
Universität Stuttgart

Sonderforschungsbereich 627

Umgebungsmodelle für

mobile kontextbezogene Systeme

www.nexus.uni-stuttgart.de

NEXUS

SFB 627 Bericht Nr. 2006/10

Autor(en):

Datum:

Navigation Component
Report

(c) 2006 Tobias Drosdol, Frank Dürr, Nicola
Hönle, Steffen Volz

Tobias Drosdol, Frank Dürr, Nicola
Hönle, Steffen Volz

Sprecher des SFB:

Prof. Dr. Kurt Rothermel
Institut für Parallele und Verteilte Systeme
Universitätsstraße 38
70569 Stuttgart
Deutschland

April 2006

CR Klassifikation: E.2, H.2.1, H.2.8

Center of Excellence 627

Spatial World Models for

Mobile Context-Aware Applications

 Seite 1

Content

1 Introduction .. 2
2 Interfaces of the Navigation Service .. 4

2.1 Navigation Parameter Language (NPL)... 4
2.1.1 Suggestion for DTD ... 4
2.1.2 The Language Elements of NPL .. 5
2.1.3 Open Issues .. 6

2.2 Navigation Result Language (NRL) .. 7
2.2.1 Suggestion for DTD ... 7
2.2.2 The Language Elements of NRL.. 7
2.2.3 Open Issues .. 7

3 Mobile Objects in the Augmented World Model... 8
3.1 Class Hierarchy .. 8
3.2 Explanation... 8

4 Geography and Topology in the AWS... 11
4.1 Geographical Representations.. 11

4.1.1 Class Hierarchy .. 12
4.1.2 Explanation... 12
4.1.3 Integrating Road Data from different sources into the AWS........................... 14

4.2 Topological (Navigational) Representations.. 16
4.2.1 Requirements.. 16
4.2.2 Topology Model... 17
4.2.3 Class Hierarchy .. 21
4.2.4 Explanation... 21
4.2.5 Building Navigational Graphs.. 24

5 Retrieval and Management of Topological Information.. 26
6 Summary, Open Issues and Future Work... 27

6.1 Open Issues: Navigation Parameter/Result Language ... 27
6.1.1 Navigation Parameter Language .. 27
6.1.2 Navigation Result Language .. 27

6.2 Future Work: Connecting Topological Graphs for Intermodal Navigation............. 27
7 References .. 28

 Seite 2

1 Introduction
Navigation was one of the first applications in the context of location-based services. Today,
there is a wealth of navigation systems available, especially for cars, and the rise of mobile
communication will enable more sophisticated systems which can even take the current traffic
situation into account. Small and more powerful devices for mobile communication like mod-
ern mobile phones and personal digital assistants (PDAs) will further extend the usage of
navigation applications beyond the scope of car navigation.
It is one of our goals to provide a value added service to NEXUS applications to support them
in navigational tasks. To realize such a service, we need to store topological information in
the Augmented World Schema (AWS). (For an introduction into the ideas, concepts, and
terms of the Nexus project and the Nexus platform, please see [Nexus], [InfEx04].) The navi-
gation service will use this information as a basis for the navigation process. Therefore, the
Standard Class Schema of the AWS is enriched by several navigational objects and also by
various mobile object types. To reduce the modeling effort, we want to be able to integrate
existing topological information, e.g. GDF and ATKIS data, into our model, and therefore we
need a mapping from these data formats to our topological description in the Augmented
World Schema. Furthermore, we are aiming at combining navigation approaches for outdoor
and indoor areas as well as for different types of locomotion (intermodal navigation). In order
to optimize navigation procedures we further intend to develop techniques allowing for hier-
archical algorithms that can be run on different levels of details of the underlying data.

NPLNPL NRLNRL

Navigation
Service

Application 1 ApplicationApplication
TierTier

FederationFederation
TierTier

ServiceService
TierTier…

AWMLAWMLAWQLAWQL

Application n

Context Servers

AWQLAWQL
NEXUS Nodes

AWMLAWMLAWQLAWQL

AWMLAWML

Figure 1: NPL/NRL Interfaces in the Nexus Platform

Figure 1 shows an overview of the Nexus architecture. Basically, different types of context-
aware applications can access the federation tier via standardized interfaces. In the case of the
navigation service, interfaces to query the service and to receive the result of the navigation
are provided. Two languages, namely the Navigation Parameter Language NPL and the Navi-
gation Result Language NRL, will be designed for this purpose in this report. If the naviga-
tion service receives a query, it demands the data needed to process this query from a nexus
node, the actual federation component, which itself gathers the required data from the differ-
ent distributed data sources or context servers, respectively, and returns an integrated and
consistent data set to the navigation service. On this data basis, the navigation service per-
forms its operations.

 Seite 3

In the following report, first the interfaces of the navigation service, namely NPL and NRL,
are explained in detail in section 2. In section 3, mobile objects which have to be considered
by the navigation service are presented. Section 4 explains the two different types of objects
that are represented within the Augmented World Schema for navigation purposes: real world
entities which make up navigation networks like roads or railway tracks and topological or
navigational objects (nodes and edges) which are used to represent graphs on which shortest
path algorithms can run. Section 5 describes how topological information is managed within
the Nexus Platform. Finally section 6 provides a summary and discusses open issues and fu-
ture tasks.

 Seite 4

2 Interfaces of the Navigation Service

2.1 Navigation Parameter Language (NPL)
In order to query the navigation service, the NPL (Navigation Parameter Language) has to be
introduced. It allows specifying which kind of graph-related query has to be carried out and
also includes the parameters that can be used for navigation tasks. Basically, there are two
tasks that have to be dealt with by the NEXUS prototype:

• Find shortest route (following a predefined sequence of positions)
• Find best order (traveling salesman problem)

For the development of the specification, it was intended to cover as many possible naviga-
tion tasks as possible, so that further changes of the DTD can be reduced to a minimum. Some
issues, though, remain to be solved in the future, since we are not able to find the appropriate
solution at this stage of the process. They are addressed in the "open issues" section.

2.1.1 Suggestion for DTD
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT npl (query, result)>
<!ELEMENT query (shortest_route | best_order)>
<!ELEMENT shortest_route ((start | loc_start), (intermediate | loc_intermediate)*, end, locomotion+, time?, crite-
rion?)>
<!ELEMENT best_order (start, intermediate*, end?, locomotion+, time?, criterion?)>
<!ELEMENT start (position)>
<!ELEMENT loc_start (start, locomotion+)>
<!ELEMENT intermediate (position)>
<!ELEMENT loc_intermediate (intermediate, locomotion+)>
<!ELEMENT end (position)>
<!ELEMENT position (nol | address | point | name)>
<!ELEMENT nol (#PCDATA)>
<!ELEMENT address EMPTY>
<!ATTLIST address
 country NMTOKENS #REQUIRED
 city NMTOKENS #REQUIRED
 postal_code NMTOKEN #REQUIRED
 street NMTOKENS #REQUIRED
 number NMTOKEN #REQUIRED>
<!ELEMENT point (gml | wkt)>
<!ELEMENT gml (#PCDATA)>
<!ELEMENT wkt (#PCDATA)>
<!ATTLIST gml
 sr_id NMTOKEN #REQUIRED>
<!ATTLIST wkt
 sr_id NMTOKEN #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT locomotion (loc_type, loc_property*, loc_use)>
<!ELEMENT loc_type (#PCDATA)>
<!ELEMENT loc_property EMPTY>
<!ATTLIST loc_property
 name CDATA #REQUIRED
 value CDATA #REQUIRED>
<!ELEMENT loc_use EMPTY>
<!ATTLIST loc_use
 boolean (true | false) "true">
<!ELEMENT time (#PCDATA)>
<!ATTLIST time
 start_end (start | end) #REQUIRED>
<!ELEMENT criterion (#PCDATA)>
<!ELEMENT result EMPTY>
<!ATTLIST result
 format CDATA #REQUIRED>

 Seite 5

2.1.2 The Language Elements of NPL

Basic Navigation Options
shortest_route
This option means that the result route has to follow a predefined sequence of positions: A
fixed order of positions is given in the navigation task. These positions have to be visited in
the specified order. Therefore individual locomotion parameters for every part of the route
make sense. (Part of the route means the part between two consecutive positions.)
best_order
The optimal order of the positions specified in the navigation task has to be calculated (Trav-
eling Salesman Problem). Only the first and the last position (same as first position if round
trip) can be explicitly specified. Individual parts of the trip are not specified at the time you
define the navigation task, so parameters for parts of the route make no sense here.

Short Description of the Language Elements
npl
npl is the root element of the navigation parameter language. An npl statement contains two
elements: query and result. In the query part the actual navigation query is specified. In the
result part the format of the navigation result is specified.
query
The query part of an npl statement contains the actual navigation query. Either short-
est_route or best_order queries are allowed, specified by the following parameters.
result
The result part of an npl statement contains a description of the result format. See Section 2.2
for result formats.
start
The start element specifies the first point of the trip, given by a position.
loc_start
The loc_start element also specifies the first point of a trip. Like loc_intermediate it can be
used to define individual locomotion parameters for the first part of the route in a short-
est_route query.
intermediate
The intermediate elements specify the points which you want to visit in the current trip. An
intermediate element is given by a position.
loc_intermediate
The loc_intermediate elements also specify the points which you want to visit in the actual
trip. In contrast to the intermediate element you have to specify a position and some loco-
motion values. loc_intermediate makes sense only in a shortest_route query. It can be
used to define individual parameters for every part of the route (part of the route = the part
between two consecutive positions). The defined locomotion values in a loc_intermediate
element have to be considered in the part of the route succeeding the position given in this
loc_intermediate element.
If there are intermediate values instead of loc_intermediate values in a shortest_route
query then the global locomotion values defined later in the query are valid.
end
The end element specifies the last point of the trip, given by a position. In best_order que-
ries the end element is optional. If then no end element is given, the optimal end point out of
all intermediate points will be calculated.

locomotion

 Seite 6

In the locomotion element you can specify your favorite locomotion types or locomotion
types you don’t want to use. The order of the given locomotion types specifies the preference
list of locomotion types for the actual navigation task (or the actual part of the trip, respec-
tively). To describe a locomotion type you have to specify values for loc_type,
loc_properties and loc_use.
loc_type
loc_type references the means of transportation given in the Augmented World Model
classes (Mobile Objects, see Section 3). Also the value others is possible; then there are no
preferred means of transportations. If others is given in a list of locomotion types then all
locomotion types which are ahead of others on this list have a higher preference value, but it
is possible to use means of transportation not explicitly given in the list. If there is no others
value in a list of locomotion types then only the explicitly defined means of transportation
have to be used.
loc_properties
loc_properties helps to give more details about the means of transportation (e.g. average
speed, maximum speed, costs per km). The properties have to be given in name-value-pairs
because it is not possible to predefine a list of all characteristics for all means of transporta-
tion.
loc_use
With loc_use it is possible to explicitly exclude locomotion types you don’t want to use. To
exclude locomotion types makes sense only if the others value is given in the locomotion list.
position
The position is given by a nol, an address, a point, or a name.
A nol references an object in the Augmented World. Every object in the Augmented World
contains position information, for further information about the Augmented World and NOLs
have a look at [InfEx04].
A point specifies geographical coordinates of a position, given in the Geography Markup
Language (gml) format or in the Well-Known Text (wkt) format. You also have to specify the
Spatial Reference System (Attribute sr_id) the coordinates refer to.
The last possibility to specify a position is to use a symbolic name (e.g. “main station of
Stuttgart”).
A address is given by street names, house numbers, postal codes, and city names.
Addresses and names have to be mappable to corresponding geographic coordinates or NOLs.
time
The time element specifies the point in time when you want to start or to end your trip.
criterion
This element helps to specify the criteria to choose the best route for a navigational query.
The criteria are not only the preference list of locomotion types, you can also think of shortest
time, shortest path, minimal number of changes between means of transportation, minimal
costs, and so on. Format and values have to be defined.
result
In the result element the result format can be defined. For more information about result for-
mats see Section 2.2.

2.1.3 Open Issues
There are some requirements we don’t know how to deal with yet. Maybe some requirements
make no sense at all.

Defining positions in 3D (2D+Time)
In a best_order query this means a 2D+Time Traveling Salesman Problem.

 Seite 7

Defining Positions in 3D (2D+Time) you can think of the following features: Is absolute
compliance of the time points required? Values for maximal tolerance? Visit positions for
time periods, not for time points.

Defining criteria for parts of the route
This only makes sense in shortest_route queries. Then its usage is analog to locomotion val-
ues for parts of the route.

Defining the level of detail of navigational graphs
It is possible that there are navigational graphs in different levels of detail. Maybe it makes
sense to let the application choose the needed level of detail. (First, concepts for level of detail
have to be introduced in the nexus platform at all.)

Mapping Addresses and Names to Geographic Coordinates or NOLs
Positions can be given by nols and geographic coordinates or by addresses and names. Ad-
dresses and names have to be mapped to corresponding geographic coordinates or NOLs us-
ing lookup services. How (and where) this works is not clear yet.

Defining locomotion types and other values
It is clear that it has to be specified somewhere (with every navigational component) which
locomotion types, locomotion properties, and criterion values can be used in a NPL query to a
navigational component. How this works is not clear yet.

2.2 Navigation Result Language (NRL)
The result of a query formulated in NPL has to be returned in another format, the so-called
Navigation Result Language (NRL). Up to now, the only alternative for specifying the result
is a sequence of points. But the language can easily be extended according to the needs of
applications.

2.2.1 Suggestion for DTD
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT nrl (pointlist)>
<!ELEMENT pointlist (point, point+)>
<!ELEMENT point (gml | wkt)>
<!ELEMENT gml (#PCDATA)>
<!ELEMENT wkt (#PCDATA)>
<!ATTLIST wkt
 sr_id NMTOKEN #REQUIRED>
<!ATTLIST gml
 sr_id NMTOKEN #REQUIRED>

2.2.2 The Language Elements of NRL
nrl
nrl is the root element of the Navigation Result Language.
pointlist
Up to now, a pointlist (list of points) is the only alternative for specifying the result. A point-
list contains at least two points.
point
A point specifies geographical coordinates of a position, given in the Geography Markup
Language (gml) format or in the Well-Known Text (wkt) format. You also have to specify the
Spatial Reference System (Attribute sr_id) the coordinates refer to.

2.2.3 Open Issues
We need more result formats: NavigationalObjects of the Augmented World, figures, and so
on. We should support the Navigation Markup Language NVML [NVML].

 Seite 8

3 Mobile Objects in the Augmented World Model
Mobile object classes are used in the process of navigation to define restrictions based on the
mobile object type. For instance, some roads may be prohibited for heavy trucks, bikes, pe-
destrians, etc. Traffic rules were analyzed to define classes of mobile objects and an appropri-
ate class hierarchy to be able to express such restrictions.
In the future, mobile object types will also be used for intermodal navigation to define sets of
vehicles types which should (not) be used to get from location A to B (“I want to get from
here to the city campus of the University of Stuttgart by public transport, and I am also will-
ing to walk short distances if necessary.”).
Although we think, we are able to express at least the common restrictions for road traffic
with the currently modeled object types, there certainly will be further refinements of the
class hierarchy in the future (especially for non-road traffic and in the context of intermodal
navigation). Therefore, extensibility of the class hierarchy was one of the major design goals.

3.1 Class Hierarchy

HandicappedPerson

handicaps

Aircraft

Vehicle

seats
tankage
equipment

TrainBicycle

RentalCar

NexusDataObject
SpatialObject

pos
<<optional>>
extent

TramTruck

cargo

Bus

PublicTransportVehicle

MobileObject

speed
direction
maxSpeed
avgSpeed

SubwayMotorbike

RoadVehicle

maxHubLoad

Car

Coach PublicBus

WaterCraft RailVehicle

Person

Figure 2: Class Hierarchy MobileObjects

3.2 Explanation
MobileObject
Base class for mobile objects.

• Speed speed: current speed.
• Direction direction: current direction of movement.
• Speed maxSpeed: maximum speed.
• Speed avgSpeed: average speed.

 Seite 9

Person
A person (pedestrian).

Handicapped Person
A handicapped person.

• SetOfHandicaps handicaps: Handicaps.

Handicap
Different types of handicaps. Possible values are:

• visually: Person is visually handicapped.
• walk: Person cannot walk or can only hardly walk.

Vehicle
Base class for vehicles.

• int seats: number of seats.
• Volume tankage: tankage.
• SetOfEquipment equipment: the equipment of the vehicle.

Equipment
Different types of vehicle equipment. Possible values are:

• snowchains: vehicle has snow chains.

RailVehicle
Base class for rail vehicles.

Train
A train.

Tram
A tram.

Subway
A subway train.

RoadVehicle
Base class for road vehicles.

• Weight maxHubload: maximum hub load (kg).

Bus
A bus.

Car
A car.

Taxi
A taxi.

RentalCar
A rental car.

Truck
A truck.

• SetOfCargo cargo: loaded cargo.

Cargo
Different types of cargo. Possible values are:

• dangerous: dangerous cargo
• hazardous_to_water: cargo is hazardous to water

 Seite 10

Bicycle
A bicycle.

Motorbike
A motorbike.

WaterCraft
Base class for water crafts.

Aircraft
Base class for aircrafts.

PublicTransportVehicle
Base “class” for public transport vehicles.

 Seite 11

4 Geography and Topology in the AWS

It is the key idea of our approach to distinguish between geography and topology, i.e. between
the geometric road run (e.g. curved roads, straight roads, etc.) on the one hand and the
neighborhood relations between roads (road A is connected to road B at the junction C) on the
other hand. The geographical representation can be used to visualize objects by drawing
maps, and to get information about the length of a road section, which is needed for instance
to find the shortest path, etc. The topological or navigational representation gives information
of how to get from location A to B. Both types of representation shall be stored in different
object classes, thus allowing us to provide exactly that representation which is most adequate
for a certain task.
Figure 3 shows an overview of the geographical classes on the one side and the topological
classes needed for navigation purposes on the other side. In this section, we will first have a
closer look at the geographical classes. Then we will elaborate on the classes needed for navi-
gation and on the algorithms used to perform shortest path analyses.

WaterTrafficObject

ForbiddenManoeuvre

EquipmentRestriction

RoadTrafficObject

UndirectedRoad

SizeRestriction

RailTrafficObject

AccessRestriction

ComplexRoad

JunctionElement

AirTrafficObject

VehicleRestriction

GeographicalObject TopologicalObject

CargoRestriction

RoadElement

TrafficObject

DirectedRoad

noOfLanes

FootTrafficObject

NexusDataObject
SpatialObject

pos
<<optional>>

extent

NavigationBox

connectionPointPositions

NavigationalObject

NavigationNode

NavigationEdge

Restriction

crdConstitutors

1..n

0..m

restrictTo
0..m

0..n

roadElements

1..n

0..m

toJunction

10..n

crdConstitutors

1..n

0..m

roadElements

1..n

0..m

fromJunction

10..n

m

1..n

0..n

end

1

0..n

0..m

restrictTo

0..n

start

1

Figure 3: Topological and Geographical Classes in the AWM

4.1 Geographical Representations
Geographical objects used to represent real world navigation networks are called traffic ob-
jects according to our terminology. We distinguish between different types of traffic: road
traffic, water traffic, air traffic, and rail traffic. In the following, we will describe the road
traffic classes in detail. The other types of traffic are part of future work.

 Seite 12

As we use test data for Germany, most example values refer to German categories. The work
of modeling traffic objects is still in progress, so what is described here should not be consid-
ered as a final state.

4.1.1 Class Hierarchy

AirTrafficObject RailTrafficObject RoadTrafficObject WaterTrafficObject FootTrafficObject

walkingRestistance

TrafficObject

SpatialObject
GeographicalObject

UndirectedRoad

DirectedRoad

noOfLanes

ComplexRoad

RoadElement

<<optional>>
maxWidth

<<optional>>
maxWeight

<<optional>>
maxLength

<<optional>>
maxHeigth

<<optional>>
roadWidth

<<optional>>
speedRestrictions

<<optional>>
direction

<<optional>>
formOfWay

<<optional>>
gradient

<<optional>>
rdAbbrev

<<optional>>
tollRd

<<optional>>
routeNo
functionalClass

<<optional>>
rdName

<<optional>>
typeOfRoad

<<optional>>
specialLanes

JunctionElement

incidentRoadCnt

roadElements

1..n0..m

roadElements

1..n0..m

crdConstitutors

1..n0..m

crdConstitutors

1..n0..m

toJunction

10..n
fromJunction

10..n

Figure 4: UML representation of road traffic objects in the AWS including cardinalities

4.1.2 Explanation

GeographicalObject
Base class for geographical objects.

• Boolean walkable: is this object walkable
• FaceType faceType: type of face (see below)

 Seite 13

FaceType
Different types of faces. Possible values are:

• fixed: fixed ground
• grass
• wood
• water

TrafficObject
Base class for all geographical objects related to any kind of traffic.

RoadTrafficObject
Base class for all geographical objects related to road traffic.

RailTrafficObject
Base class for all geographical objects related to rail traffic.

AirTrafficObject
Base class for all geographical objects related to air traffic.

WaterTrafficObject
Base class for all geographical objects related to water traffic.

FootTrafficObject
Base class for all geographic objects related to foot traffic.

RoadElement
A road element.

• NOL fromJunction: references the From-Junction of the road element.
• NOL toJunction: references the To-Junction of the road element.
• Length max_width (optional): maximum allowed width of vehicles using this road.
• Weight max_weight (optional): maximum allowed weight of vehicles using this road.
• Length max_length (optional): maximum allowed length of vehicles using this road.
• Length max_height (optional): maximum allowed height of vehicles using this road.
• Length road_width (optional): width of road.
• SetOfSpeedRestrictions vehicle_speed_restrictions (optional): list of vehicles and

their individual speed restrictions (e.g. PKW: 80 km/h, LKW: 60 km/h, etc.)
• Speed speed_restriction (optional): maximum allowed speed on this road.
• SetOfSpecialLanes special_lanes (optional): describes the special lanes of this road

(e.g. lanes for bikes; see below)
• Direction direction (optional): describes in which direction this road can be traversed

(see below)
• FormOfWay form_of_way (optional): describes the properties of a road element (see

below)
• Gradient gradient (optional): the gradient of the road in degrees (the sign shows if the

road is going up or down).
• String rdAbbrev (optional): abbreviation.
• Boolean tollRd (optional): describes if a toll is required to use this road.
• String routeNo (optional): number of route
• FunctionalClass funct_class (optional): functional class of this road (see below).
• String rdName (optional): name of the road
• TypeOfRoad rdType (optional): type of the road (see below)

TypeOfSpecialLane
Different types of special road lanes. Possible values are:

 Seite 14

• none: no special lane
• stop_lane: special lanes, e.g. along an Autobahn, to stop in case of breakdowns, etc.
• bus_lane: special lane for buses and taxis
• agricultural_vehicle_lane: lane for farm vehicle traffic
• pedestrian: special lane for pedestrians
• bike: special lane for bikes
• both: special lanes for bikes and pedestrians

TypeOfDirection
Describes in which direction this road can be traversed. Possible values are:

• open: road can be traversed in forward direction.
• rev_open: road can be traversed in reverse direction
• both_open: road can be traversed in both directions
• both_closed: road is closed in both directions

FormOfWay
Describes the properties of a road element. Possible values are:

• part_of_roundabout: road is part of a roundabout
• part_of_motorway: road is part of a motorway.

FunctionalClass
This class describes different functional classes of roads, depending on their importance. Pos-
sible values are: Main roads, first class roads, second class roads, etc.

TypeOfRoad
This class describes different types of roads. Possible values are: gemeindestrasse,
kreisstrasse, bundesstrasse, europastrasse, autobahn, etc.

JunctionElement
A junction element.

• int incidentRoadCnt: number of road elements which are incident

UndirectedRoad
A road composed of simple objects.

• ListOfRoadElements road_elements: a list of NOLs identifying all road elements
which make up the undirected road.

DirectedRoad
A road composed of simple objects.

• ListOfRoadElements road_elements: a list of NOLs identifying all road elements
which make up the directed road.

• int no_lanes (optional): number of lanes

ComplexRoad
A road composed of complex objects.

• ComplexRoadConstitutors crdConstitutors: a list of NOLs identifying all undirected
and directed roads which make up the complex road.

4.1.3 Integrating Road Data from different sources into the AWS
In order to represent existing road databases according to the Augmented World Schema
these data formats have to be mapped onto the geographical objects of the AWS. This process
will be described in the following sections. The mapping allows on the one hand a further use
of already available data. On the other hand, data from multiple sources can be federated since
they are available in a common data format.

 Seite 15

Existing Data Models for Road Data
The growing popularity of car navigation applications in recent years has lead to a multiple
acquisition of road data in different formats. In the following sections the two most common
data models for road data in Germany will be introduced. The Geographic Data File (GDF) is
used by the major digital road data suppliers, while ATKIS is a topographic and cartographic
database. Both formats are acquired in an approximate scale of 1:25 000.

The GDF Data Model
GDF 3.0 (CEN TC 278, 1995) is a European standard that is used to describe and transfer
road networks and road related data. It is much more than a GIS data format, because GDF
regulates how data should be captured and how features and their relationships have to be
defined. Features correspond to “real world objects” like streets and railways or administra-
tive areas. The feature category defines the type of representation of a feature. Objects repre-
sented by a point, line or area are called simple features, while complex features are com-
posed of a group of simple features. Features contain geometrical as well as topological in-
formation. Every feature belongs to a specific feature class. The following feature classes are
important for road traffic:
• Junction (point): feature bounding a Road Element
• Road Element (line): smallest independent unit of the road network having a Junction at

each end
• Road (complex): contains different Road Elements
• Intersection (complex): composed by Junctions and Road Elements
Figure 5 illustrates the relations between simple and complex road traffic features.

Junction

Road Element

Road

Intersection

Figure 5: Simple GDF features can be aggregated to complex ones (after Walter, 1997)

Features can also share relationships. Relationships are used to express associations between
two or more features like, for example, a prohibited manoeuvre from one road to another.

The ATKIS Data Model
The data model of ATKIS (Authoritative Topographic Cartographic Information System) has
been developed by survey offices of the federal states of Germany (AdV, 1998). It is struc-
tured into seven functional classes like e.g. settlement, vegetation and traffic. Each functional
class is again subdivided into object groups. Concerning traffic, its object groups are road
traffic, railway traffic, air traffic, etc. An object group includes several object types. Object
types specify the geometrical representation and the attributes of real world objects. In case of
road traffic, defined object types are for example roads, squares or ways. Instances of the ob-
ject types are the ATKIS objects which are built up by object parts. Object parts contain the
geometry of ATKIS objects as vector elements. Therefore, each ATKIS object comprises at
least one object part. In case of roads, further object parts are established, if the topology (in
case of crossings) or the attributes (e.g. the road width) of an object change. ATKIS demands
to build complex objects in case that a road has two or more physically separated lanes.

 Seite 16

Mapping existing Road Data Models onto the Augmented World Schema
Concerning the mapping of existing road data models onto the object classes of the Aug-
mented World Schema, it is important to preserve the original properties of features as far as
possible. However, as it has been outlined in the previous section, both ATKIS and GDF con-
tain complex objects. The rules to build these complex objects considerably differ in the two
databases, i.e. there is no unique way of representing the different kinds of complex objects in
the Augmented World Schema. For this reason we decided to develop mapping rules from the
source databases to the AWS for the simple object types only. Since we need complex struc-
tures as well, we built our own rules within Nexus to form these objects.
First, we established object classes within the AWS to represent simple features, namely junc-
tions and road segments. Afterwards, the XML schema definition of the Augmented World
Modeling Language (AWML) could be extended to road traffic objects and thus the simple
objects of the original GDF and ATKIS formats can be converted into AWML.

Within GDF, there are two types of simple objects: Junctions and Road Elements. In ATKIS,
junctions are not explicitly modeled but can be easily derived from the underlying data (as
topological connections or endpoints of object parts). Object parts within ATKIS represent
road segments similar to the Road Elements of GDF. Thus we introduced two simple object
types within the AWS, namely JunctionElement and RoadElement into which all simple ob-
jects of the source data sets can be converted in a 1:1 fashion. These two classes are derived
from the abstract class StaticObject which is the superclass of all static spatial objects (like
buildings, streets, etc.) within the AWS. To both object classes of the AWS, necessary attrib-
utes have been assigned. Only some most basic of them were declared mandatory.
However, if we only introduced the simple objects, information available in the source data,
namely the formation of complex objects would be lost. In order to avoid this, we also intro-
duced a relation object storing references to all simple objects which have together made up a
complex object in the source data set. This relation is called BelongsToFormerComplexType,
and has as its attributes the references to the simple objects that constituted a complex object
in the source data and the name of the complex object type in the source data.
Within the AWS, we established 3 types of complex objects:
• UndirectedRoad: contains 1 to n RoadElements that have the same street name and that

can be traversed in both directions
• Directed Road: contains 1 to n RoadElements that have the same street name and that can

only be traversed in the same direction
• ComplexRoad: contains at least 1 DirectedRoad and 0 to n UndirectedRoads, with all con-

stituting objects having the same street name

4.2 Topological (Navigational) Representations
Navigational objects are used to model topological information needed to do navigation.
Navigation is based on a definition of possible paths between two locations, namely the start
and the destination, respectively. Together with suitable metrics for these paths, the
navigation service can calculate the fastest path, the shortest path, etc.

4.2.1 Requirements

A topological model representing connections between neighboring locations is required in
order to define paths between the start and the destination of the navigation request. Since we
aim at a navigation service that supports indoor navigation as well as outdoor navigation, the
topological model must be applicable to indoor and outdoor locations as well. The same is
true for different types of locomotion to be able to perform intermodal navigation where the

 Seite 17

user can switch between different locomotion types (walk, bike ride, subway, etc.) during the
navigation.

Furthermore, our concept should allow for the definition of starting points and destinations on
different levels of granularity. For instance, the target could be a city, a building, a room, or
some location within a room. Moreover, a modular and hierarchical concept is highly
desirable since this allows for the easy distribution of parts of the model on different servers
and at the same time facilitates efficient routing algorithms.

4.2.2 Topology Model
The basic building block of the topology model is the "Navigation Box" (NB). A NB
represents a location together with the location's connection points to neighboring locations.
For each NB, a number of functions can be defined that represent the distance, time, or any
other metric to get from one connection point to another connection point via the NB's
location. Furthermore, a NB can be refined by a set of other NBs. A NB can be connected to a
neighboring location at corresponding connection points by a Navigation Edge (NE). That
means, a NE defines the possibility to get from one location to a neighboring location at a
certain connection point. A NE connects exactly two NBs. NEs or transitions from one NB to
another, respectively, can be legally or physically restricted. Such legal and physical restric-
tions are modeled explicitly by various classes of restrictions within the AWS. We distinguish
between two basic classes of restrictions:
ForbiddenManoeuvres, e.g. prohibited U-/left/right turns
Vehicle restrictions, referring to certain vehicle properties, e.g. weight/width/height/length
restrictions
Specifications of NBs are the Navigation Nodes (NN), which must only contain either one or
two connection points. With the concept of Navigation Boxes also intermodal scenarios can
be realized, since connection points can also link NBs that have been created for different
locomotion types (e.g., car and pedestrian navigation, see example 1)

 Example 1 (outdoor)

Consider for instance NB1 in the scenario depicted in Figure 6. NB1 represents a building
with two entrances. Each entrance is a connection point (CP1.1, CP1.2) of NB1. NB2 defines
a road element with three connection points: at CP2.1 and at CP2.2, the road element is
connected to neighboring road elements; CP2.1 connects the road element to the building
represented by NB1. The connection between the building and the road element at CP1.1 and
CP2.1 is defined by NE1. Function f2.1 models the physical distance to cross the road
element from one connection point to another. For instance, to get from one side of the road
element (CP2.1) to the other (CP2.2) it takes 200 m.

 Seite 18

Figure 6: Navigation scenario using Navigation Boxes

Example 2 (refinement)

Figure 7 shows the refinement of the building represented by NB1. In this example, NB1
consists of two floors (NB1.1, NB1.2). The first floor NB1.1 has four connection points: two
connection points represent the building's entrances on the first floor; CP1.1.3 and CP1.1.4
define connection points to floor 2 via stairs and an elevator.

Figure 7: Navigation between different floors using the NB concept

Example 3 (indoor)

Figure 8 shows a typical indoor example. Typically, doors can be modeled as connection
points. For each pair of a room's doors, the functions of the navigation box define the costs to
pass through a room.

 Seite 19

Figure 8: A typical example for indoor navigation

Example 4 (outdoor + restrictions)
The navigation concept of NEXUS does not follow the common approach of navigation sys-
tems, where NavigationNodes correspond to 0-dimensional features of the real world like
street crossings and NavigationEdges represent linear features like roads or foot paths. In-
stead, the geographical entities of the AWS are mapped differently onto the Navigation-
alObjects of NEXUS (see also [VGH+02]). An example for outdoor navigation which also
considers restrictions shall illustrate our approach. The example is depicted in Figure 9

Figure 9: Geographical and topological representation of road data in NEXUS

A NavigationNode is made up of a From-JunctionElement, a RoadElement and a To-
JunctionElement. The costs for traversing a line feature of the real world is thus an attribute of
the NavigationNodes class according to the NEXUS topology concept. The connections of two
NavigationNodes are referred to as NavigationEdges (NEs) as explained above.
In Figure 9, Street 1 (S1) is a one-way street. It is not allowed, to turn right from S1 into
Street 3 (S3) from 7 p.m. until 8.a.m. Moreover, S3 can only be accessed by vehicles weigh-
ing up to 7.5 tons. The topological structure of the real world scene can directly be derived
from the AWS geography. For example, NavigationNode NN2 is composed of JunctionEle-
ment JEb, RoadElement RE2 and JunctionElement Jed.

 Seite 20

Basically, the Restrictions which apply to one single street are stored within the Navigation-
Nodes, whereas Restrictions that affect a sequence of NavigationNodes are to be stored with
NavigationEdge objects. In the example of Figure 9, the Restriction R1, which tells us that
Street S3 is closed for vehicles over 7.5 tons is stored with NavigationNode NN3. The Restric-
tion R2 expressing that one is not allowed to turn right from S1 into S3 between 7 p.m. until 8
a.m., though, is stored with NavigationEdge NE13. The topological situation of the example
from Figure 9 can be displayed within a NavigationNode matrix (see Table 1).

* NN1 NN2 NN3, R1
NN1 - NE12 NE13, R2
NN2 0 - NE23
NN3, R1 0 NE32 -

Table 1: Matrix of NavigationNodes (NN), including Restrictions (R)

In the following example, the case of a forbidden sequence is illustrated. As it can be seen in
the real world-sketch of Figure 10, it is not allowed to make a U-Turn from S1 into S2, but it
is allowed to turn left from S1 into S3 and to turn left from S4 into S2. The real world situa-
tion is transferred in the AWS-Geography representation. On the basis of this representation,
the NavigationalObjects are created.
Regarding the defined restriction, it is not allowed to go from NN1 to NN7 via NN6. Thus,
traversing the sequence of the NavigationEdges {NE16, NE67} has to be explicitly forbidden.
It is not possible to simply delete NE16 and NE67 since they are needed for the (allowed) se-
quences {NE16, NE65} and {NE26, NE67}.

Figure 10: A forbidden sequence (U-turn example)

In order to create a navigation graph from road data available in GDF, first of all the geo-
graphical data stored within the GDF data have to be transferred into the NEXUS geography
objects. Afterwards, the NavigationalObjects are built from the geography objects. In this
step, GDF relations are transferred to Restrictions. On the basis of the NavigationalObjects a
graph can be calculated applying the splitting node algorithm [Sc00]. On this graph the
NEXUS Navigation will be performed (see 4.2.5).

 Seite 21

4.2.3 Class Hierarchy

Restriction

<<optional>>
from

<<optional>>
to

<<optional>>
repeatRate

<<optional>>
validFrom

<<optional>>
validTo
vehicleType

EquipmentRestriction

equipmentType

NexusObject

ForbiddenManoeuvre

SpeedRestriction

maxSpeed

AccessRestriction

accessType

NavigationalObject

CargoRestriction

cargoType

VehicleRestriction

NexusDataObject

SpatialObject

pos
<<optional>>

extent

TopologicalObject

NavigationEdge

SizeRestriction

maxSize
typeOfSizeRestriction

NavigationNode

directional
length
maxSpeed

Range

estateArea

NavigationBox

connectionPointPositions
1..n m

restrictTo

0..m

0..n
restrictTo

0..m

0..n

start

1 0..nend

1 0..n

1
0..n

navigationBox

Figure 11: Class Hierarchy for NavigationalObjects

4.2.4 Explanation

NexusObject
Base class for all Nexus objects.

Range
A range represents a road section and the adjacent lots. Ranges can be used to navigate to and
to search for addresses.

• NOL roadElement: references a road (element) object. The house number of this road
element is given by the attribute estateArea.

• EstateArea estateArea: the estate area.

NexusDataObject
A data object.

• NOL nol: Nexus Object Locator (unique identifier of object)
• String name: name of the object.
• DataObjectType kind: kind of data object (virtual or real object).

SpatialObject
A spatial object.

• Position pos: geographic position of object.
• Extent extent: spatial extension of object.

 Seite 22

TopologicalObject
Base class for topological objects.

NavigationalObject
Base class for navigational objects.

NavigationBox
• Position pos: geographic position of the center of the Navigation Box
• SetOfPositions connectionPointPositions: geographic positions of the connections

points (entrances/exits) of the Navigation Box.
• SetOfBelongsTo connectionPointBelongsTo: reference to each geographical object

the connection points belong to (e.g., entrances/exits of a building, road junctions,
usw.).

• BelongsTo endBelongsTo: reference to the geographical object the second terminating
object belongs to.

• BelongsTo belongsTo: reference to the geographical object the Navigation Box be-
longs to (e.g., a building, a city, a road element, …).

NavigationNode
A navigation node represents a road section including the two terminating objects (e.g. junc-
tions, (bus) stops, etc.).
A navigation node is linked to its associated geographic objects by the attributes
“startBelongsTo”, “endBelongsTo”, and “belongsTo”, so it is easily possible to retrieve geo-
graphic information for this topological object.

• A navigation node is also associated with geographic positions by the attributes
“startPos”, “endPos”, and “pos”. This geographic information can be used for the re-
trieval of navigation nodes for a certain area (see Section 5).

• Directional directional: shows, if this is a one-directional or a bi-directional road sec-
tion.

• Length length: length of road section (m).
• Speed maxSpeed: maximum speed (m/s). Together with the attribute length, the cost

of this node in the navigational graph can be calculated. Additional information for cal-
culating the cost of the node can be given with the member attributes or by an extended
class schema.

• SetOfRestrictions restrictTo: Restrictions applying to this navigation node.
Note: Additional standard class schema attributes for calculating the cost of a node can be
defined in the future, if necessary.
Note: The partOf attribute can be used to refine this navigation node. For instance, a fine-
grained city plan can be associated with a highway plan.

NavigationEdge
A navigation edge represents a directed connection of two Navigation Boxes, e.g., two road
sections at the respective terminations of the sections (e.g., at a junction, or at a (bus) stop,
etc.). It can be used to get from one section to the other.

• NOL start: reference to first navigation box
• NOL end: reference to second navigation box. Together with the attribute start, we get

a directed connection (directed from “start” to “end”) of these two navigation boxes.
• Position pos: geographic position of the connection of the two navigation boxes (e.g.,

position of junction). This geographic information can be used for the retrieval of navi-
gation edges for a certain area (see Section 5).

• SetOfRestrictions restrictTo: Restrictions applying to this navigation edge.

 Seite 23

Restriction
Base class for restrictions. A restriction object represents a legal or physical restriction, e.g. a
prohibited U-turn, or a road closed for heavy trucks. A concrete restriction is modeled by a
sub-class (see below).

• Time from (optional): a restriction may only be valid for a certain period each day (e.g.
from 9:00 to 17:00 o’clock). This attribute defines the begin of this period.

• Time to (optional): end of the daily period of validity.
• RepeatRate repeatRate: a restriction may only be valid for certain weekdays, e.g. only

on working days or only at the weekend (see below).
• Date validFrom (optional): additionally to the regular daily period of validity, a re-

striction may only be valid once for a certain period of time (e.g. from October, 18th
until November, 1st). This attribute defines the begin of this period.

• Date validTo (optional): end of period of validity.
• MobileObjectType vehicleType (optional): restrictions may only be relevant for cer-

tain types of mobile objects (e.g. a road closed only for trucks). This is the name of the
corresponding mobile object class the restriction applies to (see section 3).

RepeatRate
This class defines possible repeat rates for restrictions. Possible values are: daily, working-
days, nonworkingdays, monday, tuesday, wednesday, thursday, friday, saturday, sunday

ForbiddenManoeuvre
Forbidden manoeuvres (e.g. a forbidden U-/left/right turn) are represented by a sequence of
navigation edges. It is forbidden to traverse this navigation edges in the given order. For in-
stance, if it is prohibited to go from road section X to road section Y, and then from road sec-
tion Y to section Z, we get the forbidden sequence S = (NavigationNode(X,Y), Navigation-
Node(Y,Z)).

• SequenceOfNOL forbiddenSequence: reference to a sequence of navigation edges
that are not allowed to be traversed in the given order.

VehicleRestriction
Base class for restrictions referring to a certain vehicle property.

EquipmentRestriction
This restriction refers to vehicles with (or better without) certain equipment. For instance,
some roads may require snow chains in winter.

• Equipment equipmentType: required equipment (see above for a list of possible
equipment).

CargoRestriction
This restriction refers to vehicles (especially trucks) that transport a certain type of cargo.

• CargoType cargoType: forbidden cargo type (see above for a list of cargo types).

SizeRestriction
This restriction refers to vehicles, which exceed a certain dimension.

• float maxValue: maximum allowed value (e.g. maximum width).
• TypeOfSizeRestriction typeOfSizeRestriction: type of restriction (see below).

TypeOfSizeRestriction
This class describes the different size restrictions. Possible values are: width, height, length,
weight, hubload

AccessRestriction
Restrictions referring to a certain kind of traffic, e.g. road allowed for adjacent owners or ag-
ricultural vehicles only.

 Seite 24

• TypeOfAccessRestriction accessType: type of access restriction (see below)

TypeOfAccessRestriction
This class describes the different access restrictions. Possible values are:
adjacent_owners_only, agricultural_traffic_only

SpeedRestriction
Restriction defining a maximum allowed speed.

• int maxSpeed: maximum allowed speed

4.2.5 Building Navigational Graphs
After all relevant navigational objects have been extracted from the model we need another
step before we can do the navigation. To use standard navigation algorithms, like for instance
the A* algorithm for shortest path routing, we first have to build up a graph from the topo-
logical information of the model. We cannot use the original graph formed by the navigation
nodes and edges directly, because we have to take the various restrictions into account. That
means, we first have to convert the original graph to a so-called navigation graph that contains
no restrictions anymore.
Vehicle restrictions can be handled easily. We just have to check every navigation node and
edge to see whether a vehicle restriction applies to this object (therefore, we need additional
context information like a list of preferred means of transport, or the weight of the truck I am
driving; this information is given in the query in NPL (see Section 4)). If it applies, the re-
spective navigation node or edge is removed.
Forbidden sequence restrictions are more complex. We have to make sure, the navigation
graph does not permit to traverse a forbidden sequence of navigation edges. A detailed de-
scription of how this can be done can be found in [Sc00]. In this paper, we just give a short
overview of the principle.
The idea is to “break up” every forbidden sequence. Therefore, the first navigation edge of
the forbidden sequence is removed. Hence, the sequence can not be traversed anymore, be-
cause the first edge is missing. But also every other path that used the removed navigation
edge is now impossible, i.e. we have removed too much. To solve this problem, the forbidden
path is duplicated without the last edge. Then, a “redirection” is built up that uses the dupli-
cated nodes, and makes sure that all allowed sequences can be traversed again.
Figure 12 shows a simple example. Let G be the original graph with the forbidden sequence S
= (NE1, NE2, NE3, NE4). Now, we construct the navigation graph G’ without the forbidden
sequence.
First, we remove NE1. Then, we duplicate the nodes NN2, NN3, and NN4, and the edges NE1,
NE2, and NE3, i.e. the forbidden sequence without the last edge. The new nodes and edges are
drawn in dark color in Figure 12 G’. Next, we have to connect the duplicated navigation
nodes and the original graph. For instance, it must be possible to get from NN4’ to NN7. There-
fore, we insert the edge NE6’.
A formal description of the algorithm and a proof of correctness can be found in [Sc00].

 Seite 25

NN1 NN2 NN3 NN4 NN5

NE1 NE2 NE3 NE4

NN1 NN2 NN3 NN4

NN6

NE1 NE2 NE3

NE5

NN2’ NN3’ NN4’

NN5

NE2’ NE3’

NN6

NE5

NN7

NN7

NE6

NE6

NE6’

NE1’

G:

G’:

NE4

Figure 12: Construction of navigation graph

(G is the original graph with the forbidden sequence S = {NE1, NE2, NE3, NE4}; G’ is the constructed navi-
gation graph)

 Seite 26

5 Retrieval and Management of Topological Information
As it has already been outlined we distinguish in our approach between geography and topol-
ogy. Geography is the main index to access objects of our world model. Therefore, we first
have to specify the area that is used in the query to retrieve all navigational objects needed for
the navigation process. That means we need a heuristic to get the area the final route will go
through. Then, this area can be used to query the federation for all relevant navigational ob-
jects (the determination of this area is an open issue and part of the future work).
We also have to associate geographic information with navigational objects (note: some Con-
text Servers may store geographical objects as well as objects describing topological informa-
tion; others may exclusively store geographic or topological information). To associate navi-
gational objects with the respective geographical information, we can either use references to
geographic objects or store geographic information at the navigational objects themselves. For
the first alternative, we see two possible methods to retrieve all navigational objects for a cer-
tain region R by a request to the federation layer:

1. Retrieve all navigational objects from all Context Servers. The federation will use the
references to geographic objects of these objects to retrieve the associated geographic
objects from the Context Servers, and their geographic information is used in turn to
sort out the navigation objects that are outside the region R. Note that this naïve ap-
proach may not be feasible because of the possibly huge set of navigational objects
stored by all Context Servers.

2. Retrieve all geometrical objects for the region R. Search all navigation objects refer-
ring to these objects.

If we store geographic information directly at the navigational objects, we can use this infor-
mation to retrieve all navigational objects for region R. We only need to query the Context
Servers which are responsible for R and store navigational objects, because we can use the
Augmented Area Service Register to identify all these [VB02] Context Servers. Surely, this
procedure is the most efficient, so we decided to store geographic information at the naviga-
tional objects (navigation boxes, nodes and edges).

 Seite 27

6 Summary, Open Issues and Future Work

6.1 Open Issues: Navigation Parameter/Result Language

6.1.1 Navigation Parameter Language
See section 2.1.
Defining positions in 3D (2D+Time).
Defining criteria for parts of the route.
Defining the level of detail of navigational graphs.
Defining locomotion types (and other values).
Mapping addresses and names to geographic coordinates or NOLs.

6.1.2 Navigation Result Language
See section 2.2.
Defining more result formats.

6.2 Future Work: Connecting Topological Graphs for Intermodal
Navigation

Up to now, there is one topological graph for every locomotion type. In the future, we want to
support intermodal navigation, so we have to connect these topological graphs. The result will
be some layer architecture with one topological graph per locomotion type and per layer. The
first open question is how to connect these graphs and the second open question is how the
navigation application knows which locomotion type belongs to the actual topological graph.

 Seite 28

7 References
[ATKIS98] Amtlich Topographisch-Kartographisches Informationssystem (ATKIS). Arbeits-

gemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik
Deutschland (AdV), Bonn, 1998.

[GDF95] Geographic Data Files Version 3.0, GDF for Road Traffic and Transport
Telematics. CEN TC 287, 1995.

[InfEx04] Bauer et al.: Information Management and Exchange in the Nexus Platform.
Bericht Nr. 2004/04, Fakultät Informatik, Universität Stuttgart, 2004.

[Nexus] The Nexus Project Homepage: http://www.nexus.uni-stuttgart.de/index.en.html
[NVML] Navigation Markup Language NVML; http://www.w3.org/TR/NVML.
[Sc00] Schmid, Wolfgang: Berechnung kürzester Wege in Straßennetzen mit Wege-

verboten. Dissertation, Universität Stuttgart, 2000.
[VB02] Volz, S., Bofinger, J.-M.: Integration of Spatial Data within a generic platform

for location-based applications. In: Proc. of the Joint International Symposium on
Geospatial Theory, Processing and Applications, Ottawa 2002.

[VGH+02] Volz, S., Grossmann, M., Hönle, N., Nicklas, D., Schwarz, T.: Integration mehr-
fach repräsentierter Straßenverkehrsdaten für eine föderierte Navigation. In: it+ti,
Informationstechnik und Technische Informatik, Oldenbourg, 5/2002, p. 260.

[Wa97] Walter, V.: Zuordnung von raumbezogenen Daten – am Beispiel der Datenmodel-
le ATKIS und GDF. Dissertation, Deutsche Geodätische Kommission (DGK),
Reihe C, Heft Nr. 480, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

