
Nicola Hönle, Steffen Volz

Sprecher des SFB:

Prof. Dr. Kurt Rothermel
Institut für Parallele und Verteilte Systeme
Universitätsstraße 38
70569 Stuttgart
Deutschland

24. November 2004

CR Klassifikation: E.2, H.2.1, H.2.8

Center of Excellence 627

Spatial World Models for

Mobile Context-Aware Applications

Inhaltsverzeichnis

1 Einleitung..2

2 Das Relationenkonzept von Nexus...3

2.1 Heavy- oder Lightweight Relationen?...3

2.2 Struktur von Relationen..4
2.2.1 Stelligkeit ...4
2.2.2 Symmetrie ..4
2.2.3 Typisierung ..6

2.3 Speicherung/Verwaltung von Relationen ..6
2.3.1 Relationen mit Ortsbezug..7
2.3.2 Relationen ohne Ortsbezug ...7
2.3.3 Realisierung..9

2.4 Die Relationenhierarchie ..9
2.4.1 Raumbezogene Relationen..10
2.4.2 Thematische Relationen..12
2.4.3 Temporale Relationen...12
2.4.4 Relationen zwischen mehrfach repräsentierten Objekten.................................15

2.5 Offene Probleme ..16
2.5.1 Relationen zwischen Relations-Objekten ..16
2.5.2 Mehrfach repräsentierte Relationen...16
2.5.3 Typisierung von NOLs ...16

3 Das Topologie-Konzept in Nexus...17

3.1 Verwandte Arbeiten..17
3.1.1 Das 9-Intersection Model und das erweiterte 9-Intersection Model17
3.1.2 Ansätze aus dem Bereich Ubiquitous Computing..20
3.1.3 Region Connection Calculus...20
3.1.4 OGC Topologie ..20

3.2 Diskussion der verschiedenen Ansätze..22

3.3 Topologie in Nexus ..22
3.3.1 Topologische Objekte in Nexus ..23
3.3.2 Topologische Relationen in Nexus..24
3.3.3 Modellierungsbeispiel...25

4 Zusammenfassung..30

5 Glossar ..31

6 Literatur ...32

 Seite 2

1 Einleitung
Im Rahmen der Taskforce Topologie sollten Konzepte zur Repräsentation der Topologie raumbe-
zogener Objekte innerhalb des AWM entwickelt werden. Das Arbeitsgebiet wurde aber bei For-
mierung der Taskforce auf die Entwicklung eines generellen Ansatzes zur Modellierung von Re-
lationen in Nexus ausgedehnt, da die Abspeicherung von topologischen Beziehungen auf dem
Fundament eines Gesamtkonzeptes für Relationen aufgebaut werden muss. Im Folgenden wird
dieses Relationen-Konzept detailliert erläutert. Anschließend wird dann das Nexus-Topologie-
Konzept vorgestellt.

 Seite 3

2 Das Relationenkonzept von Nexus
Ein Schwerpunkt der Diskussionen innerhalb der Taskforce Topologie lag darin, zu entscheiden,
welche Art von Relationen innerhalb von Nexus verwendet werden sollen. Grundsätzlich bestand
die Möglichkeit, entweder leichtgewichtige (lightweight) oder schwergewichtige (heavyweight)
Relationen einzuführen. Darüber hinaus musste festgelegt werden, wie Relationen aufgebaut
werden bzw. welche innere Struktur sie aufweisen müssen. Eine weitere Aufgabe der Taskforce
Topologie bestand darin, eine Lösung für die Frage zu finden, wie Relationen in Nexus zu ver-
walten sind. Schließlich war zu entscheiden, an welcher Stelle Relationen innerhalb der Objekt-
hierarchie des AWM stehen sollten. Den hier genannten Fragestellungen ist im Folgenden jeweils
ein Kapitel gewidmet.

2.1 Heavy- oder Lightweight Relationen?

Gemäß der abstrakten Spezifikation des OpenGIS Konsortiums zum Thema Relationen [OGC
1999] wurden auch in der Diskussion um Nexus-Relationen die Begriffe 'lightweight' und 'hea-
vyweight' verwendet.

Nach der Definition des OGC haben diese beiden Arten von Relationen die folgenden Eigen-
schaften:

Lightweight Relationen:
• Sind Teil eines referenzierten Objekts
• Haben keine Attribute
• Sind zweistellig

Abb. 1: Darstellung einer Lightweight-Relation.

Heavyweight Relationen:
• Existieren als eigenständiges Objekt
• Können Attribute haben
• Sind n ≥ 2 stellig

Abb. 2: Darstellung einer Heavyweight-Relation.

Heavyweight Relationen können flexibler eingesetzt werden. Eine heavyweight Relation kann
jederzeit zwischen beliebigen Objekten definiert werden, während lightweight Relationen im Typ
des einbettenden Objekts berücksichtigt werden müssen, d.h. bereits bei der Definition des Typs
muss festgelegt werden, welche lightweight Relationen Objekte des Typs einbetten können.

 Seite 4

Bei heavyweight Relationen kann zusätzlich eine Restriktion stattfinden, indem festgelegt wird,
welche Objektklassen an einer Relation teilnehmen dürfen (um beispielsweise auszuschließen,
dass andere Objekte als Städte an einer Partnerstadt-Relation teilnehmen können).

Für höherstellige Relationen (n > 2) sind heavyweight Relationen zwingend erforderlich. Daher
müssen diese auf jeden Fall in Nexus unterstützt werden. Die Frage bestand nun darin, ob sowohl
heavyweight als auch lightweight Relationen in Nexus verwendet werden sollen oder ob wir uns
für einen Typ entscheiden sollten. Um eine durchgängige und klare Modellierung zu gewährleis-
ten, hat sich die Taskforce darauf geeinigt, lightweight Relationen zunächst nicht aufzunehmen.
Sollte später jedoch eine Optimierung der Verarbeitung von Relationen nötig sein, kann man sich
diese Frage noch einmal stellen. Schon vorhandene lightweight Relationen sollen aus Gründen
der Rückwärtskompatibilität allerdings weiterhin in der bestehenden Form – zumindest mittelfris-
tig - unterstützt werden.

2.2 Struktur von Relationen

Grundsätzlich können verschiedene strukturelle Eigenschaften eines Relationentyps unterschie-
den werden:

• Stelligkeit
• (Nicht-)Symmetrie
• Typisierung der referenzierten Objekte

Diese Eigenschaften und ihre Umsetzung im AWM werden im Folgenden erläutert.

2.2.1 Stelligkeit

Die Stelligkeit einer Relation wird durch die Zahl der referenzierten Objekte bestimmt. Die fol-
gende Abbildung zeigt ein einfaches Beispiel einer zweistelligen Relation "TwinCity" (Partner-
stadt). Zweistellige Relationen können auch als binär bezeichnet werden.

Abb. 3: Darstellung einer zweistelligen Relation.

2.2.2 Symmetrie

Eine binäre Relation R wird als symmetrisch bezeichnet, wenn gilt (a,b) ∈ R ⇔ (b,a) ∈ R. Ein
Beispiel für eine solche binäre symmetrische Relation ist die oben dargestellte Relation "TwinCi-
ty". Das heißt, es gilt z.B. TwinCity(Stuttgart, Brünn) ebenso wie TwinCity(Brünn, Stuttgart). Im
Gegensatz dazu haben die einzelnen referenzierten Objekte bei nicht-symmetrischen Relationen
verschiedene Rollen. Ein Beispiel hierfür ist die topologische Relation "Contains", da hier unter-
schieden werden muss, welches Objekt ein anderes enthält.

Abb. 4: Darstellung einer nicht-symmetrischen Relation.

 Seite 5

Dabei muss zusätzlich beachtet werden, dass zweistellige Relationen nur einen sehr einfachen
Fall der Symmetrie darstellen. Eine symmetrische (bzw. nicht-symmetrische) Relation kann be-
liebig viele Objekte referenzieren (entsprechend ihrer Stelligkeit). Die Referenzen einer Relation
können auch nur teilweise symmetrisch sein. Beispielsweise könnte die Relation „Surrounds“
eine Reihe von Objekten referenzieren, die ein anderes Objekt geographisch umschließen. Sie
beschreibt also eine Menge von Gebieten, die gemeinsam einen geschlossenen Kreis um das um-
schlossene Gebiet bilden.1 Die Referenzen auf die umschließenden Objekte sind dabei unterein-
ander symmetrisch; zu der Referenz auf das umschlossene Element sind sie jedoch nicht symmet-
risch.

Abb. 5: Darstellung einer teilweise symmetrischen Relation

Bezüglich der Modellierung sind nicht-symmetrische Relationen unkritisch, da die einzelnen Ob-
jekte anhand des referenzierenden Attributs einer Relation unterschieden werden können, wie in
Abb. 4 dargestellt.

Bei symmetrischen Relationen dagegen ergibt sich ein Problem bei dieser Art der Modellierung,
das anhand der oben eingeführten Partnerstadtrelation erläutert werden soll. Gegeben sei die
symmetrische Relation TwinCity mit zwei Attributen "city1" und "city2", die jeweils Referenzen
auf die Partnerstädte darstellen. Wird nun ohne weitere Vorkehrungen eine Relation TwinCi-
ty(city1="Stuttgart", city2="Brünn") modelliert, so könnte eine Anfrage nach TwinCi-
ty(city1="Brünn", city2="Stuttgart") nicht beantwortet werden, da "Stuttgart" != "Brünn" gilt.
Um dieses Problem zu lösen, sind folgende Ansätze möglich:

1. Symmetrische Relation werden mehrfach modelliert, d.h. es erfolgt eine Modellierung sowohl
von TwinCity(city1="Stuttgart", city2="Brünn") als auch von TwinCity(city1="Brünn"; ci-
ty2="Stuttgart").
• Nachteile: Deutlich höherer Modellierungsaufwand und mögliche Inkonsistenzen
• Vorteil: Kann problemlos in die bestehende Infrastruktur integriert werden.

1 Eine solche Relation lässt sich nicht durch eine entsprechende Anzahl zweistelliger Relationen ersetzen, da dabei
die Semantik verloren gehen würde.

 Seite 6

2. Die Relation wird im Objektschema als symmetrisch gekennzeichnet.. Durch eine Infrastruk-
turerweiterung kann dann die Anfrage TwinCity(city1="Stuttgart", city2="Brünn") entspre-
chend aufgelöst und sowohl nach TwinCity(city1="Stuttgart", city2="Brünn") als auch nach
TwinCity(city1="Brünn", city2="Stuttgart") gesucht werden (transparent für den Benutzer).
• Nachteile: Aus einer Anfrage an die Föderation resultieren mehrere Anfragen (bei binären

symmetrischen Relationen zwei). Eine Infrastrukturerweiterung ist notwendig.
• Vorteil: Keine mehrfache Modellierung von symmetrischen Relationen.

3. Die Attribute einer symmetrischen Relation werden als Mengen modelliert. Beispiel: TwinCi-
ty(cities={"Stuttgart,Brünn"}).
• Nachteile: Einführung eines Mengentyps notwendig. Die Stelligkeit einer Menge muss

dabei im Schema festgelegt werden können.
• Vorteile: Keine mehrfache Modellierung von symmetrischen Relationen. Kein erhöhter

Aufwand bei der Anfragebearbeitung.

4. Symmetrische Referenzen werden durch Mehrfachattribute (anstatt Mengen) modelliert wer-
den. Beispiel: Zwei Instanzen des „city“-Attributs im TwinCity Objekt.
• Nachteile: Die Stelligkeit einer Relation kann im Schema nicht festgelegt werden. Im

AWM existieren bereits Mehrfachattribute mit einer bestimmten Semantik; es ist keine
Unterscheidung zwischen „echten“ Mehrfachattributen und durch Mehrfachattribute si-
mulierte Mengen möglich.

• Vorteil: Keine Infrastrukturerweiterung nötig.

Lösung 1 ist aufgrund ihrer Nachteile nicht attraktiv. Lösung 2 und Lösung 3 haben dieselben
Vorteile und erfordern beide eine Erweiterung der Infrastruktur bzw. des AWM. Lösung 3 hat
allerdings gegenüber 2 den Vorteil, dass der Aufwand zur Bearbeitung einer entsprechenden An-
frage geringer ist, da es nicht zur unter 2. beschriebenen Vervielfachung der Anfragen kommt.
Lösung 4 ist nicht attraktiv, da Mehrfachattribute im AWM bereits vorkommen und eine andere
Bedeutung als Mengen haben. Die Einführung eines Mengentyps (Lösung 3) ist damit aus unse-
rer Sicht die beste Lösung.

Bei der Einführung eines Mengentyps in das AWM bzw. in AWML/QL muss beachtet werden,
dass bei der Definition eines Mengen-Attributs eine Beschränkung der Kardinalität angegeben
werden kann. Dies ist notwendig, um z.B. sicherzustellen, dass eine Partnerstadtbeziehung
TwinCity tatsächlich binär ist, d.h. genau zwei Städte in Beziehung setzt. Außerdem sind für An-
fragen entsprechende Operationen auf Mengen zu definieren und zu realisieren (Mengengleich-
heit, Schnitt, Differenz usw.).

2.2.3 Typisierung

Eine Referenz auf ein Objekt ist im AWM typischerweise eine NOL. Eine NOL, wie sie bisher in
Nexus verwendet wird, kann dabei auf ein beliebiges „NexusDataObject“ verweisen. Allerdings
ist diese Flexibilität bei Relationen nicht unbedingt erwünscht. Die Referenzen der oben be-
schriebenen Partnerstadtrelation verweisen typischerweise nur auf Objekte der Klasse „City“ oder
deren Subklassen. Die Typisierung von Objektreferenzen (NOLs) schließt in solchen Fällen un-
erwünschte Modellierungen aus. Die Typisierung von NOLs gehört zu den offenen Problemen.

2.3 Speicherung/Verwaltung von Relationen

Grundsätzlich existieren zwei Varianten, um Relationen zu speichern: entweder, sie erhalten eine
Koordinate, sodass man sie auch über den Ortsbezug auffinden kann, oder Relationen erhalten
keinen Ortsbezug. Die beiden Varianten werden in den folgenden Kapiteln erörtert und anschlie-
ßend wird festgelegt, für welche Alternative wir uns entschieden haben.

 Seite 7

2.3.1 Relationen mit Ortsbezug

Ein Relationenobjekt hat eine geometrische Ausdehnung (Extent), die auf definierte Weise aus
den referenzierten Objekten (bzw. ihren geometrischen Attributen) gebildet wird. Damit kann
eine Relation über den vorhandenen Ortsbezug - wie jedes andere SpatialObject auch - ermittelt
werden. Relationen ohne direkten Ortsbezug bzw. zwischen nicht räumlichen Objekten sind al-
lerdings mit diesem Ansatz nicht realisierbar, da der entsprechende Ortsbezug nicht herleitbar ist.
Außerdem ist zu beachten, dass der Extent von Objekten, sofern er sich aus der Geometrie (bzw.
der konvexen Hülle) der referenzierten Objekte zusammensetzt, bei großen Entfernungen zwi-
schen den referenzierten Objekten so groß wird, dass eine ortsbezogene Suche nach Relationen
ebenfalls sehr ineffizient wäre.

Für die Realisierung von ortsbezogenen Relationen sind zwei Varianten denkbar:

Statischer Ortsbezug:

Alle Relationen sind Unterklassen von StaticObject – haben also eine feste (statische) geometri-
sche Ausdehnung. Diese Realisierung ermöglicht eine einfache Integration in die vorhandene
Nexus-Infrastruktur. Die Herleitung eines statischen Ortsbezugs ist aber nur möglich, wenn auch
alle referenzierten Objekte ihrerseits eine feste geometrische Ausdehnung besitzen. Deshalb kön-
nen an den Relationen nur Objekte des Typs StaticObject teilnehmen. Mobile Objekte – mit ei-
nem dynamisch wechselnden Aufenthaltsort – und Objekte ohne Ortsbezug können nicht referen-
ziert werden.

Dynamischer Ortsbezug:

Alternativ könnten alle Relationen als Unterklassen von „SpatialObject“ modelliert werden. Da-
durch könnten zumindest auch Objekte des Typs „MobileObject“ an Relationen teilnehmen. Al-
lerdings sind für die Verwaltung der Relationen dann (vermutlich sehr umfangreiche) Infrastruk-
turerweiterungen notwendig, da sich der Ortsbezug einer Relation aufgrund der Mobilität eines
referenzierten Objekts ständig ändern könnte. Dieser Ansatz bietet damit bzgl. des Realisierungs-
aufwands keinen Vorteil mehr gegenüber der Möglichkeit, Relationen komplett ohne Ortsbezug
zu definieren.

2.3.2 Relationen ohne Ortsbezug

Relationen sind Unterklassen von NexusDataObject. Weil sie damit keinen expliziten Ortsbezug
mehr haben, gibt es innerhalb der bisherigen Infrastruktur keine effiziente Möglichkeit, sie zu
finden, wenn man die NOL der Relation nicht kennt.

Eine Möglichkeit, dieses Problem zu lösen, besteht im Einfügen einer Rückwärtsreferenz zu jeder
Referenz. Die Rückwärtsreferenzen werden auf den Context Servern gespeichert. Jedes Objekt
bekommt ein spezielles Attribut, das für jedes auf das Objekt verweisende Relationsobjekt fol-
gende Information enthält:

• NOL des Relationsobjekts
• Typ des Relationsobjekts
• Rolle des Objekts innerhalb der Relation

 Seite 8

Abb. 6: Referenzen und Rückwärtsreferenzen bei Relationen.

Die beiden letzten Informationen sind nicht unbedingt erforderlich, da sie auch aus dem Relati-
onsobjekt abgelesen werden können, allerdings erspart die Speicherung im Objekt häufig den
Zugriff auf das Relationsobjekt.

Das Attribut ist nur eine Art Hinweis und nicht Teil der Modelldaten, da es keine neue Informati-
on repräsentiert, sondern lediglich ein aus technischen Gründen angelegtes Duplikat der im Rela-
tionsobjekt bereits vorhandenen Information ist. Es kann daher nicht durch Anwendungen mittels
AWQL modifiziert werden. Context Server aktualisieren den Wert selbstständig untereinander,
wenn Relationsobjekte eingefügt bzw. verändert werden. Dazu ist eine Erweiterung der Context
Server notwendig: Context Server untersuchen, ob eingefügte bzw. geänderte Objekte Attribute
enthalten, die andere Objekte referenzieren (NOLs). Die in Frage kommenden Typen lassen sich
aus dem Klassenschema leicht ablesen. Falls ja, wird an jeden Context Server, der ein referen-
ziertes Objekt enthält (diese sind direkt aus den NOLs bestimmbar), eine Nachricht geschickt, die
ihn anweist, die Rückwärtsreferenzen seiner Objekte zu aktualisieren. Abb. 7 zeigt den Ablauf
einer Einfügeoperation.

Abb. 7: Aktualisierung von Rückwärtsreferenzen

CS1 CS3CS2

OID: O9
type: BelongsTo
owner: CS2/O5
property: CS3/O8

OID: O5
type: Person

OID: O8
type: Building

1: insert

2: update
reference

2: update
reference

CS1 CS3CS2

OID: O5
type: Person

OID: O8
type: Building

reverseRef: CS1/O9 reverseRef: CS1/O9

OID: O9
type: BelongsTo
owner: CS2/O5
property: CS3/O8

Einfügeoperation:

Ergebnis:

 Seite 9

Die Aktualisierung der Rückwärtsreferenzen kann aus verschiedenen Gründen fehlschlagen, z.B.
weil ein Context Server nicht erreichbar ist oder Schreibzugriffe generell nicht zulässt. In solchen
Fällen sind zwei verschiedene Vorgehensweisen denkbar. Entweder können sich Context Server
im Sinne eines „Best Effort“-Ansatzes darauf beschränken, die Rückwärtsreferenzen zu aktuali-
sieren, für die das möglich ist. Anwendungen müssen dann damit rechnen, u.U. unvollständige
Ergebnisse auf Anfragen zu erhalten. Alternativ können alle Aktualisierungen von Rückwärtsre-
ferenzen zusammen mit der auslösenden Einfüge- oder Änderungsoperation in einer Transaktion
ablaufen, d.h. falls eine der Aktualisierungen fehlschlägt, werden alle anderen Aktualisierungen
und die Operation selbst rückgängig gemacht. Bei dieser Variante können Objekte auf unkoope-
rativen Context Servern grundsätzlich nicht an Relationen teilnehmen.

Zunächst ist vorgesehen, dass Context Server bei der Beantwortung von Anfragen die Rückwärts-
referenzen im AWML-Dokument an die entsprechenden Objekte anhängen, so dass sie von den
Anwendungen selbst ausgewertet werden. Falls zukünftig auch Joins unterstützt werden sollen,
kann die Auswertung auch durch die Plattform vorgenommen werden.

2.3.3 Realisierung

Wir haben uns aufgrund der gegebenen Nachteile der ortsbezogenen Speicherung primär für letz-
tere Variante, also für die Speicherung von Relationen ohne Ortsbezug, entschieden. Relationen
enthalten allerdings ein optionales Attribut, mittels dessen eine Geometrie bzw. ein Extent spezi-
fiziert werden kann, so dass prinzipiell auch eine direkte ortsbezogene Suche möglich ist (was
insbesondere für Relationen zwischen Mehrfachrepräsentationen relevant ist).

Zunächst sollen nur heavyweight Relationen unterstützt werden, da dies keine Einschränkung der
Funktionalität bedeutet und eine einheitliche Handhabung ermöglicht. Die vorgeschlagene Reali-
sierung ist allerdings prinzipiell auch in der Lage, lightweight Relationen zu verwalten.

2.4 Die Relationenhierarchie

Aus dem obigen Entschluss, Relationen ohne Ortsbezug zu modellieren bzw. diesen nur optional
zu ermöglichen, ergibt sich, dass Relationen direkte Unterklassen von NexusDataObject sind. Die
folgende Abbildung (Abb. 8) zeigt die Basisklassen für verschiedene Arten von Relationen.

NexusRelation: Basisklasse aller Relationen

• <optional> extent: räumliche Ausdehnung

Des Weiteren werden folgende Arten von Relationen unterschieden:

• SpatialRelation: Räumliche Beziehungen

• DistanceRelation: Distanzen zwischen geographischen Objekten
• DirectionalRelation: Richtungen zwischen geographischen Objekten
• TopologicalRelation: Topologische Beziehungen

• ThematicRelation: Thematische Relation (im Gegensatz zu räumlichen und temporalen
Relationen).

• TemporalRelation: Zeitliche Beziehungen

• MultirepresentationalRelation: Beziehungen zwischen Mehrfachrepräsentationen

Die topologischen Relationen werden in Kapitel 3.3.1 erläutert. Die anderen Klassen von Relati-
onen werden im Folgenden kurz besprochen und nach Bedarf verfeinert.

 Seite 10

Abb. 8: Die Relationenhierarchie in Nexus.

2.4.1 Raumbezogene Relationen

Aus dem Raumbezug von Objekten ergeben sich die folgenden Relationstypen:

• Distanzrelationen

• Richtungsbezogene Relationen

• Topologische Relationen

Diese Relationen wurden für den 2D-Bereich erstellt. Begibt man sich in die dritte Dimension, so
hat man es z.B. bei der Modellierung von Gebäuden mit Wänden, Türen, Fenstern, Räumen, Mö-
beln, etc. zu tun. Für die Objekte im 3D-Bereich reichen die topologischen Relationen des 2D-
Bereichs vermutlich nicht aus. Daher benötigen wir eine Hierarchie typisierter Relationen für 3D-
Objekte, um beispielsweise ausdrücken zu können, dass ein Tisch auf dem Boden steht, etc. Die-
se Art von typisierten Relationen für 3D-Objekte wird in der nahen Zukunft entwickelt. Die Er-
gebnisse fließen dann hier ein.

Im Folgenden werden die Distanz-Relationen und die richtungsbezogenen Relationen vorgestellt.

 Seite 11

Distanz-Relationen

Distanz-Relationen beschreiben verschiedene Arten von Distanzen, die zwischen geographischen
Objekten definiert werden können. Je nach Kontext kann eine Distanz unterschiedlich definiert
sein. Die Unterscheidung erfolgt durch entsprechende Subklassen der allgemeinen Distanz-
Relation.

Abb. 9: Distanz-Relationen in Nexus.

• DistanceRelation: Allgemeine Distanz zwischen Objekten. Je nach Kontext kann diese
unterschiedlich definiert sein (Unterscheidung erfolgt durch Subklassen)

• from, to: Distanz von ... nach ...
• distance: Wert der Entfernung
• unit: Einheit (abhängig von der Art der Entfernung)

• PhysicalDistance: Räumliche Entfernung

 Seite 12

• VehicleBasedPhysicalDistance: Zurückzulegende Entfernung bei Verwendung eines be-
stimmten Fahrzeuges; die Fortbewegungsart „zu Fuß“ (pedestrian) ist ein Sonderfall die-
ser Entfernungsklasse.

• LinearDistance: Luftlinie

• TemporalDistance: Zeitliche Entfernung (wie lange braucht man von A nach B)

• vehicleType: Art der Fortbewegung

Richtungsbezogene Relationen

Richtungsbezogene Relationen beschreiben die Richtung ausgehend von einem Bezugsobjekt.
Liegt z.B. das Objekt B östlich bzgl. des Objekts A, so kann dies durch eine DirectionalRelation
mit den Attributen refobj = A, secondobj = B, direction = 90 beschrieben werden.

• refobj: Referenzobjekt bzgl. dessen die Richtung angegeben wird

• secondobj: Objekt, dessen Richtung bzgl. des Referenzobjekts beschrieben wird

• direction: Richtung in Grad; Werte wie „östlich von“, „nordwestlich von“, usw. können
durch entsprechende Gradangaben (90°, 315°, ...) angegeben werden

2.4.2 Thematische Relationen

Thematische Relationen beschreiben Beziehungen zwischen Objekten, die nicht in erster Linie
räumlich oder zeitlich bedingt sind.

Abb. 10: Thematische Relationen in Nexus.

2.4.3 Temporale Relationen

Temporale Relationen drücken einen zeitlichen Bezug zwischen den temporalen Basistypen Zeit-
punkt und Zeitraum bzw. Zeitdauer aus. Basis für die Definition von temporalen Relationen sind
z.B. die Arbeiten von Allen (Beschreibung der Relationen zwischen zwei Zeiträumen in [Allen
1983]).

 Seite 13

Abb. 11: Die Allen-Operatoren zur Beschreibung temporaler Relationen zwischen Zeiträumen [Allen 83].

Die folgenden Basis-Objekttypen für Zeitraum-Relationen (und analog, sofern sinnvoll, für Zeit-
punkte) sollen in unser Modell aufgenommen werden:

Abb. 12: Zeitliche Relationen in Nexus.

 Seite 14

• TemporalBefore: Zeitliche Vorgängerbeziehung; das zweite Ereignis findet nach Beendi-
gung des ersten statt.

• startsBefore: das zeitlich erste Ereignis
• startsAfter: das zeitlich auf das erste folgende Ereignis
• Inverse Relation: TemporalAfter

• TemporalDuring: Ein Ereignis erfolgt während eines anderen Ereignisses.

• container: Ereignis, das das zweite Ereignis zeitlich umgibt
• happensDuring: das Ereignis, das während des ersten Ereignisses stattfindet
• Inverse Relation: TemporalContains

• TemporalEqual: Zeitliche Gleichzeitigkeit

• objects: zweistellige Menge von Ereignissen, die gleichzeitig ablaufen
• Inverse Relation: Keine inverse Relation, da symmetrisch.

• TemporalOverlaps: Zeitliche Überlappung; das zweite Ereignis startet, nachdem das erste
Ereignis gestartet, aber bevor das erste Ereignis beendet ist.

• startsFirst: erstes Ereignis
• startsSecond: zweites Ereignis
• Inverse Relation: TemporalContains

Folgende (ebenfalls zu den Allen-Operatoren gehörende) Relationen können bei Bedarf ebenfalls
in unser Modell aufgenommen werden:

• TemporalMeets: Zeitlicher Anschluss; das zweite Ereignis startet sofort bei Beendigung
des ersten.

• startsFirst: erstes Ereignis
• startsSecond: zweites, anschließendes Ereignis
• Inverse Relation: TemporalMetBy

• TemporalStarts: Zwei Ereignisse starten zur selben Zeit, das erste Ereignis wird früher
beendet.

• stopsFirst: erstes Ereignis
• stopsSecond: zweites Ereignis
• Inverse Relation: TemporalStartedBy

• TemporalFinishes: Zwei Ereignisse werden zur selben Zeit beendet, das zweite Ereignis
startet später. (Achtung: Bei Allen startet das erste Ereignis später als das zweite!)

• startsFirst: erstes Ereignis
• startsSecond: zweites Ereignis
• Inverse Relation: TemporalFinishedBy

 Seite 15

Als Basis-Objekttypen für Relationen zwischen Zeitdauern sollen aufgenommen werden:

• DurationShorterThen: Zeitdauer 1 ist kleiner als Zeitdauer 2.

• durationShorterThen: Objekt 1 mit kleinerer Zeitdauer.
• durationLongerThen: Objekt 2 mit größerer Zeitdauer.
• Inverse Relation: DurationLongerThen

• DurationEqual: Die Zeitdauern sind gleich.

• objects: Menge von Objekten gleicher Zeitdauer.

Für alle Relationen-Modellierungen gilt, dass inverse Relationen nicht durch eigene Objekttypen
modelliert werden müssen, sondern durch die nicht-inverse Relation mit vertauschten Attributen
dargestellt werden können.

2.4.4 Relationen zwischen mehrfach repräsentierten Objekten

In Nexus kommt es aufgrund der Offenheit des Systems, die eine Mehrfachspeicherung ein und
desselben Realweltobjektes innerhalb der Plattform zulässt, zur Problematik der Mehrfachreprä-
sentationen. Zum Zwecke der optimierten Verwaltung (gemeinsame Fortführung) und optimier-
ten Verarbeitung (Verschmelzung zur Erzeugung einer konsistenten Datenbasis, Analyse) von
Mehrfachrepräsentationen sollen auch deren Relationen untereinander explizit modelliert werden.
Das bislang entwickelte Modell wurde für die Modellierung der Beziehungen raumbezogener,
mehrfach repräsentierter Daten konzipiert.

Zwei Mehrfachrepräsentationen sind über eine Instanz der Klasse MultirepresentationalRelation
miteinander zu verbinden. Diese Klasse hat keine Subklassen, sondern beschreibt in ihren Attri-
buten die Art der Relation. Ein Teil der Attribute besteht aus Ähnlichkeitsmaßen, die den Grad
der Übereinstimmung der Repräsentationen charakterisieren.

• MultirepresentationalRelation: Zwei Repräsentationen A und B sind über eine Multirepre-
sentationalRelation miteinander verbunden.

• SetOfStaticObjects staticObjectsA: Objekte, die die erste Repräsentation aufbauen.
• SetOfStaticObjects staticObjectsB: Objekte, die die zweite Repräsentation aufbauen.
• Cardinality cardinality: Kardinalität der Relation von 1:0 bis n:m.
• GeometricTypeA: Geometrischer Typ der Repräsentation A (Point, MultiPoint, Line-

String, ...).
• GeometricTypeB: Geometrischer Typ der Repräsentation B (Point, MultiPoint, Line-

String, ...). Bislang wird vorausgesetzt, dass alle Objekte einer Repräsentation densel-
ben geometrischen Typ aufweisen müssen.

• SetOfGeometricSimilarityMeasures geometricSimilarityMeasures: Sammlung ver-
schiedener geometrischer Ähnlichkeitsmaße, abhängig vom geometrischen Typ (z.B.
Längenunterschied oder durchschnittliche Liniendistanz bei Linien, Hausdorff-Distanz
bei Linien und Flächen, Zentroiddistanz bei Flächen, etc.).

• SetOfTopologicSimilarityMeasures topologicSimilarityMeasures: Sammlung ver-
schiedener topologischer Ähnlichkeitsmaße (z.B. Anzahl adjazenter Objekte, graph-
basierte Indikatoren wie Erreichbarkeit oder Exzentrizität von Knoten, etc.).

• SetOfSemanticSimilarityMeasures semanticSimilarityMeasures: Sammlung verschie-
dener semantischer Ähnlichkeitsmaße (z.B. Anzahl korrespondierender Attribute, Ü-
bereinstimmung von Angaben zur Datenqualität).

• GlobalSimilarityMeasure globalSimilarityMeasure: Ähnlichkeitsmaß, das aus der Be-
rechnung der Teilmaße resultiert.

 Seite 16

2.5 Offene Probleme

2.5.1 Relationen zwischen Relations-Objekten

Es ist bisher noch nicht klar, ob es auch Relationen zwischen Relations-Objekten geben wird.

2.5.2 Mehrfach repräsentierte Relationen

Die Problematik der mehrfach repräsentierten Relationen wird zunächst nicht betrachtet.

2.5.3 Typisierung von NOLs

Unter typisierten NOLs verstehen wir Referenzen, die nur auf AWM-Objekte eines bestimmten
Typs verweisen können. Erste Überlegungen bzgl. der möglichen Realisierung solcher NOLs
ergaben die folgenden Implementierungsvarianten:

• NOL-Hierarchie: Zu jeder AWS-Klasse wird ein entsprechender NOL-Typ eingeführt.
Durch die Ableitung neuer NOL-Typen von NOL-Supertypen entsprechend der Verer-
bungshierarchie des AWS wird sichergestellt, dass eine NOL, die auf ein Objekt der Klas-
se K1 verweist, auch auf Objekte verweisen kann, die Subtypen der Klasse K1 darstellen
(ähnlich den typisierten Zeigern oder Referenzen in gängigen objektorientierten Pro-
grammiersprachen wie C++ oder Java). Beispielsweise könnte damit eine MobileObject-
NOL auch auf Objekte vom Typ „Person“ oder „Vehicle“ verweisen.

• Festlegung des Typs einer NOL als Meta-Attribut im Schema

Da die Diskussion der Vor- und Nachteile und Auswirkungen dieser und evtl. weiterer Ansätze
den Rahmen dieses Reports sprengen würde, wird dieses Thema hier nicht weiter vertieft.

 Seite 17

3 Das Topologie-Konzept in Nexus
Topologie-Konzepte existieren in verschiedenen Forschungsbereichen. An dieser Stelle sollen all
jene Arbeiten aufgeführt werden, die bei der Diskussion um die Entwicklung eines Topologie-
Konzeptes für die Nexus-Plattform eine Rolle gespielt haben, bevor dieses schließlich selbst er-
läutert wird.

3.1 Verwandte Arbeiten

Die folgenden Ansätze wurden beim Entwurf des Nexus-Topologie-Konzepts untersucht.

3.1.1 Das 9-Intersection Model und das erweiterte 9-Intersection Model

Um die topologischen Beziehungen von raumbezogenen Objekten abzuspeichern, entwickelten
[Egenhofer und Herring 1991] das so genannte 9-Intersection Model. Es geht davon aus, dass
Objekte in Geo-Informationssystemen definierte, scharfe und eindeutige Grenzen haben. Diese
Annahme stimmt aber nicht mit der Realität überein. Daher haben [Clementini und Di Felice
1996] versucht, das 9-Intersection Model anzupassen. Im folgenden sollen die beiden Ansätze
kurz skizziert werden.

Das 9-Intersection Modell nach Egenhofer und Herring:

Egenhofer und Herring gehen bei ihrem Ansatz von folgenden Gegebenheiten aus:

• eine Fläche ist eine geschlossene homogene zweidimensionale Teilmenge des ℜ2

• eine Linie ist eine eindimensionale homogene Teilmenge im ℜ2 mit exakt zwei Endpunk-
ten und keinen Selbstüberschneidungen

• ein Punkt ist eine 0-dimensionale Teilmenge des ℜ2

• für Punkt, Linie und Fläche lassen sich folgende topologischen Beziehungen eindeutig de-
finieren

• innerhalb (0)
• Grenze (δ)
• außerhalb (-)

• Bsp.: Fläche A

Abb. 13: Topologisch relevante Einheiten einer Fläche: Inneres, Äußeres und Grenze.

Alle topologischen Relationen zwischen zwei Objekten A und B lassen sich klassifizieren, indem
man alle Schnittmengen zwischen dem Inneren (0), der Grenze (δ) und dem Äußeren (-) von A
und B betrachtet. Daraus ergibt sich eine 3 x 3 Matrix: die 9-intersection Matrix (siehe Abb. 14).

 Seite 18

Abb. 14: Die 9-Intersection Matrix.

Jeder Eintrag in der Matrix kann entweder leer (0) oder nicht-leer (1) sein: es kann daher zwi-
schen 29 = 512 verschiedenen topologischen Relationen unterschieden werden. Für zwei einfache
Flächen sind davon jedoch nur 8 realisierbar:

Abb. 15: Mögliche topologische Beziehungen zwischen einfachen Flächen.

Das erweiterte 9-Intersection Model nach Clementini und Di Felice:

Bei Clementini und Di Felice werden nun die Grenzen von Objekten als Flächen repräsentiert:

• Definition 1: eine Fläche mit unscharfer Begrenzung A wird aus zwei Flächen A1 und A2
gebildet, für die gilt: A1 ⊆ A2 und δ A1 ist innere Begrenzung von A und δ A2 ist äußere
Begrenzung von A. Die beiden Begrenzungen repräsentieren die Unschärfe einer Region
und zeigen deren Minimal- und Maximalausdehnung an.

Abb. 16: Objekte können unscharfe Grenzen haben, daher können auch

Objektgrenzen als Flächen repräsentiert werden.

• Definition 2: die unscharfe Grenze ∆A einer Region A ist eine zusammenhängende Teil-
menge des ℜ2 mit einem Loch

• ∆A ist die Fläche zwischen innerer und äußerer Grenze von A: ∆A = A2 - A1
• falls A1 = A2 dann ist A ein eindimensionaler Kreis
• falls δA1 ∩ δA2 ≠ ∅ ist, ist A nicht homogen zweidimensional und kann eindimensio-

nale Teile enthalten

 Seite 19

• Definition 3: das Innere einer Region mit unscharfer Grenze ist: A0 = A2 - ∆A

• Definition 4: Das Äußere einer Region mit unscharfer Grenze ist: A- = ℜ2 - A2

Abb. 17: Beschreibung von Innerem, Äußerem und Grenze einer unscharfen Fläche.

Um alle möglichen topologischen Relationen zwischen zwei Flächen mit unscharfen Grenzen zu
bestimmen, wird das 9-Intersection Modell folgendermaßen umdefiniert:

Abb. 18: Die erweiterte 9-Intersection Matrix.

Nun muss wiederum bestimmt werden, welche der 512 verschiedenen Kombinationsmöglichkei-
ten realisierbar sind. Ebenso wie bei Flächen mit scharfen Grenzen gibt es bei Flächen mit un-
scharfen Grenzen geometrische Bedingungen, die auf jeden Fall erfüllt sein müssen; z.B.: die
äußeren Flächen müssen sich auf jeden Fall schneiden. Insgesamt lassen sich 12 unterschiedliche
Bedingungen aufstellen, die die 29 Matrix auf 44 mögliche topologische Relationen reduzieren.

Abb. 19: Einige der möglichen topologischen Varianten zwischen unscharfen Flächen.

Von den 44 möglichen Kombinationen beschreiben viele sehr ähnliche Sachverhalte, sodass es
hier für die meisten Fälle nicht nötig ist, zwei verschiedene topologische Relationen zu unter-
scheiden. Da die 44 topologischen Relationen sich zum Teil also nur graduell unterscheiden,
werden sie in 12 Cluster eingeteilt:

• disjoint, meet, nearly meet, nearly overlap, overlap, nearly covered by, nearly
covers, covered by, covers, inside, contains, equal

 Seite 20

3.1.2 Ansätze aus dem Bereich Ubiquitous Computing

Im Ubiquitous Computing werden Ortsinformationen als eine wesentliche Kontextinformation
angesehen. Ortsinformationen werden dabei auf Grundlage eines so genannten Lokationsmodells
interpretiert, das auch topologische Informationen enthalten kann. Diese Lokationsmodelle sind
meist auf wenige, spezielle Fragestellungen zugeschnitten. Zwei Klassen von Modellen sind bzgl.
der Modellierung topologischer Relationen von Bedeutung:

Hierarchische Modelle basieren auf einer Hierarchie von Orten, die bzgl. der räumlichen Inklusi-
on geordnet sind, d.h. die Inklusionsbeziehung ist hier die zentrale topologische Relation. Geht
man davon aus, dass Orte sich nicht überlappen, so führt dieser Ansatz zu einem Baum [Jiang
und Steenkiste 02]; können sich Orte überlappen, so führt dieser Ansatz zu einem Verband [Dürr
und Rothermel 03].

Graphbasierte Modelle modellieren Orte und die Verbindung zwischen Orten. Solche Modelle
eignen sich vor allem für die Navigation oder die Suche nach nächstgelegenen Objekten (Nach-
barschaftsanfragen).

3.1.3 Region Connection Calculus

Im Bereich des qualitativen räumlichen Schließens (Qualitative Spatial Reasoning) werden ver-
schiedene Kalküle eingesetzt, um räumliche Entitäten zu modellieren und Schlussfolgerungen
über deren räumliche Beziehungen herzuleiten. Hierbei spielen auch topologische Beziehungen
eine wichtige Rolle. Der Region Connection Calculus 8 (RCC8) unterstützt acht dieser topologi-
schen Beziehungen [Randell und Cohn 89]:

Abb. 20: Topologische Beziehungen aus dem Bereich des Region Connection Calculus.

3.1.4 OGC Topologie

In der abstrakten Spezifikation des Open GIS Consortium (OGC) [OGC99] werden zunächst die
verschiedenen topologischen Objekte bzw. deren Typen eingeführt, die durch topologische Rela-
tionen in Beziehung gesetzt werden können. Das OGC unterscheidet zwischen den primitiven
topologischen Objekten Node (Dimension 0), Edge (Dimension 1), Face (Dimension 2) und Solid
(Dimension 3). Neben diesen primitiven Objekten existiert der Typ Complex, der mehrere topo-
logische Primitive enthält. Diese topologischen Objekte können mit den entsprechenden geomet-
rischen Objekten in Relation stehen. Die OGC Implementierungsspezifikation [OGC03] be-
schreibt die Umsetzung dieser topologischen Objekte in GML. Hier ein einfaches Beispiel:

 Seite 21

<gml:PointProperty gml:id="point1">

 <gml:Point>

 <gml:coordinates>10, 10</gml:coordinates>

 </gml:Point>

</gml:PointProperty>

<gml:PointProperty gml:id="point2">

 <gml:Point>

 <gml:coordinates>20, 20</gml:coordinates>

 </gml:Point>

</gml:PointProperty>

<gml:Node gml:id="node1">

 <gml:PointProperty xlink:href="#point1">

</gml:Node>

<gml:Node gml:id="node2">

 <gml:PointProperty xlink:href="#point2">

</gml:Node>

<gml:Edge gml:id="edge1">

 <gml:directedNode orientation="-" xlink:href="#node1"/>

 <gml:directedNode orientation="+" xlink:href="#node2"/>

</gml:Edge>

Abb. 21: Auszug aus GML: Realisierung topologischer Objekte.

Es werden hier drei topologische Objekte definiert: zwei Nodes und eine Edge. Die Edge wird
durch Referenzen auf die begrenzenden Nodes definiert (das Attribut "orientation" definiert, wel-
cher Knoten der Startknoten (-) und welcher der Endknoten (+) der Kante ist). Die Nodes refe-
renzieren die entsprechenden Geometrieobjekte (Point Features). Allerdings könnten die Nodes
auch ohne diese Geometriebeschreibung definiert werden. Außerdem besteht die Möglichkeit, die
Coboundaries der topologischen Objekte durch Referenzen auf die entsprechenden Topologieob-
jekte zu spezifizieren, also die Objekte, deren Boundary das topologische Objekt definiert (die
Coboundary eines Node ist somit eine Menge von Edges, die den Knoten als Start- oder End-
punkt enthalten).

Auf topologischen Objekten sind verschiedene Operationen definiert:

• boundary(): Ermittelt alle topologischen Objekte, die auf dem Rand eines bestimmten to-
pologischen Objekts liegen. So wird z.B. die Boundary einer Face durch eine Menge von
Edges bestimmt oder im obigen Beispiel die Boundary einer Edge durch zwei Nodes. All-
gemein ist die Begrenzung eines topologischen Objekts der Dimension n durch ein Objekt
der Dimension n-1 definiert.

• interior(): Ermittelt alle topologischen Objekte, die im Inneren eines bestimmten topologi-
schen Objekts liegen.

• exterior(): Ermittelt alle topologischen Objekte, die außerhalb eines bestimmten topologi-
schen Objekts liegen (d.h. weder zur Menge Interior noch zur Menge Boundary gehören).

 Seite 22

In GML ist die Boundary durch entsprechende Referenzen auf topologische Objekte definiert. So
definieren z.B. die Knoten "node1" und "node2" im obigen Beispiel die Boundary der Kante
"edge1". Entsprechend ist die Boundary höherdimensionaler Objekte definiert.

Die topologischen Relationen selbst werden laut [OGC99] durch den Schnitt der Mengen Boun-
dary, Interior und Exterior definiert. Somit können z.B. die Relationen des 9-Intersection-Modells
nach Egenhofer oder die Relationen nach Clementini und Di Felice ermittelt werden (siehe oben).
Zur konkreten Umsetzung in GML - insbesondere zur notwendigen Ermittlung der Mengen Exte-
rior und Interior - macht [OGC03] allerdings keine Aussagen.

3.2 Diskussion der verschiedenen Ansätze

Die verschiedenen oben dargestellten Ansätze sollen nun in diesem Abschnitt auf ihre Anwend-
barkeit im Nexus-Kontext hin analysiert werden.

Betrachtet man die oben beschriebenen Ansätze, so erscheinen vor allem das 9-Intersection-
Modell nach Egenhofer und das Modell nach Clementini und Di Felice (und somit der Ansatz des
OGC, der sich an diesen beiden Ansätzen orientiert) als sehr mächtig. Sie unterstützen jeweils
eine große Zahl topologischer Relationen und erlauben dadurch eine feingranulare Unterschei-
dung von topologischen Beziehungen. Der Ansatz aus dem Bereich des Qualitative Spatial Rea-
soning (RCC8) ist bzgl. der betrachteten Relationen sehr ähnlich zu diesen Ansätzen. Die Ansät-
ze aus dem Bereich des Ubiquitous Computing dagegen sind auf spezielle Fragestellungen zuge-
schnitten. Entsprechend einfach und wenig generisch sind die resultierenden Modelle.

Die Mächtigkeit z.B. des 9-Intersection-Modells hat allerdings auch ihren Preis: Ohne eine vor-
handene geometrische Modellierung, auf deren Grundlage z.B. die Punkte auf der Begrenzung
eines Objekts und die Punkte im Inneren eines Objekts definiert werden können, scheint die Mo-
dellierung entsprechender Bereiche und somit die Herleitung der Relationen nur sehr schwer
möglich. Das wird auch in den Spezifikationen der OGC deutlich. Obwohl der OGC-Standard es
zulässt, topologische Objekte auch ohne die entsprechenden geometrischen Objekte zu definie-
ren, so zeigen doch allein schon die Klassen der topologischen Objekte wie z.B. Node, Edge,
usw., dass dieser Ansatz vor allem zusammen mit bekannten Geometrien zum Einsatz kommen
sollte. Die Ansätze aus dem Bereich des Ubiquitous Computing dagegen erlauben rein aufgrund
der vergleichsweise groben Modellierung topologischer Relationen auch den Einsatz ohne vor-
handene Geometrie. So lässt sich die räumliche Inklusions-Beziehung z.B. ohne Probleme expli-
zit auf Objekten definieren, ohne deren Geometrie zu kennen.

Das Nexus-AWM unterstützt sowohl geometrisch modellierte Objekte als auch (zumindest zu-
künftig) räumliche Objekte ohne explizit definierte Geometrie. Für den ersten Fall erscheint eine
Unterstützung der mächtigen Ansätze (z.B. des 9-Intersection-Modells) als sinnvoll, da die ent-
sprechenden Grundmengen (Interior, Exterior, Boundary) aus der Geometrie ableitbar sind. Zur
Unterstützung des 9-Intersection-Modells oder dem Modell nach Clementini und De Felice muss
das AWM zunächst um entsprechende topologische Objekte erweitert werden. Diese Erweiterun-
gen werden im folgenden Abschnitt beschrieben. Liegt dagegen keine Geometrie vor, so muss
eine explizite Modellierung u.U. vergleichsweise einfacher topologischer Relationen möglich
sein - ähnlich den oben beschriebenen Ansätzen aus dem Bereich des Ubiquitous Computing. Die
von Nexus unterstützten topologischen Relationen werden im übernächsten Abschnitt genauer
beschrieben.

3.3 Topologie in Nexus

Das entwickelte Konzept zur Abbildung von Topologie in Nexus beschreibt zunächst die topolo-
gischen Objekte und danach deren Relationen. Zum besseren Verständnis steht am Ende ein Bei-
spiel.

 Seite 23

3.3.1 Topologische Objekte in Nexus

Abb. 22: Topologische Objekte in Nexus.

Die in Nexus modellierten topologischen Objekte orientieren sich an denen vom OGC vorge-
schlagenen (siehe oben):

• TopologicalObject: Basisklasse für alle topologischen Objekte

• TopologicalPrimitive: 0- bis 3-dimensionales topologische Primitive

• dimension: Dimension (0-3)

• TopologicalComplex: Eine Menge von TopologicalObjects ohne gemeinsame Interiors.

• Node: Knoten (0-dimensionales topologisches Primitiv)

• Edge: Kante (1-dimensionales topologisches Primitiv)

• Face: Fläche (2-dimensionales topologisches Primitiv)

• Solid: 3d Körper (3-dimensionales topologisches Primitiv)

 Seite 24

3.3.2 Topologische Relationen in Nexus

Die vom AWM unterstützten topologischen Relationen sind untenstehend abgebildet.

Abb. 23: Topologische Relationen in Nexus.

Wie bereits angedeutet, war es bei der Entwicklung des Topologie-Modells das Ziel, sowohl eine
feingranulare Topologiebeschreibung vergleichbar dem 9-Intersection-Modell zu ermöglichen,
als auch einfache Relationen anzubieten, die sich problemlos ohne bekannte Geometrie explizit
modellieren lassen. Wir erreichen das durch eine Hierarchie topologischer Relationen. Die Rela-
tion "Contains" lässt sich beispielsweise sehr leicht explizit modellieren. Ihre Ableitungen "Co-
vers" und "ProperContains" stellen dabei Spezialfälle dieser allgemeinen Enthaltensein-
Beziehung dar, die sich typischerweise aus einer vorhandenen Geometriebeschreibung ableiten
lassen.

• TopologicalRelation: Basisklasse für alle topologischen Relationen

• Interior, Exterior, Boundary: Basismengen bzw. Relationen des 9-Intersection-Modells,
auf deren Grundlage die topologischen Relationen des 9-Intersection-Modells abgeleitet
werden.

• TopologicalAggregate: Relation zur Definition von topologischen Aggregaten.
Durch die Verwendung von Mehrfachvererbung ist es möglich, dass ein Topologica-
lAggregate-Objekt direkt andere TopologicalAggregate-Objekte über das Attribut „ob-
jects“ referenziert. Das heißt, ein TopologicalAggregate-Objekt kann sich aus anderen
TopologicalAggregate-Objekten zusammensetzen. Eine alternative Modellierung, die oh-
ne Mehrfachvererbung auskommt, könnte durch die Einführung einer zusätzlichen Relati-
on „TopologicalAggregateRel“ erzielt werden. Relationen dieses Typs könnten dazu ver-
wendet werden, von einem TopologicalAggregate-Objekte aus andere TopologicalAggre-
gate-Objekten zu referenzieren.

• objects: Topologische Objekte, aus denen sich das aggregierte Objekt zusammensetzt.

 Seite 25

• TopologicalComplex: Relation zur Definition von komplexen topologischen Objekten.
Wie für die Klasse TopologicalAggregate gilt auch hier, dass sich ein Topological-
Complex-Objekt selbst aus weiteren TopologicalComplex-Objekten zusammensetzen
kann.

• objects: Topologische Objekte, aus denen sich das komplexe Objekt zusammensetzt.

• Disjoint: Diese Relation beschreibt zwei disjunkte Objekte

• objects: die disjunkten Objekte

• Intersects: Diese Relation beschreibt sich schneidende Objekte. Sonderfälle dieser Bezie-
hung können durch Ableitungen dieser Klasse unterschieden werden.

• objects: die sich schneidenden Objekte

• Equals: Diese Relation beschreibt zwei deckungsgleiche Objekte

• Touches: Diese Relation beschreibt zwei sich berührende Objekte

• Overlaps: Diese Relation beschreibt zwei Objekte, die sich überlappen, bei denen aber
weder eines der Objekte im anderen enthalten ist, noch eine Deckungsgleichheit oder Be-
rührung vorliegt.

• Contains: Diese Relation beschreibt zwei Objekte, bei denen das eine im anderen enthal-
ten ist.

• container: Das Objekt, das das andere enthält
• contained: Das Objekte, das im ersten enthalten ist
• objects (ererbt): Um die Kompatibilität zur (Super-)Relation „Intersects“ zu wahren,

enthält dieses Attribut genau die Referenzen der Attribute „container“ und „contai-
ned“. Somit muss nur die „Contains“-Relation modelliert werden und nicht sowohl ei-
ne „Contains“- als auch eine „Intersects“-Relation.

• Covers: Das erste Objekt enthält das zweite, und das zweite Objekt berührt das erste am
Rand.

• ProperContains: Das zweite Objekt ist im ersten enthalten ohne dessen Begrenzung zu be-
rühren.

3.3.3 Modellierungsbeispiel

Im folgenden Beispiel wird die Topologie von Flurstücken (engl. Lot) beispielhaft modelliert.
Auf einem dieser Flurstücke steht ein Gebäude, dessen Grundriss durch eine Fläche modelliert
wird (siehe Abb. 24).

 Seite 26

Abb. 24: Flurstücke

Betrachtet man die Flurstücke und den Gebäudegrundriss als Flächen f1—f3, die durch Kanten
e1—e12 begrenzt werden, die ihrerseits wieder durch entsprechende Knoten n1—n11 begrenzt
sind, dann lässt sich dieses Beispiel wie folgt durch die Verwendung der topologischen Objekte
aus Abb. 24 modellieren:

<awml:awml>

 <awml:nexusobject>

 <nsas:type><nsas:value>Node</nsas:value></nsas:type>

 <nsas:nol><nsas:value>...n1NOL...</nsas:value></nsas:nol>

 <nsas:pos><nsas:value>...n1Pos...</nsas:value></nsas:pos>

 <nsas:dimension><nsas:value>0</nsas:value></nsas:dimension>

 </awml:nexusobject>

 ...Nodes n2—n11...

 <awml:nexusobject>

 <nsas:type><nsas:value>Edge</nsas:value></nsas:type>

 <nsas:nol><nsas:value>...e1NOL...</nsas:value></nsas:nol>

 <nsas:pos><nsas:value>...e1Pos...</nsas:value></nsas:pos>

 <nsas:extent>

 <nsas:value>...e1Extent...</nsas:value>

 </nsas:extent>

 <nsas:dimension><nsas:value>1</nsas:value></nsas:dimension>

 </awml:nexusobject>

 ...Edges e2—e12...

 <awml:nexusobject>

 <nsas:type><nsas:value>Face</nsas:value></nsas:type>

 <nsas:nol><nsas:value>...f1NOL...</nsas:value></nsas:nol>

 <nsas:pos><nsas:value>...f1Pos...</nsas:value></nsas:pos>

 <nsas:extent>

 <nsas:value>...f1Extent...</nsas:value>

 </nsas:extent>

 <nsas:dimension><nsas:value>2</nsas:value></nsas:dimension>

 </awml:nexusobject>

 ...Faces f2—f3...

 Seite 27

 <!-- Topologische Relationen zwischen den topologischen

 Objekten nach OGC -->

 <awml:nexusobject>

 <nsas:type><nsas:value>Boundary</nsas:value></nsas:type>

 <nsas:nol>

 <nsas:value>...Boundary1NOL...</nsas:value>

 </nsas:nol>

 <nsas:bounded>

 <nsas:value>...e1NOL...</nsas:value>

 </nsas:bounded>

 <nsas:boundary>

 <nsas:value>...n1NOL...</nsas:value>

 </nsas:boundary>

 </awml:nexusobject>

 <awml:nexusobject>

 <nsas:type><nsas:value>Boundary</nsas:value></nsas:type>

 <nsas:nol>

 <nsas:value>...Boundary2NOL...</nsas:value>

 </nsas:nol>

 <nsas:bounded>

 <nsas:value>...e1NOL...</nsas:value>

 </nsas:bounded>

 <nsas:boundary>

 <nsas:value>...n2NOL...</nsas:value>

 </nsas:boundary>

 </awml:nexusobject>

 ...Boundaries der Edges e2—e12...

 <awml:nexusobject>

 <nsas:type><nsas:value>Boundary</nsas:value></nsas:type>

 <nsas:nol>

 <nsas:value>...Boundary3NOL...</nsas:value>

 </nsas:nol>

 <nsas:bounded>

 <nsas:value>...f1NOL...</nsas:value>

 </nsas:bounded>

 <nsas:boundary>

 <nsas:value>...e1NOL...</nsas:value>

 </nsas:boundary>

 </awml:nexusobject>

 ...weitere Boundaries der Face 1 und der Faces f2—f3...

 <awml:nexusobject>

 <nsas:type><nsas:value>Interior</nsas:value></nsas:type>

 <nsas:nol>

 <nsas:value>...Interior1NOL...</nsas:value>

 </nsas:nol>

 Seite 28

 <nsas:surrounding>

 <nsas:value>...f1NOL...</nsas:value>

 </nsas:surrounding

 <nsas:interior>

 <nsas:value>...f2NOL...</nsas:value>

 </nsas:interior>

 </awml:nexusobject>

</awml:awml>

Alternativ können die Parzellen Lot 1 und Lot 2 durch entsprechende Lot-Objekte und das Ge-
bäude durch ein Building-Objekt modelliert werden. Unter Verwendung der in Abb. 23 darge-
stellten topologischen Relationen ergibt sich folgendes Modell:

<awml:awml>

 <awml:nexusobject>

 <nsas:type><nsas:value>Lot</nsas:value></nsas:type>

 <nsas:nol><nsas:value>...Lot1NOL...</nsas:value></nsas:nol>

 <nsas:pos><nsas:value>...Lot1Pos...</nsas:value></nsas:pos>

 <nsas:extent>

 <nsas:value>...Lot1Extent...</nsas:value>

 </nsas:extent>

 </awml:nexusobject>

 ...Lot2 und Building...

 <!-- Topologische Beziehungen zwischen den Objekten -->

 <awml:nexusobject>

 <nsas:type>

 <nsas:value>Touches</nsas:value>

 </nsas:type>

 <nsas:nol>

 <nsas:value>...Touches1NOL...</nsas:value>

 </nsas:nol>

 <nsas:objects>

 <nsas:value>Lot1NOL,Lot3NOL</nsas:value>

 </nsas:objects>

 </awml:nexusobject>

 ...weitere Touches-Relationen...

 <awml:nexusobject>

 <nsas:type>

 <nsas:value>ProperContains</nsas:value>

 </nsas:type>

 <nsas:nol>

 <nsas:value>...Contains1NOL...</nsas:value>

 </nsas:nol>

 Seite 29

 <nsas:container>

 <nsas:value>...Lot1NOL...</nsas:value>

 </nsas:container>

 <nsas:contained>

 <nsas:value>...BuildingNOL...</nsas:value>

 </nsas:contained>

 </awml:nexusobject>

</awml:awml>

 Seite 30

4 Zusammenfassung
Der hier vorgelegte Bericht der Taskforce Topologie beschreibt zunächst das Konzept zur Ver-
wendung von Relationen in Nexus. Es werden die verschiedenen Eigenschaften von Relationen
und ein konkreter Ansatz zu deren Verwaltung in Nexus präsentiert. Schließlich wird eine Klas-
senhierarchie für verschiedene Teilbereiche wie z.B. thematische oder zeitliche Relationen vorge-
stellt und erläutert. Das hier entwickelte Konzept zur Behandlung von Relationen in Nexus macht
zwei Infrastrukturerweiterungen erforderlich: Zum einen müssen Mengen abgebildet werden
können, zum anderen wird es notwendig, dass Context Server einen schreibenden Zugriff erlau-
ben, d.h. es muss ermöglicht werden, Referenzen auf Relationsobjekte innerhalb eines Context
Server Objektes von außen speichern bzw. ändern zu dürfen.

Aufbauend auf den Ausführungen zu Relationen im Allgemeinen wird im zweiten Teil des Tech-
nischen Berichts das Topologie-Konzept für die Nexus-Plattform erarbeitet. Am Anfang steht
hier eine Zusammenstellung verwandter Arbeiten aus verschiedenen relevanten Forschungsberei-
chen zum Thema Topologie. Auf der Grundlage einer Diskussion der verschiedenen Ansätze
wird die Nexus-spezifische Umsetzung erläutert und anhand eines Beispiels illustriert.

 Seite 31

5 Glossar
AWM: Augmented World Model

AWML: Augmented World Modeling Language

AWQL: Augmented World Query Language

AWS: Augmented World Schema

NOL: Nexus Object Locator

OGC: OpenGIS Consortium

 Seite 32

6 Literatur
Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26,
No. 11, Nov. 1983, pp. 832-843.

Clementini, E. & Di Felice, P., 1996: An Algebraic Model for Spatial Objects with Indeterminate
Boundaries. In: P. A. Burrough and A. U. Frank, Eds.: Geographic Objects with Indeterminate
Boundaries. GISDATA Series vol. chapter 11. London: Taylor & Francis, 1996, pp. 155-169.,

Dürr F., Rothermel K., 2003, On a Location Model for Fine-Grained Geocast, In Proceedings of
the Fifth International Conference on Ubiquitous Computing (UbiComp 2003), Seattle, WA,
USA, pp. 18-35

Egenhofer, Max J. and Herring, J., 1991, Categorizing binary topological relationships between
regions, lines, and points in geographic databases, Technical Report, Department of Surveying
Engineering, University of Maine, Orono.

Jiang C., Steenkiste P., 2002, A Hybrid Location Model with a Computable Location Identifier
for Ubiquitous Computing, In Proceedings of the Fourth International Conference on Ubiquitous
Computing (UbiComp 2002), Göteborg, Sweden, pp. 246-263

OpenGIS Consortium, 1999, OGC Abstract Specification, Topic 8: Relationships between
Features, Version 4, Project Document Number: 99-108r2, Datum: 1999-03-26.
http://www.opengis.org/techno/abstract/99-108r2.pdf

OpenGIS Consortium, 2003, Geography Markup Language (GML) Implementation
Specification, Document Reference Number OGC 02-023r4, Datum: 2003-01-29.

Randell D.A., Cohn A. G., 1989, Modelling Topological and Metrical Properties in Physical
Processes, In Proceedings of the First International Conference on the Principles of Knowledge
Representation and Reasoning, Los Altos, pp. 55-66.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

