XPASCAL

eine Erweiterung der Sprache Pascal
mit exakter Arithmetik

Klaus Lagally

Institut fiir Informatik
der Universitat Stuttgart

12. Oktober 1989

Zusammenfassung

XPASCAL ist ein experimentelles Programmsystem zur Unterstiitzung exakter Be-
rechnungen in arithmetischen Zahlkorpern, das derzeit in der Abteilung Betriebs-
software am Institut fiir Informatik der Universitat Stuttgart entwickelt wird. Bisher
haben daran neben dem Verfasser die Studenten G. Neusetzer, U. Schoppe, G. Wahl,
Th. Schobel und S. Robitschko mitgearbeitet. Der vorliegende Bericht soll die derzei-
tigen Zielvorstellungen und den Stand der Realisierung aufzeigen und zu Kommen-
taren, Anderungswiinschen und Verbesserungsvorschligen einladen.

Inhaltsverzeichnis

1 Einfiihrung 3
2 Sprachumfang 5
2.1 Einschrankungen gegeniiber Pascal)
2.1.1 Programmkopf oo 5

2.1.2 Globale Spriingeo 6
2.1.3 Conformant arrays 6
2.1.4 Variante Records 6
215 Fileso 6
2.1.6 Packund Unpack 6

2.2 Erweiterungen gegeniiber Standard-Pascal 6
2.2.1 Lexikalische Darstellung 6
2.2.2 Einfiigen von Texten 7
2.2.3 Deklarationsreihenfolgeo 7
2.2.4 Gepackte Reihungen 7
2.2.5 Erweiterte Konstantendefinition 8
2.2.6 Arithmetische Grund-Datentypen 8
2.2.7 FErweiterte Grundtypen 8
2.2.8 Standard-Konstanten 9
2.2.9 Nichtarithmetische Typen 10
2.2.10 Typvertraglichkeit 10
2.2.11 Typumwandlung 11
2.2.12 Rechenoperationen 12

2.2.13 Standardfunktionen
2.2.14 Standardprozeduren
2.2.15 Ein- und Ausgabe auf Textdateien
2.2.16 Optionale Erweiterungen
2.3 Getrennte Ubersetzung
2.3.1 Modulbeschreibung
2.3.2 Aufbau eines Moduls

2.3.3 Zuordnung von Externbeziigen und Eingéingen

3 Praktische Verwendung

3.1 Ubersetzungsphase
3.2 Compiler-Optionen,
3.3 Ausfithrungsphase

3.4 Implementierungs-Einschrankungen

4 Stand der Realisierung

Literaturverzeichnis

A Programmbeispiel fiir erweiterte Arithmetik
B Beispiel fiir eine Modulbeschreibung

C Beispiel fiir einen externen Modul

D Beispiel fiir einen Haupt-Modul

19
19
20
22
22

24

25

27

30

31

34

Kapitel 1

Einfiihrung

XPASCAL ist ein experimentelles Programmsystem, das die bequeme Formulierung
und Ausfithrung von Berechnungen in arithmetischen Zahlkorpern, insbesondere
Kreisteilungskorpern, unterstiitzen soll. Die zugrundeliegende Programmiersprache
ist eine im wesentlichen aufwirtskompatible Erweiterung der Programmiersprache
Standard-Pascal [1, 2]. XPASCAL soll den fachkundigen, mit den Grundlagen von
Pascal vertrauten Anwender in die Lage versetzen, einfachere Anwendungsbeispiele
aus der Zahlentheorie auf komfortable Weise durchrechnen zu kénnen, ohne dabei

e allzu frith auf Grenzen des darstellbaren Zahlbereichs zu stoflen,
e durch Rundungsfehler verfilschte Resultate zu erhalten,
e sich um die maschineninterne Realisierung der Arithmetik zu kiimmern,

e von der gewohnten Schreibweise allzusehr abweichen zu miissen.

Natiirlich ist dieser Komfort nicht ohne erheblichen Aufwand an Speicherplatz und
Rechenzeit zu haben. Anwendungen, die mit den gebrduchlichen Programmierspra-
chen bequem losbar sind, sollten daher nicht mittels XPASCAL in Angriff genommen
werden.

Von den bekannten Systemen zum symbolischen Rechnen (beispielsweise MACSY-
MA, REDUCE etc.) unterscheidet sich XPASCAL wesentlich durch die kompatible
Einbettung der Operationen in eine verbreitete Hochsprache.

XPASCAL wird derzeit realisiert als eigensténdiges System unter dem Betriebssystem
UNIX!. Fiir einen sinnvollen Einsatz ist ein Rechnersystem mit einem Hauptspei-
cherausbau von ca. 4 MByte und einem Prozessor von mindestens der Leistung eines
MC 68000 angemessen. Da XPASCAL ein in der Entwicklung befindliches, experimen-
telles System ist, sind Anregungen, Verbesserungsvorschlige und Anderungswiinsche

LUNIX ist ein eingetragenes Warenzeichen von AT&T Bell Laboratories.

im ganzen Bereich von der Benutzerschnittstelle iber die Sprachdefinition bis hin zur
aktuellen Realisierung willkommen.

Kapitel 2

Sprachumfang

XPASCAL ist weitgehend an Standard-Pascal [1] angelehnt. Anderungen ergeben sich
zum einen aus dem erwiinschten erweiterten Leistungsumfang und zum anderen aus
daraus folgenden implementierungsbedingten Einschriankungen. In der Regel sollten
Standard-Pascal-Programme auch unter XPASCAL, wenn auch mit verringerter Effi-
zienz, ablauffdhig sein.

Fiir die Beschreibung gilt generell folgendes (vgl. [1]):

e “es ist ein Fehler” bedeutet: die Operation ist unzuléssig; das Ergebnis ist
undefiniert. Nicht alle Fehler werden zur Ubersetzungszeit oder zur Laufzeit
erkannt.

e “das Ergebnis ist implementierungsdefiniert” bedeutet: es wird ein wohldefi-
niertes, aber nicht néaher festgelegtes Resultat aus mehreren Moglichkeiten aus-
gew#hlt. Das Ergebnis ist brauchbar, kann aber in einer anderen Implementie-
rung abweichend ausfallen.

e Als Metasprache wird eine Variante von EBNF verwendet. Terminalsymbole
werden in “"” eingeschlossen, Nichtterminalsymbole in “<” und “>”. Wieder-
holungen werden mit “{” und “}” geklammert, optionale Angaben mit “[” und
“1”. Alternativen werden mit “|” abgetrennt.

2.1 Einschrinkungen gegeniiber Pascal

2.1.1 Programmkopf

Als Programm-Parameter sind nur File-Namen zuléssig. Die Standard-Dateien input
und output brauchen nicht angegeben zu werden, da sie immer angeschlossen werden.

2.1.2 Globale Spriinge

Explizite Ausspriinge aus Prozeduren auf globale Marken sind verboten. Von der
Verwendung lokaler Spriinge wird dringend abgeraten.

Durch Aufruf der vordefinierten Prozedur halt kann der Programmlauf definiert be-
endet werden.

2.1.3 Conformant arrays

Das “conformant-array”-Konzept aus Standard-Pascal ist vorerst aus Aufwandsgriin-
den nicht realisiert.

2.1.4 Variante Records

Variantenteile von Verbunden diirfen keine Komponenten eines Typs enthalten, der
iitber Standard-Pascal hinausgeht.

2.1.5 Files

Der Komponententyp eines File-Typs darf keine Elemente eines Typs enthalten, der
iitber Standard-Pascal hinausgeht. Der Komponententyp darf dariiberhinaus keine
Verbunde mit Varianten, Files oder Pointer enthalten.

2.1.6 Pack und Unpack

Die Standardprozeduren pack und unpack sind nicht implementiert, weil hier auch
gepackte Reihungen indiziert werden diirfen.

2.2 Erweiterungen gegeniiber Standard-Pascal

2.2.1 Lexikalische Darstellung

e Eingabezeilen konnen durch das Zeichen “\” auf die néchste Zeile fortgesetzt
werden. Diese Wirkung des Zeichens “\” tritt nur am Zeilenende ein.

e Innerhalb von Bezeichnern darf das Zeichen “_” (Unterstrich) vorkommen.
Grof-und Kleinbuchstaben werden, aufler in Zeichenketten, nicht unterschie-
den. Bezeichner diirfen beliebig lang sein, alle Zeichen dienen der Unterschei-

dung.

e Zahlen diirfen beliebige Stellenzahl haben. Innerhalb einer Ziffernfolge darf das
Zeichen “_” (Unterstrich) zum Abteilen von Zifferngruppen verwendet werden.
Bei double-Zahlen, das sind real-Zahlen mit hoherer Genauigkeit, wird der
Exponent mit dem Zeichen “d” eingeleitet.

e Die als Erweiterung (siehe 2.2.16) vorgesehenen Operationen bitand, bitor,
bitxor, bitnot konnen als reservierte Wortsymbole oder mittels der Zeichen
:c&n, :cln, cc%n, “” oodiert werden.

2.2.2 Einfiigen von Texten

Durch eine Einfiigungs-Angabe

<insertion> =
"#include" <file-ref>

<file-ref> =
nmoyn <Str1n > nmoyn | Il<ll <Str1n > Il>|l
g g

in der ersten Spalte einer Quellzeile kann der Inhalt einer Textdatei in die zu iiber-
setzende Quelle eingefiigt werden. Der <string> enthilt den Dateinamen nach den
Konventionen des unterliegenden Betriebssystems. Solche Einfiigungen kénnen auch
geschachtelt werden.

Diese Moglichkeit ist vor allem im Zusammenhang mit getrennt iibersetzten Pro-
grammteilen von Bedeutung (siehe 2.3).

2.2.3 Deklarationsreihenfolge
Die Reihenfolge der Deklarationen eines Blocks ist weitgehend beliebig, jedoch diirfen

jeweils nur bereits textuell vorher definierte Objekte verwendet werden; Ausnahme:
Prozeduren und Funktionen, die “forward” (bzw. “external”) spezifiziert sind.

Diese Erweiterung ergibt sich fast zwangslaufig aus der Moglichkeit, Texte einzufiigen.

2.2.4 Gepackte Reihungen

Gepackte Arrays konnen indiziert werden. Komponenten von gepackten Arrays
diirfen als Var-Parameter auftreten.

2.2.5 Erweiterte Konstantendefinition

Auf der rechten Seite einer Konstantendefinition darf ein konstanter Rechenausdruck
stehen. Er darf als Operanden nur vordefinierte oder im Programm bereits besetzte
Konstanten enthalten.

Konstanten, die in Deklarationen vorkommen, miissen bereits zur Ubersetzungszeit
auswertbar sein.

2.2.6 Arithmetische Grund-Datentypen

XPASCAL enthélt ein erweitertes System von arithmetischen Standard-Typen:

integer wie in Standard-Pascal: ein Ausschnitt aus den ganzen Zahlen im Intervall
(—maxint) bis maxint. mazint ist eine implementierungsspezifische vordefi-
nierte Konstante (derzeit 23! — 1 = 2147243647).

integer ist kein Ring; es ist, wie in Standard-Pascal, ein Fehler, wenn eine
der arithmetischen Grundoperationen +, —,* aus dem Bereich integer her-
ausfithren wiirde. Ist damit nicht zu rechnen, so sollte integer anstelle von
long verwendet werden, da der Rechenaufwand wesentlich geringer ist.

int gleichbedeutend mit integer.

long die ganzen Zahlen, soweit sie mit dem verfiigharen Speicher darstellbar sind
(andernfalls bricht der Programmlauf ab). Die Resultate der Grundoperationen
sind exakt. long ist daher ein Ring.

rat die rationalen Zahlen, soweit sie mit dem verfiigbaren Speicher darstellbar sind.
Die Resultate der Grundoperationen sind exakt. rat ist ein Korper.

real wie in Standard-Pascal: eine maschinenspezifische Approximation an die reellen
Zahlen. Die Resultate der Grundoperationen sind mit Rundungsfehlern behaf-
tet; daher ist real weder ein Ring noch ein Korper, jedoch oft eine brauchbare
Annéherung daran.

double eine mindestens ebenso gute Approximation der reellen Zahlen wie real;
ihre Verwendung bedingt eventuell hoheren Rechenaufwand.

2.2.7 Erweiterte Grundtypen

Fiir bestimmte zahlentheoretische Anwendungen konnen die Bereiche int, long, rat,
real und double jeweils durch symbolische Adjunktion einer primitiven p™-ten Ein-

heitswurzel { erweitert werden. So ergeben sich die zusétzlichen Grundtypen:

ext_int bedeutet int[(],
ext_long bedeutet long][(],
ext_rat bedeutet rat[(],
ext_real bedeutet real[(],

ext_double bedeutet double[(] .

Fiir die Genauigkeit der Resultate und die Ring- bzw. Korper-Eigenschaft gilt das
iiber die jeweiligen Grundtypen Gesagte.

Die Elemente der Erweiterungstypen kann man sich vorstellen als Polynome von
minimalem Grad in ¢ mit Koeffizienten vom jeweiligen Grundtyp.

Beisprel:

Fir p = 2 und n = 2 entspricht ext_real den komplexen Zahlen, ext_long den
ganzen GaujfSschen Zahlen.

Hinweis:

ext_real und ext_double sind nur in diesem Falle sinnvoll!

2.2.8 Standard-Konstanten

Die Grofien

e basic_prime: die Primzahl p,

e basic_exponent: der Exponent n,

e primitive_root: die primitive p"-te Einheitswurzel (,
e root_order: die Ordnung p™ von (,

o ert_degree: der Grad ¢(p") = (p — 1) - p*~* der Erweiterungen

sind standardméBig als Konstanten verfiigbar. primitive_rootist vom Typ ext_int, die
anderen Konstanten sind vom Typ int. Beim Start der Ausfithrung eines XPASCAL-
Programms werden die aktuellen Werte von p und n vom Benutzer erfragt, bzw. sind
iiber Start-Optionen einstellbar.

In Deklarationen diirfen Konstanten, die von den Standard-Konstanten abhéngen,
nicht vorkommen, da diese nicht bereits zur Ubersetzungszeit zur Verfiigung stehen.

Hinweis:

In der Praxis wird man die vorgegebenen Bezeichnungen mittels einer Konstantende-
finition im Benutzerprogramm zweckmdf$ig problembezogen umbenennen. Das Gleiche
qilt sinngemdf$ fir die Standard-Typbezeichner der Erweiterungstypen.

Beispiel fiirp=2 und n = 2:

const i = primitive_root;
type complex = ext_real;
gauss = ext_long;

oder auch:

type Z = long;
Q = rat;
C = ext_real;
R = ext_long;
K = ext_rat;

2.2.9 Nichtarithmetische Typen

e Die aus Standard-Pascal bekannten Datentypen char, boolean (synonym:
bool) sowie die frei definierbaren Aufzidhlungstypen sind weiterhin vorhanden.

e Die Mechanismen zur Konstruktion von zusammengesetzten Typen sind unver-
dndert iibernommen. Dabei zdhlen die Typen long, rat und double, ebenso
wie real, nicht zu den skalaren Typen.

e Die neu eingefithrten Typen (aufler double) diirfen nicht als Komponenten
eines file auftreten oder darin enthalten sein, ebensowenig im Variantenteil eines
varianten record. Diese Einschrinkung betrifft nicht die Ein- und Ausgabe auf
Textdateien (vgl. 2.2.15).

2.2.10 Typvertraglichkeit

Gemaf Tabelle 2.1 wird bei Wertzuweisung und bei Wert-Parametern der Wert des
zuzuweisenden Ausdrucks bei Bedarf auf den Zieltyp ausgeweitet.

Wegen der oben (Abschnitt 2.2.7) genannten Einschrinkungen ist der Ubergang
int — long in Strenge kein Ringhomomorphismus, ebenso der Ubergang rat — real
kein Kérperhomomorphismus. Dasselbe gilt fiir die entsprechenden Ubergéinge bei
den erweiterten Grundtypen.

10

int — long — rat — real — double

l l l l l

ext_int — extlong — extrat — extreal — ext_double

Tabelle 2.1: Typausweitung

2.2.11 Typumwandlung

e Eine Einschrinkung auf einen weniger méchtigen Typ ist bei Bedarf explizit
vorzunehmen mittels der Standardfunktionen:

Short: long — int
bzw. ext long — ext_int

Trunc, Round: real — int
bzw. ext real — ext_int
bzw. rat — long
bzw. ext_rat — ext_long

Single: double — real
bzw. ext_double — ext_real

Dabei gilt generell, dal die Einschrankung eines vorher implizit ausgeweiteten
Wertes auf den urspriinglichen Typ zum urspriinglichen Wert fiihrt; ansonsten
héngt das Resultat von der Operation ab:

— Fiir erweiterte Typen ist das Resultat komponentenweise zu berechnen.
— Fiir die Grundtypen gilt:

Short: es ist ein Fehler, wenn der long-Operand auflerhalb des Bereichs
integer liegt; sonst wird der Operand auf integer gekiirzt.

Single: liefert eine geeignete real-Approximation des Arguments vom
Typ double; bei mehreren gleichwertigen Moglichkeiten ist das Er-
gebnis implementierungsdefiniert. Es ist ein Fehler, wenn das Argu-
ment auflerhalb des mit dem Typ real darstellbaren Zahlbereichs
liegt.

Trunc: liefert die dem Absolutbetrag nach grofite ganze Zahl, deren Be-
trag nicht grofler als der des Arguments ist. Es ist ein Fehler, wenn
diese Zahl aulerhalb des Zielbereichs liegt.

Round: Es gilt die Definition

if x >0 then Round(x) = Trunc(x+0.5)
else Round(x) = —Round(—x)

Es ist ein Fehler, wenn Round(z) aulerhalb des Zielbereichs liegt.

11

— Ist bei einem Erweiterungstyp fiir eine Komponente ein Fehler aufgetreten,
so ist das Gesamtergebnis fehlerhaft.

— Ist ansonsten fiir eine Komponente ein implementierungsdefiniertes Resul-
tat aufgetreten, so ist das Gesamtergebnis implementierungsdefiniert.

e Die Standardfunktion
Coeff: ext_X x int — X, mit X € {int, long, rat, real, double}

liefert beim Aufruf Coef f(x, k) den Koeffizienten von ¢* aus der Polynomdar-
stellung von x aus. Der zweite Parameter mufl zwischen O einschliefllich und
dem Grad ¢(p™) = (p — 1) - p"~! ausschlieBlich liegen, sonst ist das Ergebnis
undefiniert.

e Die Standardfunktion
Conj: ext_X X int — ext_X, mit X € {int, long, rat, real, double}

liefert beim Aufruf Conj(x,k) den Wert, der sich ergibt, wenn man in der
Polynomdarstellung von x konsistent ¢ durch ¢* ersetzt. Durchliuft & alle Werte
von 2 bis p™ — 1, die nicht durch p teilbar sind, so erhélt man jede Konjugierte
von z genau einmal. Es gilt immer:

Conj(z,1) ==

Liegt k£ nicht im Bereich von 0 bis p™ ausschlieflich, oder ist & durch p teilbar,
so ist das Resultat undefiniert.

e Mittels der Funktion

Expand: int — long
bzw. ext_int — ext_long

kann ein Wert explizit ausgeweitet werden, um exakte Arithmetik zu erzwin-
gen. Dies fithrt zu erheblich héheren Rechenzeiten und sollte daher nur dann
verwendet werden, wenn andernfalls mit der Uberschreitung des Grundbereichs
int bzw. ext_int gerechnet werden muf.

2.2.12 Rechenoperationen

Die in Standard-Pascal definierten Grundoperationen sind soweit wie moglich
aufwartskompatibel erweitert worden. Im einzelnen gilt folgendes:

+,—x T1 x T2 — T3
Das Typenschema aus Tabelle 2.1 bestimmt zu zwei beliebigen arithmetischen
Grundtypen T1, T2 der Operanden den kleinsten gemeinsamen Erweiterungs-
typ T3. Er ist der Typ des Resultats, und auf ihn werden die Operanden bei
Bedarf angepafit. Siehe dazu auch Tabelle 2.2, 2.3.

12

—: T — T, Vorzeichenumkehr
Der Typ wird nicht gedndert.

/: T1 x T2 — T3
Der Divisortyp wird ggf. soweit moglich iiber int — long — rat bzw.
ext_int — ext_long — ext_rat ausgeweitet. Der Ergebnistyp bestimmt sich
anschliefend iiber Tabelle 2.2, 2.3.

div, mod: T1 x T2 — T3
Diese Operationen sind nur sinnvoll, falls T1 (bis auf Umfangsbeschrankun-
gen) ein Ring ist; daher mu T1 € {int, long, ext_int, ext_long} sein. T2
kann nur int oder long sein. Der Ergebnistyp bestimmt sich nach Tabelle 2.2,
2.3. Bei T1 € {ext_int, ext_long} sind die Operationen komponentenweise zu
verstehen.

=#:T1 x T2 — T3
Die Operanden werden nach Tabelle 2.2, 2.3 angepafit; der Ergebnistyp ist
boolean.

<,><,>: Tl xT2 — T3
Als Operanden sind nur Elemente der Grundtypen zuléssig; ansonsten wie bei

“_»

xx: T1 x int — ext_int
T1 darf nur die Konstante ¢ (= primitive_root) sein; der zweite Operand mufl
zwischen 0 und p™ liegen, sonst ist das Ergebnis undefiniert. Diese Operation ist
nur zur bequemen Notation von Konstanten eines Erweiterungstyps vorgesehen.

int long rat real double

int int long rat real double
long long long rat real double
rat rat rat rat real double
real real real real real double
double | double double double double double

Tabelle 2.2: Typvertraglichkeit bei Grundtypen

2.2.13 Standardfunktionen

e Die Funktionen sin, cos, exp, In, sqrt, arctan, ord, pred, succ, chr, odd
sind weiterhin in gleicher Bedeutung vorhanden.

13

| T2 ext T2

T1| T3 ext.T3
ext_T1 | ext_-T3 ext T3

Tabelle 2.3: Typvertraglichkeit bei Erweiterungstypen

eabs: T — T
ist fiir beliebige arithmetische Grundtypen definiert.

esqr: T — T
ist fiir beliebige arithmetische Typen definiert.

e Denom: rat — long
bzw. ext_rat — long

liefert jeweils die kleinste positive ganze long-Zahl, mit der das Argument mul-
tipliziert werden muf}, um einen mit dem Typ long bzw. ext_long vertriglichen
Wert zu erhalten.

e Die Funktionen Coeff, Conj, Trunc, Round, Short, Single und Expand
sind bereits in 2.2.11 beschrieben.

2.2.14 Standardprozeduren

e Die Prozeduren new und dispose sind unverédndert vorhanden.

e Die Prozeduren pack und unpack sind nicht implementiert; sie sind auch
iiberfliissig, da auch gepackte Reihungen indiziert werden koénnen.

e Die Prozedur halt beendet den Programmlauf definiert.

2.2.15 Ein- und Ausgabe auf Textdateien

e Die Prozeduren reset, rewrite, put, get, page und die Funktionen eof, eoln
sind unveréndert vorhanden.

e Beiden Prozeduren write und writeln sind auch Argumente der neu eingefiihr-
ten arithmetischen Grundtypen zugelassen. Das Standard-Ausgabeformat fiir
sie ist noch nicht endgiiltig festgelegt; jedenfalls kann ein mit write ausgege-
bener Wert eines der Grundtypen mit read auf eine Variable desselben Typs
unverdndert eingelesen werden. Explizite Formatangaben sind derzeit bei den
neu eingefithrten Typen wirkungslos.

14

e Bei read und readln sind auch Argumente der Typen long, rat, double
zuléssig.

— Als externe Darstellung wird bei long nach evtl. vorhandenen fithrenden
Leerzeichen und Zeilenwechseln und nach einem optionalen Vorzeichen ei-
ne Ziffernfolge beliebiger Lénge erwartet, die nétigenfalls mit dem Zeichen
“N” auf Folgezeilen fortgesetzt werden kann. Die Folgezeilen diirfen fithren-
de Leerzeichen enthalten. Mit dem Zeichen “_” (Unterstrich) kénnen Zif-

ferngruppen zur Erhohung der Lesbarkeit abgeteilt werden. Jedes andere
Zeichen schliefit die Zahl ab.

— Bei rat wird eine long-Zahl im angegebenen Format erwartet, an die
wahlweise mit dem Zeichen “/” eine zweite long-Zahl unmittelbar ange-
schlossen werden kann. Als Resultat wird der exakte Quotient der beiden
Zahlen geliefert, bzw. dann, wenn “/” und die zweite Zahl fehlen, die auf
den Typ rat ausgeweitete einzige Zahl.

— Bei double wird die entsprechende externe Darstellung wie bei real er-
wartet; der Exponent kann in beiden Féllen wahlweise mit “e” oder “d”
eingeleitet werden. Die Anzahl der angegebenen Nachkommastellen ist be-
liebig, es wird geeignet gerundet.

2.2.16 Optionale Erweiterungen

Die folgenden Erweiterungen kénnen durch Angabe der Compiler-Option {$X+3} (vgl.
Abschnitt 3.2) am Anfang des Quelltextes zusitzlich eingeschaltet werden:

e Ein Funktionsresultat darf von beliebigem Typ sein.

e Die Infix-Operationen bitand, bitor, bitxor, bitnot bedeuten die bitweise
Verkniipfung ihrer integer-Operanden und liefern ein integer-Resultat.

e Bei case ist ein else-Zweig moglich:

<statement> =
"case" <expression> "of"
{ <caselabel> {"," <caselabel> }
":" <statement> ";" }
["else" <statement>]
llendll

Fehlt der else-Zweig, so ist der Aufruf eines nicht definierten case-Zweiges ein
Fehler.

15

e Die auch anderweitig verbreitete Dahl-Schleife

<statement> =
"loop" { <statement> ";" }
{ "exit" "if" <condition> ";"
{ <statement> ";" } }
Ilendll

wurde zusétzlich aufgenommen. Sie wird mit dem dynamisch ersten exit-Zweig
verlassen, dessen <condition> erfiillt ist.

e integer- oder long-Zahlkonstanten konnen, eingeleitet mit “$”, hexadezimal
angegeben werden. Die Hexadezimalziffern 10 — 15 werden durch “a” bis “f”
oder “A” bis “F” codiert. Fortsetzen mit “\” und Abtrennen mit “_” ist auch
hier méglich.

2.3 Getrennte Ubersetzung

XPASCAL gestattet es, Programmteile getrennt zu iibersetzen und externe Moduln
anzuschlieflen, die sich wie benannte Bibliotheken verhalten.

Um dabei noch méglichst weitgehende Priifungen zur Ubersetzungszeit zu ermogli-
chen, ohne sich allzuweit vom Pascal-Standard zu entfernen, wurde folgende Kon-
struktion gewahlt [8]:

Eine Ubersetzungseinheit ist entweder ein Hauptprogramm oder ein benannter ex-
terner Modul, der gewisse Konstanten, Typen, Prozeduren und Funktionen extern
zugénglich macht. Zur Ausfithrungszeit werden alle von einem Programm angespro-
chenen Objekte, soweit vorhanden, automatisch dazugeladen.

2.3.1 Modulbeschreibung

Zu jedem Modul gibt es eine Modulbeschreibung, welche die Deklarationen der extern
zugédnglichen Objekte enthélt. Diese Modulbeschreibung wird mittels des include-
Mechanismus (siche 2.2.2) sowohl in den Quelltext des Moduls selbst wie auch in
alle Ubersetzungseinheiten, die Eingéinge des Moduls verwenden, im &ufersten Block
textuell eingefiigt. So kann zur Ubersetzungszeit die korrekte Versorgung weitge-
hend abgepriift werden. Zur Ladezeit wird auBerdem iiberpriift, ob in verschiedenen
Ubersetzungseinheiten eingefiigte, gleich benannte Einschiibe textuell identisch sind.
Dies fangt den sonst oft schwer erkennbaren Fehler ab, dafl inkompatible Versionen
zusammengebunden werden.

16

Eine Modulbeschreibung hat folgende Syntax:

<module-description> =
{ <constant-definition>
| <type-definition>
| <external-specification> 1}

<external-specification> =
<procedure-heading> ";" "external" <module-name> ";"
| <function-heading> ";" "external" <module-name> ";"

<module-name> =
<identifier>

2.3.2 Aufbau eines Moduls

Die Syntax von <program> ist, bis auf die zusitzlich eingefithrte Moglichkeit der
<external-specification>, unverdndert.

Ein externer Modul gehorcht nach textueller Einfiigung aller include-Teile der Syntax

<module> =
"module" <module-name> ";"
{ <constant-definition>
| <type-definition>
| <external-specification>
| <function-declaration>
| <procedure-declaration> }

Globale Variablen im &uflersten Block sind in einem externen Modul, (der nicht
das Hauptprogramm ist,) nicht zugelassen; ein solcher Modul enthilt auch keine
ausfithrbaren Anweisungen auflerhalb von Prozeduren und Funktionen.

Alle im duflersten Block eines Programms oder Moduls definierten oder importierten
Namen miissen voneinander verschieden sein. Dagegen ist es zuléssig, dafl dersel-
be Prozedur- oder Funktionsname von verschiedenen Moduln exportiert wird; diese
konnen dann aber nicht gleichzeitig verwendet werden, weil sonst Namenskonflikte
durch Importe entstehen.

2.3.3 Zuordnung von Externbeziigen und Eingingen
Ist der <module-name> in einer “external”’-Angabe verschieden vom Namen des ge-

rade iibersetzten Moduls bzw. Programms, so handelt es sich um einen Externbezug.
Der angesprochene Modul wird zur Laufzeit automatisch dazugeladen.

17

Ist der <module-name> in der “external”’-Angabe identisch mit dem eigenen Mo-
dulnamen, so handelt es sich um die Angabe einer nach auflen zugénglichen Proze-
dur oder Funktion. Die Extern-Spezifikation wird dann genau wie eine “forward”-
Spezifikation behandelt; d.h. es mufl die Deklaration der Prozedur bzw. Funktion
im gleichen Objekt nachfolgen (ohne nochmalige Angabe der Parameter bzw. des
Resultat-Typs). Natiirlich kann ein Modul aulerdem lokale Konstanten, Typen, Pro-
zeduren und Funktionen besitzen und verwenden.

18

Kapitel 3

Praktische Verwendung

XPASCAL ist als ein zweistufiges System realisiert. Eine Voriibersetzungsphase
iiberfithrt das vom Anwender vorgegebene Quellprogramm aus der erweiterten
Pascal-Sprache in eine Zwischenform, die anschlieend, auch wiederholt mit wech-
selnden Parameterwerten und unterschiedlichen Daten, durch einen Interpreter aus-
gefithrt werden kann. Dies kann auch auf einem anderen Rechensystem geschehen,
da der Interpreter in Standard-Pascal geschrieben und leicht portabel ist. Die vom
Voriibersetzer erzeugten Zwischendateien sind auch leicht iibertragbar.

3.1 Ubersetzungsphase

Der Ubersetzer wird unter UNIX aufgerufen mit dem Kommando
xpasl Name.PAS

Der Ubersetzer erwartet ein Quellprogramm Name.PAS und erzeugt daraus ein Pro-
tokoll in einer Textdatei Name.LST, die auch alle gegebenenfalls anfallenden Fehler-
meldungen enthélt, sowie im Erfolgsfalle eine Zwischendatei Name.IMC mit dem zu
interpretierenden Zwischencode.

Weiterhin wird wahlweise eine Textdatei Name.CDE erzeugt, die den Zwischencode
aus Name.IMC in lesbarer Form enthilt. Dies dient nur der Kontrolle des Uberset-
zungsvorganges, ebenso wie die Datei Name.IDL, welche aulerdem bei Laufzeitfeh-
lern dem Interpreter Zugriff auf die Bezeichner im Quellprogramm ermaoglicht.

Verwendete include-Dateien miissen im gleichen Dateiverzeichnis vorhanden sein oder
iiber absolute oder relative Pfadnamen angesprochen werden.

19

3.2 Compiler-Optionen

Ein Kommentar der Gestalt <Kommentaranfang> "$" <Optionen> <Rest> mit

<Kommentaranfang> ::= "{" | "(x"
<Optionen> ::= <Option> { "," <Option> }
<Option> ::= <Grossbuchstabe> ("+" | "-")
<Rest> ::= { <Zeichen ausser Kommentarende> } <Kommentarende>
<Kommentarende> ::= "}" | "x)"

kann zur Steuerung von Ubersetzer-Optionen verwendet werden. Mit “+” wird die
Option jeweils eingeschaltet, mit “~” ausgeschaltet.

Als Optionen sind bislang festgelegt:

A: Parserlauf protokollieren. Fiir Testzwecke reserviert.
Voreinstellung: aus.

B: Semantikteil protokollieren. Fiir Testzwecke reserviert.
Voreinstellung: aus.

C: Zuweisungen auf Unterbereiche und Array-Indizierung iiberpriifen.
Voreinstellung: aus.

D: Deklarierte Groflen protokollieren.
Globale Groflen und Standard-Groflen werden nicht gedruckt. Siehe auch Op-
tionen G und Z. Fiir Testzwecke reserviert.
Voreinstellung: aus.

E, F: Nicht belegt.

G: Bei Option D und R werden auch die globalen Gréflen gedruckt. Fiir Testzwecke
reserviert.
Voreinstellung: aus.

H: Listing seitenweise abteilen.
Voreinstellung: ein.

I, J: Nicht belegt.

K: Zwischencode lesbar ausgeben.
Voreinstellung: ein.

L: Listing ein- und ausschalten.
Voreinstellung: ein.

M, N: Nicht belegt.

20

O: Zwischencode optimieren.
Voreinstellung: ein.

P: Pointer bei Dereferenzierung auf Wert # nil iiberpriifen.
Voreinstellung: aus.

Q: Nicht belegt.

R: Erreichbare Gréflen protokollieren.
Globale Groflen und Standard-Groflen werden nicht gedruckt. Siehe auch Op-
tionen G und Z. Fiir Testzwecke reserviert.
Voreinstellung: aus.

S: Auf Einhaltung des Pascal-Standards priifen. (Nicht realisiert).
Diese Option darf nur vor dem program-Statement gesetzt werden.
Voreinstellung: aus.

T: Stringverarbeitung wie in Turbo-Pascal aktivieren.
Nicht realisiert.

U, V: Nicht belegt.

W: Namensliste absetzen.
Voreinstellung: ein.

X: Erweiterten Standard aktivieren:

e loop-Anweisung,

else-Zweig bei case,

bitand, bitor, bitxor, bitnot-Operationen,

beliebiger Resultattyp bei Funktionen,

e Hexadezimalkonstanten

sind zugelassen.
Diese Option darf nur vor dem program-Statement gesetzt werden.
Voreinstellung: aus.

Y: Intern reserviert.

Z: Bei Option D und R werden auch die Standard-Groflen gedruckt. Fiir Testzwecke
reserviert.
Voreinstellung: aus.

21

3.3 Ausfithrungsphase

Der Interpreter wird unter UNIX aufgerufen mit dem Kommando
xpas2 Name { filename | option }

Die filename-Angaben werden in der Reihenfolge ihres Auftretens den Programm-
Parametern zugeordnet.

Als Optionen sind derzeit zuldssig:

-pZahl : Vorgabe der Primzahl p
-nZahl : Vorgabe des Exponenten n

-o : Einschalten Testmodus (siehe [10], dort sind auch weitere Testmdoglichkeiten
beschrieben).

Die Reihenfolge der Optionsangaben ist bedeutungslos, ebenso kénnen Optionsanga-
ben und File-Namen beliebig gemischt werden.

Der Interpreter erwartet eine Eingabedatei Name.IMC mit dem Zwischencode des
Hauptprogramms. Bei seinem Start erfragt er, soweit nicht durch Start-Optionen
voreingestellt, vom Anwender die aktuellen Werte fiir die Primzahl p und den Ex-
ponenten n, welche die jeweils giiltigen Erweiterungstypen fiir den Lauf des Pro-
gramms festlegen. Die Standard-Konstanten sind dann mit den aktuell giiltigen Wer-
ten verfiigbar.

Werden im Hauptprogramm Routinen aus anderen Moduln angesprochen, so wer-
den diese, soweit vorhanden, automatisch dazugeladen und angeschlossen. Fiir jeden
angesprochenen Modul Modul muf3 die Datei Modul.IMC vorhanden sein. Fehlt ein
angesprochener Modul, so wird der Lauf abgebrochen, ebenso dann, wenn sich beim
Laden Inkonsistenzen der Schnittstellen herausstellen.

Bei Laufzeitfehlern wird die Fehlerstelle und die aktuelle Aufrufverschachtelung an-
gegeben. Sofern die Datei NameIDL zur Verfiigung steht, kann auf die aktuellen
Werte der sichtbaren Variablen unter Bezug auf die im Quellprogramm verwendeten
Bezeichner zugegriffen werden. (Bislang noch nicht realisiert).

3.4 Implementierungs-Einschrinkungen

e Mengentypen konnen maximal 256 Elemente enthalten.

e Die Ordinalwerte der Grenzen des Grundtyps eines Mengentyps miissen im
Bereich von 0 bis 255 einschliefllich liegen.

e Aufzdhlungstypen konnen maximal 256 Elemente enthalten.

22

Zeichenketten diirfen maximal 255 Zeichen lang sein.
In Deklarationen auftretende Konstanten diirfen nicht gréfler als 32767 sein.
maxint hat den Wert 23! — 1 = 2147243647.

Es diirfen maximal ca. 2000 verschiedene Bezeichner, Konstanten und Strings
auftreten.

Die Summe der Langen voneinander verschiedener Bezeichner, Konstanten und
Strings darf einen Wert von ca. 25000 nicht iiberschreiten.

Der Wert von p" (siche 2.2.8) muf} kleiner als 2'° = 32768 sein. In der Pra-
xis fithren schon wesentlich kleinere Werte zu unertréglich hohem Zeit- und
Speicherbedarf.

23

Kapitel 4

Stand der Realisierung

Zum Zeitpunkt der Abfassung dieses Berichts (18. Dezember 1998) liegt eine erste
ablauffahige Version des Gesamtsystems vor.

Der Ubersetzer ist bis auf einige unwesentliche Details fertiggestellt. Er ist in
MODULA-2 [3] geschrieben und wurde unter Verwendung des Compiler-Generators
COCO [4] entwickelt [5, 6]. Die semantische Analyse lehnt sich an Ideen aus [12] an.
Der Ubersetzer wurde auf einem ATARI 1040 ST entwickelt und auf eine SUN 3-
Workstation unter UNIX iibertragen.

Der Interpreter fiir den Standard-Pascal-Kern ist fertiggestellt [9], ebenso die Er-
weiterung auf den vollen Sprachumfang [10]. Implementierungssprache ist Standard-
Pascal. Die Realisierung der Langzahlarithmetik und der Erweiterungstypen ist eben-
falls vollendet [11]. Da sich der Hauptspeicherbedarf der Langzahlarithmetik als un-
erwartet grof§ herausgestellt hat, wurde eine Neuimplementierung dieses Teiles mit
anderen Datenstrukturen durchgefiihrt, die nahezu abgeschlossen ist [7]. Das Mo-
dulkonzept ist spezifiziert und implementiert [8], die Versionsiiberpriifung ist noch
nachzuriisten.

Die oben erwiahnte Fehleranalyse bei Laufzeitfehlern ist als Fernziel ins Auge gefafit.

24

Literaturverzeichnis

1]

K. DéaBller, M. Sommer: PASCAL: Einfithrung in die Sprache. Norm-Entwurf
DIN 66256.
Springer Verlag 1983.

K. Jensen, N. Wirth: Pascal User Manual and Report.
Springer Verlag 1978.

N. Wirth: Programming in MODULA-2.
Springer Verlag 1983.

P. Rechenberg, H. Mossenbock: Ein Compiler-Generator fiir Mikrocomputer.
Hanser Verlag 1985.

G. Neusetzer: Implementierung eines Syntax- und Semantikpriifers fiir Pascal
mittels einer erweiterten Attribut-Grammatik.
Studienarbeit Nr. 643, 1987.

Institut fiir Informatik, Universitit Stuttgart.

G. Neusetzer: Entwicklung einer Pascal-Variante fiir zahlentheoretische Anwen-
dungen und eines Compilerkerns dafiir.

Diplomarbeit Nr. 676, 1988.

Institut fiir Informatik, Universitit Stuttgart.

S. Robitschko, Neuimplementierung der Langzahl-Arithmetik fiir XPASCAL
(Arbeitstitel).

Diplomarbeit, 1989.

Institut fiir Informatik, Universitit Stuttgart.

Th. Schobel: Ein Modulkonzept fiir XPASCAL.
Studienarbeit Nr., 1989.
Institut fiir Informatik, Universitit Stuttgart.

U. Schoppe: Prototyp eines Pascal-P-Code Interpreters.
Studienarbeit Nr. 694, 1988.
Institut fiir Informatik, Universitit Stuttgart.

25

[10] U. Schoppe: Ein Code-Interpreter fir XPASCAL.
Diplomarbeit Nr. 568, 1988.
Institut fiir Informatik, Universitit Stuttgart.

[11] G. Wahl: Entwurf und Implementierung einer Langzahl-Arithmetik fiir Kreis-
teilungskorper.
Diplomarbeit Nr. 546, 1988.
Institut fiir Informatik, Universitit Stuttgart.

[12] D. A. Watt: An Extended Attribute Grammar for Pascal.
SICPLAN Notices 14, 60 - 74, Feb. 1979.

26

Anhang A

Programmbeispiel fiir erweiterte
Arithmetik

program xtest(input, output);

(* Demonstrationsprogramm
fuer erweiterte Arithmetik
in Kreisteilungskoerpern *)
(* Standard-Bezeichnungen komfortabel umbenennen ! *)

(* Standard-Konstanten, beim Start vorgegeben *)

const zeta = primitive_root; (* Einheitswurzel der Ordnung p**n *)
p = basic_prime; (* Primzahl *)
n = basic_exponent; (* Exponent *)
pn = root_order; (* Ordnung von zeta *)

f

ext_degree; (* Grad der Erweiterung *)
(* Standard-Typen *)

type Z = long_integer;

Q = long_rational;
R = extended_integer; (x Z[zetal] *)
K = extended_rational; (x Q[zetal *)

(% lokale Groessen *)
var i: integer;

a, b: Z;
s, t: Q;

27

3

, ¥i R,
K.

W, X
u, v: K;

3

(* Beispiele fuer nicht standardmaessig vorgegebene Operationen *)

function Compl(x: K): K;
(* Produkt der Konjugierten *)
var i: integer;

y: K;
begin y := 1;
for i := 2 to pn do
if i mod p <> 0 then y :=y * Conj(x, i);
Compl := y;

end;

function Norm(x: K): Q;
begin Norm := Coeff(x * Compl(x), 0);
end;

function Rez(x: K): K;
(* multiplikatives Inverses *)

var y: K;
d: Q;
begin y := Compl(x);
d := Coeff(x * y, 0);
Rez :=y / d;
end;

(* Beginn Hauptprogramm *)

begin writeln(’Test erweiterte Arithmetik’);
writeln(’p = ’, p:3, ’, n="’, n:3);
writeln(’ (1 - zeta)**f = p * u’);

X := 1 - zeta;

y = 1;

for i :=1to fdoy :=y * x;
writeln(’ (1 - zeta)*xf = 7, y);
u:=y/ p;

writeln(C’u = ’, u);

a := Denom(u);

28

if a = 1 then writeln(’u ist ganzes Element’) else
writeln(’u ist kein ganzes Element’);

x := Trunc(u);
writeln(’Trunc(y / p) = 7, x);
writeln(’y div p =, y div p);

if (y div p) <> x then writeln(’Fehler bei Trunc oder div’);

w := Trunc(a * u);
writeln(’Zaehler von u ist ’, w);
writeln(’Nenner von u ist ’, a);
s := Norm(u);

writeln(’Norm(u) = ’, s);

if s = 1 then writeln(’u ist Einheit’)
else writeln(’u ist keine Einheit’);
end.

29

Anhang B

Beispiel fiir eine
Modulbeschreibung

{Definitionen der elementaren transzendenten Funktionen}
{oeffentlich zugaenglich}

{Realisierung im Modul "carith"}

function csqrt(z: complex): complex; external carith;
function cexp(z: complex): complex; external carith;
function cln(z: complex): complex; external carith;
function csin(z: complex): complex; external carith;

function ccos(z: complex): complex; external carith;

function carctan(z: complex): complex; external carith;

30

Anhang C

Beispiel fiir einen externen Modul

module carith;
{elementare transzendente Funktionen im Komplexen}
type complex = ext_real;

#include "carith.def"
{Funktionsdefinitionen, extern sichtbar}

const i = primitive_root;
pi4 = arctan(l);
pi2 = pid * 2;
pi = pi2 * 2;

function csqrt{(z: complex): complex};
{komplexe Quadratwurzel, Hauptwert}
var x, y, d, e: real;
begin x := coeff(z, 0); y := coeff(z, 1);
d := sqrt(sqr(x) + sqr(y));
if x > 0 then
begin e := sqrt((d + x)/2); csqrt := e + y/(2 * e) * 1i;
end else
begin e := sqrt((d - x)/2);
if y >= 0 then csqrt := y/(2 x e) + e * i
else csqrt := -y/(2 *x e) - e x i

end;
end;

31

function cexp{(z: complex): complex};
{komplexe Exponentialfunktion}

var x, y, d: real;

begin x := coeff(z, 0); y := coeff(z, 1);

d := exp(x);
cexp := d * cos(y) + d * sin(y) * 1i;
end;

function cln{(z: complex): complex};
{komplexer Logarithmus, Hauptwert}
var x, y, d: real;
e: complex;

begin x := coeff(z, 0); y := coeff(z, 1);

d := sqrt(sqr(x) + sqr(y));

if x > 0 then cln := 1n(d) + arctan(y/(d + x)) * 2 * i

else begin e := 1n(d) - arctan(y/(d - x)) * 2 * i;

if y > 0 then c¢ln := e + 1 * pi else cln :=e - 1 * pi;
end;

end;

function carctan{(z: complex): complex};
{komplexer Arcustangens, Hauptwert}
var x, y, d, e, f: real;
g: complex;
begin x := coeff(z, 0); y := coeff(z, 1);
e :=sqr(x); d :=1 - e - sqr(y);
f := sqrt(4*e + sqr(d));
if 4 > 0 then

carctan := arctan(2 * x / (£ + d))
- In((e + sqr(1 - y))/(e + sqr(1 + y)))/4 x i
else begin g := -arctan(2 * x / (f - d))
- In((e + sqr(1 - y))/(e + sqr(1 + y)))/4 * 1i;
if x > 0 then carctan := g + pi2
else carctan := g - pi2;
end;
end;

function csin{(z: complex): complex};
{komplexer Sinus}
var x, y, d, e: real;
begin x := coeff(z, 0); y := coeff(z, 1);
d := exp(y); e := 1/d;
csin := (d + e) * sin(x)/2 + (d - e) * cos(x)/2 * 1ij;

32

end;

function ccos{(z: complex): complex};
{komplexer Cosinus}
var x, y, d, e: real;
begin x := coeff(z, 0); y := coeff(z, 1);
d := exp(y); e := 1/d;
ccos := (d +e) *x cos(x)/2 - (d - e) *x sin(x)/2 * 1i;

end;

33

Anhang D

Beispiel fiir einen Haupt-Modul

program modtest (output) ;
{Test fuer komplexe transzendente Funktionen}
type complex = ext_real;

#include "carith.def"
{Definitionen der elementaren transzendenten Funktionen}

const i = primitive_root;
pi4 = arctan(l);
pi2 = pid * 2;
pi = pi2 * 2;

var k: integer;
a, b, c: complex;

procedure cwrite(z: complex; m, n: integer);

{formatierte Ausgabe komplexer Zahlen}

begin write(coeff(z, 0):m:n, > + i *x ’, coeff(z, 1):m:n);
end;

function cinv(z: complex): complex;
{Variante von 1/z, direkt ausprogrammiert}
var x, y, d: real;
begin x := coeff(z, 0); y := coeff(z, 1);
d := sqr(x) + sqr(y);
cinv := x/d - y/d * i,
end;

34

const p = basic_prime;
n = basic_exponent;
{Parameter der Koerpererweiterung}

begin writeln(’Test komplexe Arithmetik’);
if (p <> 2) or (n <> 2)
{pruefen, ob richtiger Zahlkoerper eingestellt}

then writeln(’falscher Zahlbereich, p =’, p, ’, n =’, n)
else
begin a := 6 + 1 * 8;

for k :=1 to 20 do

begin cwrite(a, 8, 4); writeln(’ = a’);

cwrite(1/a, 8, 4); writeln(’ = 1/a’);
cwrite(csqrt(a), 8, 4); writeln(’ = sqrt(a)’);
cwrite(cexp(a), 8, 4); writeln(’ = exp(a)’);
cwrite(cln(a), 8, 4); writeln(’ = 1n(a)’);

cwrite(csin(a), 8, 4); writeln(’ = sin(a)’);
cwrite(ccos(a), 8, 4); writeln(’ = cos(a)’);
cwrite(carctan(a), 8, 4); writeln(’ = arctan(a)’);
writeln;

cwrite(1/a*a-1, 8, 4); writeln(’ = 1/a * a - 1°);
cwrite(sqr(csqrt(a))-a, 8, 4); writeln(’ = sqr(sqrt(a)) - a’);
cwrite(csqrt(sqr(a))/a, 8, 4); writeln(’ = sqrt(sqr(a)) / a’);
cwrite(cexp(cln(a))-a, 8, 4); writeln(’ = exp(ln(a)) - a’);
cwurite((cln(cexp(a))-a)/pi, 8, 4);

writeln(’ = (1n(exp(a)) - a) / pi’);
cwrite(sqr(csin(a))+sqr(ccos(a))-1, 8, 4);

writeln(’ = sqr(sin(a)) + sqr(cos(a)) - 17);
cwrite((carctan(csin(a)/ccos(a))-a)/pi, 8, 4);

writeln(’ = (arctan(sin(a)/cos(a)) - a) / pi’);
writeln;
a:=ax*0.8x* (0.32 +1i % 0.96);
end;
writeln(’Ende Test komplexe Arithmetik’);
end;

end.

35

