
XPASCAL

eine Erweiterung der Sprache Pascal

mit exakter Arithmetik

Klaus Lagally

Institut für Informatik

der Universität Stuttgart

12. Oktober 1989

Zusammenfassung

Xpascal ist ein experimentelles Programmsystem zur Unterstützung exakter Be-
rechnungen in arithmetischen Zahlkörpern, das derzeit in der Abteilung Betriebs-
software am Institut für Informatik der Universität Stuttgart entwickelt wird. Bisher
haben daran neben dem Verfasser die Studenten G. Neusetzer, U. Schoppe, G. Wahl,
Th. Schöbel und S. Robitschko mitgearbeitet. Der vorliegende Bericht soll die derzei-
tigen Zielvorstellungen und den Stand der Realisierung aufzeigen und zu Kommen-
taren, Änderungswünschen und Verbesserungsvorschlägen einladen.

Inhaltsverzeichnis

1 Einführung 3

2 Sprachumfang 5

2.1 Einschränkungen gegenüber Pascal 5

2.1.1 Programmkopf . 5

2.1.2 Globale Sprünge . 6

2.1.3 Conformant arrays . 6

2.1.4 Variante Records . 6

2.1.5 Files . 6

2.1.6 Pack und Unpack . 6

2.2 Erweiterungen gegenüber Standard-Pascal 6

2.2.1 Lexikalische Darstellung . 6

2.2.2 Einfügen von Texten . 7

2.2.3 Deklarationsreihenfolge . 7

2.2.4 Gepackte Reihungen . 7

2.2.5 Erweiterte Konstantendefinition 8

2.2.6 Arithmetische Grund-Datentypen 8

2.2.7 Erweiterte Grundtypen . 8

2.2.8 Standard-Konstanten . 9

2.2.9 Nichtarithmetische Typen . 10

2.2.10 Typverträglichkeit . 10

2.2.11 Typumwandlung . 11

2.2.12 Rechenoperationen . 12

1

2.2.13 Standardfunktionen . 13

2.2.14 Standardprozeduren . 14

2.2.15 Ein- und Ausgabe auf Textdateien 14

2.2.16 Optionale Erweiterungen . 15

2.3 Getrennte Übersetzung . 16

2.3.1 Modulbeschreibung . 16

2.3.2 Aufbau eines Moduls . 17

2.3.3 Zuordnung von Externbezügen und Eingängen 17

3 Praktische Verwendung 19

3.1 Übersetzungsphase . 19

3.2 Compiler-Optionen . 20

3.3 Ausführungsphase . 22

3.4 Implementierungs-Einschränkungen 22

4 Stand der Realisierung 24

Literaturverzeichnis 25

A Programmbeispiel für erweiterte Arithmetik 27

B Beispiel für eine Modulbeschreibung 30

C Beispiel für einen externen Modul 31

D Beispiel für einen Haupt-Modul 34

2

Kapitel 1

Einführung

Xpascal ist ein experimentelles Programmsystem, das die bequeme Formulierung
und Ausführung von Berechnungen in arithmetischen Zahlkörpern, insbesondere
Kreisteilungskörpern, unterstützen soll. Die zugrundeliegende Programmiersprache
ist eine im wesentlichen aufwärtskompatible Erweiterung der Programmiersprache
Standard-Pascal [1, 2]. Xpascal soll den fachkundigen, mit den Grundlagen von
Pascal vertrauten Anwender in die Lage versetzen, einfachere Anwendungsbeispiele
aus der Zahlentheorie auf komfortable Weise durchrechnen zu können, ohne dabei

• allzu früh auf Grenzen des darstellbaren Zahlbereichs zu stoßen,

• durch Rundungsfehler verfälschte Resultate zu erhalten,

• sich um die maschineninterne Realisierung der Arithmetik zu kümmern,

• von der gewohnten Schreibweise allzusehr abweichen zu müssen.

Natürlich ist dieser Komfort nicht ohne erheblichen Aufwand an Speicherplatz und
Rechenzeit zu haben. Anwendungen, die mit den gebräuchlichen Programmierspra-
chen bequem lösbar sind, sollten daher nicht mittels Xpascal in Angriff genommen
werden.

Von den bekannten Systemen zum symbolischen Rechnen (beispielsweise MACSY-
MA, REDUCE etc.) unterscheidet sich Xpascal wesentlich durch die kompatible
Einbettung der Operationen in eine verbreitete Hochsprache.

Xpascal wird derzeit realisiert als eigenständiges System unter dem Betriebssystem
UNIX1. Für einen sinnvollen Einsatz ist ein Rechnersystem mit einem Hauptspei-
cherausbau von ca. 4 MByte und einem Prozessor von mindestens der Leistung eines
MC 68000 angemessen. Da Xpascal ein in der Entwicklung befindliches, experimen-
telles System ist, sind Anregungen, Verbesserungsvorschläge und Änderungswünsche

1UNIX ist ein eingetragenes Warenzeichen von AT&T Bell Laboratories.

3

im ganzen Bereich von der Benutzerschnittstelle über die Sprachdefinition bis hin zur
aktuellen Realisierung willkommen.

4

Kapitel 2

Sprachumfang

Xpascal ist weitgehend an Standard-Pascal [1] angelehnt. Änderungen ergeben sich
zum einen aus dem erwünschten erweiterten Leistungsumfang und zum anderen aus
daraus folgenden implementierungsbedingten Einschränkungen. In der Regel sollten
Standard-Pascal-Programme auch unter Xpascal, wenn auch mit verringerter Effi-
zienz, ablauffähig sein.

Für die Beschreibung gilt generell folgendes (vgl. [1]):

• “es ist ein Fehler” bedeutet: die Operation ist unzulässig; das Ergebnis ist
undefiniert. Nicht alle Fehler werden zur Übersetzungszeit oder zur Laufzeit
erkannt.

• “das Ergebnis ist implementierungsdefiniert” bedeutet: es wird ein wohldefi-
niertes, aber nicht näher festgelegtes Resultat aus mehreren Möglichkeiten aus-
gewählt. Das Ergebnis ist brauchbar, kann aber in einer anderen Implementie-
rung abweichend ausfallen.

• Als Metasprache wird eine Variante von EBNF verwendet. Terminalsymbole
werden in “"” eingeschlossen, Nichtterminalsymbole in “<” und “>”. Wieder-
holungen werden mit “{” und “}” geklammert, optionale Angaben mit “[” und
“]”. Alternativen werden mit “|” abgetrennt.

2.1 Einschränkungen gegenüber Pascal

2.1.1 Programmkopf

Als Programm-Parameter sind nur File-Namen zulässig. Die Standard-Dateien input

und output brauchen nicht angegeben zu werden, da sie immer angeschlossen werden.

5

2.1.2 Globale Sprünge

Explizite Aussprünge aus Prozeduren auf globale Marken sind verboten. Von der
Verwendung lokaler Sprünge wird dringend abgeraten.

Durch Aufruf der vordefinierten Prozedur halt kann der Programmlauf definiert be-
endet werden.

2.1.3 Conformant arrays

Das “conformant-array”-Konzept aus Standard-Pascal ist vorerst aus Aufwandsgrün-
den nicht realisiert.

2.1.4 Variante Records

Variantenteile von Verbunden dürfen keine Komponenten eines Typs enthalten, der
über Standard-Pascal hinausgeht.

2.1.5 Files

Der Komponententyp eines File-Typs darf keine Elemente eines Typs enthalten, der
über Standard-Pascal hinausgeht. Der Komponententyp darf darüberhinaus keine
Verbunde mit Varianten, Files oder Pointer enthalten.

2.1.6 Pack und Unpack

Die Standardprozeduren pack und unpack sind nicht implementiert, weil hier auch
gepackte Reihungen indiziert werden dürfen.

2.2 Erweiterungen gegenüber Standard-Pascal

2.2.1 Lexikalische Darstellung

• Eingabezeilen können durch das Zeichen “\” auf die nächste Zeile fortgesetzt
werden. Diese Wirkung des Zeichens “\” tritt nur am Zeilenende ein.

• Innerhalb von Bezeichnern darf das Zeichen “_” (Unterstrich) vorkommen.
Groß-und Kleinbuchstaben werden, außer in Zeichenketten, nicht unterschie-
den. Bezeichner dürfen beliebig lang sein, alle Zeichen dienen der Unterschei-
dung.

6

• Zahlen dürfen beliebige Stellenzahl haben. Innerhalb einer Ziffernfolge darf das
Zeichen “_” (Unterstrich) zum Abteilen von Zifferngruppen verwendet werden.
Bei double-Zahlen, das sind real-Zahlen mit höherer Genauigkeit, wird der
Exponent mit dem Zeichen “d” eingeleitet.

• Die als Erweiterung (siehe 2.2.16) vorgesehenen Operationen bitand, bitor,

bitxor, bitnot können als reservierte Wortsymbole oder mittels der Zeichen
“&”, “|”, “%”, “~” codiert werden.

2.2.2 Einfügen von Texten

Durch eine Einfügungs-Angabe

<insertion> =

"#include" <file-ref>

<file-ref> =

"’" <string> "’" | "<" <string> ">"

in der ersten Spalte einer Quellzeile kann der Inhalt einer Textdatei in die zu über-
setzende Quelle eingefügt werden. Der <string> enthält den Dateinamen nach den
Konventionen des unterliegenden Betriebssystems. Solche Einfügungen können auch
geschachtelt werden.

Diese Möglichkeit ist vor allem im Zusammenhang mit getrennt übersetzten Pro-
grammteilen von Bedeutung (siehe 2.3).

2.2.3 Deklarationsreihenfolge

Die Reihenfolge der Deklarationen eines Blocks ist weitgehend beliebig, jedoch dürfen
jeweils nur bereits textuell vorher definierte Objekte verwendet werden; Ausnahme:
Prozeduren und Funktionen, die “forward” (bzw. “external”) spezifiziert sind.

Diese Erweiterung ergibt sich fast zwangsläufig aus der Möglichkeit, Texte einzufügen.

2.2.4 Gepackte Reihungen

Gepackte Arrays können indiziert werden. Komponenten von gepackten Arrays
dürfen als Var-Parameter auftreten.

7

2.2.5 Erweiterte Konstantendefinition

Auf der rechten Seite einer Konstantendefinition darf ein konstanter Rechenausdruck
stehen. Er darf als Operanden nur vordefinierte oder im Programm bereits besetzte
Konstanten enthalten.

Konstanten, die in Deklarationen vorkommen, müssen bereits zur Übersetzungszeit
auswertbar sein.

2.2.6 Arithmetische Grund-Datentypen

Xpascal enthält ein erweitertes System von arithmetischen Standard-Typen:

integer wie in Standard-Pascal: ein Ausschnitt aus den ganzen Zahlen im Intervall
(−maxint) bis maxint. maxint ist eine implementierungsspezifische vordefi-
nierte Konstante (derzeit 231 − 1 = 2147243647).

integer ist kein Ring; es ist, wie in Standard-Pascal, ein Fehler, wenn eine
der arithmetischen Grundoperationen +,−, ∗ aus dem Bereich integer her-
ausführen würde. Ist damit nicht zu rechnen, so sollte integer anstelle von
long verwendet werden, da der Rechenaufwand wesentlich geringer ist.

int gleichbedeutend mit integer.

long die ganzen Zahlen, soweit sie mit dem verfügbaren Speicher darstellbar sind
(andernfalls bricht der Programmlauf ab). Die Resultate der Grundoperationen
sind exakt. long ist daher ein Ring.

rat die rationalen Zahlen, soweit sie mit dem verfügbaren Speicher darstellbar sind.
Die Resultate der Grundoperationen sind exakt. rat ist ein Körper.

real wie in Standard-Pascal: eine maschinenspezifische Approximation an die reellen
Zahlen. Die Resultate der Grundoperationen sind mit Rundungsfehlern behaf-
tet; daher ist real weder ein Ring noch ein Körper, jedoch oft eine brauchbare
Annäherung daran.

double eine mindestens ebenso gute Approximation der reellen Zahlen wie real;
ihre Verwendung bedingt eventuell höheren Rechenaufwand.

2.2.7 Erweiterte Grundtypen

Für bestimmte zahlentheoretische Anwendungen können die Bereiche int, long, rat,
real und double jeweils durch symbolische Adjunktion einer primitiven pn-ten Ein-

8

heitswurzel ζ erweitert werden. So ergeben sich die zusätzlichen Grundtypen:

ext int bedeutet int[ζ],

ext long bedeutet long[ζ],

ext rat bedeutet rat[ζ],

ext real bedeutet real[ζ],

ext double bedeutet double[ζ] .

Für die Genauigkeit der Resultate und die Ring- bzw. Körper-Eigenschaft gilt das
über die jeweiligen Grundtypen Gesagte.

Die Elemente der Erweiterungstypen kann man sich vorstellen als Polynome von
minimalem Grad in ζ mit Koeffizienten vom jeweiligen Grundtyp.

Beispiel:

Für p = 2 und n = 2 entspricht ext real den komplexen Zahlen, ext long den

ganzen Gaußschen Zahlen.

Hinweis:

ext real und ext double sind nur in diesem Falle sinnvoll!

2.2.8 Standard-Konstanten

Die Größen

• basic prime: die Primzahl p,

• basic exponent: der Exponent n,

• primitive root: die primitive pn-te Einheitswurzel ζ,

• root order: die Ordnung pn von ζ,

• ext degree: der Grad φ(pn) = (p− 1) · pn−1 der Erweiterungen

sind standardmäßig als Konstanten verfügbar. primitive root ist vom Typ ext int, die
anderen Konstanten sind vom Typ int. Beim Start der Ausführung eines Xpascal-
Programms werden die aktuellen Werte von p und n vom Benutzer erfragt, bzw. sind
über Start-Optionen einstellbar.

In Deklarationen dürfen Konstanten, die von den Standard-Konstanten abhängen,
nicht vorkommen, da diese nicht bereits zur Übersetzungszeit zur Verfügung stehen.

9

Hinweis:

In der Praxis wird man die vorgegebenen Bezeichnungen mittels einer Konstantende-

finition im Benutzerprogramm zweckmäßig problembezogen umbenennen. Das Gleiche

gilt sinngemäß für die Standard-Typbezeichner der Erweiterungstypen.

Beispiel für p = 2 und n = 2:

const i = primitive_root;

type complex = ext_real;

gauss = ext_long;

oder auch:

type Z = long;

Q = rat;

C = ext_real;

R = ext_long;

K = ext_rat;

2.2.9 Nichtarithmetische Typen

• Die aus Standard-Pascal bekannten Datentypen char, boolean (synonym:
bool) sowie die frei definierbaren Aufzählungstypen sind weiterhin vorhanden.

• Die Mechanismen zur Konstruktion von zusammengesetzten Typen sind unver-
ändert übernommen. Dabei zählen die Typen long, rat und double, ebenso
wie real, nicht zu den skalaren Typen.

• Die neu eingeführten Typen (außer double) dürfen nicht als Komponenten
eines file auftreten oder darin enthalten sein, ebensowenig im Variantenteil eines
varianten record. Diese Einschränkung betrifft nicht die Ein- und Ausgabe auf
Textdateien (vgl. 2.2.15).

2.2.10 Typverträglichkeit

Gemäß Tabelle 2.1 wird bei Wertzuweisung und bei Wert-Parametern der Wert des
zuzuweisenden Ausdrucks bei Bedarf auf den Zieltyp ausgeweitet.

Wegen der oben (Abschnitt 2.2.7) genannten Einschränkungen ist der Übergang
int → long in Strenge kein Ringhomomorphismus, ebenso der Übergang rat → real

kein Körperhomomorphismus. Dasselbe gilt für die entsprechenden Übergänge bei
den erweiterten Grundtypen.

10

int → long → rat → real → double

↓ ↓ ↓ ↓ ↓
ext int → ext long → ext rat → ext real → ext double

Tabelle 2.1: Typausweitung

2.2.11 Typumwandlung

• Eine Einschränkung auf einen weniger mächtigen Typ ist bei Bedarf explizit
vorzunehmen mittels der Standardfunktionen:

Short: long → int

bzw. ext long → ext int

Trunc, Round: real → int

bzw. ext real → ext int

bzw. rat → long

bzw. ext rat → ext long

Single: double → real

bzw. ext double → ext real

Dabei gilt generell, daß die Einschränkung eines vorher implizit ausgeweiteten
Wertes auf den ursprünglichen Typ zum ursprünglichen Wert führt; ansonsten
hängt das Resultat von der Operation ab:

– Für erweiterte Typen ist das Resultat komponentenweise zu berechnen.

– Für die Grundtypen gilt:

Short: es ist ein Fehler, wenn der long-Operand außerhalb des Bereichs
integer liegt; sonst wird der Operand auf integer gekürzt.

Single: liefert eine geeignete real-Approximation des Arguments vom
Typ double; bei mehreren gleichwertigen Möglichkeiten ist das Er-
gebnis implementierungsdefiniert. Es ist ein Fehler, wenn das Argu-
ment außerhalb des mit dem Typ real darstellbaren Zahlbereichs
liegt.

Trunc: liefert die dem Absolutbetrag nach größte ganze Zahl, deren Be-
trag nicht größer als der des Arguments ist. Es ist ein Fehler, wenn
diese Zahl außerhalb des Zielbereichs liegt.

Round: Es gilt die Definition

if x ≥ 0 then Round(x) = Trunc(x+ 0.5)

else Round(x) = −Round(−x)

Es ist ein Fehler, wenn Round(x) außerhalb des Zielbereichs liegt.

11

– Ist bei einem Erweiterungstyp für eine Komponente ein Fehler aufgetreten,
so ist das Gesamtergebnis fehlerhaft.

– Ist ansonsten für eine Komponente ein implementierungsdefiniertes Resul-
tat aufgetreten, so ist das Gesamtergebnis implementierungsdefiniert.

• Die Standardfunktion

Coeff: ext X × int → X, mit X ∈ {int, long, rat, real, double}

liefert beim Aufruf Coeff(x, k) den Koeffizienten von ζk aus der Polynomdar-
stellung von x aus. Der zweite Parameter muß zwischen 0 einschließlich und
dem Grad φ(pn) = (p − 1) · pn−1 ausschließlich liegen, sonst ist das Ergebnis
undefiniert.

• Die Standardfunktion

Conj: ext X × int → ext X, mit X ∈ {int, long, rat, real, double}

liefert beim Aufruf Conj(x, k) den Wert, der sich ergibt, wenn man in der
Polynomdarstellung von x konsistent ζ durch ζk ersetzt. Durchläuft k alle Werte
von 2 bis pn − 1, die nicht durch p teilbar sind, so erhält man jede Konjugierte
von x genau einmal. Es gilt immer:

Conj(x, 1) = x

Liegt k nicht im Bereich von 0 bis pn ausschließlich, oder ist k durch p teilbar,
so ist das Resultat undefiniert.

• Mittels der Funktion

Expand: int → long

bzw. ext int → ext long

kann ein Wert explizit ausgeweitet werden, um exakte Arithmetik zu erzwin-
gen. Dies führt zu erheblich höheren Rechenzeiten und sollte daher nur dann
verwendet werden, wenn andernfalls mit der Überschreitung des Grundbereichs
int bzw. ext int gerechnet werden muß.

2.2.12 Rechenoperationen

Die in Standard-Pascal definierten Grundoperationen sind soweit wie möglich
aufwärtskompatibel erweitert worden. Im einzelnen gilt folgendes:

+,−, ∗: T1 × T2 → T3

Das Typenschema aus Tabelle 2.1 bestimmt zu zwei beliebigen arithmetischen
Grundtypen T1, T2 der Operanden den kleinsten gemeinsamen Erweiterungs-
typ T3. Er ist der Typ des Resultats, und auf ihn werden die Operanden bei
Bedarf angepaßt. Siehe dazu auch Tabelle 2.2, 2.3.

12

−: T → T, Vorzeichenumkehr

Der Typ wird nicht geändert.

/: T1 × T2 → T3

Der Divisortyp wird ggf. soweit möglich über int → long → rat bzw.
ext int → ext long → ext rat ausgeweitet. Der Ergebnistyp bestimmt sich
anschließend über Tabelle 2.2, 2.3.

div, mod: T1 × T2 → T3

Diese Operationen sind nur sinnvoll, falls T1 (bis auf Umfangsbeschränkun-
gen) ein Ring ist; daher muß T1 ∈ {int, long, ext int, ext long} sein. T2
kann nur int oder long sein. Der Ergebnistyp bestimmt sich nach Tabelle 2.2,
2.3. Bei T1 ∈ {ext int, ext long} sind die Operationen komponentenweise zu
verstehen.

=, 6=: T1 × T2 → T3

Die Operanden werden nach Tabelle 2.2, 2.3 angepaßt; der Ergebnistyp ist
boolean.

<,>,≤,≥: T1 × T2 → T3

Als Operanden sind nur Elemente der Grundtypen zulässig; ansonsten wie bei
“=”.

∗∗: T1 × int → ext int

T1 darf nur die Konstante ζ (= primitive root) sein; der zweite Operand muß
zwischen 0 und pn liegen, sonst ist das Ergebnis undefiniert. Diese Operation ist
nur zur bequemen Notation von Konstanten eines Erweiterungstyps vorgesehen.

int long rat real double

int int long rat real double

long long long rat real double

rat rat rat rat real double

real real real real real double

double double double double double double

Tabelle 2.2: Typverträglichkeit bei Grundtypen

2.2.13 Standardfunktionen

• Die Funktionen sin, cos, exp, ln, sqrt, arctan, ord, pred, succ, chr, odd

sind weiterhin in gleicher Bedeutung vorhanden.

13

T2 ext T2

T1 T3 ext T3

ext T1 ext T3 ext T3

Tabelle 2.3: Typverträglichkeit bei Erweiterungstypen

• abs: T → T

ist für beliebige arithmetische Grundtypen definiert.

• sqr: T → T

ist für beliebige arithmetische Typen definiert.

• Denom: rat → long

bzw. ext rat → long

liefert jeweils die kleinste positive ganze long-Zahl, mit der das Argument mul-
tipliziert werden muß, um einen mit dem Typ long bzw. ext long verträglichen
Wert zu erhalten.

• Die Funktionen Coeff, Conj, Trunc, Round, Short, Single und Expand

sind bereits in 2.2.11 beschrieben.

2.2.14 Standardprozeduren

• Die Prozeduren new und dispose sind unverändert vorhanden.

• Die Prozeduren pack und unpack sind nicht implementiert; sie sind auch
überflüssig, da auch gepackte Reihungen indiziert werden können.

• Die Prozedur halt beendet den Programmlauf definiert.

2.2.15 Ein- und Ausgabe auf Textdateien

• Die Prozeduren reset, rewrite, put, get, page und die Funktionen eof, eoln

sind unverändert vorhanden.

• Bei den Prozedurenwrite undwriteln sind auch Argumente der neu eingeführ-
ten arithmetischen Grundtypen zugelassen. Das Standard-Ausgabeformat für
sie ist noch nicht endgültig festgelegt; jedenfalls kann ein mit write ausgege-
bener Wert eines der Grundtypen mit read auf eine Variable desselben Typs
unverändert eingelesen werden. Explizite Formatangaben sind derzeit bei den
neu eingeführten Typen wirkungslos.

14

• Bei read und readln sind auch Argumente der Typen long, rat, double
zulässig.

– Als externe Darstellung wird bei long nach evtl. vorhandenen führenden
Leerzeichen und Zeilenwechseln und nach einem optionalen Vorzeichen ei-
ne Ziffernfolge beliebiger Länge erwartet, die nötigenfalls mit dem Zeichen
“\” auf Folgezeilen fortgesetzt werden kann. Die Folgezeilen dürfen führen-
de Leerzeichen enthalten. Mit dem Zeichen “_” (Unterstrich) können Zif-
ferngruppen zur Erhöhung der Lesbarkeit abgeteilt werden. Jedes andere
Zeichen schließt die Zahl ab.

– Bei rat wird eine long-Zahl im angegebenen Format erwartet, an die
wahlweise mit dem Zeichen “/” eine zweite long-Zahl unmittelbar ange-
schlossen werden kann. Als Resultat wird der exakte Quotient der beiden
Zahlen geliefert, bzw. dann, wenn “/” und die zweite Zahl fehlen, die auf
den Typ rat ausgeweitete einzige Zahl.

– Bei double wird die entsprechende externe Darstellung wie bei real er-
wartet; der Exponent kann in beiden Fällen wahlweise mit “e” oder “d”
eingeleitet werden. Die Anzahl der angegebenen Nachkommastellen ist be-
liebig, es wird geeignet gerundet.

2.2.16 Optionale Erweiterungen

Die folgenden Erweiterungen können durch Angabe der Compiler-Option {$X+} (vgl.
Abschnitt 3.2) am Anfang des Quelltextes zusätzlich eingeschaltet werden:

• Ein Funktionsresultat darf von beliebigem Typ sein.

• Die Infix-Operationen bitand, bitor, bitxor, bitnot bedeuten die bitweise
Verknüpfung ihrer integer-Operanden und liefern ein integer-Resultat.

• Bei case ist ein else-Zweig möglich:

<statement> =

"case" <expression> "of"

{ <caselabel> {"," <caselabel> }

":" <statement> ";" }

["else" <statement>]

"end"

Fehlt der else-Zweig, so ist der Aufruf eines nicht definierten case-Zweiges ein
Fehler.

15

• Die auch anderweitig verbreitete Dahl-Schleife

<statement> =

"loop" { <statement> ";" }

{ "exit" "if" <condition> ";"

{ <statement> ";" } }

"end"

wurde zusätzlich aufgenommen. Sie wird mit dem dynamisch ersten exit-Zweig
verlassen, dessen <condition> erfüllt ist.

• integer- oder long-Zahlkonstanten können, eingeleitet mit “$”, hexadezimal
angegeben werden. Die Hexadezimalziffern 10 – 15 werden durch “a” bis “f”
oder “A” bis “F” codiert. Fortsetzen mit “\” und Abtrennen mit “_” ist auch
hier möglich.

2.3 Getrennte Übersetzung

Xpascal gestattet es, Programmteile getrennt zu übersetzen und externe Moduln
anzuschließen, die sich wie benannte Bibliotheken verhalten.

Um dabei noch möglichst weitgehende Prüfungen zur Übersetzungszeit zu ermögli-
chen, ohne sich allzuweit vom Pascal-Standard zu entfernen, wurde folgende Kon-
struktion gewählt [8]:

Eine Übersetzungseinheit ist entweder ein Hauptprogramm oder ein benannter ex-
terner Modul, der gewisse Konstanten, Typen, Prozeduren und Funktionen extern
zugänglich macht. Zur Ausführungszeit werden alle von einem Programm angespro-
chenen Objekte, soweit vorhanden, automatisch dazugeladen.

2.3.1 Modulbeschreibung

Zu jedemModul gibt es eine Modulbeschreibung, welche die Deklarationen der extern
zugänglichen Objekte enthält. Diese Modulbeschreibung wird mittels des include-
Mechanismus (siehe 2.2.2) sowohl in den Quelltext des Moduls selbst wie auch in
alle Übersetzungseinheiten, die Eingänge des Moduls verwenden, im äußersten Block
textuell eingefügt. So kann zur Übersetzungszeit die korrekte Versorgung weitge-
hend abgeprüft werden. Zur Ladezeit wird außerdem überprüft, ob in verschiedenen
Übersetzungseinheiten eingefügte, gleich benannte Einschübe textuell identisch sind.
Dies fängt den sonst oft schwer erkennbaren Fehler ab, daß inkompatible Versionen
zusammengebunden werden.

16

Eine Modulbeschreibung hat folgende Syntax:

<module-description> =

{ <constant-definition>

| <type-definition>

| <external-specification> }

<external-specification> =

<procedure-heading> ";" "external" <module-name> ";"

| <function-heading> ";" "external" <module-name> ";"

<module-name> =

<identifier>

2.3.2 Aufbau eines Moduls

Die Syntax von <program> ist, bis auf die zusätzlich eingeführte Möglichkeit der
<external-specification>, unverändert.

Ein externer Modul gehorcht nach textueller Einfügung aller include-Teile der Syntax

<module> =

"module" <module-name> ";"

{ <constant-definition>

| <type-definition>

| <external-specification>

| <function-declaration>

| <procedure-declaration> }

Globale Variablen im äußersten Block sind in einem externen Modul, (der nicht
das Hauptprogramm ist,) nicht zugelassen; ein solcher Modul enthält auch keine
ausführbaren Anweisungen außerhalb von Prozeduren und Funktionen.

Alle im äußersten Block eines Programms oder Moduls definierten oder importierten
Namen müssen voneinander verschieden sein. Dagegen ist es zulässig, daß dersel-
be Prozedur- oder Funktionsname von verschiedenen Moduln exportiert wird; diese
können dann aber nicht gleichzeitig verwendet werden, weil sonst Namenskonflikte
durch Importe entstehen.

2.3.3 Zuordnung von Externbezügen und Eingängen

Ist der <module-name> in einer “external”-Angabe verschieden vom Namen des ge-
rade übersetzten Moduls bzw. Programms, so handelt es sich um einen Externbezug.
Der angesprochene Modul wird zur Laufzeit automatisch dazugeladen.

17

Ist der <module-name> in der “external”-Angabe identisch mit dem eigenen Mo-
dulnamen, so handelt es sich um die Angabe einer nach außen zugänglichen Proze-
dur oder Funktion. Die Extern-Spezifikation wird dann genau wie eine “forward”-
Spezifikation behandelt; d.h. es muß die Deklaration der Prozedur bzw. Funktion
im gleichen Objekt nachfolgen (ohne nochmalige Angabe der Parameter bzw. des
Resultat-Typs). Natürlich kann ein Modul außerdem lokale Konstanten, Typen, Pro-
zeduren und Funktionen besitzen und verwenden.

18

Kapitel 3

Praktische Verwendung

Xpascal ist als ein zweistufiges System realisiert. Eine Vorübersetzungsphase
überführt das vom Anwender vorgegebene Quellprogramm aus der erweiterten
Pascal-Sprache in eine Zwischenform, die anschließend, auch wiederholt mit wech-
selnden Parameterwerten und unterschiedlichen Daten, durch einen Interpreter aus-
geführt werden kann. Dies kann auch auf einem anderen Rechensystem geschehen,
da der Interpreter in Standard-Pascal geschrieben und leicht portabel ist. Die vom
Vorübersetzer erzeugten Zwischendateien sind auch leicht übertragbar.

3.1 Übersetzungsphase

Der Übersetzer wird unter UNIX aufgerufen mit dem Kommando

xpas1 Name.PAS

Der Übersetzer erwartet ein Quellprogramm Name.PAS und erzeugt daraus ein Pro-
tokoll in einer Textdatei Name.LST, die auch alle gegebenenfalls anfallenden Fehler-
meldungen enthält, sowie im Erfolgsfalle eine Zwischendatei Name.IMC mit dem zu
interpretierenden Zwischencode.

Weiterhin wird wahlweise eine Textdatei Name.CDE erzeugt, die den Zwischencode
aus Name.IMC in lesbarer Form enthält. Dies dient nur der Kontrolle des Überset-
zungsvorganges, ebenso wie die Datei Name.IDL, welche außerdem bei Laufzeitfeh-
lern dem Interpreter Zugriff auf die Bezeichner im Quellprogramm ermöglicht.

Verwendete include-Dateien müssen im gleichenDateiverzeichnis vorhanden sein oder
über absolute oder relative Pfadnamen angesprochen werden.

19

3.2 Compiler-Optionen

Ein Kommentar der Gestalt <Kommentaranfang> "$" <Optionen> <Rest> mit

<Kommentaranfang> ::= "{" | "(*"

<Optionen> ::= <Option> { "," <Option> }

<Option> ::= <Grossbuchstabe> ("+" | "-")

<Rest> ::= { <Zeichen ausser Kommentarende> } <Kommentarende>

<Kommentarende> ::= "}" | "*)"

kann zur Steuerung von Übersetzer-Optionen verwendet werden. Mit “+” wird die
Option jeweils eingeschaltet, mit “-” ausgeschaltet.

Als Optionen sind bislang festgelegt:

A: Parserlauf protokollieren. Für Testzwecke reserviert.
Voreinstellung: aus.

B: Semantikteil protokollieren. Für Testzwecke reserviert.
Voreinstellung: aus.

C: Zuweisungen auf Unterbereiche und Array-Indizierung überprüfen.
Voreinstellung: aus.

D: Deklarierte Größen protokollieren.
Globale Größen und Standard-Größen werden nicht gedruckt. Siehe auch Op-
tionen G und Z. Für Testzwecke reserviert.
Voreinstellung: aus.

E, F: Nicht belegt.

G: Bei Option D und R werden auch die globalen Größen gedruckt. Für Testzwecke
reserviert.
Voreinstellung: aus.

H: Listing seitenweise abteilen.
Voreinstellung: ein.

I, J: Nicht belegt.

K: Zwischencode lesbar ausgeben.
Voreinstellung: ein.

L: Listing ein- und ausschalten.
Voreinstellung: ein.

M, N: Nicht belegt.

20

O: Zwischencode optimieren.
Voreinstellung: ein.

P: Pointer bei Dereferenzierung auf Wert 6= nil überprüfen.
Voreinstellung: aus.

Q: Nicht belegt.

R: Erreichbare Größen protokollieren.
Globale Größen und Standard-Größen werden nicht gedruckt. Siehe auch Op-
tionen G und Z. Für Testzwecke reserviert.
Voreinstellung: aus.

S: Auf Einhaltung des Pascal-Standards prüfen. (Nicht realisiert).
Diese Option darf nur vor dem program-Statement gesetzt werden.
Voreinstellung: aus.

T: Stringverarbeitung wie in Turbo-Pascal aktivieren.
Nicht realisiert.

U, V: Nicht belegt.

W: Namensliste absetzen.
Voreinstellung: ein.

X: Erweiterten Standard aktivieren:

• loop-Anweisung,

• else-Zweig bei case,

• bitand, bitor, bitxor, bitnot-Operationen,

• beliebiger Resultattyp bei Funktionen,

• Hexadezimalkonstanten

sind zugelassen.
Diese Option darf nur vor dem program-Statement gesetzt werden.
Voreinstellung: aus.

Y: Intern reserviert.

Z: Bei Option D und R werden auch die Standard-Größen gedruckt. Für Testzwecke
reserviert.
Voreinstellung: aus.

21

3.3 Ausführungsphase

Der Interpreter wird unter UNIX aufgerufen mit dem Kommando

xpas2 Name { filename | option }

Die filename-Angaben werden in der Reihenfolge ihres Auftretens den Programm-
Parametern zugeordnet.

Als Optionen sind derzeit zulässig:

-pZahl : Vorgabe der Primzahl p

-nZahl : Vorgabe des Exponenten n

-o : Einschalten Testmodus (siehe [10], dort sind auch weitere Testmöglichkeiten
beschrieben).

Die Reihenfolge der Optionsangaben ist bedeutungslos, ebenso können Optionsanga-
ben und File-Namen beliebig gemischt werden.

Der Interpreter erwartet eine Eingabedatei Name.IMC mit dem Zwischencode des
Hauptprogramms. Bei seinem Start erfragt er, soweit nicht durch Start-Optionen
voreingestellt, vom Anwender die aktuellen Werte für die Primzahl p und den Ex-
ponenten n, welche die jeweils gültigen Erweiterungstypen für den Lauf des Pro-
gramms festlegen. Die Standard-Konstanten sind dann mit den aktuell gültigen Wer-
ten verfügbar.

Werden im Hauptprogramm Routinen aus anderen Moduln angesprochen, so wer-
den diese, soweit vorhanden, automatisch dazugeladen und angeschlossen. Für jeden
angesprochenen Modul Modul muß die Datei Modul .IMC vorhanden sein. Fehlt ein
angesprochener Modul, so wird der Lauf abgebrochen, ebenso dann, wenn sich beim
Laden Inkonsistenzen der Schnittstellen herausstellen.

Bei Laufzeitfehlern wird die Fehlerstelle und die aktuelle Aufrufverschachtelung an-
gegeben. Sofern die Datei Name.IDL zur Verfügung steht, kann auf die aktuellen
Werte der sichtbaren Variablen unter Bezug auf die im Quellprogramm verwendeten
Bezeichner zugegriffen werden. (Bislang noch nicht realisiert).

3.4 Implementierungs-Einschränkungen

• Mengentypen können maximal 256 Elemente enthalten.

• Die Ordinalwerte der Grenzen des Grundtyps eines Mengentyps müssen im
Bereich von 0 bis 255 einschließlich liegen.

• Aufzählungstypen können maximal 256 Elemente enthalten.

22

• Zeichenketten dürfen maximal 255 Zeichen lang sein.

• In Deklarationen auftretende Konstanten dürfen nicht größer als 32767 sein.

• maxint hat den Wert 231 − 1 = 2147243647.

• Es dürfen maximal ca. 2000 verschiedene Bezeichner, Konstanten und Strings
auftreten.

• Die Summe der Längen voneinander verschiedener Bezeichner, Konstanten und
Strings darf einen Wert von ca. 25000 nicht überschreiten.

• Der Wert von pn (siehe 2.2.8) muß kleiner als 215 = 32768 sein. In der Pra-
xis führen schon wesentlich kleinere Werte zu unerträglich hohem Zeit- und
Speicherbedarf.

23

Kapitel 4

Stand der Realisierung

Zum Zeitpunkt der Abfassung dieses Berichts (18. Dezember 1998) liegt eine erste
ablauffähige Version des Gesamtsystems vor.

Der Übersetzer ist bis auf einige unwesentliche Details fertiggestellt. Er ist in
MODULA-2 [3] geschrieben und wurde unter Verwendung des Compiler-Generators
COCO [4] entwickelt [5, 6]. Die semantische Analyse lehnt sich an Ideen aus [12] an.
Der Übersetzer wurde auf einem ATARI 1040 ST entwickelt und auf eine SUN 3-
Workstation unter UNIX übertragen.

Der Interpreter für den Standard-Pascal-Kern ist fertiggestellt [9], ebenso die Er-
weiterung auf den vollen Sprachumfang [10]. Implementierungssprache ist Standard-
Pascal. Die Realisierung der Langzahlarithmetik und der Erweiterungstypen ist eben-
falls vollendet [11]. Da sich der Hauptspeicherbedarf der Langzahlarithmetik als un-
erwartet groß herausgestellt hat, wurde eine Neuimplementierung dieses Teiles mit
anderen Datenstrukturen durchgeführt, die nahezu abgeschlossen ist [7]. Das Mo-
dulkonzept ist spezifiziert und implementiert [8], die Versionsüberprüfung ist noch
nachzurüsten.

Die oben erwähnte Fehleranalyse bei Laufzeitfehlern ist als Fernziel ins Auge gefaßt.

24

Literaturverzeichnis

[1] K. Däßler, M. Sommer: PASCAL: Einführung in die Sprache. Norm-Entwurf
DIN 66256.
Springer Verlag 1983.

[2] K. Jensen, N. Wirth: Pascal User Manual and Report.
Springer Verlag 1978.

[3] N. Wirth: Programming in MODULA-2.
Springer Verlag 1983.

[4] P. Rechenberg, H. Mössenböck: Ein Compiler-Generator für Mikrocomputer.
Hanser Verlag 1985.

[5] G. Neusetzer: Implementierung eines Syntax- und Semantikprüfers für Pascal
mittels einer erweiterten Attribut-Grammatik.
Studienarbeit Nr. 643, 1987.
Institut für Informatik, Universität Stuttgart.

[6] G. Neusetzer: Entwicklung einer Pascal-Variante für zahlentheoretische Anwen-
dungen und eines Compilerkerns dafür.
Diplomarbeit Nr. 676, 1988.
Institut für Informatik, Universität Stuttgart.

[7] S. Robitschko, Neuimplementierung der Langzahl-Arithmetik für XPASCAL
(Arbeitstitel).
Diplomarbeit, 1989.
Institut für Informatik, Universität Stuttgart.

[8] Th. Schöbel: Ein Modulkonzept für XPASCAL.
Studienarbeit Nr., 1989.
Institut für Informatik, Universität Stuttgart.

[9] U. Schoppe: Prototyp eines Pascal-P-Code Interpreters.
Studienarbeit Nr. 694, 1988.
Institut für Informatik, Universität Stuttgart.

25

[10] U. Schoppe: Ein Code-Interpreter für XPASCAL.
Diplomarbeit Nr. 568, 1988.
Institut für Informatik, Universität Stuttgart.

[11] G. Wahl: Entwurf und Implementierung einer Langzahl-Arithmetik für Kreis-
teilungskörper.
Diplomarbeit Nr. 546, 1988.
Institut für Informatik, Universität Stuttgart.

[12] D. A. Watt: An Extended Attribute Grammar for Pascal.
SIGPLAN Notices 14, 60 - 74, Feb. 1979.

26

Anhang A

Programmbeispiel für erweiterte

Arithmetik

program xtest(input, output);

(* Demonstrationsprogramm

fuer erweiterte Arithmetik

in Kreisteilungskoerpern *)

(* Standard-Bezeichnungen komfortabel umbenennen ! *)

(* Standard-Konstanten, beim Start vorgegeben *)

const zeta = primitive_root; (* Einheitswurzel der Ordnung p**n *)

p = basic_prime; (* Primzahl *)

n = basic_exponent; (* Exponent *)

pn = root_order; (* Ordnung von zeta *)

f = ext_degree; (* Grad der Erweiterung *)

(* Standard-Typen *)

type Z = long_integer;

Q = long_rational;

R = extended_integer; (* Z[zeta] *)

K = extended_rational; (* Q[zeta] *)

(* lokale Groessen *)

var i: integer;

a, b: Z;

s, t: Q;

27

w, x, y: R;

u, v: K;

(* Beispiele fuer nicht standardmaessig vorgegebene Operationen *)

function Compl(x: K): K;

(* Produkt der Konjugierten *)

var i: integer;

y: K;

begin y := 1;

for i := 2 to pn do

if i mod p <> 0 then y := y * Conj(x, i);

Compl := y;

end;

function Norm(x: K): Q;

begin Norm := Coeff(x * Compl(x), 0);

end;

function Rez(x: K): K;

(* multiplikatives Inverses *)

var y: K;

d: Q;

begin y := Compl(x);

d := Coeff(x * y, 0);

Rez := y / d;

end;

(* Beginn Hauptprogramm *)

begin writeln(’Test erweiterte Arithmetik’);

writeln(’p = ’, p:3 , ’, n = ’, n:3);

writeln(’(1 - zeta)**f = p * u’);

x := 1 - zeta;

y := 1;

for i := 1 to f do y := y * x;

writeln(’(1 - zeta)**f = ’, y);

u := y / p;

writeln(’u = ’, u);

a := Denom(u);

28

if a = 1 then writeln(’u ist ganzes Element’) else

writeln(’u ist kein ganzes Element’);

x := Trunc(u);

writeln(’Trunc(y / p) = ’, x);

writeln(’y div p = ’, y div p);

if (y div p) <> x then writeln(’Fehler bei Trunc oder div’);

w := Trunc(a * u);

writeln(’Zaehler von u ist ’, w);

writeln(’Nenner von u ist ’, a);

s := Norm(u);

writeln(’Norm(u) = ’, s);

if s = 1 then writeln(’u ist Einheit’)

else writeln(’u ist keine Einheit’);

end.

29

Anhang B

Beispiel für eine

Modulbeschreibung

{Definitionen der elementaren transzendenten Funktionen}

{oeffentlich zugaenglich}

{Realisierung im Modul "carith"}

function csqrt(z: complex): complex; external carith;

function cexp(z: complex): complex; external carith;

function cln(z: complex): complex; external carith;

function csin(z: complex): complex; external carith;

function ccos(z: complex): complex; external carith;

function carctan(z: complex): complex; external carith;

30

Anhang C

Beispiel für einen externen Modul

module carith;

{elementare transzendente Funktionen im Komplexen}

type complex = ext_real;

#include "carith.def"

{Funktionsdefinitionen, extern sichtbar}

const i = primitive_root;

pi4 = arctan(1);

pi2 = pi4 * 2;

pi = pi2 * 2;

function csqrt{(z: complex): complex};

{komplexe Quadratwurzel, Hauptwert}

var x, y, d, e: real;

begin x := coeff(z, 0); y := coeff(z, 1);

d := sqrt(sqr(x) + sqr(y));

if x > 0 then

begin e := sqrt((d + x)/2); csqrt := e + y/(2 * e) * i;

end else

begin e := sqrt((d - x)/2);

if y >= 0 then csqrt := y/(2 * e) + e * i

else csqrt := -y/(2 * e) - e * i

end;

end;

31

function cexp{(z: complex): complex};

{komplexe Exponentialfunktion}

var x, y, d: real;

begin x := coeff(z, 0); y := coeff(z, 1);

d := exp(x);

cexp := d * cos(y) + d * sin(y) * i;

end;

function cln{(z: complex): complex};

{komplexer Logarithmus, Hauptwert}

var x, y, d: real;

e: complex;

begin x := coeff(z, 0); y := coeff(z, 1);

d := sqrt(sqr(x) + sqr(y));

if x > 0 then cln := ln(d) + arctan(y/(d + x)) * 2 * i

else begin e := ln(d) - arctan(y/(d - x)) * 2 * i;

if y > 0 then cln := e + i * pi else cln := e - i * pi;

end;

end;

function carctan{(z: complex): complex};

{komplexer Arcustangens, Hauptwert}

var x, y, d, e, f: real;

g: complex;

begin x := coeff(z, 0); y := coeff(z, 1);

e := sqr(x); d := 1 - e - sqr(y);

f := sqrt(4*e + sqr(d));

if d > 0 then

carctan := arctan(2 * x / (f + d))

- ln((e + sqr(1 - y))/(e + sqr(1 + y)))/4 * i

else begin g := -arctan(2 * x / (f - d))

- ln((e + sqr(1 - y))/(e + sqr(1 + y)))/4 * i;

if x > 0 then carctan := g + pi2

else carctan := g - pi2;

end;

end;

function csin{(z: complex): complex};

{komplexer Sinus}

var x, y, d, e: real;

begin x := coeff(z, 0); y := coeff(z, 1);

d := exp(y); e := 1/d;

csin := (d + e) * sin(x)/2 + (d - e) * cos(x)/2 * i;

32

end;

function ccos{(z: complex): complex};

{komplexer Cosinus}

var x, y, d, e: real;

begin x := coeff(z, 0); y := coeff(z, 1);

d := exp(y); e := 1/d;

ccos := (d + e) * cos(x)/2 - (d - e) * sin(x)/2 * i;

end;

33

Anhang D

Beispiel für einen Haupt-Modul

program modtest(output);

{Test fuer komplexe transzendente Funktionen}

type complex = ext_real;

#include "carith.def"

{Definitionen der elementaren transzendenten Funktionen}

const i = primitive_root;

pi4 = arctan(1);

pi2 = pi4 * 2;

pi = pi2 * 2;

var k: integer;

a, b, c: complex;

procedure cwrite(z: complex; m, n: integer);

{formatierte Ausgabe komplexer Zahlen}

begin write(coeff(z, 0):m:n, ’ + i * ’, coeff(z, 1):m:n);

end;

function cinv(z: complex): complex;

{Variante von 1/z, direkt ausprogrammiert}

var x, y, d: real;

begin x := coeff(z, 0); y := coeff(z, 1);

d := sqr(x) + sqr(y);

cinv := x/d - y/d * i;

end;

34

const p = basic_prime;

n = basic_exponent;

{Parameter der Koerpererweiterung}

begin writeln(’Test komplexe Arithmetik’);

if (p <> 2) or (n <> 2)

{pruefen, ob richtiger Zahlkoerper eingestellt}

then writeln(’falscher Zahlbereich, p =’, p, ’, n =’, n)

else

begin a := 6 + i * 8;

for k := 1 to 20 do

begin cwrite(a, 8, 4); writeln(’ = a’);

cwrite(1/a, 8, 4); writeln(’ = 1/a’);

cwrite(csqrt(a), 8, 4); writeln(’ = sqrt(a)’);

cwrite(cexp(a), 8, 4); writeln(’ = exp(a)’);

cwrite(cln(a), 8, 4); writeln(’ = ln(a)’);

cwrite(csin(a), 8, 4); writeln(’ = sin(a)’);

cwrite(ccos(a), 8, 4); writeln(’ = cos(a)’);

cwrite(carctan(a), 8, 4); writeln(’ = arctan(a)’);

writeln;

cwrite(1/a*a-1, 8, 4); writeln(’ = 1/a * a - 1’);

cwrite(sqr(csqrt(a))-a, 8, 4); writeln(’ = sqr(sqrt(a)) - a’);

cwrite(csqrt(sqr(a))/a, 8, 4); writeln(’ = sqrt(sqr(a)) / a’);

cwrite(cexp(cln(a))-a, 8, 4); writeln(’ = exp(ln(a)) - a’);

cwrite((cln(cexp(a))-a)/pi, 8, 4);

writeln(’ = (ln(exp(a)) - a) / pi’);

cwrite(sqr(csin(a))+sqr(ccos(a))-1, 8, 4);

writeln(’ = sqr(sin(a)) + sqr(cos(a)) - 1’);

cwrite((carctan(csin(a)/ccos(a))-a)/pi, 8, 4);

writeln(’ = (arctan(sin(a)/cos(a)) - a) / pi’);

writeln;

a := a * 0.8 * (0.32 + i * 0.96);

end;

writeln(’Ende Test komplexe Arithmetik’);

end;

end.

35

