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A context-based communication system enables the indirect addressing
and routing of messages according to the users’ contexts. However, for
a targeted forwarding of messages towards users, the routers require a
certain amount of state information. Global knowledge, i.e. each router
knowing about every user, is not scalable, though, because of the necessary
update messages to keep this information up-to-date.

To address this challenge, a router can aggregate similar contexts and
only provide such an aggregated view to neighboring routers. However,
due to different requirements and semantics, existing approaches from
publish/subscribe or data clustering are not applicable in a context-based
communication system. We therefore present an approach to aggregate
two similar contexts, based on a similarity measure for user contexts. The
algorithm can be adjusted according to the observed messages and user
contexts in the system by specifying a similarity threshold to determine
when contexts are aggregated.

We also present a qualitative analysis of the behavior of the system
under different load scenarios and their respective appropriate similarity
thresholds.
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1 Introduction

Context-aware communication enables clients to disseminate messages to receivers
whose context matches a given set of constraints or filters. Possible applications for
such a technique include concert information for people interested in a certain musical
style or invitations to study groups for students attending the same university class
(cf. [GDRO9).

In a distributed system of context-aware routers, messages need to be either
broadcast to reach all matching receivers or the routers need to maintain routing
tables of available users and where in the network to reach them. However, it is
obviously not feasible to maintain complete knowledge of all users on every router:
that way, every change potentially needs to be replicated to every router in the
network, i.e., every change results in a broadcast of an update message. The amount
of such update messages would quickly overwhelm a system with anything but a trivial
number of users. Instead, we propose that routers maintain an aggregated view of
available contexts. This reduction of information enables us to only propagate certain
changes to the routers, while a large part of changes is hidden by the aggregation.
For example, if a router has the aggregated information that it can reach users with
an age between 15 and 23 over a certain link, it does not affect this router when a
user with the age 19 disconnects from the system.

Such an aggregation allows us to exploit a locality principle in our design: Users
at a location usually share certain characteristics, e.g., many users on a university
campus are of type student and within a certain age range. Also, since our routing
nodes are connected according to their location, this locality principle applies to the
router network as well.

By aggregating these similar contexts and only propagating an aggregated view to
routers, this improves the scalability of our approach. However, while an aggregation
can lower the number of update messages, it also brings a loss of information: in the
example above, there might not be any contexts with an age between 20 and 22. A
message addressed to an age 21 would still have to be forwarded in this direction
until more detailed knowledge is available, with which a router can then prune the
dissemination tree. Such messages that the system forwards without a matching
receiver are called “false positives”. While the aggregated views save update messages,
they introduce a different kind of load into the system with these false positives. Thus,
for the aggregation algorithms, we need to find a good balance between reducing the
information and thus saving update messages and reducing it too much, effectively
resulting in broadcast messages because the routing information is too coarse for the
routers to prune the broadcast tree.

1.1 Related Work

Reducing client information is closely related to the concepts “cover” and “merge”
in publish/subscribe systems. These techniques are used in systems such as
Siena [CRWO00] or REBECA [Miih01] to lower the communication load and state



information and thus improve the scalability of the system. However, as we have dis-
cussed in [GDRO0Y|, the semantic differences between content-based publish /subscribe
and CONTEXTCAST makes it difficult to impossible to simply transfer the approaches.
First, “cover” is intended for a number of subscriptions containing predicates on
ranges, where one includes the others. The user contexts in CONTEXTCAST, however,
are points in a contexts space, defined by the attributes and their values that make
up a context. That means that any two contexts may either be identical or differ in
one or more attributes, with no overlap between them. Second, a technique similar to
“merge” needs to take the type of data, i.e., the different attributes of user contexts,
into account. Especially a type-attribute based on a tree hierarchy needs to be handled
differently than a quantitative attribute such as age. The context aggregation we
present is a generalization of the concepts cover and merge.

The notion of aggregating similar contexts is also closely related to the clustering
of data items, with its concepts of distance or similarity and clusters (cf. [XWI05]
for an overview). Clustering algorithms that have the goal of finding a predefined
number k of clusters, such as the k-Means algorithm [Mac67|, are not useful in our
system: it is impossible to compute the optimum number k of clusters at any given
time in the system, as this depends on the messages as well as the contexts they
address. And finding the best value for k by choosing a value and re-running the
algorithm is computationally too expensive.

Another limitation of a number of popular clustering algorithms (e.g., the k-Means
algorithm) is the need for random access to all the objects they are clustering. This
means in particular that all the objects must be known at the start of the algorithm.
However, in CONTEXTCAST, users can join and leave the system at any time, which
requires an algorithm that can continuously add contexts to and remove them from
an aggregation. The continuous addition of new elements is possible with algorithms
such as BIRCH [ZRL96] or specialized stream clustering algorithms. Neither can,
however, remove old elements from the data. Thus, a re-evaluation of the clustering
after a context becomes invalid is not possible. The CluStream [AHWY03] algorithm
employs a hierarchical micro-clustering to store a history of data items or rather
micro-cluster. The authors exploit a subtractive property of their micro clusters to
generate a clustering for an arbitrary time window from these micro-cluster. However,
such a subtractive property does not hold for the user contexts in our system. Our
design thus incorporates the flexibility to add and remove contexts to and from the
aggregation at any time.

Furthermore, clustering algorithms are usually defined on objects in R™. For these,
it is quite simple to calculate the distance between two objects. The contexts in our
system, however, contain attribute types other than simple numerical ones, such as a
structured variable based on a type hierarchy. Clustering such objects is a challenging
task, as the notion of distance is not obviously defined. Gowda et al. [GD92| have
researched clustering of what they call “symbolic objects”, which are very similar
to the contexts in our system. We use their results as a basis to derive a similarity
measure for our contexts in Section 4. This allows us to develop an aggregation
approach, which does not require an a priori number of clusters, can handle the



ContextNode ContextRouter

Contextcast Client Service Area

Figure 1: The CONTEXTCAST system

heterogeneous attributes in our user contexts as well as the continuous addition and
removal of contexts.

2 Contextcast

CONTEXTCAST’s main function is the dissemination of messages to users matching a
given addressed context. To achieve this, in [GDRO09| we have defined the semantics
of messages, user contexts and the matching between them. The next two Sections
gives a short overview of this work.

2.1 System Model

To efficiently forward messages from senders to all receivers with a matching context,
we use a distributed approach with context-aware routers. Since history shows that
changes to the Internet infrastructure are a slow process [CRSZ02], it seems unlikely
that context-based addressing will be supported by the Internet routing infrastructure
on the network layer in the near future. We therefore imagine an overlay network for
this purpose, formed by infrastructure nodes.

The context-aware routers (or ContextRouters) are connected by virtual links
in the overlay network. These links between routers are bidirectional and form an
undirected, acyclic graph (for an arbitrary underlay, the acyclic property can always
be ensured by using a routing algorithm to compute a spanning tree in the overlay).
The connections between the routers follow a locality principle, i.e. connections
between close routers are more likely than between ones that are far apart. This
design is used to replicate an existing locality principle, e.g. a clustering of students
on a campus.

In addition to the routing functionality, some of the routers are also access nodes
for clients using the system. When the distinction between routers and routers with
added access functionality is significant, we call the access nodes ContextNodes.

The ContextNodes maintain information about connected users and their contexts
in their respective service area. This information is then propagated into the network
where the ContextRouters can build routing tables with the contexts that can be
reached via which one of its neighbors. However, having the complete knowledge of
all users on each router seriously impairs the scalability of the system. Therefore, in



c: WGS84: location = 48.12N; 9.10E

hierarchy: class = "pedestrian"
enum: gender = '"female"
int: age = 29

Figure 2: Example of a user context

m: WGS84: location € 48.0N-48.4N, 9.0E-9.2E

enum: gender = "female"
int: age > 15
int: age < 35
payload = [questionnaire & voucher]

Figure 3: Example of a contextcast message

Section 3 we present an approach to lower the system load by aggregating similar
contexts.

2.2 Matching Messages and Contexts

A user context ¢ in the system consists of any number of context attributes a. Let
A(c) denote all the attributes that make up a context c¢. Each attribute « is a tuple
(type, name, value). The location attribute o is given as a geometric location based
on WGS84, with a type of “WGS84”. For the other context attributes, CONTEXTCAST
currently supports the typical numerical types such as integer or float, as well as
more complex types such as an enumeration gender or a class attribute based on a
class hierarchy. Figure 2 shows an example of such a context c.

A (context) message m addresses clients by specifying constraints on their context
attributes that need to be fulfilled to actually receive the message. These constraints
(or attribute filters) ¢ are tuples (type, name, predicate, value), where type, is the
attribute type, name, is the attribute name, and predicate, can be any predicate
that is defined on the attribute type. While notifications in pub/sub both transport
information and are used by subscriptions to select notifications, the attribute filters
in a contextcast message serve purely to address users. Thus, the messages have
an additional payload, which is the actual message content. Figure 3 shows such a
message m.

For a given attribute filter, the system can thus evaluate the constraint
value, predicate, valuey’, e.g. for the attribute age: 29 > 15 — true. If a
message contains an attribute filter and the attribute is not defined in a user context,
the corresponding filter evaluates to false for that context. The conjunction of all
attribute filters in a message m determines whether it matches a user’s context ¢ and
thus needs to be delivered.
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3 User Context Aggregation

In this Section, we present the aggregation of user contexts and show an algorithm
to aggregate a pair of contexts. We also discuss the effects an aggregation has on a
context-based communication system.

3.1 Aggregation of User Contexts

Without knowledge of user contexts, the system needs to broadcast messages (or
geocast, if routers have knowledge about the access networks’ service areas) to
disseminate a message to all potential receiver. This is similar to a distributed
publish /subscribe systems with brokers unaware of actual user subscriptions.

As in pub/sub systems, it is possible to avoid this broadcast in CONTEXTCAST. For
this, the routers maintain routing tables of clients who can be reached via an overlay
link. With this information, they can then prune the broadcast tree to only branches
where matching receivers can be reached. However, the naive approach of propagating
each user context to every router in the overlay poses a serious scalability issue. It
would require that the routers maintain a tremendous amount of state information
and every change of a client context would need to be propagated to every router.
Therefore, we propose an aggregation approach to reduce this state information and
lower the update rate.

Definition 1 (Aggregation of user contexts). Let C' be a set of user contexts ci, ..., cp.
An Aggregation C’ of these contexts is a set of contexts ¢y, ..., ¢, (where typically
k < n) for which the following condition holds: Every message m that matches at
least one context in C also matches at least one context in C'.

This definition of a context aggregation abstracts from the actual method used
to compute such an aggregation. All that is required is that the above mentioned
condition holds for a given aggregation approach. It also ensures that every client
receives at least all the messages they would have received without the aggregation
of client contexts, i.e., no client with a matching context falsely misses a message
because of the aggregation. Such a message that is not delivered despite a matching
context is called a “false negative”.

Aggregating contexts has positive and negative effects on the system: First, it
reduces the state information that context routers need to store for the matching of
messages and contexts. The smaller the number of aggregated contexts, k, is compared
to the original number of contexts, n, the less state the system needs to maintain. This
improves the scalability of the system, otherwise routers had complete knowledge from
all connected clients. Second, it also reduces update messages, which are necessary
to keep the user context information up-to-date on the routers. With the coarser
context aggregations, some context changes are concealed within the aggregations.
For example, if an aggregated context describes user contexts with an age attribute
in the range [15,23] then it is not necessary to propagate the change of one context’s
age from 18 to 19 to the routers. This helps in reducing the communication load of



the overlay links. Third, since an aggregated context information is coarser than the
original contexts, the system usually forwards some messages without a matching
receiver. For example, consider the previously mentioned age range [15,23]; this
might be the result of an aggregation of three user contexts with an age of 15, 18, and
23. If now a message is addressed to people at the age of 21, this aggregation would
cause the message to be forwarded, even though there is no single matching context
and thus receiver for it. These messages without a matching receiver are called “false
positives”. While the first two effects benefit the system, false positive messages
actually place a higher load on the overlay links because messages are forwarded
without a receiver.

Based on Definition 1, we propose Algorithm 1 to aggregate two contexts into one:
It aggregates all attributes that occur only in either ¢; or co directly into caggreg. For

Algorithm 1 Pairwise Context Aggregation

Require: Two user contexts ¢; and ¢y (singleton contexts or already aggregated
ones).
Ensure: An aggregated context caggreg-
Caggreg < 0
for all a1 € A(cy) do
if Jajo € A(c2) : name(wj2) = name(w1) then
Qmerged < Q)1
value(amerged) — value(aj 1) U value(a; o)
Caggreg € Caggreg Y Qmerged
else
Caggreg < Caggreg U v 1
end if
end for
for all aj2 € A(cp) do
if a2 € Caggreg then
Caggreg < Caggreg U 02
end if
end for

all attributes that occur in both contexts, it merges the values and then aggregates
the resulting new attribute into caggreg. This merge of attribute values needs to be
defined for the different attribute types in our system. For example, for WGS84
coordinates, a merge of two values is the bounding rectangle of both positions. This
definition can also be applied when one or both positions are shapes instead of points
(when aggregating already aggregated contexts). Or for ordered, numerical types, the
merge of values can be either the set resulting from the union of all values or it can be
a closed interval from the smallest to the largest value. Again, this definition is sound
for single values as well as for ones that are already sets or intervals. In addition, to
ensure that the aggregation condition holds, the predicates used in attribute filters
must be adapted to this definition. In detail, we have to check now whether the



addressed attribute values occur in the values of aggregated attributes, which may
now contain ranges or sets instead of single values. This is also rather straight-forward,
for example for a numerical type aggregated to an interval the equality predicate
must check whether the interval contains the specified value. Or in the case of a
set, it must compare the specified value with all elements from a set. Similarly, for
predicates such as > 5, the evaluation can check if the context interval or set contains
a value for which the predicate evaluates to true.

It can be shown that the aggregation condition holds for any context that results
from the (repeated) application of Algorithm 1 on a set of contexts: First, for any
pair, the resulting context contains the union of all attributes from the two original
contexts. Second, each of the attributes a; in the resulting context is either identical
to one from one of the original contexts (if it occurred in only one of the contexts)
or was merged from the two original ones. This merging is done in such a way that
any attribute filter that matches this attribute in one of the original contexts also
matches the corresponding attribute in the aggregated context.

The algorithm can be applied to both singleton contexts or already aggregated ones.
Thus, by repeated execution for pairs of user contexts, it can aggregate any given
set of contexts C'= {c1,...,¢,} into a single context ¢, for which the aggregation
condition holds. 0

3.2 Communication Overhead of a Context Aggregation

The communication load of a context aggregation is defined by the amount of
messages in the system. This includes both context messages and maintenance
messages. Content messages are addressed to users and we can distinguish between
true positives, i.e., messages that have to be forwarded to one or more matching
receivers, and false positives, i.e., messages forwarded without a matching receiver.
Maintenance messages are used internally by the system to ensure the correct and/or
optimized operation of the system, e.g., update messages to maintain the routing
tables of ContextRouters.

In CONTEXTCAST, by delivering messages along a spanning tree and not sending
duplicates over individual links, we can optimize the amount of true positive messages.
However, there is a lower limit to the amount of these messages, since we need to
deliver a message to every access node with one or more matching receivers. The
communication overhead, i.e., the amount of false positive messages and update
messages, though, depends on the aggregation of user contexts. In a good aggregation,
both values should be small. We therefore aim for an aggregation that minimizes this
communication overhead.

The overhead depends mainly on the chosen aggregation. For instance, consider
the previous example: if an algorithm aggregates two completely unrelated contexts,
such as a person at age 8 with one at age 80, intuitively, the aggregation causes
a many false positives. It is thus worse than one where two very similar contexts
have been aggregated, such as age 19 and 20. Therefore, an algorithm needs to



aggregate “similar” contexts. To achieve this goal, we need a formal way to measure
the similarity of contexts.

Related to that is the granularity of an aggregation, i.e., the ratio between n
and k. If we assume that an algorithm aggregates perfectly, i.e., the most similar
contexts, then the overhead of the aggregation is determined by the granularity of
the aggregated contexts. In the extreme case of a single context per user, the routers
have the most precise information, thus the amount of false positives is zero. However,
if any of the contexts change, this change needs to be propagated into the overlay
network. In the other extreme of a single context for all users, the information loss is
maximized, one single context representing all the users in the system. This means
that the system generates a large amount of false positives because of the uncertain
context information. However, many of the original contexts are concealed within
the aggregation, thus it reduces the amount of update messages that are propagated
into the network.

Therefore, to compute a good aggregation, we need an algorithm that finds and
aggregates the most similar contexts and achieves a granularity that optimizes the
combined load of update and false positive messages.

4 Continuous Context Aggregation

In this Section, we present our algorithm to continuously aggregate new and changed
user contexts in the CONTEXTCAST system and thus improve overall system scalability.
Before we can present our algorithm, we need to define a similarity measure between
contexts. After that, we discuss the effect of attribute popularity and how to exploit
it to improve our algorithm further. These two are important building blocks for our
continuous aggregation algorithm, which we introduce in the last Subsection.

4.1 Context Similarity

Figure 4 shows an example for two contexts ¢; and ca. As one can see, these contexts
share attributes ao and a4 — although with different values —, while a7 and a3 are
only part of ¢; and cg, respectively.

Cc1: (1 = U1 Co.
Gz = U2 Gz = U3
a3 = U4
a4 = Uy a4 = Vg

Figure 4: Example of two contexts ¢; and ¢y

The aggregation approach we introduced in Section 3.1 aggregates this into the
user context shown in Figure 5.

As one can see from this example, such an aggregation introduces two types of
uncertainty into the system: First, for attributes that are only part of one context, an
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Caggreg: Q1 = U1

ay = [vg;v3]
asz = U4
ay = |vs;vg)

Figure 5: Aggregation of contexts ¢; and co

aggregation introduces new attribute combinations into the system. In this example, a
message addressed to the combination of a; and a3 (and their respective values) would
not have matched the precise, unaggregated contexts c¢; and ca, where each context
contains only either oy or a3. It matches the aggregated context caggreg, though.
Second, for attributes that appear in both contexts, it introduces an uncertainty
for the values of these attributes. In the example, a message addressed to ag = v
with v9 < v < w3 would not have matched either of the two contexts, however, since
v € [vg; 3], it matches the aggregated context.

Based on this observation and the notion that aggregating “similar” contexts should
minimize the uncertainty that is introduced in the aggregation, we can derive a
similarity measure for our system. As the example shows, the two aspects that
determine context similarity are the set of attributes forming the two contexts (or
rather, the overlapping attributes) as well as the values of the overlapping attributes.
Thus, we can distinguish between a structural similarity and value similarity.

4.1.1 Structural Similarity

The structural similarity of contexts determines how similar the attribute sets of two
contexts are before aggregating and thus also how much information is added in an
aggregated context. As we have shown in the previous section, all attributes that
only occurred in one of the contexts introduce new combinations when aggregating
the two. Obviously, the more attributes are not shared between two contexts, the
more possible attribute combinations result from aggregating the contexts, which
were not present before.

The structural similarity can thus be measured by the relative overlap in attributes
between to contexts: on the one hand, if we have two contexts with 100 attributes
each and only a single attribute occurs in both, the relative overlap and thus the
structural similarity is tiny; an aggregation of these two results in a new context with
199 attributes and a huge amount of previously not existing attribute combinations.
If, on the other hand, each context has only two attributes, a shared attribute between
them is a big overlap; if we aggregate them, the resulting context has only three
attributes. With A(c) denoting the set of all attributes making up ¢, we can express
the structural similarity Sstructural formally as:

_ A(e) N A(ep)| 1
Sstructural(cl7 62) |A(Cl) U A(CQ)’ ( )

11



4.1.2 Similarity of Single Attribute Values

As we have argued in the previous section, the relative overlap between contexts
determines how much new information an aggregation of two contexts introduces into
the system, i.e., previously unknown attribute combinations. For the overlapping
attributes, i.e., the attributes that appear in both contexts, the similarity of the
values determines how much uncertainty is added to a single attribute when the
values of two different contexts for this attribute are aggregated.

In CONTEXTCAST, we distinguish between the following types of attributes (or
features), each with its own similarity measure, taken from [GD92]:

e Quantitative Features
— continuous ratio values, e.g., size or velocity.

— discrete absolute values, e.g., objects.

— interval values, e.g., duration.

e Qualitative Features
— nominal (unordered), e.g., color or gender.

— ordinal (ordered), e.g., designation.

e Structured Variables

— tree-ordered sets such as a type hierarchy.

The authors in [GD92| and subsequently [GR95| describe how to compute the simi-
larity for attributes of these types, with the exception of structured variables, which
they mention as one possible type but never detail. From this information, they
then compute the similarity between two symbolic objects by adding the similarity
values of all attribute-wise similarities. We closely follow the approach in [GR95|
for attribute similarity. However, there are two notable differences: first, as we have
shown in Section 4.1.1, the attribute sets that make up two contexts are important
for the structural similarity of these contexts in CONTEXTCAST. In the related work,
the authors mention that the composite objects need not be defined on the same set
of attributes but never detail how that affects the computation of similarity. We show
in Section 4.2 how to use both the structural and value similarity of two contexts to
compute their overall similarity. Second, they do not describe a similarity measure
for structured variables, which are an important part in our system.

According to [GR95], for each attribute ay in both contexts D and E, we can
compute the value similarity as the sum of three components:

1. Sy(Dg, Ey): Similarity due to position p
2. Ss(Dg, Ey): Similarity due to span s

3. Sc(Dg, Ey): Similarity due to content ¢

12



The similarity due to position is used to describe the relative position of two values
on a real line. The component due to span measures the relative size of two attribute
values, without considering common parts. The similarity due to content indicates
the common parts between two values.

The components for position, span, and content are all in [0, 1]. The overall value
similarity of the k-th attribute is thus defined as the sum of these three components,
divided by the number of components to normalize the result to [0, 1]:
Quantitative Attributes. According to [GD92, GR95|, the similarity of quanti-
tative interval types can be computed from the similarity due to position and span:
The similarity due to position is defined as

dl — €]
Sp(Dy, Ex) =1~ g,
ug,
with dj, e; the lower bounds of Dy, Ey, respectively, and uj the maximum interval of
the attribute k. Similarity due to span is defined as

lg+ e
2.1,

with I4,l. the length of the intervals Dy, Ej, respectively, and [ the span length
of intervals Dy, Ey, i.e., |max(d, — e,) — min(d; — ¢;)|, where d,, e, are the upper
bounds of Dy, Fy, respectively.

The resulting normalized similarity for quantitative interval types is therefore

S(Dy. ) = P F0) * S (Di F) ®)

The other quantitative types of attributes, ratios and absolute values, are special
cases of the quantitative interval type, with d; = d,,, ¢; = ey, lg = l. = inters = 0.
Qualitative Attributes. As shown in [GD92, GR95|, the similarity of qualitative
attributes can be measured as the similarity due to span and content. Let l; be
the length or number of elements in Dy, [ accordingly for Bj, inters = number
of elements common to Dy and Ej, and [ = span length of Dy and Fj combined
=g+l — inters. The similarity due to span is then defined as:

Ss(Dg, Ey) =

ld +1
Ss(Dy, Ey,) = <.
21
The similarity due to content is defined as:

inters
ly
For qualitative attribute types, this results in a total value similarity of

S(Dy,, Ey) = Ss(Dy, Ex) —2+ Se(Dr, By) "

Se(Dy, Ex) =

13



Structured Attributes. The value similarity of a variable that is based on a
tree-structure, such as a type hierarchy, is computed as the similarity due to position
using the distance in the tree and the overall size of the tree:

Let n1,n9 be two nodes that correspond to Dy and Ej, in a given tree structure
and h the height of this tree. Let also I(n) denote the level of a node n in this tree.
With this, the similarity between n; and ny is computed as follows: Find the first
common ancestor a for n; and ns.

S(Dk,Ek) = Sp(nl,ng) =1-

4.1.3 Value Similarity

Let (without loss of generality) {a1, ..., ax } be the set of all attributes shared between
two contexts ¢; and ca. Also let {41, ..., @n} be the remaining attributes that occur
only in one of the contexts. With the attribute-wise similarities S(cy,c2,) for the
i-th attribute, one could then compute the value-similarity between the two contexts,
S(c1,c2) simply as the sum of the similarity of all the overlapping attributes:

k
Svalue(€1, €2) = Z S(ci4,c2,) (6)

=1

4.2 Overall Similarity of Contexts

The overall similarity between two contexts can be described by two components:
first, the structural similarity between to contexts, i.e., the relative overlap of context
attributes between the two; second, the similarity due to the values of the shared
attributes.

For the total similarity, it seems natural to multiply the attribute similarity with
the relative overlap to modify the similarity due to attribute values by the structural
similarity of two contexts:

k

k
I — . = — : :
S(Clv 62) = structural(cla 02) Svalue(clu 02) n ;1 S(cl,u 02,7,) (7)

This matches the intuitive notion that for contexts with identical attribute sets,
thus Sstructural (€1, ¢2) = 1, only the value similarity is important, while for contexts
with disjoint attribute sets, and thus Sstructural (€1, c2) = 0, the overall similarity is 0,
independent of the value similarity (which is also 0, since there are no overlapping
attributes for which to compute the value similarity). For all cases between these
extremes, the value similarity is multiplied by the structural similarity with 0 <

Sstructural <1

14



However, the value similarity depends on the actual number of attributes occurring
in both contexts. The higher the number k of shared attributes, the higher the
attribute similarity will be. Therefore, we can modify Equation 7 to instead use the
arithmetic mean of the value similarity:

Syalue (Cl ) 02)

. kZ;C:l S(Cl,iacQ,i) . 1 i
— ﬁ 3 = ﬁ 25(01,2762,1) (8)

=1

S(Cly 02) = Sstructural(cla 02) : %

4.3 Attribute Popularity

The similarity definition from the previous Section does not take the popularity of
individual attributes into account. This information helps in deciding which attributes
to aggregate more aggressively (the rarely used ones) and which to propagate very
detailed into the network. For example, for a rarely used attribute, it may be enough
to have the knowledge that the attribute occurs in the direction of a given link, with
only a very broad knowledge of the values (e.g., age = [8;80]. If such an imprecise
information is the only information for an attribute that is used in 95% of all messages,
the amount of false positives would be very high; if the attribute is used in only a
few messages, the number of false positives is nonetheless low.

More formally, for each attribute «;, the system counts the number of messages
that use a constraint on oy, m,, during a window t,,, as well as the total number of
messages, m. The relative frequency of an attribute o4 in the messages during ¢, can
then be used as a measure for the popularity P of a:

Mgy,
o T
m

Intuitively, according to the previous discussion, the more popular an attribute is,
the less it should be aggregated and vice versa.

This can be combined with the similarity from the previous Section to create the
weighted similarity: The similarity for an attribute can be weighted by the reciprocal
of the popularity, thus lowering the chance for two contexts to be aggregated if they
contain a popular attribute with values that are not very similar. The formula for
the weighted similarity of two contexts ¢; and ¢y therefore becomes

k
1 1
Sweigthed (C1,€2) = - Z ?5(01,2', €2,) 9)

4.4 Continuous Aggregation Algorithm

In CONTEXTCAST, user contexts are continuously added to and removed from the
system. While Algorithm 1 allows us to aggregate pairs of contexts under the
aggregation condition, it does not select which pairs of contexts to aggregate or
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handle the continuous addition and removal of contexts. The following two algorithms
provide that.

Context Addition. With the context similarity measure from the previous sections,
the system can compute the similarity between pairs of contexts, either singleton
contexts or aggregations. Together with Algorithm 1, we can then aggregate newly
added contexts with existing ones as follows: When a router receives a newly added
context c,qq from one of its neighbors, it can compute the similarity between caqq
and all other contexts associated with that link. If the highest similarity between
Cadd and an existing context cex then exceeds a configurable threshold similarity, sgp,
the system can aggregate this new context with the existing one using Algorithm 1.
If the resulting context cpew differs from cey, cpnew must be propagated as an update
for cex. In this case, we call cpgq a “defining context” for cpeyw (this is important for
the context removal) and also mark the attributes that changed or were added by
the aggregation of cex and caqq. Algorithm 2 shows this sequence formally.

Algorithm 2 Context Addition

Require: A newly added context c,qq, received via a link .
Ensure: c,qq is attached to the link [.
Smax < 0
for all ¢; € {contexts already attached to [} do
8; < S(Cadd, Ci)
if s; > spmax then

Smax < Si
max < 1
end if
end for
if smax > Stn then
Cnew < merge ¢; and cyqq
if cpew differs from ¢; then
Mark c,qq as defining context for cpew-.
Replace ¢; on | with cpeyw.
Propagate cpew as update/replacement for ¢; on all links except [.
end if
else
Attach cpqq as singleton context to I.

Propagate caqq on all links except .
end if

Context Removal. The removal algorithm for contexts (e.g., when a user discon-
nects rom the system) is rather similar to the addition algorithm. Basically, when
a context crem 18 supposed to be removed from a link, a node first checks whether
Crem 18 a singleton context or part of an aggregation. A singleton context can simply
be removed and its removal propagated to neighbors. If the context is part of an
aggregation, it depends if it is a defining context for this aggregation. If it is not, its
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removal does not affect this context. If it is a defining context, the algorithm needs
to recalculate the affected attributes, and propagate this update for this context. See
Algorithm 3 for a formal description of these steps.

Algorithm 3 Context Removal

Require: A context cyem to remove from a link [.
Ensure: cpen is removed from the link .
if crem is a singleton context then
Remove ¢pom from [.
else {crem is part of an aggregation Caggreg }
if crem is defining context for caggreg then
Recalculate the affected attributes of caggreg-
Propagate an update of caggreg On all links except [.
else
Do nothing.
end if
end if

Similarity Threshold. The similarity threshold serves as a parameter for the
operation of Algorithm 2. It determines how similar two contexts must be before
they are aggregated and thus whether the system has a very fine or a rather coarse
aggregation. By adjusting its value, either manually by a human administrator or
autonomously, one can optimize the system for the observed contexts and messages.
Optimized Calculation of Context Similarity. For a newly added context, a
node must calculate its similarity with all other contexts that are attached to the
same link. Especially when there are already a large number of contexts attached to
a link, this calculation can cause a rather large amount of load for the node. However,
it is possible to simplify this calculation.

The similarity of two contexts consists of the product of the structural and the
value similarity. By employing a concept similar to Bloom filters [Blo70], it is possible
to calculate the structural similarity very easily. Let b; be a bit string for a user
context ¢;. Every attribute in ¢; can then be hashed to a position in b;, which is
then set to 1. Thus, b; is a representation of the structure of ¢;. Also, let |b;| be the
number of 1 bits in b;. Then, the structural similarity between cex and c,qq can be
expressed as

o | A(Cex) N A(Cada) o beey V bcadd|
Sstructural(ce)(acadd) — ‘A(Cex) U A(Cadd)| - |b A bCadd|

(10)
Cex
Binary AND and OR can be computed very fast on conventional computer systems,
the hashing of attribute names to bit positions can be done once and cached.

From this structural similarity, we can now derive a set of candidate contexts as
follows: for a given similarity threshold Sy, we exclude a context from the candidate
set (and thus skip the calculation of the value similarity) if the structural similarity
is smaller than Siy: From S = Sgtructural © Svalue > Sth, we can derive that also
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Sstructual > Sth- Thus, we only need to actually calculate the value similarity for
those candidates with a high enough structural similarity.

5 Effects of the Similarity Threshold

The Similarity Threshold determines the granularity of the aggregation and can thus
be used to adjust the aggregation algorithm to the observed load of messages and
context updates. This adjustment can be performed either by a human administrator
or autonomously, when the observed load in the system is unfavorably high for either
false positives or context updates.

A high value for sy, (i.e., close to 1) makes the algorithm only aggregate very
similar contexts. This leads to very detailed context information on the routers,
which in turn can make very precise forwarding decisions. As a result, the amount
of false positives in the system is low, however, many update messages need to be
propagated deeply into the network. A lower value for s, (i.e., closer to 0) results in
a more aggressive aggregation of user contexts. On the one hand, this reduces update
messages since the aggregations conceal some of the updates. On the other hand, the
reduced information on the routers results in an increase of false positive messages.

The optimal value for sy depends on numerous factors, especially the user contexts
in the system and the addressing of messages. For now, we assume that a human
administrator can set a reasonable value for sy, that the system operates near the
optimal point of combined false positive and update load. A quantitative evaluation
of reasonable threshold values under different scenarios (e.g. a system load dominated
by updates vs. one dominated by messages) is currently under way.

6 Conclusion & Outlook

An aggregation of user contexts in Contextcast can be used to lower the load on the
system and thus improve the overall scalability.

We have shown an approach that allows us to continuously aggregate user contexts
in Contextcast, while still being able to remove old contexts from the system. It uses
a similarity measure for contexts to decide when a new context has to be aggregated
with an existing one. The similarity measure takes into account both the structure of
user contexts, i.e. which attributes are present, and the values of the attributes, i.e.
how close are two attributes in the context space.

The similarity threshold st allows us to tune the aggregation algorithm to the
contexts and messages that occur in the system. We are currently investigating
sensible values for sy, under different scenarios.

In the future, we are going to improve the presented algorithm by allowing the
routers in the system to autonomously adapt the algorithm according to the amount
of overhead placed on them.
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